1
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Polydopamine-Based Nanoprobes Application in Optical Biosensing. BIOSENSORS 2023; 13:956. [PMID: 37998131 PMCID: PMC10669744 DOI: 10.3390/bios13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Polydopamine (PDA), the synthetic counterpart of melanin, is a widely investigated bio-inspired material for its chemical and photophysical properties, and in the last few years, bio-application of PDA and PDA-based materials have had a dramatic increase. In this review, we described PDA application in optical biosensing, exploring its multiple roles as a nanomaterial. In optical sensing, PDA can not only be used for its intrinsic fluorescent and photoacoustic properties as a probe: in some cases, a sample optical signal can be derived by melanin generation in situ or it can be enhanced in another material thanks to PDA modification. The various possibilities of PDA use coupled with its biocompatibility will indeed widen even more its application in optical bioimaging.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (A.M.-P.); (D.M.)
| |
Collapse
|
4
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
5
|
Geng S, Feng Q, Wang C, Li Y, Qin J, Hou M, Zhou J, Pan X, Xu F, Fang B, Wang K, Yu Z. A Versatile PDA(DOX) Nanoplatform for Chemo-Photothermal Synergistic Therapy against Breast Cancer and Attenuated Doxorubicin-Induced Cardiotoxicity. J Nanobiotechnology 2023; 21:338. [PMID: 37735669 PMCID: PMC10512561 DOI: 10.1186/s12951-023-02072-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Photothermal therapy (PTT) is a highly clinical application promising cancer treatment strategy with safe, convenient surgical procedures and excellent therapeutic efficacy on superficial tumors. However, a single PTT is difficult to eliminate tumor cells completely, and tumor recurrence and metastasis are prone to occur in the later stage. Chemo-photothermal synergistic therapy can conquer the shortcomings by further killing residual tumor cells after PTT through systemic chemotherapy. Nevertheless, chemotherapy drugs' extreme toxicity is also a problematic issue to be solved, such as anthracycline-induced cardiotoxicity. Herein, we selected polydopamine nanoparticles (PDA) as the carrier of the chemotherapeutic drug doxorubicin (DOX) to construct a versatile PDA(DOX) nanoplatform for chemo-photothermal synergistic therapy against breast cancer and simultaneously attenuated DOX-induced cardiotoxicity (DIC). The excellent photothermal properties of PDA were used to achieve the thermal ablation of tumors. DOX carried out chemotherapy to kill residual and occult distant tumors. Furthermore, the PDA(DOX) nanoparticles significantly alleviate DIC, which benefits from PDA's excellent antioxidant enzyme activity. The experimental data of the chemotherapy groups showed that the results of the PDA(DOX) group were much better than the DOX group. This study not only effectively inhibits cancer but tactfully attenuates DIC, bringing a new perspective into synergistic therapy against breast cancer.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Qiang Feng
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Chujie Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Ying Li
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Jiaying Qin
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Mingsheng Hou
- Department of Pathology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Jiedong Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Xiaoyu Pan
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Fei Xu
- Department of Ultrasound, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China.
| |
Collapse
|
6
|
Angela S, You T, Pham D, Le T, Hsiao W. Surface Modification of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:52-72. [DOI: 10.1002/9781394202164.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
7
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
8
|
Jung HS, Cho KJ, Joo S, Lee M, Kim MY, Kwon IH, Song NW, Shim JH, Neuman KC. Mesoporous Polydopamine-Encapsulated Fluorescent Nanodiamonds: A Versatile Platform for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33425-33436. [PMID: 37341540 PMCID: PMC10361080 DOI: 10.1021/acsami.3c05443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Fluorescent nanodiamonds (FNDs) are versatile nanomaterials with promising properties. However, efficient functionalization of FNDs for biomedical applications remains challenging. In this study, we demonstrate mesoporous polydopamine (mPDA) encapsulation of FNDs. The mPDA shell is generated by sequential formation of micelles via self-assembly of Pluronic F127 (F127) with 1,3,5-trimethyl benzene (TMB) and composite micelles via oxidation and self-polymerization of dopamine hydrochloride (DA). The surface of the mPDA shell can be readily functionalized with thiol-terminated methoxy polyethylene glycol (mPEG-SH), hyperbranched polyglycerol (HPG), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The PEGylated FND@mPDA particles are efficiently taken up by, and employed as a fluorescent imaging probe for, HeLa cells. HPG-functionalized FND@mPDA is conjugated with an amino-terminated oligonucleotide to detect microRNA via hybridization. Finally, the increased surface area of the mPDA shell permits efficient loading of doxorubicin hydrochloride. Further modification with TPGS increases drug delivery efficiency, resulting in high toxicity to cancer cells.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Kyung-Jin Cho
- Data
Convergence Drug Research Center, Korea
Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sihwa Joo
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Mina Lee
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Myeong Yun Kim
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Ik Hwan Kwon
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Nam Woong Song
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Jeong Hyun Shim
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
- Department
of Applied Measurement Science, University
of Science and Technology, Daejeon 34113, Republic
of Korea
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Sotoma S, Abe H, Miyanoiri Y, Ohshima T, Harada Y. Highly Dispersed 3C Silicon Carbide Nanoparticles with a Polydopamine/Polyglycerol Shell for Versatile Functionalization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21413-21424. [PMID: 37071076 DOI: 10.1021/acsami.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Silicon carbide (SiC) nanoparticles containing lattice defects are attracting considerable attention as next-generation imaging probes and quantum sensors for visualizing and sensing life activities. However, SiC nanoparticles are not currently used in biomedical applications because of the lack of technology for controlling their physicochemical properties. Therefore, in this study, SiC nanoparticles are deaggregated, surface-coated, functionalized, and selectively labeled to biomolecules of interest. A thermal-oxidation chemical-etching method is developed for deaggregating and producing a high yield of dispersed metal-contaminant-free SiC nanoparticles. We further demonstrated a polydopamine coating with controllable thickness that can be used as a platform for decorating gold nanoparticles on the surface, enabling photothermal application. We also demonstrated a polyglycerol coating, which gives excellent dispersity to SiC nanoparticles. Furthermore, a single-pot method is developed to produce mono/multifunctional polyglycerol-modified SiC nanoparticles. Using this method, CD44 proteins on cell surfaces are selectively labeled through biotin-mediated immunostaining. The methods developed in this study are fundamental for applying SiC nanoparticles to biomedical applications and should considerably accelerate the development of various SiC nanoparticles to exploit their potential applications in bioimaging and biosensing.
Collapse
Affiliation(s)
- Shingo Sotoma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Wei X, Zhuang P, Liu K, Hou W, Zhao Y, Wei W, Tu R, Li H, Dai H. Mesoporous bioglass capsule composite injectable hydrogels with antibacterial and vascularization promotion properties for chronic wound repair. J Mater Chem B 2022; 10:10139-10149. [PMID: 36472313 DOI: 10.1039/d2tb01777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building an angiogenesis microenvironment and inhibiting wound infection are of great significance for chronic wound repair. In this paper, polydopamine-encapsulated mesoporous bioglass (MBG@PDA) capsules were constructed to realize the integration of angiogenesis and infection inhibition through the formation of a composite hydrogel with modified hyaluronic acid (HAMA) to promote wound healing. The experiments showed that the composite hydrogel had good adhesion and toughness and promoted the migration of fibroblasts to accelerate the epithelialization process. In addition, in the composite hydrogel, MBG@PDA could release Mg2+ to promote the proliferation and migration of vascular endothelial cells for angiogenesis. At the same time, MBG@PDA in the composite hydrogel could facilitate the long-term release of drugs to inhibit the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for reducing the possibility of wound infection. Finally, the results of in vivo experiments showed that a multifunctional dressing could repair wounds more quickly by promoting angiogenesis and reducing the pathological areas. In summary, the construction of these composite hydrogels can provide a repair method in the wound-repair field.
Collapse
Affiliation(s)
- Xuejie Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Pengzhen Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Haiwen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
11
|
Zeng Y, Yi T, Ma J, Han M, Xu X, Chen D, Chen X, Wang R, Zhan Y. Precisely controlled polydopamine-mediated antibacterial system: mathematical model of polymerization, prediction of antibacterial capacity, and promotion of wound healing. NANOTECHNOLOGY 2022; 33:455102. [PMID: 35917694 DOI: 10.1088/1361-6528/ac85f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the polydopamine (PDA)-mediated antibacterial system is synthesized to carry out antimicrobial activities in vitro and in vivo. First, to precisely control the surface modification of nanodiamonds (NDs), a mathematical kinetics model of PDA deposition is established, and the conditions of synthesis reaction are discussed including influencing factors such as the concentrations of dopamine, reaction time, and the kinetic constant k1, which is a function of several variables associated with the reaction temperature, light irradiance (especially at ultraviolet wavelengths), pH value and concentration of dissolved O2 in the solution. A simulated visualization demonstrates that the deposition thickness of PDA is positively correlated with temperature and light irradiance, and PDA is easier to deposit in an alkaline solution and will be terminated if the dissolved O2 is insufficient. Then, the precisely controlled thickness of PDA can control the growth of AgNPs, rendering the intensity of Raman peaks increased and providing a predictable antibacterial effect against E. coli in vitro. An optimized antibacterial hydrogel containing NDs-PDA/Ag is prepared and characterized by the Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Finally, the antibacterial experiments to promote wound healing in vivo are performed, which are verified by pathological and immunohistochemical-stained sections. This work provides a theoretical basis of predicting the PDA-assisted surface modification of NDs, giving a divinable antibacterial effect, and promoting wounds healing in vivo.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xinglong Sec. No. 266, Xi'an, 710126, CHINA
| | - Tong Yi
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi Province, 710126, CHINA
| | - Jingwen Ma
- Radiology Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, South Er-huan No.151, Xi'an, Shaanxi, 710054, CHINA
| | - Ming Han
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi, 710071, CHINA
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi, 710126, CHINA
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi Province, 710126, CHINA
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi, 710126, CHINA
| | - Risheng Wang
- Chemistry, Missouri University of S & T, 133 Schrenk Hall, Rolla, Missouri, 65409, UNITED STATES
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi Province, 710071, CHINA
| |
Collapse
|
12
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
13
|
Polydopamine-Coated Magnetic Iron Oxide Nanoparticles: From Design to Applications. NANOMATERIALS 2022; 12:nano12071145. [PMID: 35407264 PMCID: PMC9000600 DOI: 10.3390/nano12071145] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Magnetic iron oxide nanoparticles have been extensively investigated due to their applications in various fields such as biomedicine, sensing, and environmental remediation. However, they need to be coated with a suitable material in order to make them biocompatible and to add new functionalities on their surface. This review is intended to give a comprehensive overview of recent advantages and applications of iron oxide nanoparticles coated by polydopamine film. The synthesis method of magnetic nanoparticles, their functionalization with bioinspired materials and (in particular) with polydopamine are discussed. Finally, some interesting applications of polydopamine-coated magnetic iron oxide nanoparticles will be pointed out.
Collapse
|
14
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
15
|
General Method to Increase Carboxylic Acid Content on Nanodiamonds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030736. [PMID: 35164002 PMCID: PMC8838522 DOI: 10.3390/molecules27030736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 01/30/2023]
Abstract
Carboxylic acid is a commonly utilized functional group for covalent surface conjugation of carbon nanoparticles that is typically generated by acid oxidation. However, acid oxidation generates additional oxygen containing groups, including epoxides, ketones, aldehydes, lactones, and alcohols. We present a method to specifically enrich the carboxylic acid content on fluorescent nanodiamond (FND) surfaces. Lithium aluminum hydride is used to reduce oxygen containing surface groups to alcohols. The alcohols are then converted to carboxylic acids through a rhodium (II) acetate catalyzed carbene insertion reaction with tert–butyl diazoacetate and subsequent ester cleavage with trifluoroacetic acid. This carboxylic acid enrichment process significantly enhanced nanodiamond homogeneity and improved the efficiency of functionalizing the FND surface. Biotin functionalized fluorescent nanodiamonds were demonstrated to be robust and stable single-molecule fluorescence and optical trapping probes.
Collapse
|
16
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
17
|
Sotoma S, Okita H, Chuma S, Harada Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. Biophys Physicobiol 2022; 19:e190034. [PMID: 36349322 PMCID: PMC9592573 DOI: 10.2142/biophysico.bppb-v19.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as “quantum sensors”. In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122–124 (2022).
Collapse
Affiliation(s)
| | | | - Shunsuke Chuma
- Department of Biological Sciences, Graduate School of Science, Osaka University
| | - Yoshie Harada
- Center for Quantum Information and Quantum Biology, Osaka University
| |
Collapse
|
18
|
Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J Nanobiotechnology 2021; 19:436. [PMID: 34930292 PMCID: PMC8686547 DOI: 10.1186/s12951-021-01199-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress contributes to retina ganglion cells (RGCs) loss in variety of ocular diseases, including ocular trauma, ocular vein occlusion, and glaucoma. Scavenging the excessed reactive oxygen species (ROS) in retinal neurovascular unit could be beneficial to RGCs survival. In this study, a polydopamine (PDA)-based nanoplatform is developed to protect RGCs. Results The PDA nanoparticles efficiently eliminate multi-types of ROS, protect endothelia and neuronal cells from oxidative damage, and inhibit microglia activation in retinas. In an optic nerve crush (ONC) model, single intravitreal injection of PDA nanoparticles could significantly attenuate RGCs loss via eliminating ROS in retinas, reducing the inflammatory response and maintaining barrier function of retinal vascular endothelia. Comparative transcriptome analysis of the retina implied that PDA nanoparticles improve RGCs survival probably by altering the expression of genes involved in inflammation and ROS production. Importantly, as a versatile drug carrier, PDA nanoparticles could deliver brimonidine (a neuroprotection drug) to synergistically attenuate RGCs loss and promote axon regeneration, thus restore visual function. Conclusions The PDA nanoparticle-based therapeutic nanoplatform displayed excellent performance in ROS elimination, providing a promising probability for treating retinal degeneration diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01199-3.
Collapse
|
19
|
Huang S, Deng Y, Xu J, Liu J, Liu L, Fan C. The Role of Exosomes and Their Cargos in the Mechanism, Diagnosis, and Treatment of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:712828. [PMID: 34395566 PMCID: PMC8355361 DOI: 10.3389/fcvm.2021.712828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, but the mechanism of AF has not been fully elucidated, and existing approaches to diagnosis and treatment face limitations. Recently, exosomes have attracted considerable interest in AF research due to their high stability, specificity and cell-targeting ability. The aim of this review is to summarize recent literature, analyze the advantages and limitations of exosomes, and to provide new ideas for their use in understanding the mechanism and improving the diagnosis and treatment of AF.
Collapse
Affiliation(s)
- Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Deng
- Xiangya Medical College of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Liming Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Du BW, Tien LT, Lin CC, Ko FH. Use of curcumin-modified diamond nanoparticles in cellular imaging and the distinct ratiometric detection of Mg 2+/Mn 2+ ions. NANOSCALE ADVANCES 2021; 3:4459-4470. [PMID: 36133469 PMCID: PMC9419351 DOI: 10.1039/d1na00298h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 06/16/2023]
Abstract
An intrinsically luminescent curcumin-modified nanodiamond derivative (ND-Cur) has been synthesized as an effective probe for cell imaging and sensory applications. DLS data allowed the particle size of ND-Cur to be estimated (170.6 ± 46.8 nm) and the zeta potential to be determined. The photoluminescence signal of ND-Cur was observed at 536 nm, with diverse intensities at excitation wavelengths of 350 to 450 nm, producing yellow emission with a quantum yield (Φ) of 0.06. Notably, the results of the MTT assay and cell imaging experiments showed the low toxicity and biocompatibility of ND-Cur. Subsequently, investigations of the selectivity towards Mg2+ and Mn2+ ions were performed by measuring intense fluorescence peak shifts and "Turn-off" responses, respectively. In the presence of Mg2+, the fluorescence peak (536 nm) was shifted and then displayed two diverse peaks at 498 and 476 nm. On the other hand, for Mn2+ ions, ND-Cur revealed a fluorescence-quenching response at 536 nm. Fluorescence studies indicated that the nanomolar level detection limits (LODs) of Mg2+ and Mn2+ ions were approximately 423 and 367 nM, respectively. The sensing mechanism, ratiometric changes and binding site were established through PL, FTIR, Raman, SEM, TEM, DLS and zeta potential analyses. Furthermore, the effective determination of Mg2+ and Mn2+ ions by ND-Cur has been validated through cell imaging experiments.
Collapse
Affiliation(s)
- Bo-Wei Du
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Le Trong Tien
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Ching-Chang Lin
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo Japan
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
21
|
Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021; 9:5621-5627. [PMID: 34184014 PMCID: PMC8292973 DOI: 10.1039/d1tb00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023]
Abstract
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China and Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sandra Michel-Souzy
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85579, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Anna Ermakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
22
|
Zhao S, Bu T, Yang K, Xu Z, Bai F, He K, Li L, Wang L. Immunochromatographic Assay Based on Polydopamine-Decorated Iridium Oxide Nanoparticles for the Rapid Detection of Salbutamol in Food Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28899-28907. [PMID: 34106688 DOI: 10.1021/acsami.1c06724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salbutamol (SAL), a β-2 adrenoreceptor agonist, is an unpopular addition to livestock and poultry, causing several side effects to human health. Thus, it is very important to develop a simple and rapid analytical method to screen SAL in the field of food safety. Here, we present an immunochromatographic assay (ICA) method for sensitively detecting SAL with polydopamine-decorated iridium oxide nanoparticles (IrO2@PDA NPs) as a signal tag. The IrO2@PDA with excellent hydrophilicity, biocompatibility, and stability was synthesized by oxidating self-polymerization of dopamine hydrochloride (DAH) on the surface of IrO2 NPs and used to label monoclonal antibodies (mAbs) through simple physical adsorption. Compared with IrO2 NPs, the IrO2@PDA also possessed superior optical properties and higher affinity with mAbs. With the proposed method, the limit of detection for SAL was 0.002 ng/mL, which was improved at least 24-fold and 180-fold compared with the IrO2 NPs-based ICA and conventional gold nanoparticles-based ICA, respectively. Furthermore, the SAL residuals in pork, pork liver, and beef were successfully detected by the developed biosensor and the recoveries ranged from 85.56% to 115.56%. Briefly, this work indicated that the powerful IrO2@PDA-based ICA can significantly improve detection sensitivity and has huge potential for accurate and sensitive detection of harmful small molecules analytes in food safety fields.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
23
|
Wu Y, Alam MNA, Balasubramanian P, Winterwerber P, Ermakova A, Müller M, Wagner M, Jelezko F, Raabe M, Weil T. Fluorescent Nanodiamond–Nanogels for Nanoscale Sensing and Photodynamic Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yingke Wu
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Md Noor A Alam
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | | | - Pia Winterwerber
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Anna Ermakova
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Michael Müller
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Manfred Wagner
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | - Marco Raabe
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | - Tanja Weil
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| |
Collapse
|
24
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Suarez-Kelly L, Sun SH, Ren C, Rampersaud IV, Albertson D, Duggan MC, Noel TC, Courtney N, Buteyn NJ, Moritz C, Yu L, Yildiz VO, Butchar JP, Tridandapani S, Rampersaud AA, Carson WE. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS APPLIED NANO MATERIALS 2021; 4:3122-3139. [PMID: 34027313 PMCID: PMC8136585 DOI: 10.1021/acsanm.1c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.
Collapse
Affiliation(s)
- Lorena
P. Suarez-Kelly
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey Ren
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Isaac V. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - David Albertson
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Megan C. Duggan
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany C. Noel
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Courtney
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel J. Buteyn
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles Moritz
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Lianbo Yu
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Vedat O. Yildiz
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan P. Butchar
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Susheela Tridandapani
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arfaan A. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - William E. Carson
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
- . Phone: (614)
293-6306. Fax: (614) 293-3465
| |
Collapse
|
26
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
27
|
Jung HS, Neuman KC. Surface Modification of Fluorescent Nanodiamonds for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E153. [PMID: 33435443 PMCID: PMC7826955 DOI: 10.3390/nano11010153] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Fluorescent nanodiamonds (FNDs) are a new class of carbon nanomaterials that offer great promise for biological applications such as cell labeling, imaging, and sensing due to their exceptional optical properties and biocompatibility. Implementation of these applications requires reliable and precise surface functionalization. Although diamonds are generally considered inert, they typically possess diverse surface groups that permit a range of different functionalization strategies. This review provides an overview of nanodiamond surface functionalization methods including homogeneous surface termination approaches (hydrogenation, halogenation, amination, oxidation, and reduction), in addition to covalent and non-covalent surface modification with different functional moieties. Furthermore, the subsequent coupling of biomolecules onto functionalized nanodiamonds is reviewed. Finally, biomedical applications of nanodiamonds are discussed in the context of functionalization.
Collapse
Affiliation(s)
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
28
|
Sotoma S, Zhong C, Kah JCY, Yamashita H, Plakhotnik T, Harada Y, Suzuki M. In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. SCIENCE ADVANCES 2021; 7:7/3/eabd7888. [PMID: 33523906 PMCID: PMC7810374 DOI: 10.1126/sciadv.abd7888] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Understanding heat dissipation processes at nanoscale during cellular thermogenesis is essential to clarify the relationships between the heat and biological processes in cells and organisms. A key parameter determining the heat flux inside a cell is the local thermal conductivity, a factor poorly investigated both experimentally and theoretically. Here, using a nanoheater/nanothermometer hybrid made of a polydopamine encapsulating a fluorescent nanodiamond, we measured the intracellular thermal conductivities of HeLa and MCF-7 cells with a spatial resolution of about 200 nm. The mean values determined in these two cell lines are both 0.11 ± 0.04 W m-1 K-1, which is significantly smaller than that of water. Bayesian analysis of the data suggests there is a variation of the thermal conductivity within a cell. These results make the biological impact of transient temperature spikes in a cell much more feasible, and suggest that cells may use heat flux for short-distance thermal signaling.
Collapse
Affiliation(s)
- Shingo Sotoma
- Institute for Protein Research, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chongxia Zhong
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Taras Plakhotnik
- School of Mathematics and Physics, The University of Queensland, QLD, Australia.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
29
|
Yakovlev RY, Mingalev PG, Leonidov NB, Lisichkin GV. Detonation Nanodiamonds as Promising Drug Carriers. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Jung HS, Cho KJ, Ryu SJ, Takagi Y, Roche PA, Neuman KC. Biocompatible Fluorescent Nanodiamonds as Multifunctional Optical Probes for Latent Fingerprint Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6641-6650. [PMID: 31939655 PMCID: PMC8370203 DOI: 10.1021/acsami.9b19245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is an immense literature on detection of latent fingerprints (LFPs) with fluorescent nanomaterials because fluorescence is one of the most sensitive detection methods. Although many fluorescent probes have been developed for latent fingerprint detection, many challenges remain, including the low selectivity, complicated processing, high background, and toxicity of nanoparticles used to visualize LFPs. In this study, we demonstrate biocompatible, efficient, and low background LFP detection with poly(vinylpyrrolidone) (PVP) coated fluorescent nanodiamonds (FNDs). PVP-coated FND (FND@PVP) is biocompatible at the cellular level. They neither inhibit cellar proliferation nor induce cell death via apoptosis or other cell killing pathways. Moreover, they do not elicit an immune response in cells. PVP coating enhances the physical adhesion of FND to diverse substrates and in particular results in efficient binding of FND@PVP to fingerprint ridges due to the intrinsic amphiphilicity of PVP. Clear, well-defined ridge structures with first, second, and third-level of LFP details are revealed within minutes by FND@PVP. The combination of this binding specificity and the remarkable optical properties of FND@PVP permits the detection of LPFs with high contrast, efficiency, selectivity, sensitivity, and reduced background interference. Our results demonstrate that background-free imaging via multicolor emission and dual-modal imaging of FND@PVP nanoparticles have great potential for high-resolution imaging of LFPs.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Seung-Jin Ryu
- Forensic Science Research Center, Korean National Police University, 100-50 Hwang-san-gil, Sinchang-myeon, Asan-si, Chuncheongnan-do, 31539, South Korea
| | - Yasuharu Takagi
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Dong Y, Liao H, Yu J, Fu H, Zhao D, Gong K, Wang Q, Duan Y. Incorporation of drug efflux inhibitor and chemotherapeutic agent into an inorganic/organic platform for the effective treatment of multidrug resistant breast cancer. J Nanobiotechnology 2019; 17:125. [PMID: 31870362 PMCID: PMC6929438 DOI: 10.1186/s12951-019-0559-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is a pressing obstacle in clinical chemotherapy for breast cancer. Based on the fact that the drug efflux is an important factor in MDR, we designed a codelivery system to guide the drug efflux inhibitor verapamil (VRP) and the chemotherapeutic agent novantrone (NVT) synergistically into breast cancer cells to reverse MDR. RESULTS This co-delivery system consists of following components: the active targeting peptide RGD, an inorganic calcium phosphate (CaP) shell and an organic inner core. VRP and NVT were loaded into CaP shell and phosphatidylserine polyethylene glycol (PS-PEG) core of nanoparticles (NPs) separately to obtain NVT- and VRP-loaded NPs (NV@CaP-RGD). These codelivered NPs allowed VRP to prevent the efflux of NVT from breast cancer cells by competitively combining with drug efflux pumps. Additionally, NV@CaP-RGD was effectively internalized into breast cancer cells by precise delivery through the effects of the active targeting peptides RGD and EPR. The pH-triggered profile of CaP was also able to assist the NPs to successfully escape from lysosomes, leading to a greatly increased effective intracellular drug concentration. CONCLUSION The concurrent administration of VRP and NVT by organic/inorganic NPs is a promising therapeutic approach to reverse MDR in breast cancer.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hongze Liao
- Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Fan X, Yuan Z, Shou C, Fan G, Wang H, Gao F, Rui Y, Xu K, Yin P. cRGD-Conjugated Fe 3O 4@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy. Int J Nanomedicine 2019; 14:9631-9645. [PMID: 31824156 PMCID: PMC6901060 DOI: 10.2147/ijn.s222797] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has great potential in the clinical treatment of tumors. However, most photothermal materials are difficult to apply due to their insufficient photothermal conversion efficiencies (PCEs), poor photostabilities and short circulation times. Furthermore, tumor recurrence is likely to occur using PTT only. In the present study, we prepared cyclo (Arg-Gly-Asp-d-Phe-Cys) [c(RGD)] conjugated doxorubicin (DOX)-loaded Fe3O4@polydopamine (PDA) nanoparticles to develop a multifunctional-targeted nanocomplex for integrated tumor diagnosis and treatment. MATERIALS AND METHODS Cytotoxicity of Fe3O4@PDA-PEG-cRGD-DOX against HCT-116 cells was determined by cck-8 assay. Cellular uptake was measured by confocal laser scanning microscope (CLSM). Pharmacokinetic performance of DOX was evaluated to compare the differences between free DOX and DOX in nanocarrier. Performance in magnetic resonance imaging (MRI) and antitumor activity of complex nanoparticles were evaluated in tumor-bearing nude mice. RESULTS Fe3O4@PDA-PEG-cRGD-DOX has a particle size of 200-300 nm and a zeta potential of 22.7 mV. Further studies in vitro and in vivo demonstrated their excellent capacity to target tumor cells and promote drug internalization, and significantly higher cytotoxicity with respect to that seen in a control group was shown for the nanoparticles. In addition, they have good thermal stability, photothermal conversion efficiencies (PCEs) and pH responsiveness, releasing more DOX in a mildly acidic environment, which is very conducive to their chemotherapeutic effectiveness in the tumor microenvironment. Fe3O4@PDA-PEG-cRGD-DOX NPs were used in a subcutaneous xenograft tumor model of nude mouse HCT-116 cells showed clear signal contrast in T2-weighted images and effective anti-tumor chemo-photothermal therapy under NIR irradiation. CONCLUSION According to our results, Fe3O4@PDA-PEG-cRGD-DOX had a satisfactory antitumor effect on colon cancer in nude mice and could be further developed as a potential integrated platform for the diagnosis and treatment of cancer to improve its antitumor activity against colon cancer.
Collapse
Affiliation(s)
- Xi Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hong Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuanpeng Rui
- Department of Image, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui, People’s Republic of China
| |
Collapse
|
33
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 516] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
34
|
Zhang D, Bian F, Cai L, Wang T, Kong T, Zhao Y. Bioinspired photonic barcodes for multiplexed target cycling and hybridization chain reaction. Biosens Bioelectron 2019; 143:111629. [PMID: 31470170 DOI: 10.1016/j.bios.2019.111629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Multiplexed detection of microRNA (miRNA) is of great value in clinical diagnosis. Here, a new type of polydopamine (PDA) encapsulated photonic crystal (PhC) barcodes are employed for target-triggering cycle amplification and hybridization chain reaction (HCR) to achieve multiplex miRNA quantification. The PDA-decorated PhC barcodes not only exhibit distinctive structural color for different encoding miRNAs, they also can immobilize biomolecules, allowing subsequent reaction with amino-modified hairpin probes (H1). When the PDA-decorated PhC barcodes are used in assays, target miRNAs can be circularly used to initiate HCR for cycle amplification. Therefore, by tuning the structural colors of the PDA-integrated PhC, the multiplexed miRNA quantification could be realized. We demonstrate that our strategy for multiplexed detection of miRNA is reasonably accurate, reliable and repeatable, with a detection limit as low as 8.0 fM. Our results show that PDA encapsulated PhC barcodes as a novel platform offer a pathway toward the multiplex analysis of low-abundance biomarkers for biomedical assays.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
35
|
Harvey S, Raabe M, Ermakova A, Wu Y, Zapata T, Chen C, Lu H, Jelezko F, Ng DYW, Weil T. Transferrin‐Coated Nanodiamond–Drug Conjugates for Milliwatt Photothermal Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sean Harvey
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Anna Ermakova
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Yingke Wu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Todd Zapata
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chaojian Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Fedor Jelezko
- Institute for Quantum OpticsUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| |
Collapse
|
36
|
Cheng K, Zhang XS, An J, Li C, Zhang RY, Ye R, Ye BJ, Liu B, Zhao YD. Hitherto-Unexplored Photodynamic Therapy of Ag 2 S and Enhanced Regulation Based on Polydopamine In Vitro and Vivo. Chemistry 2019; 25:7553-7560. [PMID: 30970162 DOI: 10.1002/chem.201900718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 11/09/2022]
Abstract
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2 S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2 S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2 S had more opportunities to react with surrounding O2 , which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2 S and PDA-Ag2 S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2 S showed distinctly better therapeutic effects than Ag2 S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2 S quantum dots, which extended and enhanced the regulatory effect originating from PDA.
Collapse
Affiliation(s)
- Kai Cheng
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Jie An
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Cheng Li
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Run Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bang-Jiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics, at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.,Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| |
Collapse
|
37
|
Fujita H, Zhong C, Arai S, Suzuki M. Bright Dots and Smart Optical Microscopy to Probe Intracellular Events in Single Cells. Front Bioeng Biotechnol 2019; 6:204. [PMID: 30662896 PMCID: PMC6328461 DOI: 10.3389/fbioe.2018.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
Probing intracellular events is a key step in developing new biomedical methodologies. Optical microscopy has been one of the best options to observe biological samples at single cell and sub-cellular resolutions. Morphological changes are readily detectable in brightfield images. When stained with fluorescent molecules, distributions of intracellular organelles, and biological molecules are made visible using fluorescence microscopes. In addition to these morphological views of cells, optical microscopy can reveal the chemical and physical status of defined intracellular spaces. This review begins with a brief overview of genetically encoded fluorescent probes and small fluorescent chemical dyes. Although these are the most common approaches, probing is also made possible by using tiny materials that are incorporated into cells. When these tiny materials emit enough photons, it is possible to draw conclusions about the environment in which the tiny material resides. Recent advances in these tiny but sufficiently bright fluorescent materials are nextly reviewed to show their applications in tracking target molecules and in temperature imaging of intracellular spots. The last section of this review addresses purely optical methods for reading intracellular status without staining with probes. These non-labeling methods are especially essential when biospecimens are thereafter required for in vivo uses, such as in regenerative medicine.
Collapse
Affiliation(s)
- Hideaki Fujita
- WASEDA Bioscience Research Institute in Singapore, Singapore, Singapore
| | - Chongxia Zhong
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoshi Arai
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- PRIME-AMED, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
38
|
Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9392-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|