1
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Boido D, Huneau C, Lebenberg J, Aydin AK, Beranger B, Charpak S, Chabriat H. Individual analysis of fMRI data reveals incongruency in a potential CADASIL biomarker. J Neurol Sci 2024; 466:123227. [PMID: 39276712 DOI: 10.1016/j.jns.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
fMRI-based studies on neurodegenerative diseases rarely report single-subject information, which is useful for assessing potential biomarkers. In a previous fMRI study, CADASIL patients showed, at the group level, a significant reduction of the long-lasting visually stimulated hyperaemic response. Here, we used data interpolation and computed a hemodynamic response function from the 20-s visual response to achieve a 40-s response prediction at the individual level. The comparison between the expected and recorded 40-s responses confirmed the occurrence of a late and frequent response reduction among patients. However, this feature was inversely related to age and was also detected in control subjects, which suggests that this potential biomarker cannot be retained for monitoring vascular dysfunction in CADASIL. We showcase an open-source analytical pipeline for single-subject analysis to quickly assess potential biomarkers in fMRI studies.
Collapse
Affiliation(s)
- Davide Boido
- CEA-Neurospin, Paris-Saclay University, CNRS UMR9027, Gif-sur-Yvette, France.
| | - Clément Huneau
- Nantes Université, Centrale Nantes, CNRS, LS2N, UMR6004, F-44000 Nantes, France
| | - Jessica Lebenberg
- Inserm, Neuro-Diderot, U1141 and Université Paris-Cité, F-75019 Paris, France; Translational Neurovascular Centre and Centre de reference CERVCO, FHU NeuroVasc, Paris, France
| | - Ali-Kemal Aydin
- CEA-Neurospin, Paris-Saclay University, CNRS UMR9027, Gif-sur-Yvette, France; Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Benoit Beranger
- CENIR, Institute du Cerveau (ICM), Hôpital Pitié-Salpêtrière de Sorbonne Université, Paris, France
| | - Serge Charpak
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Hugues Chabriat
- Inserm, Neuro-Diderot, U1141 and Université Paris-Cité, F-75019 Paris, France; Translational Neurovascular Centre and Centre de reference CERVCO, FHU NeuroVasc, Paris, France.
| |
Collapse
|
3
|
Li H, Li Y, Zhong Q, Chen F, Wang H, Li X, Xie Y, Wang X. Dysfunction of neurovascular coupling in patients with cerebral small vessel disease: A combined resting-state fMRI and arterial spin labeling study. Exp Gerontol 2024; 194:112478. [PMID: 38866193 DOI: 10.1016/j.exger.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) closely correlates to cognitive impairment, but its pathophysiology and the neurovascular mechanisms of cognitive deficits were unclear. We aimed to explore the dysfunctional patterns of neurovascular coupling (NVC) in patients with CSVD and further investigate the neurovascular mechanisms of CSVD-related cognitive impairment. METHODS Forty-three patients with CSVD and twenty-four healthy controls were recruited. We adopted resting-state functional magnetic resonance imaging combined with arterial spin labeling to investigate the NVC dysfunctional patterns in patients with CSVD. The Human Brain Atlas with 246 brain regions was applied to extract the NVC coefficients for each brain region. Partial correlation analysis and mediation analysis were used to explore the relationship between CSVD pathological features, NVC dysfunctional patterns, and cognitive decline. RESULTS 8 brain regions with NVC dysfunction were found in patients with CSVD (p < 0.025, Bonferroni correction). The NVC dysfunctional patterns in regions of the default mode network and subcortical nuclei were negatively associated with lacunes, white matter hyperintensities burden, and the severity of CSVD (FDR correction, q < 0.05). The NVC decoupling in regions located in the default mode network positively correlated with delayed recall deficits (FDR correction, q < 0.05). Mediation analysis suggested that the decreased NVC pattern of the left superior frontal gyrus partially mediated the impact of white matter hyperintensities on delayed recall (Mediation effect: -0.119; 95%CI: -11.604,-0.458; p < 0.05). CONCLUSION The findings of this study reveal the NVC dysfunctional pattern in patients with CSVD and illustrate the neurovascular mechanism of CSVD-related cognitive impairment. The NVC function in the left superior frontal gyrus may serve as a promising biomarker and therapeutic target for memory deficits in patients with CSVD.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - You Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Qin Zhong
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Faxiang Chen
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Hui Wang
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Xiang Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Yuanliang Xie
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China.
| | - Xiang Wang
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China.
| |
Collapse
|
4
|
Paques M, Krivosic V, Castro-Farias D, Dulière C, Hervé D, Chaumette C, Rossant F, Taleb A, Lebenberg J, Jouvent E, Tadayoni R, Chabriat H. Early remodeling and loss of light-induced dilation of retinal small arteries in CADASIL. J Cereb Blood Flow Metab 2024; 44:1089-1101. [PMID: 38217411 PMCID: PMC11179609 DOI: 10.1177/0271678x241226484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
A major hurdle to therapeutic development in cerebral small vessel diseases is the lack of in-vivo method that can be used repeatedly for evaluating directly cerebral microvessels. We hypothesised that Adaptive Optics (AO), which allows resolution images up to 1-2 μm/pixel at retinal level, could provide a biomarker for monitoring vascular changes in CADASIL, a genetic form of such condition. In 98 patients and 35 healthy individuals, the wall to lumen ratio (WLR), outer and inner diameter, wall thickness and wall cross-sectional area were measured in a parapapillary and/or paramacular retinal artery. The ratio of vessel diameters before and after light flicker stimulations was also calculated to measure vasoreactivity (VR). Multivariate mixed-model analysis showed that WLR was increased and associated with a larger wall thickness and smaller internal diameter of retinal arteries in patients. The difference was maximal at the youngest age and gradually reduced with aging. Average VR in patients was less than half of that of controls since the youngest age. Any robust association was found with clinical or imaging manifestations of the disease. Thus, AO enables the detection of early functional or structural vascular alterations in CADASIL but with no obvious link to the clinical or imaging severity.
Collapse
Affiliation(s)
- Michel Paques
- Paris Eye Imaging Group, Clinical Investigation Center 1423, Quinze-Vingts Hospital, Sorbonne Université, INSERM, Paris, France
| | - Valérie Krivosic
- Paris Eye Imaging Group, Clinical Investigation Center 1423, Quinze-Vingts Hospital, Sorbonne Université, INSERM, Paris, France
- Ophthalmology Department, Hôpital Lariboisière, APHP and Université Paris-Cité, France
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, Paris, AP-HP, France
| | - Daniela Castro-Farias
- Paris Eye Imaging Group, Clinical Investigation Center 1423, Quinze-Vingts Hospital, Sorbonne Université, INSERM, Paris, France
| | - Cédric Dulière
- Paris Eye Imaging Group, Clinical Investigation Center 1423, Quinze-Vingts Hospital, Sorbonne Université, INSERM, Paris, France
| | - Dominique Hervé
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, Paris, AP-HP, France
- Translational Neurovascular Centre and Departement of Neurology, FHU NeuroVasc, Paris, France
| | - Céline Chaumette
- Paris Eye Imaging Group, Clinical Investigation Center 1423, Quinze-Vingts Hospital, Sorbonne Université, INSERM, Paris, France
| | | | - Abbas Taleb
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, Paris, AP-HP, France
| | - Jessica Lebenberg
- Translational Neurovascular Centre and Departement of Neurology, FHU NeuroVasc, Paris, France
- Université Paris-Cité, Inserm, NeuroDiderot, U1141, Paris, France
| | - Eric Jouvent
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, Paris, AP-HP, France
- Translational Neurovascular Centre and Departement of Neurology, FHU NeuroVasc, Paris, France
- Université Paris-Cité, Inserm, NeuroDiderot, U1141, Paris, France
| | - Ramin Tadayoni
- Paris Eye Imaging Group, Clinical Investigation Center 1423, Quinze-Vingts Hospital, Sorbonne Université, INSERM, Paris, France
- Ophthalmology Department, Hôpital Lariboisière, APHP and Université Paris-Cité, France
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, Paris, AP-HP, France
| | - Hugues Chabriat
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, Paris, AP-HP, France
- Translational Neurovascular Centre and Departement of Neurology, FHU NeuroVasc, Paris, France
- Université Paris-Cité, Inserm, NeuroDiderot, U1141, Paris, France
| |
Collapse
|
5
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
6
|
Reeve EH, Barnes JN, Moir ME, Walker AE. Impact of arterial stiffness on cerebrovascular function: a review of evidence from humans and preclincal models. Am J Physiol Heart Circ Physiol 2024; 326:H689-H704. [PMID: 38214904 PMCID: PMC11221809 DOI: 10.1152/ajpheart.00592.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
With advancing age, the cerebral vasculature becomes dysfunctional, and this dysfunction is associated with cognitive decline. However, the initiating cause of these age-related cerebrovascular impairments remains incompletely understood. A characteristic feature of the aging vasculature is the increase in stiffness of the large elastic arteries. This increase in arterial stiffness is associated with elevated pulse pressure and blood flow pulsatility in the cerebral vasculature. Evidence from both humans and rodents supports that increases in large elastic artery stiffness are associated with cerebrovascular impairments. These impacts on cerebrovascular function are wide-ranging and include reductions in global and regional cerebral blood flow, cerebral small vessel disease, endothelial cell dysfunction, and impaired perivascular clearance. Furthermore, recent findings suggest that the relationship between arterial stiffness and cerebrovascular function may be influenced by genetics, specifically APOE and NOTCH genotypes. Given the strength of the evidence that age-related increases in arterial stiffness have deleterious impacts on the brain, interventions that target arterial stiffness are needed. The purpose of this review is to summarize the evidence from human and rodent studies, supporting the role of increased arterial stiffness in age-related cerebrovascular impairments.
Collapse
Affiliation(s)
- Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jill N Barnes
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - M Erin Moir
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
7
|
van Harten TW, van Rooden S, Koemans EA, van Opstal AM, Greenberg SM, van der Grond J, Wermer MJH, van Osch MJP. Impact of region of interest definition on visual stimulation-based cerebral vascular reactivity functional MRI with a special focus on applications in cerebral amyloid angiopathy. NMR IN BIOMEDICINE 2023; 36:e4916. [PMID: 36908068 DOI: 10.1002/nbm.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/15/2023]
Abstract
Cerebral vascular reactivity quantified using blood oxygen level-dependent functional MRI in conjuncture with a visual stimulus has been proven to be a potent and early marker for cerebral amyloid angiopathy. This work investigates the influence of different postprocessing methods on the outcome of such vascular reactivity measurements. Three methods for defining the region of interest (ROI) over which the reactivity is measured are investigated: structural (transformed V1), functional (template based on the activation of a subset of subjects), and percentile (11.5 cm3 most responding voxels). Evaluation is performed both in a test-retest experiment in healthy volunteers (N = 12), as well as in 27 Dutch-type cerebral amyloid angiopathy patients and 33 age- and sex-matched control subjects. The results show that the three methods select a different subset of voxels, although all three lead to similar outcome measures in healthy subjects. However, in (severe) pathology, the percentile method leads to higher reactivity measures than the other two, due to circular analysis or "double dipping" by defining a subject-specific ROI based on the strongest responses within each subject. Furthermore, while different voxels are included in the presence of lesions, this does not necessarily result in different outcome measures. In conclusion, to avoid bias created by the method, either a structural or a functional method is recommended. Both of these methods provide similar reactivity measures, although the functional ROI appears to be less reproducible between studies, because slightly different subsets of voxels were found to be included. On the other hand, the functional method did include fewer lesion voxels than the structural method.
Collapse
Affiliation(s)
- Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna M van Opstal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
8
|
Lee SJ, Zhang X, Wu E, Sukpraphrute R, Sukpraphrute C, Ye A, Wang MM. Structural changes in NOTCH3 induced by CADASIL mutations: role of cysteine and non-cysteine alterations. J Biol Chem 2023:104838. [PMID: 37209821 PMCID: PMC10318516 DOI: 10.1016/j.jbc.2023.104838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that results from mutations in NOTCH3. How mutations in NOTCH3 ultimately result in disease is not clear, though there is a predilection for mutations to alter the number of cysteines of the gene product, supporting a model in which alterations of conserved disulfide bonds of NOTCH3 drives the disease process. We have found that recombinant proteins with CADASIL NOTCH3 EGF-domains 1-3 fused to the C-terminus of Fc are distinguished from wildtype proteins by slowed mobility in non-reducing gels. We use this gel mobility shift assay to define the effects of mutations in the first three EGF-like domains of NOTCH3 in 167 unique recombinant protein constructs. This assay permits a readout on NOTCH3 protein mobility that indicates that: 1) Any loss of cysteine mutation in the first three EGF motifs results in structural abnormalities; 2) For loss of cysteine mutants, the mutant amino acid residue plays a minimal role; 3) The majority of changes that result in a new cysteine are poorly tolerated; 4) At residue 75, cysteine, proline, and glycine, but no other amino acids, induce structural shifts; 5) Specific second mutations in conserved cysteines suppress the impact of loss of cysteine CADASIL mutations. In sum, these studies support the importance of NOTCH3 cysteines and disulfide bonds in maintaining normal protein structure. Moreover, double mutant analysis suggests that suppression of protein abnormalities can be achieved through modification of cysteine reactivity, a potential therapeutic strategy.
Collapse
Affiliation(s)
- Soo Jung Lee
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105
| | - Xiaojie Zhang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105
| | - Emily Wu
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105
| | - Richard Sukpraphrute
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105
| | - Catherine Sukpraphrute
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105
| | - Andrew Ye
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105.
| |
Collapse
|
9
|
Hsu AL, Li MK, Kung YC, Wang ZJ, Lee HC, Li CW, Huang CWC, Wu CW. Temporal consistency of neurovascular components on awakening: preliminary evidence from electroencephalography, cerebrovascular reactivity, and functional magnetic resonance imaging. Front Psychiatry 2023; 14:1058721. [PMID: 37215667 PMCID: PMC10196490 DOI: 10.3389/fpsyt.2023.1058721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Sleep inertia (SI) is a time period during the transition from sleep to wakefulness wherein individuals perceive low vigilance with cognitive impairments; SI is generally identified by longer reaction times (RTs) in attention tasks immediately after awakening followed by a gradual RT reduction along with waking time. The sluggish recovery of vigilance in SI involves a dynamic process of brain functions, as evidenced in recent functional magnetic resonance imaging (fMRI) studies in within-network and between-network connectivity. However, these fMRI findings were generally based on the presumption of unchanged neurovascular coupling (NVC) before and after sleep, which remains an uncertain factor to be investigated. Therefore, we recruited 12 young participants to perform a psychomotor vigilance task (PVT) and a breath-hold task of cerebrovascular reactivity (CVR) before sleep and thrice after awakening (A1, A2, and A3, with 20 min intervals in between) using simultaneous electroencephalography (EEG)-fMRI recordings. If the NVC were to hold in SI, we hypothesized that time-varying consistencies could be found between the fMRI response and EEG beta power, but not in neuron-irrelevant CVR. Results showed that the reduced accuracy and increased RT in the PVT upon awakening was consistent with the temporal patterns of the PVT-induced fMRI responses (thalamus, insula, and primary motor cortex) and the EEG beta power (Pz and CP1). The neuron-irrelevant CVR did not show the same time-varying pattern among the brain regions associated with PVT. Our findings imply that the temporal dynamics of fMRI indices upon awakening are dominated by neural activities. This is the first study to explore the temporal consistencies of neurovascular components on awakening, and the discovery provides a neurophysiological basis for further neuroimaging studies regarding SI.
Collapse
Affiliation(s)
- Ai-Ling Hsu
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Kang Li
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan
| | - Zhitong John Wang
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | - Changwei W. Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| |
Collapse
|
10
|
Abstract
Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia. We describe diagnostic challenges, particularly in the context of mixed pathologies and the absence of highly effective biomarkers for CSVD-related dementia. We review evidence regarding CSVD as a risk factor for developing neurodegenerative disease and potential mechanisms by which CSVD leads to progressive brain injury. Finally, we summarize recent studies on the effects of major classes of cardiovascular medicines relevant to CSVD-related cognitive impairment. Although many key questions remain, the increased attention to CSVD has resulted in a sharper vision for what will be needed to meet the upcoming challenges imposed by this disease.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Neurology Service, VA Bronx Healthcare System, Bronx, NY
| | - Michael M. Wang
- Departments of Neurology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | | |
Collapse
|
11
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Hack RJ, Cerfontaine MN, Gravesteijn G, Tap S, Hafkemeijer A, van der Grond J, Witjes-Ané MN, Baas F, Rutten JW, Lesnik Oberstein SA. Effect of
NOTCH3
EGFr Group, Sex, and Cardiovascular Risk Factors on CADASIL Clinical and Neuroimaging Outcomes. Stroke 2022; 53:3133-3144. [PMID: 35862191 PMCID: PMC9508953 DOI: 10.1161/strokeaha.122.039325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A retrospective study has shown that EGFr (epidermal growth factor–like repeat) group in the NOTCH3 gene is an important cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) disease modifier of age at first stroke and white matter hyperintensity (WMH) volume. No study has yet assessed the effect of other known CADASIL modifiers, that is, cardiovascular risk factors and sex, in the context of NOTCH3 EGFr group. In this study, we determined the relative disease-modifying effects of NOTCH3 EGFr group, sex and cardiovascular risk factor on disease severity in the first genotype-driven, large prospective CADASIL cohort study, using a comprehensive battery of CADASIL clinical outcomes and neuroimaging markers.
Collapse
Affiliation(s)
- Remco J. Hack
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| | - Minne N. Cerfontaine
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| | - Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| | - Stephan Tap
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| | - Anne Hafkemeijer
- Department of Radiology, Leiden University Medical Center, the Netherlands. (A.H., J.v.d.G.)
- Institute of Psychology, Leiden University, the Netherlands. (A.H.)
- Leiden Institute for Brain and Cognition, Leiden University, the Netherlands. (A.H.)
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, the Netherlands. (A.H., J.v.d.G.)
| | - Marie-Noëlle Witjes-Ané
- Department of Geriatrics and Psychiatrics, Leiden University Medical Center, the Netherlands. (M.N.W.-A.)
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| | - Julie W. Rutten
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| | - Saskia A.J. Lesnik Oberstein
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands. (R.J.H., M.N.C., G.G., S.T., F.B., J.W.R., S.A.J.L.O.)
| |
Collapse
|
13
|
Hack RJ, Gravesteijn G, Cerfontaine MN, Hegeman IM, Mulder AA, Lesnik Oberstein SA, Rutten JW. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy Family Members With a Pathogenic NOTCH3 Variant Can Have a Normal Brain Magnetic Resonance Imaging and Skin Biopsy Beyond Age 50 Years. Stroke 2022; 53:1964-1974. [PMID: 35300531 PMCID: PMC9126263 DOI: 10.1161/strokeaha.121.036307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND To determine whether extremely mild small vessel disease (SVD) phenotypes can occur in NOTCH3 variant carriers from Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) pedigrees using clinical, genetic, neuroimaging, and skin biopsy findings. METHODS Individuals from CADASIL pedigrees fulfilling criteria for extremely mild NOTCH3-associated SVD (mSVDNOTCH3) were selected from the cross-sectional Dutch CADASIL cohort (n=200), enrolled between 2017 and 2020. Brain magnetic resonance imaging were quantitatively assessed for SVD imaging markers. Immunohistochemistry and electron microscopy was used to quantitatively assess and compare NOTCH3 ectodomain (NOTCH3ECD) aggregation and granular osmiophilic material deposits in the skin vasculature of mSVDNOTCH3 cases and symptomatic CADASIL patients. RESULTS Seven cases were identified that fulfilled the mSVDNOTCH3 criteria, with a mean age of 56.6 years (range, 50-72). All of these individuals harbored a NOTCH3 variant located in one of EGFr domains 7-34 and had a normal brain magnetic resonance imaging, except the oldest individual, aged 72, who had beginning confluence of WMH (Fazekas score 2) and 1 cerebral microbleed. mSVDNOTCH3 cases had very low levels of NOTCH3ECD aggregation in skin vasculature, which was significantly less than in symptomatic EGFr 7-34 CADASIL patients (P=0.01). Six mSVDNOTCH3 cases had absence of granular osmiophilic material deposits. CONCLUSIONS Our findings demonstrate that extremely mild SVD phenotypes can occur in individuals from CADASIL pedigrees harboring NOTCH3 EGFr 7-34 variants with normal brain magnetic resonance imaging up to age 58 years. Our study has important implications for CADASIL diagnosis, disease prediction, and the counseling of individuals from EGFr 7-34 CADASIL pedigrees.
Collapse
Affiliation(s)
- Remco J. Hack
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Gido Gravesteijn
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Minne N. Cerfontaine
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Ingrid M. Hegeman
- Department of Pathology (I.M.H.), Leiden University Medical Center, the Netherlands
| | - Aat A. Mulder
- Department of Cell and Chemical Biology (A.A.M.), Leiden University Medical Center, the Netherlands
| | - Saskia A.J. Lesnik Oberstein
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Julie W. Rutten
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
14
|
Zarekiani P, Nogueira Pinto H, Hol EM, Bugiani M, de Vries HE. The neurovascular unit in leukodystrophies: towards solving the puzzle. Fluids Barriers CNS 2022; 19:18. [PMID: 35227276 PMCID: PMC8887016 DOI: 10.1186/s12987-022-00316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood-brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer's disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regarding the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologically relevant human context and safeguarding the genetic background of the patient. This review aims to provide further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can be used to dissect neurovascular pathophysiology in these diseases.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Henrique Nogueira Pinto
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Oka F, Lee JH, Yuzawa I, Li M, von Bornstaedt D, Eikermann-Haerter K, Qin T, Chung DY, Sadeghian H, Seidel JL, Imai T, Vuralli D, Platt RF, Nelson MT, Joutel A, Sakadzic S, Ayata C. CADASIL mutations sensitize the brain to ischemia via spreading depolarizations and abnormal extracellular potassium homeostasis. J Clin Invest 2022; 132:149759. [PMID: 35202003 PMCID: PMC9012276 DOI: 10.1172/jci149759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy, subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic form of small vessel disease characterized by migraine with aura, leukoaraiosis, strokes and dementia. CADASIL mutations cause cerebrovascular dysfunction in both animal models and humans. Here, we show that two different human CADASIL mutations (Notch3 R90C or R169C) worsen ischemic stroke outcomes in transgenic mice, explained by a higher blood flow threshold to maintain tissue viability. Both mutants developed larger infarcts and worse neurological deficits compared with wild type regardless of age or sex after filament middle cerebral artery occlusion. However, full-field laser speckle flowmetry during distal middle cerebral artery occlusion showed comparable perfusion deficits in mutants and their respective wild type controls. Circle of Willis anatomy and pial collateralization also did not differ among the genotypes. In contrast, mutants had a higher cerebral blood flow threshold below which infarction ensued, suggesting increased sensitivity of brain tissue to ischemia. Electrophysiological recordings revealed a 1.5- to 2-fold higher frequency of peri-infarct spreading depolarizations in CADASIL mutants. Higher extracellular K+ elevations during spreading depolarizations in the mutants implicated a defect in extracellular K+ clearance. Altogether, these data reveal a novel mechanism of enhanced vulnerability to ischemic injury linked to abnormal extracellular ion homeostasis and susceptibility to ischemic depolarizations in CADASIL.
Collapse
Affiliation(s)
- Fumiaki Oka
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Japan
| | - Jeong Hyun Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea, Democratic Peoples Republic of
| | - Izumi Yuzawa
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Mei Li
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Daniel von Bornstaedt
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Katharina Eikermann-Haerter
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Tao Qin
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - David Y Chung
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Homa Sadeghian
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Jessica L Seidel
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Doga Vuralli
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Rosangela Fm Platt
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, United States of America
| | - Anne Joutel
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Sava Sakadzic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States of America
| | - Cenk Ayata
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| |
Collapse
|
16
|
Chabriat H, Joutel A, Tournier-Lasserve E, Bousser MG. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Yan X, Shang J, Wang R, Wang F, Zhang J. Mechanisms regulating cerebral hypoperfusion in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Biomed Res 2022; 36:353-357. [PMID: 36165325 PMCID: PMC9548441 DOI: 10.7555/jbr.36.20220208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of stroke and dementia. As the most common type of inherited CSVD, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by the NOTCH3 gene mutation which leads to Notch3 ectodomain deposition and extracellular matrix aggregation around the small vessels. It further causes smooth muscle cell degeneration and small vessel arteriopathy in the central nervous system. Compromised cerebral blood flow occurs in the early stage of CADASIL and is associated with white matter hyperintensity, the typical neuroimaging pathology of CADASIL. This suggests that cerebral hypoperfusion may play an important role in the pathogenesis of CADASIL. However, the mechanistic linkage between NOTCH3 mutation and cerebral hypoperfusion remains unknown. Therefore, in this mini-review, it examines the cellular and molecular mechanisms contributing to cerebral hypoperfusion in CADASIL.
Collapse
Affiliation(s)
- Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Junkui Shang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Runrun Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Fengyu Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
- Jiewen Zhang, Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan 450003, China. Tel: +86-371-65580782, E-mail:
| |
Collapse
|
18
|
Schoemaker D, Arboleda-Velasquez JF. Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1856-1870. [PMID: 33895122 PMCID: PMC8647433 DOI: 10.1016/j.ajpath.2021.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
19
|
Rosehart AC, Longden TA, Weir N, Fontaine JT, Joutel A, Dabertrand F. Prostaglandin E 2 Dilates Intracerebral Arterioles When Applied to Capillaries: Implications for Small Vessel Diseases. Front Aging Neurosci 2021; 13:695965. [PMID: 34483880 PMCID: PMC8414797 DOI: 10.3389/fnagi.2021.695965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) has been widely proposed to mediate neurovascular coupling by dilating brain parenchymal arterioles through activation of prostanoid EP4 receptors. However, our previous report that direct application of PGE2 induces an EP1-mediated constriction strongly argues against its direct action on arterioles during neurovascular coupling, the mechanisms sustaining functional hyperemia. Recent advances have highlighted the role of capillaries in sensing neuronal activity and propagating vasodilatory signals to the upstream penetrating parenchymal arteriole. Here, we examined the effect of capillary stimulation with PGE2 on upstream arteriolar diameter using an ex vivo capillary-parenchymal arteriole preparation and in vivo cerebral blood flow measurements with two-photon laser-scanning microscopy. We found that PGE2 caused upstream arteriolar dilation when applied onto capillaries with an EC50 of 70 nM. The response was inhibited by EP1 receptor antagonist and was greatly reduced, but not abolished, by blocking the strong inward-rectifier K+ channel. We further observed a blunted dilatory response to capillary stimulation with PGE2 in a genetic mouse model of cerebral small vessel disease with impaired functional hyperemia. This evidence casts previous findings in a different light, indicating that capillaries are the locus of PGE2 action to induce upstream arteriolar dilation in the control of brain blood flow, thereby providing a paradigm-shifting view that nonetheless remains coherent with the broad contours of a substantial body of existing literature.
Collapse
Affiliation(s)
- Amanda C. Rosehart
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Thomas A. Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Jackson T. Fontaine
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anne Joutel
- INSERM, UMR 1266, GHU Paris Psychiatrie et Neurosciences, Institute of Psychiatry and Neuroscience of Paris, University of Paris, Paris, France
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Babiloni C, Arakaki X, Bonanni L, Bujan A, Carrillo MC, Del Percio C, Edelmayer RM, Egan G, Elahh FM, Evans A, Ferri R, Frisoni GB, Güntekin B, Hainsworth A, Hampel H, Jelic V, Jeong J, Kim DK, Kramberger M, Kumar S, Lizio R, Nobili F, Noce G, Puce A, Ritter P, Smit DJA, Soricelli A, Teipel S, Tucci F, Sachdev P, Valdes-Sosa M, Valdes-Sosa P, Vergallo A, Yener G. EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel. Neurobiol Aging 2021; 103:78-97. [PMID: 33845399 DOI: 10.1016/j.neurobiolaging.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Vascular contribution to cognitive impairment (VCI) and dementia is related to etiologies that may affect the neurophysiological mechanisms regulating brain arousal and generating electroencephalographic (EEG) activity. A multidisciplinary expert panel reviewed the clinical literature and reached consensus about the EEG measures consistently found as abnormal in VCI patients with dementia. As compared to cognitively unimpaired individuals, those VCI patients showed (1) smaller amplitude of resting state alpha (8-12 Hz) rhythms dominant in posterior regions; (2) widespread increases in amplitude of delta (< 4 Hz) and theta (4-8 Hz) rhythms; and (3) delayed N200/P300 peak latencies in averaged event-related potentials, especially during the detection of auditory rare target stimuli requiring participants' responses in "oddball" paradigms. The expert panel formulated the following recommendations: (1) the above EEG measures are not specific for VCI and should not be used for its diagnosis; (2) they may be considered as "neural synchronization" biomarkers to enlighten the relationships between features of the VCI-related cerebrovascular lesions and abnormalities in neurophysiological brain mechanisms; and (3) they may be tested in future clinical trials as prognostic biomarkers and endpoints of interventions aimed at normalizing background brain excitability and vigilance in wakefulness.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ana Bujan
- Psychological Neuroscience Lab, School of Psychology, University of Minho, Portugal
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Gary Egan
- Foundation Director of the Monash Biomedical Imaging (MBI) research facilities, Monash University, Clayton, Australia
| | - Fanny M Elahh
- Memory and Aging Center, University of California, San Francisco
| | - Alan Evans
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | - Giovanni B Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland; Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Atticus Hainsworth
- University of London St George's Molecular and Clinical Sciences Research Institute, London, UK
| | - Harald Hampel
- Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | - Vesna Jelic
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jaeseung Jeong
- Department of Bio and Brain Engineering/Program of Brain and Cognitive Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doh Kwan Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Milica Kramberger
- Center for cognitive and movement disorders, Department of neurology, University Medical Center Ljubljana, Slovenia
| | - Sanjeev Kumar
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI)
| | | | - Aina Puce
- Department of Psychological and Brain Sciences at Indiana University in Bloomington, Indiana, USA
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Dirk J A Smit
- Department of Psychiatry Academisch Medisch Centrum Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | | | - Pedro Valdes-Sosa
- Cuban Neuroscience Center, Havana, Cuba; Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Andrea Vergallo
- Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | - Görsev Yener
- Izmir Biomedicine and Genome Center. Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
21
|
PIP 2 corrects cerebral blood flow deficits in small vessel disease by rescuing capillary Kir2.1 activity. Proc Natl Acad Sci U S A 2021; 118:2025998118. [PMID: 33875602 PMCID: PMC8092380 DOI: 10.1073/pnas.2025998118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cerebral small vessel diseases (SVDs) are a central link between stroke and dementia-two comorbidities without specific treatments. Despite the emerging consensus that SVDs are initiated in the endothelium, the early mechanisms remain largely unknown. Deficits in on-demand delivery of blood to active brain regions (functional hyperemia) are early manifestations of the underlying pathogenesis. The capillary endothelial cell strong inward-rectifier K+ channel Kir2.1, which senses neuronal activity and initiates a propagating electrical signal that dilates upstream arterioles, is a cornerstone of functional hyperemia. Here, using a genetic SVD mouse model, we show that impaired functional hyperemia is caused by diminished Kir2.1 channel activity. We link Kir2.1 deactivation to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid essential for Kir2.1 activity. Systemic injection of soluble PIP2 rapidly restored functional hyperemia in SVD mice, suggesting a possible strategy for rescuing functional hyperemia in brain disorders in which blood flow is disturbed.
Collapse
|
22
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
23
|
Gesierich B, Tuladhar AM, ter Telgte A, Wiegertjes K, Konieczny MJ, Finsterwalder S, Hübner M, Pirpamer L, Koini M, Abdulkadir A, Franzmeier N, Norris DG, Marques JP, zu Eulenburg P, Ewers M, Schmidt R, de Leeuw F, Duering M. Alterations and test-retest reliability of functional connectivity network measures in cerebral small vessel disease. Hum Brain Mapp 2020; 41:2629-2641. [PMID: 32087047 PMCID: PMC7294060 DOI: 10.1002/hbm.24967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
While structural network analysis consolidated the hypothesis of cerebral small vessel disease (SVD) being a disconnection syndrome, little is known about functional changes on the level of brain networks. In patients with genetically defined SVD (CADASIL, n = 41) and sporadic SVD (n = 46), we independently tested the hypothesis that functional networks change with SVD burden and mediate the effect of disease burden on cognitive performance, in particular slowing of processing speed. We further determined test-retest reliability of functional network measures in sporadic SVD patients participating in a high-frequency (monthly) serial imaging study (RUN DMC-InTENse, median: 8 MRIs per participant). Functional networks for the whole brain and major subsystems (i.e., default mode network, DMN; fronto-parietal task control network, FPCN; visual network, VN; hand somatosensory-motor network, HSMN) were constructed based on resting-state multi-band functional MRI. In CADASIL, global efficiency (a graph metric capturing network integration) of the DMN was lower in patients with high disease burden (standardized beta = -.44; p [corrected] = .035) and mediated the negative effect of disease burden on processing speed (indirect path: std. beta = -.20, p = .047; direct path: std. beta = -.19, p = .25; total effect: std. beta = -.39, p = .02). The corresponding analyses in sporadic SVD showed no effect. Intraclass correlations in the high-frequency serial MRI dataset of the sporadic SVD patients revealed poor test-retest reliability and analysis of individual variability suggested an influence of age, but not disease burden, on global efficiency. In conclusion, our results suggest that changes in functional connectivity networks mediate the effect of SVD-related brain damage on cognitive deficits. However, limited reliability of functional network measures, possibly due to age-related comorbidities, impedes the analysis in elderly SVD patients.
Collapse
Affiliation(s)
- Benno Gesierich
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Anil Man Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Annemieke ter Telgte
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marek J. Konieczny
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Sofia Finsterwalder
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Mathias Hübner
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - Lukas Pirpamer
- Department of NeurologyMedical University of GrazGrazAustria
| | - Marisa Koini
- Department of NeurologyMedical University of GrazGrazAustria
| | - Ahmed Abdulkadir
- University Hospital of Old Age Psychiatry, Universitäre Psychiatrische Dienste (UPD) BernUniversity of BernBernSwitzerland
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | - David G. Norris
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - José P. Marques
- Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Peter zu Eulenburg
- German Center for Vertigo and Balance DisordersUniversity HospitalMunichGermany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
| | | | - Frank‐Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD)University HospitalMunichGermany
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
24
|
Joutel A. Prospects for Diminishing the Impact of Nonamyloid Small-Vessel Diseases of the Brain. Annu Rev Pharmacol Toxicol 2020; 60:437-456. [PMID: 31425001 DOI: 10.1146/annurev-pharmtox-010818-021712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-vessel diseases (SVDs) of the brain are involved in about one-fourth of ischemic strokes and a vast majority of intracerebral hemorrhages and are responsible for nearly half of dementia cases in the elderly. SVDs are a heavy burden for society, a burden that is expected to increase further in the absence of significant therapeutic advances, given the aging population. Here, we provide a critical appraisal of currently available therapeutic approaches for nonamyloid sporadic SVDs that are largely based on targeting modifiable risk factors. We review what is known about the pathogenic mechanisms of vascular risk factor-related SVDs and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most frequent hereditary SVD, and elaborate on two mechanism-based therapeutic approaches worth exploring in sporadic SVD and CADASIL. We conclude by discussing opportunities and challenges that need to be tackled if efforts to achieve significant therapeutic advances for these diseases are to be successful.
Collapse
Affiliation(s)
- Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, Paris Descartes University, 75014 Paris, France; .,DHU NeuroVasc, Sorbonne Paris Cité, 75010 Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
25
|
Jouvent E, Duering M, Chabriat H. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Lessons From Neuroimaging. Stroke 2019; 51:21-28. [PMID: 31752612 DOI: 10.1161/strokeaha.119.024152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eric Jouvent
- From the Department of Neurology and Referral Center for Rare Vascular Diseases of the Brain and Retina (CERVCO), APHP, Lariboisière Hospital, F-75475 Paris, France (E.J., H.C.).,DHU NeuroVasc, University Paris Diderot (E.J., H.C.).,U1141 INSERM, Paris, France (E.J., H.C.)
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D.).,Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.)
| | - Hugues Chabriat
- From the Department of Neurology and Referral Center for Rare Vascular Diseases of the Brain and Retina (CERVCO), APHP, Lariboisière Hospital, F-75475 Paris, France (E.J., H.C.).,DHU NeuroVasc, University Paris Diderot (E.J., H.C.).,U1141 INSERM, Paris, France (E.J., H.C.)
| |
Collapse
|
26
|
Altered Brain Glucose Metabolism Assessed by 18F-FDG PET Imaging Is Associated with the Cognitive Impairment of CADASIL. Neuroscience 2019; 417:35-44. [PMID: 31394195 DOI: 10.1016/j.neuroscience.2019.07.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Recurrent stroke and cognitive impairment are the primary features of patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The cognitive deficits in these patients are known to be correlated with structural brain changes, such as white matter lesions and lacunae, and resting-state functional connectivity in brain networks. However, the associations between changes in brain glucose metabolism based on 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) imaging and cognitive scores in CADASIL patients remain unclear. In the present study, 24 CADASIL patients and 24 matched healthy controls underwent 18F-FDG PET imaging. Brain glucose metabolism was measured in all subjects and Pearson's correlation analyses were performed to evaluate relationships between abnormal glucose metabolism in various brain areas and cognitive scores. Compared to controls, CADASIL patients exhibited significantly lower metabolism in the right cerebellar posterior lobe, left cerebellar anterior lobe, bilateral thalamus and left limbic lobe. Additionally, hypermetabolism was observed in the left precentral and postcentral gyri. Importantly, glucose metabolism in the left limbic lobe was positively associated with cognitive scores on the Mini-Mental State Examination (MMSE). Furthermore, glucose metabolism in the left precentral gyri was negatively correlated with cognitive scores on the Montreal Cognitive Assessment (MoCA). The present findings provide strong support for the presence of altered brain glucose metabolism in CADASIL patients as well as the associations between abnormal metabolism and cognitive scales in this population. The present findings suggest that patterns of brain glucose metabolism may become useful markers of cognitive impairment in CADASIL patients.
Collapse
|
27
|
Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol 2019; 73:3326-3344. [PMID: 31248555 PMCID: PMC6719789 DOI: 10.1016/j.jacc.2019.04.034] [Citation(s) in RCA: 401] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Cognitive impairment associated with aging has emerged as one of the major public health challenges of our time. Although Alzheimer's disease is the leading cause of clinically diagnosed dementia in Western countries, cognitive impairment of vascular etiology is the second most common cause and may be the predominant one in East Asia. Furthermore, alterations of the large and small cerebral vasculature, including those affecting the microcirculation of the subcortical white matter, are key contributors to the clinical expression of cognitive dysfunction caused by other pathologies, including Alzheimer's disease. This scientific expert panel provides a critical appraisal of the epidemiology, pathobiology, neuropathology, and neuroimaging of vascular cognitive impairment and dementia, and of current diagnostic and therapeutic approaches. Unresolved issues are also examined to shed light on new basic and clinical research avenues that may lead to mitigating one of the most devastating human conditions.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université Paris Descartes, Paris, France
| | - Sarah T Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and the University of Oxford, Oxford, United Kingdom
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
28
|
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18:684-696. [DOI: 10.1016/s1474-4422(19)30079-1] [Citation(s) in RCA: 500] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
|
29
|
Abstract
PURPOSE OF REVIEW Recent advances in genetic evaluation improved the identification of several variants in the NOTCH3 gene causing Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Despite improved diagnosis, the disease mechanism remains an elusive target and an increasing number of scientific/clinical groups are investigating CADASIL to better understand it. The purpose of this review is to summarize the current knowledge in CADASIL. RECENT FINDINGS CADASIL is a genotypically and phenotypically diverse condition involving multiple molecular systems affecting small blood vessels. Cerebral white matter changes observed by MRI are a key CADASIL characteristic in young adult patients often before severe symptoms and trigger NOTCH3 genetic testing. NOTCH3 mutation locations are highly variable, correlate to disease severity and consistently affect the cysteine balance within extracellular Notch3. Granular osmiophilic material deposits around blood vessels are also a unique CADASIL feature and appear to have a role in sequestering proteins that are essential for blood vessel homeostasis. As potential biomarkers and therapeutic targets are being actively investigated, neurofilament light chain can be detected in patient serum and may be a promising circulating biomarker. SUMMARY CADASIL is a complex, devastating disease with unknown mechanism and no treatment options. As we increase our understanding of CADASIL, translational research bridging basic science and clinical findings needs to drive biomarker and therapeutic target discovery.
Collapse
Affiliation(s)
- Elisa A Ferrante
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
30
|
Gavazzi G, Orsolini S, Salvadori E, Bianchi A, Rossi A, Donnini I, Rinnoci V, Pescini F, Diciotti S, Viggiano MP, Mascalchi M, Pantoni L. Functional Magnetic Resonance Imaging of Inhibitory Control Reveals Decreased Blood Oxygen Level Dependent Effect in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke 2019; 50:69-75. [PMID: 30580728 DOI: 10.1161/strokeaha.118.022923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background and Purpose- Small-vessel damage in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is associated with impaired vascular constriction and dilation. We used a functional magnetic resonance imaging task with an event-related design of stimulus to explore the anticipated abnormally decreased blood oxygen level dependent effect in CADASIL. Methods- Twenty-one CADASIL patients and 16 healthy controls performed a Go/No-go task exploring reactive and proactive phases of inhibition control in a 3-T magnet. Results- Error number and reaction times were not different between patients and controls. Analysis of the reactive inhibition (No-go/baseline contrast) did not show clusters of lower or higher blood oxygen level dependent effect in patients or controls. Analysis of the proactive inhibition (alertness contrast) in CADASIL patients revealed a lower blood oxygen level dependent effect in the alerting network (anterior cingulate cortex and insula, thalamus), lower brain stem and left cerebellar hemisphere (crus I) that is involved in executive functions. Conclusions- In CADASIL patients, an event-related Go/No-go task reveals a lower blood oxygen level dependent effect in the alerting network and areas involved in executive functions possibly reflecting the altered hemodynamic response secondary to small-vessel changes. Our observation extends the role of MR in demonstrating one of the fundamental pathophysiological changes of CADASIL.
Collapse
Affiliation(s)
| | - Stefano Orsolini
- Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy (S.O., S.D.)
| | - Emilia Salvadori
- NEUROFARBA Department, Neuroscience Section (E.S., I.D., V.R.), University of Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit (A.B.), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Arianna Rossi
- Department of Neuroscience, Psychology, Drug Research, Child Health (A.R., M.P.V.), University of Florence, Italy
| | - Ida Donnini
- NEUROFARBA Department, Neuroscience Section (E.S., I.D., V.R.), University of Florence, Italy
| | - Valentina Rinnoci
- NEUROFARBA Department, Neuroscience Section (E.S., I.D., V.R.), University of Florence, Italy
| | - Francesca Pescini
- Stroke Unit (F.P.), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy (S.O., S.D.)
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research, Child Health (A.R., M.P.V.), University of Florence, Italy
| | - Mario Mascalchi
- 'Mario Serio' Department of Experimental and Clinical Biomedical Sciences (M.M.), University of Florence, Italy
| | - Leonardo Pantoni
- 'Luigi Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Italy (L.P.)
| |
Collapse
|
31
|
Ghezali L, Capone C, Baron-Menguy C, Ratelade J, Christensen S, Østergaard Pedersen L, Domenga-Denier V, Pedersen JT, Joutel A. Notch3 ECD immunotherapy improves cerebrovascular responses in CADASIL mice. Ann Neurol 2018; 84:246-259. [PMID: 30014602 DOI: 10.1002/ana.25284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), caused by dominant mutations in the NOTCH3 receptor, is the most aggressive small vessel disease of the brain. A key feature of its pathogenesis is accumulation of the extracellular domain of NOTCH3 receptor (Notch3ECD ) in small vessels, with formation of characteristic extracellular deposits termed granular osmiophilic material (GOM). Here, we investigated the therapeutic potential of a mouse monoclonal antibody (5E1) that specifically recognizes Notch3ECD . METHODS The binding affinity of 5E1 toward purified NOTCH3 was assessed using Octet analysis. The ability of 5E1 to bind Notch3ECD deposits in brain vessels and its effects on disease-related phenotypes were evaluated in the CADASIL mouse model, which overexpresses a mutant rat NOTCH3. Notch3ECD and GOM deposition, white matter lesions, and cerebral blood flow deficits were assessed at treatment initiation (10 weeks) and study completion (30 weeks) using quantitative immunohistochemistry, electron microscopy, and laser-Doppler flowmetry. RESULTS 5E1 antibody bound recombinant rat NOTCH3 with an average affinity of 317nM. A single peripheral injection of 5E1 robustly decorated Notch3ECD deposits in the brain vasculature. Chronic administration of 5E1 did not attenuate Notch3ECD or GOM deposition and was not associated with perivascular microglial activation. It also failed to halt the development of white matter lesions. Despite this, 5E1 treatment markedly protected against impaired cerebral blood flow responses to neural activity and topical application of vasodilators and normalized myogenic responses of cerebral arteries. INTERPRETATION This study establishes immunotherapy targeting Notch3ECD as a new avenue for disease-modifying treatment in CADASIL that warrants further development. Ann Neurol 2018;84:246-259.
Collapse
Affiliation(s)
- Lamia Ghezali
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, Paris Diderot University, Paris, France
| | - Carmen Capone
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, Paris Diderot University, Paris, France
| | - Céline Baron-Menguy
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, Paris Diderot University, Paris, France
| | - Julien Ratelade
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, Paris Diderot University, Paris, France
| | | | | | - Valérie Domenga-Denier
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, Paris Diderot University, Paris, France
| | | | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, Paris Diderot University, Paris, France.,University Hospital Department NeuroVasc, Sorbonne Paris Cité, Paris, France
| |
Collapse
|