1
|
Jiang Y, Sanyal M, Hussein NA, Baghdasaryan A, Zhang M, Wang F, Ren F, Li J, Zhu G, Meng Y, Adamska JZ, Mellins E, Dai H. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. SCIENCE ADVANCES 2025; 11:eadp5539. [PMID: 39919189 DOI: 10.1126/sciadv.adp5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
The COVID-19 pandemic caused a global health crisis that resulted in millions of deaths. Effective vaccines have played central roles in curtailing the pandemic. Here, we developed a down-converting near-infrared IIb (NIR-IIb; 1500 to 1700 nanometers) luminescent, pure NaErF4@NaYF4 rare-earth nanoparticle (pEr) as vaccine carriers. The pEr nanoparticles were coated with three layers of cross-linked biocompatible polymers (pEr-P3; ~55 nanometers) and conjugated to the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Upon subcutaneous injection of the pEr-P3-RBD nanovaccine in mice, in vivo NIR-IIb imaging revealed active vaccine trafficking and migration to lymph nodes through lymphatic vessels. Two doses of the adjuvant-free vaccine elicited long-lasting (>7 months) high titers of serum viral neutralization antibody and anti-RBD immunoglobulin G, along with robust RBD-specific germinal center B cells and T follicular helper cells. We devised in vivo NIR-II molecular imaging of RBD-specific cells in lymph nodes, opening noninvasive assessments of vaccine-elicited immune responses longitudinally.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noor A Hussein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yifan Meng
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Julia Zofia Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P. R. China
| |
Collapse
|
2
|
He M, Chen S, Yu H, Fan X, Wu H, Wang Y, Wang H, Yin X. Advances in nanoparticle-based radiotherapy for cancer treatment. iScience 2025; 28:111602. [PMID: 39834854 PMCID: PMC11743923 DOI: 10.1016/j.isci.2024.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Radiotherapy has long been recognized as an effective conventional approach in both clinical and scientific research, primarily through mechanisms involving DNA destruction or the generation of reactive oxygen species to target tumors. However, significant challenges persist, including the unavoidable damage to normal tissues and the development of radiation resistance. As a result, nanotechnology-based radiotherapy has garnered considerable attention for its potential to enhance precision in irradiation, improve radiosensitization, and achieve therapeutic advancements. Importantly, radiotherapy alone frequently falls short of fully eradicating tumors. Consequently, to augment the efficacy of radiotherapy, it is often integrated with other therapeutic strategies. This review elucidates the mechanisms of radiotherapy sensitization based on diverse nanoparticles. Typically, radiotherapy is sensitized through augmenting reactive oxygen species production, targeted radiotherapy, hypoxia relief, enhancement of antitumor immune microenvironment, and G2/M cell cycle arrest. Moreover, the incorporation of nanoparticle-based anti-tumor strategies with radiotherapy markedly enhances the current state of radiotherapy. Additionally, a compilation of clinical trials utilizing nano-radioenhancers is presented. Finally, future prospects for clinical translation in this field are thoroughly examined.
Collapse
Affiliation(s)
- Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shixiong Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Shanghai 201803, China
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
3
|
Wang WJ, Xin ZY, Su X, Hao L, Qiu Z, Li K, Luo Y, Cai XM, Zhang J, Alam P, Feng J, Wang S, Zhao Z, Tang BZ. Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging. ACS NANO 2025; 19:281-306. [PMID: 39745533 DOI: 10.1021/acsnano.4c14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance. This review delves into the molecular mechanisms of aggregation-induced emission (AIE), demonstrating how strategic molecular design unlocks exceptional luminescence and superior imaging contrast, which is crucial for distinguishing healthy and diseased tissues. This review also highlights key applications of AIEgens, such as time-resolved imaging, second near-infrared window (NIR-II), and the advancement of AIEgens in sensitivity to physical and biochemical cue-responsive imaging. The development of AIE technology promises to transform healthcare from early disease detection to targeted therapies, potentially reshaping personalized medicine. This paradigm shift in biophotonics offers efficient tools to decode the complexities of biological systems at the molecular level, bringing us closer to a future where the invisible becomes visible and the incurable becomes treatable.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xuxian Su
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Liang Hao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Kang Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yumei Luo
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jing Feng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Shaojuan Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Wu GL, Tan S, Tan X, Chen G, Yang Q. Recent advances in ferrocene-based nanomedicines for enhanced chemodynamic therapy. Theranostics 2025; 15:384-407. [PMID: 39744691 PMCID: PMC11671379 DOI: 10.7150/thno.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 01/11/2025] Open
Abstract
Malignant tumors have been a serious threat to human health with their increasing incidence. Difficulties with conventional treatments are toxicity, drug resistance, and recurrence. For this reason, non-invasive treatment modalities such as photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), and others have received much attention. Among them, Ferrocene (Fc)-based nanomedicines for enhanced Chemodynamic Therapy (ECDT) is a new therapeutic strategy based on the Fenton reaction. Based on ferrocene's good biocompatibility, potentiation in medicinal chemistry, and good stability of divalent iron ions, scientists are increasingly using it as a Fenton's iron donor for tumor therapy. Such ferrocene-based ECDT nanoplatforms have shown remarkable promise for clinical applications and have significantly increased the efficacy of CDT treatment. Ferrocene-based nanomedicines exhibit exceptional consistency owing to their low toxicity, high stability, enhanced bioavailability, and a multitude of advantages over conventional approaches to cancer treatment. As a consequence, a number of tactics have been investigated in recent years to raise the effectiveness of ferrocene-based ECDT. In this review, we detail the different forms and strategies used to enhance Ferrocene-based ECDT efficiency.
Collapse
Affiliation(s)
- Gui-long Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Senyou Tan
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of general Surgery, Turpan City People's Hospital, Tulufan 838000, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Li X, Chen H, Su Z, Zhao Q, Wang Y, Li N, Li S. Brightness Strategies toward NIR-II Emissive Conjugated Materials: Molecular Design, Application, and Future Prospects. ACS APPLIED BIO MATERIALS 2024; 7:8019-8039. [PMID: 38556979 DOI: 10.1021/acsabm.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent advances have been made in second near-infrared (NIR-II) fluorescence bioimaging and many related applications because of its advantages of deep penetration, high resolution, minimal invasiveness, and good dynamic visualization. To achieve high-performance NIR-II fluorescence bioimaging, various materials and probes with bright NIR-II emission have been extensively explored in the past few years. Among these NIR-II emissive materials, conjugated polymers and conjugated small molecules have attracted wide interest due to their native biosafety and tunable optical performance. This review summarizes the brightness strategies available for NIR-II emissive conjugated materials and highlights the recent developments in NIR-II fluorescence bioimaging. A concise, detailed overview of the molecular design and regulatory approaches is provided in terms of their high brightness, long wavelengths, and superior imaging performance. Then, various typical cases in which bright conjugated materials are used as NIR-II probes are introduced by providing step-by-step examples. Finally, the current problems and challenges associated with accessing NIR-II emissive conjugated materials for bright NIR-II fluorescence bioimaging are briefly discussed, and the significance and future prospects of these materials are proposed to offer helpful guidance for the development of NIR-II emissive materials.
Collapse
Affiliation(s)
- Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Zihan Su
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
6
|
Wu J, Xia W, Lu Y, Yao S, Chen Y, Guo Z. Construction of a dual "off-on" near-infrared fluorescent probe for bioimaging of HClO in rheumatoid arthritis. Talanta 2024; 280:126721. [PMID: 39178513 DOI: 10.1016/j.talanta.2024.126721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Hypochlorous acid (HClO) serves as a critical biomarker in inflammatory diseases such as rheumatoid arthritis (RA), and its real-time imaging is essential for understanding its biological functions. In this study, we designed and synthesized a novel probe, RHMB, which ingeniously integrates rhodamine B and methylene blue fluorophores with HClO-specific responsive moieties into a single molecular framework. Upon exposure to HClO, RHMB exhibited significant dual-channel fluorescence enhancement characterized by high sensitivity (LODs of 2.55 nM and 14.08 nM), excellent selectivity, and rapid response time (within 5 s). Notably, RHMB enabled reliable imaging of both exogenous and endogenous HClO in living cells and in zebrafish, employing a unique duplex-imaging turn-on approach that highlighted its adaptability across various biological contexts. Furthermore, RHMB effectively monitored HClO fluctuations in an RA mouse model and assessed the therapeutic efficacy of diclofenac (Dic) in alleviating RA symptoms. These findings underscore the potential of RHMB as an invaluable tool for elucidating the biological roles of HClO in various diseases.
Collapse
Affiliation(s)
- Jisong Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering and Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenchao Xia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering and Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuan Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering and Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering and Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering and Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangsu, Nanjing, 210000, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering and Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangsu, Nanjing, 210000, China
| |
Collapse
|
7
|
Safaee MM, McFarlane IR, Nishitani S, Yang SJ, Sun E, Medina SM, Squire H, Landry MP. Dual Infrared 2-Photon Microscopy Achieves Minimal Background Deep Tissue Imaging in Brain and Plant Tissues. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2404709. [PMID: 39711883 PMCID: PMC11661845 DOI: 10.1002/adfm.202404709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 12/24/2024]
Abstract
Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation. We next construct a NIR two-photon microscope with a 1640 nm femtosecond pulsed laser and a NIR PMT detector to image biological tissues labeled with fluorescent single-walled carbon nanotubes (SWNTs). We achieve spatial imaging resolutions close to the Abbe resolution limit and eliminate blur and background autofluorescence of biomolecules, 300 μm deep into brain slices and through the full 120 μm thickness of a Nicotiana benthamiana leaf. We also demonstrate that NIR-II two-photon microscopy can measure tissue heterogeneity by quantifying how much the fluorescence power law function varies across tissues, a feature we exploit to distinguish Huntington's Disease afflicted mouse brain tissues from wildtype. Our results suggest dual-infrared two-photon microscopy could accomplish in-tissue structural imaging and biochemical sensing with a minimal background, and with high spatial resolution, in optically opaque or highly autofluorescent biological tissues.
Collapse
Affiliation(s)
- Mohammad Moein Safaee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ian R McFarlane
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sarah J Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ethan Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sebastiana M Medina
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Henry Squire
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Lv S, Zhu G, Li Q, Zhang J, Tang L. Predicting in vivo therapeutic efficacy of CelTrac1000-labeled hair follicle epidermal neural crest stem cells in models of repairing rat facial nerve defects via second near-infrared fluorescence imaging. Life Sci 2024; 352:122869. [PMID: 38950644 DOI: 10.1016/j.lfs.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
AIMS To detect the therapeutic efficacy of CelTrac1000-labeled hair follicle epidermal neural crest stem cells (EPI-NCSCs) on repairing facial nerve defects by second near-infrared (NIR-II) fluorescence imaging. MATERIALS AND METHODS Firstly, CelTrac1000-labeled EPI-NCSCs were microinjected into the acellular nerve allografts (ANAs) to bridge a 10-mm-long gap in the buccal branch of facial nerve in adult rats. Then, Celtrac1000-labeled EPI-NCSCs were detected by NIR-II fluorescence imaging system to visualize the behavior of the transplanted cells in vivo. Additionally, the effect of the transplanted EPI-NCSCs on repairing facial nerve defect was examined. KEY FINDINGS Through 14 weeks of dynamic observation, the transplanted EPI-NCSCs survived in the ANAs in vivo after surgery. Meanwhile, the region of the NIR-II fluorescence signals was gradually limited to be consistent with the direction of the regenerative nerve segment. Furthermore, the results of functional and morphological analysis showed that the transplanted EPI-NCSCs could promote the recovery of facial paralysis and neural regeneration after injury. SIGNIFICANCE Our research provides a novel way to track the transplanted cells in preclinical studies of cell therapy for facial paralysis, and demonstrates the therapeutic potential of EPI-NCSCs combined with ANAs in bridging rat facial nerve defects.
Collapse
Affiliation(s)
- Shangrui Lv
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No 2 People's Hospital, Wuxi, 214002, Jiangsu, China
| | - Guochen Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No 2 People's Hospital, Wuxi, 214002, Jiangsu, China; Department of Otorhinolaryngology-Head and Neck Surgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, China; Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, 214002, Jiangsu, China.
| | - Qianwen Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No 2 People's Hospital, Wuxi, 214002, Jiangsu, China
| | - Jing Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, 214002, Jiangsu, China
| | - Li Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No 2 People's Hospital, Wuxi, 214002, Jiangsu, China
| |
Collapse
|
9
|
Li S, Xin Q, Li Y, Ma H, Yan H, Ao S, Li H, Wang Q, Wang Z, Liu P, Wang H, Zhang XD. Three-Dimensional Visualization of Breast Cancer Pathology Evolution in Clinical Patient Tissues with NIR-II Imaging. NANO LETTERS 2024; 24:10337-10347. [PMID: 39120122 DOI: 10.1021/acs.nanolett.4c02945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is the most common tumor worldwide and requires crucial molecular typing for treatment and prognosis assessment. Currently, approaches like pathological staining, immunohistochemistry (IHC), and immunofluorescence (IF) face limitations due to the low signal-to-background ratio (SBR) and high tumor heterogeneity, resulting in a high misdiagnosis rate. Fluorescent assay in the second near-infrared region (NIR-II, 1000-1700 nm) exhibits ultrahigh SBR owing to diminished scattering and tissue autofluorescence. Here, we present a NIR-II strategy for accurate BC molecular typing and three-dimensional (3D) visualization based on the atomically precise fluorescent Au24Pr1 clusters. Single-atom Pr doping results in 3.9-fold fluorescence enhancement and long-term photostability. The Au24Pr1 clusters possess high fluorescence centered at ∼1100 nm and the SBR on pathological section diagnosis was 4 times higher than that of NIR-I imaging. This enables high spatial resolution 3D visualization of biopsy specimens, which can surmount tissue heterogeneity for clinical diagnosis of BC.
Collapse
Affiliation(s)
- Shasha Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yuan Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Haoyue Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Siyu Ao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hongwei Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pengfei Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Wang H, Liu H, Li W, Li S, Zhang J, Zang J, Liu L, Wang P. Supramolecular engineering cascade regulates NIR-II J-aggregates to improve photodynamic therapy. Chem Sci 2024; 15:11347-11357. [PMID: 39055007 PMCID: PMC11268488 DOI: 10.1039/d4sc03020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Rational design of small organic molecule-based NIR-II photosensitizers (PSs) with high singlet oxygen quantum yield in aqueous solution for deep tissue imaging and cancer therapy still presents challenges. Herein, we devised a general synthesis strategy to obtain six NIR-II region PSs with tunable aggregation states by adjusting the steric effect, and all PSs possess longer NIR absorption/emission wavelengths with tails extending beyond 1200 nm. Notably, ATX-6 possessed a singlet oxygen quantum yield of 38.2% and exhibited concentration-dependent J-aggregation properties upon self-assembly in an aqueous solution. What's more, supramolecular engineering with DSPE-PEG2000 further enhanced its degree of J-aggregation, which was attributed to the dimer-excited reduction of the energy levels of the single-linear/triple-linear states and the facilitation of intersystem crossover processes. In addition, ATX-6 NPs showed superior photodynamic therapy effects and great potential in high-contrast in vivo bioimaging of the NIR-II region. These results provide valuable insights for achieving the diagnostic and therapeutic integration of tumors.
Collapse
Affiliation(s)
- Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Huijia Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Wenqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Shuai Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Jingzhe Zang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Li Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
11
|
Zhang X, Dou Y, Liu S, Chen P, Wen Y, Li J, Sun Y, Zhang R. Rationally Designed Benzobisthiadiazole-Based Covalent Organic Framework for High-Performance NIR-II Fluorescence Imaging-Guided Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2303842. [PMID: 38458147 DOI: 10.1002/adhm.202303842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Indexed: 03/10/2024]
Abstract
Although being applied as photosensitizers for photodynamic therapy, covalent organic frameworks (COFs) fail the precise fluorescence imaging in vivo and phototherapy in deep-tissue, due to short excitation/emission wavelengths. Herein, this work proposes the first example of NIR-II emissive and benzobisthiadiazole-based COF-980. Comparing to its ligands, the structure of COF-980 can more efficiently reducing the energy gap (ΔES1-T1) between the excited state and the triplet state to enhance photodynamic therapy efficiency. Importantly, COF-980 demonstrates high photostability, good anti-diffusion property, superior reactive oxygen species (ROS) generation efficiency, promising imaging ability, and ROS production in deep tissue (≈8 mm). Surprisingly, COF-980 combined with laser irradiation could trigger larger amount of intracellular ROS to high efficiently induce cancer cell death. Notably, COF-980 NPs precisely enable PDT guided by NIR-II fluorescence imaging that effectively inhibit the 4T1 tumor growth with negligible adverse effects. This study provides a universal approach to developing long-wavelength emissive COFs and exploits its applications for biomedicine.
Collapse
Affiliation(s)
- Xian Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - You Dou
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Yating Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Junrong Li
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Yao Sun
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| |
Collapse
|
12
|
Ren F, Wang F, Baghdasaryan A, Li Y, Liu H, Hsu R, Wang C, Li J, Zhong Y, Salazar F, Xu C, Jiang Y, Ma Z, Zhu G, Zhao X, Wong KK, Willis R, Christopher Garcia K, Wu A, Mellins E, Dai H. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat Biomed Eng 2024; 8:726-739. [PMID: 37620621 PMCID: PMC11250370 DOI: 10.1038/s41551-023-01083-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Tracking and imaging immune cells in vivo non-invasively would offer insights into the immune responses induced by vaccination. Here we report a cancer vaccine consisting of polymer-coated NaErF4/NaYF4 core-shell down-conversion nanoparticles emitting luminescence in the near-infrared spectral window IIb (1,500-1,700 nm in wavelength) and with surface-conjugated antigen (ovalbumin) and electrostatically complexed adjuvant (class-B cytosine-phosphate-guanine). Whole-body wide-field imaging of the subcutaneously injected vaccine in tumour-bearing mice revealed rapid migration of the nanoparticles to lymph nodes through lymphatic vessels, with two doses of the vaccine leading to the complete eradication of pre-existing tumours and to the prophylactic inhibition of tumour growth. The abundance of antigen-specific CD8+ T lymphocytes in the tumour microenvironment correlated with vaccine efficacy, as we show via continuous-wave imaging and lifetime imaging of two intravenously injected near-infrared-emitting probes (CD8+-T-cell-targeted NaYbF4/NaYF4 nanoparticles and H-2Kb/ovalbumin257-264 tetramer/PbS/CdS quantum dots) excited at different wavelengths, and by volumetrically visualizing the three nanoparticles via light-sheet microscopy with structured illumination. Nanoparticle-based vaccines and imaging probes emitting infrared light may facilitate the design and optimization of immunotherapies.
Collapse
Affiliation(s)
- Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ying Li
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yeteng Zhong
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Felix Salazar
- Department of Radiation Oncology, City of Hope, CA, USA
| | - Chun Xu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Zhuoran Ma
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerry Kaili Wong
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Richard Willis
- NIH Tetramer Facility at Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Wu
- Department of Radiation Oncology, City of Hope, CA, USA
| | - Elizabeth Mellins
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Zhao X, Zhang G, Chen J, Li Z, Shi Y, Li G, Zhai C, Nie L. A rationally designed nuclei-targeting FAPI 04-based molecular probe with enhanced tumor uptake for PET/CT and fluorescence imaging. Eur J Nucl Med Mol Imaging 2024; 51:1593-1604. [PMID: 38512485 DOI: 10.1007/s00259-024-06691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Fibroblast activation protein inhibitor (FAPI) -based probes have been widely studied in the diagnosis of various malignant tumors with positron emission tomography/computed tomography (PET/CT). However, current imaging studies of FAPI-based probes face challenges in rapid clearance rate and potential false-negative results. Furthermore, FAPI has been rarely explored in optical imaging. Considering this, further modifications are imperative to improve the properties of FAPI-based probes to address existing limitations and broaden their application scenarios. In this study, we rationally introduced methylene blue (MB) to FAPIs, thereby imparting nuclei-targeting and fluorescence imaging capabilities to the probes. Furthermore, we evaluated the added value of FAPI-based fluorescence imaging to traditional PET/CT, exploring the potential application of FAPI-based probes in intraoperative fluorescence imaging. METHODS A new FAPI-based probe, namely NOTA-FAPI-MB, was designed for both PET/CT and fluorescence imaging by conjugation of MB. The targeting efficacy of the probe was evaluated on fibroblast activation protein (FAP)-transfected cell line and human primary cancer-associated fibroblasts (CAFs). Subsequently, PET/CT and fluorescence imaging were conducted on tumor-bearing mice. The tumor detection and boundary delineation were assessed by fluorescence imaging of tissues from hepatocellular carcinoma (HCC) patients. RESULTS NOTA-FAPI-MB demonstrated exceptional targeting ability towards FAP-transfected cells and CAFs in comparison to NOTA-FAPI. This benefit arises from the cationic methylene blue (MB) affinity for anionic nucleic acids. PET/CT imaging of tumor-bearing mice revealed significantly higher tumor uptake of [18F]F-NOTA-FAPI-MB (standard uptake value of 2.20 ± 0.31) compared to [18F]F-FDG (standard uptake value of 1.66 ± 0.14). In vivo fluorescence imaging indicated prolonged retention at the tumor site, with retention lasting up to 24 h. In addition, the fluorescent probes enabled more precise lesion detection and tumor margin delineation than clinically used indocyanine green (ICG), achieving a 100.0% (6/6) tumor-positive rate for NOTA-FAPI-MB while 33.3% (2/6) for ICG. These findings highlighted the potential of NOTA-FAPI-MB in guiding intraoperative surgical procedures. CONCLUSIONS The NOTA-FAPI-MB was successfully synthesized, in which FAPI and MB simultaneously contributed to the targeting effect. Notably, the nuclear delivery mechanism of the probes improved intracellular retention time and targeting efficacy, broadening the imaging time window for fluorescence imaging. In vivo PET/CT demonstrated favorable performance of NOTA-FAPI-MB compared to [18F]F-FDG. This study highlights the significance of fluorescence imaging as an adjunct technique to PET/CT. Furthermore, the encouraging results obtained from the imaging of human HCC tissues hold promise for the potential application of NOTA-FAPI-MB in intraoperative fluorescent surgery guidance within clinical settings.
Collapse
Affiliation(s)
- Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiali Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zirong Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yusheng Shi
- Department of Radiation Oncology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Guiting Li
- Research and Development Center, Guangdong Huixuan Pharmaceutical Technology Co., Ltd, Guangzhou, 510765, China
| | - Chuangyan Zhai
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Swamy MMM, Murai Y, Monde K, Tsuboi S, Swamy AK, Jin T. Biocompatible and Water-Soluble Shortwave-Infrared (SWIR)-Emitting Cyanine-Based Fluorescent Probes for In Vivo Multiplexed Molecular Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17253-17266. [PMID: 38557012 DOI: 10.1021/acsami.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Extending molecular imaging into the shortwave-infrared (SWIR, 900-1400 nm) region provides deep tissue visualization of biomolecules in the living system resulting from the low tissue autofluorescence and scattering. Looking at the Food and Drug Administration-approved and clinical trial near-infrared (NIR) probes, only indocyanine green (ICG) and its analogues have been approved for biomedical applications. Excitation wavelength less than 800 nm limits these probes from deep tissue penetration and noninvasive fluorescence imaging. Herein, we present the synthesis of ICG-based π-conjugation-extended cyanine dyes, ICG-C9 and ICG-C11 as biocompatible, and water-soluble SWIR-emitting probes with emission wavelengths of 922 and 1010 nm in water, respectively. Also, ICG-, ICG-C9-, and ICG-C11-based fluorescent labeling agents have been synthesized for the development of SWIR molecular imaging probes. Using the fluorescence of ICG, ICG-C9, and ICG-C11, we demonstrate three-color SWIR fluorescence imaging of breast tumors by visualizing surface receptors (EGFR and HER2) and tumor vasculature in living mice. Furthermore, we demonstrate two-color SWIR fluorescence imaging of breast tumor apoptosis using an ICG-conjugated anticancer drug, Kadcyla and ICG-C9 or ICG-C11-conjugated annexin V. Finally, we show long-term (38 days) SWIR fluorescence imaging of breast tumor shrinkage induced by Kadcyla. This study provides a general strategy for multiplexed fluorescence molecular imaging with biocompatible and water-soluble SWIR-emitting cyanine probes.
Collapse
Affiliation(s)
- Mahadeva M M Swamy
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Yuta Murai
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | - Aravind K Swamy
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| |
Collapse
|
15
|
Feng X, Wang G, Pan J, Wang X, Wang J, Sun SK. Purification-free synthesis of bright lactoglobulin@dye nanoprobe for second near-infrared fluorescence imaging of kidney dysfunction in vivo. Colloids Surf B Biointerfaces 2024; 236:113796. [PMID: 38368756 DOI: 10.1016/j.colsurfb.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Kidney disease is currently prevalent worldwide but only shows insidious symptoms in the early stages. The second near-infrared window (NIR-II) fluorescence imaging has become a widely used preclinical technology for evaluating renal dysfunction due to its high resolution and sensitivity. However, bright renal clearable NIR-II fluorescence nanoprobes with a simple synthesis process are still lacking. Herein, we develop a lactoglobulin (LG)@dye nanoprobe for NIR-II fluorescence imaging of kidney dysfunction in vivo based on a purification-free method. The nanoprobe was synthesized by simply mixing LG and IR820 in aqueous solutions at 70 °C for 2 h based on the covalent interaction between the meso-Cl in IR820 and LG. The synthesized LG@IR820 nanoprobe has bright and stable NIR-II fluorescence, ultra-small size (<5 nm), low toxicity, and renal-clearable ability. The high reaction efficiency and pure aqueous reaction media make the synthesis method purification-free. In a unilateral ureteral obstruction mouse model, incipient renal dysfunction assessment was achieved by LG@IR820 nanoprobe, which couldn't be diagnosed with conventional kidney function indicators. This study provides a bright and purification-free NIR-II LG@IR820 nanoprobe to visualize kidney dysfunction at the early stage.
Collapse
Affiliation(s)
- Xinyu Feng
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development on Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Junping Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
16
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
17
|
Yu Y, Wang Z, Gao S, Wu Y, Yu A, Wu F. Real-time visualization of skeletal muscle necrosis in mice and swine through NIR-II/I fluorescence imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300225. [PMID: 37680010 DOI: 10.1002/jbio.202300225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Avulsion often occurs in the limb due to heavy shearing forces which not only damage skeletal muscle but also main vessels, resulting in life-threatening muscle ischemia and necrosis. Defining muscle activity is vital for surgical repair. Currently, the color, capacity of blood, contractibility, and consistency (4C) are the primary principles for evaluating the activities of torn muscles. Based on clinical experiences, this standard turns out to be delayed diagnosis, which is not defined by specific parameters. Recently, near-infrared (NIR) fluorescence probes emitting within the second near-infrared window (NIR-II, 1000-1700 nm) have been widely used for non-invasive optical imaging because the tissue absorption and autofluorescence in the NIR-II region are negligible, thus allowing deeper penetration depths with micrometer-scale spatial resolution in vivo. As pathogenesis and development of muscle necrosis, necrosis-related protein may participate in this procedure. There is promising future for NIR-II to be used in evaluating muscle activity in avulsion. A new approach is developed based on experiments with mice and large animals (swine). Myoblasts were incubated with indocyanine green (ICG) to identify the necrosis muscles. The model of extremity damaged muscle was established for the real-time visualization and detection of developed necrosis muscle field under new equipment, both in balb/c mice (female) and long-haired swines. A visible NIR-II/I imaging system was first used in a large animal injured skeletal muscle-related model. Our NIR-II/I imaging system is suitable for evaluating the normal and injured skeletal muscle ICG cycle and pointing to the necrotic skeletal muscle tissue. NIR-II imaging is superior to NIR-I imaging in estimating skeletal muscle, best with 1100 nm filter. NIR-II fluorescence with 1100 nm filter is suitable for analyzing the progress of necrosis muscle tissue, leading to a new approach for intraoperative evaluation.
Collapse
Affiliation(s)
- Yifeng Yu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Siqi Gao
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yifan Wu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Li H, Lin WP, Zhang ZN, Sun ZJ. Tailoring biomaterials for monitoring and evoking tertiary lymphoid structures. Acta Biomater 2023; 172:1-15. [PMID: 37739247 DOI: 10.1016/j.actbio.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite the remarkable clinical success of immune checkpoint blockade (ICB) in the treatment of cancer, the response rate to ICB therapy remains suboptimal. Recent studies have strongly demonstrated that intratumoral tertiary lymphoid structures (TLSs) are associated with a good prognosis and a successful clinical response to immunotherapy. However, there is still a shortage of efficient and wieldy approaches to image and induce intratumoral TLSs in vivo. Biomaterials have made great strides in overcoming the deficiencies of conventional diagnosis and therapies for cancer, and antitumor therapy has also benefited from biomaterial-based drug delivery models. In this review, we summarize the reported methods for TLS imaging and induction based on biomaterials and provide potential strategies that can further enhance the effectiveness of imaging and stimulating intratumoral TLSs to predict and promote the response rates of ICB therapies for patients. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of biomaterials for imaging and induction of TLSs. We reviewed the applications of biomaterials in molecular imaging and immunotherapy, identified the biomaterials that may be suitable for TLS imaging and induction, and provided outlooks for further research. Accurate imaging and effective induction of TLSs are of great significance for understanding the mechanism and clinical application. We highlighted the need for multidisciplinary coordination and cooperation in this field, and proposed the possible future direction of noninvasive imaging and artificial induction of TLSs based on biomaterials. We believe that it can facilitate collaboration and galvanize a broader effort.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhong-Ni Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
20
|
Yu K, Ye B, Yang H, Xu X, Mao Z, Zhang Q, Tian M, Zhang H, Zhang H, He Q. A Mitochondria-Targeted NIR-II AIEgen Induced Pyroptosis for Enhanced Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2301693. [PMID: 37285905 DOI: 10.1002/adhm.202301693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Cancer immunotherapy is a favorable strategy for facilitating anti-tumor immunity, but it shows limited benefits in clinical practice owing to the immunosuppressive tumor microenvironment. Pyroptosis shows great immunostimulatory effect on tumor, whereas the lack of pyroptotic inducer with imaging property has restricted its progress in tumor theranostics. Herein, a mitochondria-targeted aggregation-induced emission (AIE) luminogen (TPA-2TIN) with NIR-II emission is designed for highly efficient induction of tumor cell pyroptosis. The fabricated TPA-2TIN nanoparticles can be efficiently taken up by tumor cells and selectively accumulated in tumor for a long term observed by NIR-II fluorescence imaging. More importantly, the TPA-2TIN nanoparticles can effectively stimulate immune responses both in vitro and in vivo mediated by the mitochondrial dysfunctions and the subsequent activation of the pyroptotic pathway. Ultimately, the reversal of the immunosuppressive tumor microenvironment significantly enhances the immune checkpoint therapy. This study paves a new avenue for adjuvant immunotherapy of cancer.
Collapse
Affiliation(s)
- Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinxin Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
21
|
Ma Y, Liu L, Ye Z, Xu L, Li Y, Liu S, Song G, Zhang XB. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Sci Bull (Beijing) 2023; 68:2382-2390. [PMID: 37679256 DOI: 10.1016/j.scib.2023.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
22
|
Han T, Chen L, Gao F, Wang S, Li J, Fan G, Cong H, Yu B, Shen Y. Preparation of thrombin-loaded calcium alginate microspheres with dual-mode imaging and study on their embolic properties in vivo. Eur J Pharm Biopharm 2023; 189:98-108. [PMID: 37330116 DOI: 10.1016/j.ejpb.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Transcatheter arterial embolization (TAE) has played a huge role in the interventional treatment of organ bleeding and accidental bleeding. Choosing bio-embolization materials with good biocompatibility is an important part of TAE. In this work, we prepared a calcium alginate embolic microsphere using high-voltage electrostatic droplet technology. The microsphere simultaneously encapsulated silver sulfide quantum dots (Ag2S QDs) and barium sulfate (BaSO4), and fixed thrombin on its surface. Thrombin can achieve an embolic effect while stopping bleeding. The embolic microsphere has good near-infrared two-zone (NIR-II) imaging and X-ray imaging effects, and the luminous effect of NIR-II is better than that of X-rays. This breaks the limitations of traditional embolic microspheres that only have X-ray imaging. And the microspheres have good biocompatibility and blood compatibility. Preliminary application results show that the microspheres can achieve a good embolization effect in the ear arteries of New Zealand white rabbits, and can be used as an effective material for arterial embolization and hemostasis. This work realizes the clinical embolization application of NIR-II combined with X-ray multimodal imaging technology in biomedical imaging, achieving complementary advantages and excellent results, more suitable for studying biological changes and clinical applications.
Collapse
Affiliation(s)
- Tingting Han
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Luping Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Fengyuan Gao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jian Li
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Guangwen Fan
- Jimo Hospital of Traditional Chinese Medicine of Qingdao City, Qingdao 266299, China
| | - Hailin Cong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Su X, Bao Z, Xie W, Wang D, Han T, Wang D, Tang BZ. Precise Planar-Twisted Molecular Engineering to Construct Semiconducting Polymers with Balanced Absorption and Quantum Yield for Efficient Phototheranostics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0194. [PMID: 37503536 PMCID: PMC10370618 DOI: 10.34133/research.0194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Semiconducting polymers (SPs) have shown great feasibility as candidates for near-infrared-II (NIR-II) fluorescence imaging-navigated photothermal therapy due to their strong light-harvesting ability and flexible tunability. However, the fluorescence signal of traditional SPs tends to quench in their aggregate states owing to the strong π-π stacking, which can lead to the radiative decay pathway shutting down. To address this issue, aggregation-induced emission effect has been used as a rational tactic to boost the aggregate-state fluorescence of NIR-II emitters. In this contribution, we developed a precise molecular engineering tactic based on the block copolymerizations that integrate planar and twisted segments into one conjugated polymer backbone, providing great flexibility in tuning the photophysical properties and photothermal conversion capacity of SPs. Two monomers featured with twisted and planar architectures, respectively, were tactfully incorporated via a ternary copolymerization approach to produce a series of new SPs. The optimal copolymer (SP2) synchronously shows desirable absorption ability and good NIR-II quantum yield on the premise of maintaining typical aggregation-induced emission characteristics, resulting in balanced NIR-II fluorescence brightness and photothermal property. Water-dispersible nanoparticles fabricated from the optimal SP2 show efficient photothermal therapeutic effects both in vitro and in vivo. The in vivo investigation reveals the distinguished NIR-II fluorescence imaging performance of SP2 nanoparticles and their photothermal ablation toward tumor with prominent tumor accumulation ability and excellent biocompatibility.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
- School of Biomedical and Pharmaceutical Sciences,
Guangdong University of Technology, Guangzhou 510006, China
| | - Zhirong Bao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center,
Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Deliang Wang
- Department of Materials Chemistry,
Huzhou University, Huzhou 313000, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology,
The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
24
|
Chen P, Qu F, He L, Li M, Sun P, Fan Q, Zhang C, Li D. Quasi-dendritic sulfonate-based organic small molecule for high-quality NIR-II bone-targeted imaging. J Nanobiotechnology 2023; 21:230. [PMID: 37468990 DOI: 10.1186/s12951-023-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
The visualization of bone imaging in vivo is of great significance for the understanding of some bone-related diseases or physiological processes. Herein, a bone-targeted NIR-II small molecule (TTQF-SO3), which was modified with multiple sulfonate groups, was successfully fabricated for the second near-infrared (NIR-II) bone imaging. In vitro studies revealed that TTQF-SO3 showed high affinity for hydroxyapatite and excellent macrophage accumulation ability. In in vivo assays, TTQF-SO3 displayed high bone uptake ability and high NIR-II bone imaging quality, demonstrating the specific bone-targeting ability of the sulfonate-containing probe. In addition, the noninvasive NIR-II imaging detection in bone calcium loss was successfully verified in osteoporosis mice models. Moreover, the negative charge characteristic of TTQF-SO3 showed efficient lymphoid enrichment in living mice by intravenous injection. Overall, these warrant that our TTQF-SO3 is an optimal bone-targeted diagnostic agent for high-quality NIR-II imaging, highlighting its potential promise for clinical translation.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fan Qu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Chi Y, Hu Q, Yi S, Qu H, Xiao Y. A novel strategy to construct activatable silver chalcogenide quantum dots nanoprobe for NIR-Ⅱ fluorescence imaging of hypochlorous acid in vivo. Talanta 2023; 262:124668. [PMID: 37229815 DOI: 10.1016/j.talanta.2023.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
It is necessary to develop sensitive and selective probes for real-time in vivo monitoring of hypochlorous acid (HClO) which plays a significant role in physiological and pathological processes. The second near-infrared (NIR-Ⅱ) luminescent silver chalcogenide quantum dots (QDs) have shown great potential in developing activatable nanoprobe for HClO in terms of their outstanding imaging performance in the living organism. However, the limited strategy for the construction of activatable nanoprobes severely restricts their widespread applications. Herein, we proposed a novel strategy for developing an activatable silver chalcogenide QDs nanoprobe for NIR-Ⅱ fluorescence imaging of HClO in vivo. The nanoprobe was fabricated by mixing an Au-precursor solution with Ag2Te@Ag2S QDs to allow cation exchange and release Ag ions and then reducing the released Ag ions on the QDs surface to form an Ag shell for quenching of the emission of QDs. The Ag shell of QDs was oxidized and etched in the presence of HClO, resulting in the disappearance of their quenching effect on QDs and the activation of the QDs emission. The developed nanoprobe enabled highly sensitive and selective determination of HClO and imaging of HClO in arthritis and peritonitis. This study provides a novel strategy for the construction of activatable nanoprobe based on QDs and a promising tool for NIR-Ⅱ imaging of HClO in vivo.
Collapse
Affiliation(s)
- Yajie Chi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Qing Hu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Shuxiao Yi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Huijiao Qu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Yan Xiao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
26
|
Tang K, Li X, Hu Y, Zhang X, Lu N, Fang Q, Shao J, Li S, Xiu W, Song Y, Yang D, Zhang J. Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomater Sci 2023. [PMID: 37067845 DOI: 10.1039/d3bm00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Malignant tumours are a serious threat to human health. Traditional chemotherapy has achieved breakthrough improvements but also has significant detrimental effects, such as the development of drug resistance, immunosuppression, and even systemic toxicity. Photothermal therapy (PTT) is an emerging cancer therapy. Under light irradiation, the phototherapeutic agent converts optical energy into thermal energy and induces the hyperthermic death of target cells. To date, numerous photothermal agents have been developed. Prussian blue (PB) nanoparticles are among the most promising photothermal agents due to their excellent physicochemical properties, including photoacoustic and magnetic resonance imaging properties, photothermal conversion performance, and enzyme-like activity. By the construction of suitably designed PB-based nanotherapeutics, enhanced photothermal performance, targeting ability, multimodal therapy, and imaging-guided cancer therapy can be effectively and feasibly achieved. In this review, the recent advances in PB-based photothermal combinatorial therapy and imaging-guided cancer therapy are comprehensively summarized. Finally, the potential obstacles of future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaonan Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Nan Lu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
27
|
Xin Q, Ma H, Wang H, Zhang X. Tracking tumor heterogeneity and progression with near-infrared II fluorophores. EXPLORATION (BEIJING, CHINA) 2023; 3:20220011. [PMID: 37324032 PMCID: PMC10191063 DOI: 10.1002/exp.20220011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous cells are the main feature of tumors with unique genetic and phenotypic characteristics, which can stimulate differentially the progression, metastasis, and drug resistance. Importantly, heterogeneity is pervasive in human malignant tumors, and identification of the degree of tumor heterogeneity in individual tumors and progression is a critical task for tumor treatment. However, current medical tests cannot meet these needs; in particular, the need for noninvasive visualization of single-cell heterogeneity. Near-infrared II (NIR-II, 1000-1700 nm) imaging exhibits an exciting prospect for non-invasive monitoring due to the high temporal-spatial resolution. More importantly, NIR-II imaging displays more extended tissue penetration depths and reduced tissue backgrounds because of the significantly lower photon scattering and tissue autofluorescence than traditional the near-infrared I (NIR-I) imaging. In this review, we summarize systematically the advances made in NIR-II in tumor imaging, especially in the detection of tumor heterogeneity and progression as well as in tumor treatment. As a non-invasive visual inspection modality, NIR-II imaging shows promising prospects for understanding the differences in tumor heterogeneity and progression and is envisioned to have the potential to be used clinically.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of PathologyTianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
| | - Xiao‐Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| |
Collapse
|
28
|
Gao D, Luo Z, He Y, Yang L, Hu D, Liang Y, Zheng H, Liu X, Sheng Z. Low-Dose NIR-II Preclinical Bioimaging Using Liposome-Encapsulated Cyanine Dyes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206544. [PMID: 36710248 DOI: 10.1002/smll.202206544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides a powerful tool for in vivo structural and functional imaging in deep tissue. However, the lack of biocompatible contrast agents with bright NIR-II emission has hindered its application in fundamental research and clinical trials. Herein, a liposome encapsulation strategy for generating ultrabright liposome-cyanine dyes by restricting dyes in the hydrophobic pockets of lipids and inhibiting the aggregation, as corroborated by computational modeling, is reported. Compared with free indocyanine green (ICG, an US Food and Drug Administration-approved cyanine dye), liposome-encapsulated ICG (S-Lipo-ICG) shows a 38.7-fold increase in NIR-II brightness and enables cerebrovascular imaging at only one-tenth dose over a long period (30 min). By adjusting the excitation wavelength, two liposome-encapsulated cyanine dyes (S-Lipo-ICG and S-Lipo-FD1080) enable NIR-II dual-color imaging. Moreover, small tumor nodules (2-5 mm) can be successfully distinguished and removed with S-Lipo-ICG image-guided tumor surgery in rabbit models. This liposome encapsulation maintains the metabolic pathway of ICG, promising for clinical implementation.
Collapse
Affiliation(s)
- Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zichao Luo
- Department of Chemistry and Center for NanoMedicine, National University of Singapore, Singapore, 117543, Singapore
| | - Yang He
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| | - Lixiang Yang
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaogang Liu
- Department of Chemistry and Center for NanoMedicine, National University of Singapore, Singapore, 117543, Singapore
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
29
|
Li L, Ma X, Peng Y, Yin J, Guissi NEI, Wang Y. Bright Asymmetric Shielding Strategy-Based NIR-II Probes for Angiography and Localized Photothermal Therapy. ACS APPLIED BIO MATERIALS 2023; 6:1639-1649. [PMID: 36971702 DOI: 10.1021/acsabm.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fluorescent probes with fluorescence emission in the NIR-II window have been widely studied due to increased imaging depth. However, the currently reported NIR-II fluorescent probes present some disadvantages, such as complicated synthesis routes and low fluorescence quantum yields (QYs). The shielding strategy has been used in the development of NIR-II probes to improve their QYs. So far, this strategy has only been used for the symmetric NIR-II probes, especially those based on the benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (BBTD) skeleton. This work reports the synthesis of a series of asymmetric NIR-II probes based on shielding strategies accompanied by simple synthetic routes, high synthetic yields (above 90%), high QYs, and large Stoke shifts. Furthermore, the use of d-α-tocopheryl polyethylene glycol succinate (TPGS) as a surfactant for an NIR-II fluorescence probe (NT-4) improved its water solubility. In vivo studies showed that TPGS-NT-4 NPs with a high QY (3.46%) achieve high-resolution angiography and efficient local photothermal therapy, while displaying good biocompatibility. Hence, we combined angiography and local photothermal therapy to improve the tumor uptake of nanophotothermal agents while reducing their damage to normal tissues.
Collapse
|
30
|
Mordini D, Mavridi-Printezi A, Menichetti A, Cantelli A, Li X, Montalti M. Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040648. [PMID: 36839016 PMCID: PMC9960743 DOI: 10.3390/nano13040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure.
Collapse
|
31
|
Yang S, Li N, Xiao H, Wu GL, Liu F, Qi P, Tang L, Tan X, Yang Q. Clearance pathways of near-infrared-II contrast agents. Am J Cancer Res 2022; 12:7853-7883. [PMID: 36451852 PMCID: PMC9706589 DOI: 10.7150/thno.79209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/23/2022] [Indexed: 12/02/2022] Open
Abstract
Near-infrared-II (NIR-II) bioimaging gradually becomes a vital visualization modality in the real-time investigation for fundamental biological research and clinical applications. The favorable NIR-II contrast agents are vital in NIR-II imaging technology for clinical translation, which demands good optical properties and biocompatibility. Nevertheless, most NIR-II contrast agents cannot be applied to clinical translation due to the acute or chronic toxicity caused by organ retention in vivo imaging. Therefore, it is critical to understand the pharmacokinetic properties and optimize the clearance pathways of NIR-II contrast agents in vivo to minimize toxicity by decreasing organ retention. In this review, the clearance mechanisms of biomaterials, including renal clearance, hepatobiliary clearance, and mononuclear phagocytic system (MPS) clearance, are synthetically discussed. The clearance pathways of NIR-II contrast agents (classified as inorganic, organic, and other complex materials) are highlighted. Successively analyzing each contrast agent barrier, this review guides further development of the clearable and biocompatible NIR-II contrast agents.
Collapse
Affiliation(s)
- Sha Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,Tumor Pathology Research group & Department of Pathology, Institute of Basic Disease Sciences & Department of Pathology, Xiangnan University, Chenzhou, Hunan 423099, China
| | - Na Li
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hao Xiao
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gui-long Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pan Qi
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Tang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China.,✉ Corresponding authors: E-mail: ; ;
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,✉ Corresponding authors: E-mail: ; ;
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,✉ Corresponding authors: E-mail: ; ;
| |
Collapse
|
32
|
Wu Y, Suo Y, Wang Z, Yu Y, Duan S, Liu H, Qi B, Jian C, Hu X, Zhang D, Yu A, Cheng Z. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front Bioeng Biotechnol 2022; 10:1042546. [PMID: 36329697 PMCID: PMC9623121 DOI: 10.3389/fbioe.2022.1042546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
In microsurgery, it is always difficult to accurately identify the blood supply with ease, such as vascular anastomosis, digit replantation, skin avulsion reconstruction and flap transplantation. Near-infrared window I (NIR-I, 700—900 nm) imaging has many clinical applications, whereas near-infrared window II (NIR-II, 1,000–1700 nm) imaging has emerged as a highly promising novel optical imaging modality and used in a few clinical fields recently, especially its penetration distance and noninvasive characteristics coincide with the needs of microsurgery. Therefore, a portable NIR-II imaging instrument and the Food and Drug Administration (FDA) approved indocyanine green (ICG) were used to improve the operation efficiency in microsurgery of 39 patients in this study. The anastomotic vessels and the salvaged distal limbs were clearly visualized after intravenous injection of ICG. The technique enabled identification of perforator vessels and estimation of perforator areas prior to the flap obtention and made it easier to monitor the prognosis. Overall, this study highlights the use of the portable NIR- II imaging with ICG as an operative evaluation tool can enhance the safety and accuracy of microsurgery.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongkuan Suo
- Joint Laboratory for Molecular Medicine, Institute of Molecular Medicine, Northeastern University, Shenyang, Liaoning, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Duan
- Joint Laboratory for Molecular Medicine, Institute of Molecular Medicine, Northeastern University, Shenyang, Liaoning, China
| | - Hongguang Liu
- Joint Laboratory for Molecular Medicine, Institute of Molecular Medicine, Northeastern University, Shenyang, Liaoning, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Jian
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Aixi Yu, ; Zhen Cheng,
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
- *Correspondence: Aixi Yu, ; Zhen Cheng,
| |
Collapse
|
33
|
Roosa CA, Ma M, Chhabra P, Brayman K, Griffin D. Delivery of Dissociated Islets Cells within Microporous Annealed Particle Scaffold to Treat Type 1 Diabetes. ADVANCED THERAPEUTICS 2022; 5:2200064. [PMID: 36405778 PMCID: PMC9674036 DOI: 10.1002/adtp.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 09/03/2023]
Abstract
Type 1 diabetes (T1D) is caused by the autoimmune loss of insulin-producing beta cells in the pancreas. The only clinical approach to patient management of blood glucose that doesn't require exogenous insulin is pancreas or islet transplantation. Unfortunately, donor islets are scarce and there is substantial islet loss immediately after transplantation due, in part, to the local inflammatory response. The delivery of stem cell-derived beta cells (e.g., from induced pluripotent stem cells) and dissociated islet cells hold promise as a treatment for T1D; however, these cells typically require re-aggregation in vitro prior to implantation. Microporous scaffolds have shown high potential to serve as a vehicle for organization, survival, and function of insulin-producing cells. In this study, we investigated the use of microporous annealed particle (MAP) scaffold for delivery of enzymatically dissociated islet cells, a model beta cell source, within the scaffold's interconnected pores. We found that MAP-based cell delivery enables survival and function of dissociated islets cells both in vitro and in an in vivo mouse model of T1D.
Collapse
Affiliation(s)
- Colleen A Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Mingyang Ma
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Kenneth Brayman
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
- Department of Chemical Engineering, University of Virginia, 351 McCormick Rd, Charlottesville, Virginia 22904, USA
| |
Collapse
|
34
|
Deng H, Li Xu, Ju J, Mo X, Ge G, Zhu X. Multifunctional nanoprobes for macrophage imaging. Biomaterials 2022; 290:121824. [PMID: 36209580 DOI: 10.1016/j.biomaterials.2022.121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
35
|
Qiu Q, Chang T, Wu Y, Qu C, Chen H, Cheng Z. Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor-acceptor NIR-II dyes. Biosens Bioelectron 2022; 212:114371. [DOI: 10.1016/j.bios.2022.114371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022]
|
36
|
Wu M, Li X, Mu X, Zhang X, Wang H, Zhang XD. Multimodal molecular imaging in the second near-infrared window. Nanomedicine (Lond) 2022; 17:1585-1606. [PMID: 36476011 DOI: 10.2217/nnm-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.
Collapse
Affiliation(s)
- Menglin Wu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
37
|
Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Swamy MMM, Tsuboi S, Murai Y, Monde K, Jin T. Shortwave-infrared (SWIR) emitting annexin V for high-contrast fluorescence molecular imaging of tumor apoptosis in living mice. RSC Adv 2022; 12:19632-19639. [PMID: 35865555 PMCID: PMC9257772 DOI: 10.1039/d2ra03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, shortwave infrared (SWIR) fluorescence imaging over 1000 nm has attracted much attention for in vivo optical imaging because of the higher signal to background ratios in the SWIR region. For the application of SWIR fluorescence imaging to biomedical fields, the development of SWIR fluorescent molecular probes with high biocompatibility is crucial. Although many researchers have designed a variety of SWIR emitting probes based on organic dyes, the synthesis of biocompatible SWIR fluorescent molecular imaging probes is still challenging. In this work we synthesized indocyanine green (ICG) and π-conjugation extended ICG (ICG-C11) labelled annexin V as SWIR fluorescent probes for tumor apoptosis. Annexin V is an endogenous protein with binding ability to phosphatidylserine (PS) which appears on the outer monolayer of apoptotic cell membranes. Although there are many types of visible and NIR fluorescent annexin V, there are no SWIR emitting fluorescent probes that can be used for high contrast fluorescence imaging of apoptosis in vivo. Herein, we report the synthesis and application of ICG and ICG-C11 conjugated annexin V for SWIR fluorescence imaging of tumor apoptosis. The presented fluorescent annexin V is the first SWIR emitting probe for in vivo optical imaging of tumor apoptosis. We demonstrate that SWIR emitting ICG- and ICG-C11 conjugated annexin V enable high-contrast fluorescence imaging of tumor apoptosis in living mice. We further demonstrate that ICG-C11-annexin V can be used for long-term (ca. two weeks) SWIR fluorescence imaging of tumor apoptosis. The SWIR fluorescent annexin V will greatly contribute not only to the study of tumor-apoptosis induced by anti-cancer drugs, but also to the study of apoptosis-related diseases in a living system.
Collapse
Affiliation(s)
- Mahadeva M M Swamy
- Center for Biosystems Dynamics Research, RIKEN Furuedai 6-2-3 Suita Osaka 565-0874 Japan
- Graduate School of Life Science, Hokkaido University Kita 21 Nishi 11 Sapporo Hokkaido 001-0021 Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN Furuedai 6-2-3 Suita Osaka 565-0874 Japan
| | - Yuta Murai
- Center for Biosystems Dynamics Research, RIKEN Furuedai 6-2-3 Suita Osaka 565-0874 Japan
- Graduate School of Life Science, Hokkaido University Kita 21 Nishi 11 Sapporo Hokkaido 001-0021 Japan
| | - Kenji Monde
- Center for Biosystems Dynamics Research, RIKEN Furuedai 6-2-3 Suita Osaka 565-0874 Japan
- Graduate School of Life Science, Hokkaido University Kita 21 Nishi 11 Sapporo Hokkaido 001-0021 Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN Furuedai 6-2-3 Suita Osaka 565-0874 Japan
| |
Collapse
|
39
|
Zhang W, Chen S, Sun P, Ye S, Fan Q, Song J, Zeng P, Qu J, Wong W. NIR-II J-Aggregated Pt(II)-Porphyrin-Based Phosphorescent Probe for Tumor-Hypoxia Imaging. Adv Healthc Mater 2022; 11:e2200467. [PMID: 35585025 DOI: 10.1002/adhm.202200467] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The luminescence of traditional phosphorescence-based hypoxia probes is limited to the visible and first near-infrared wavelength regions (<1000 nm), which has defects of higher light scattering and lower penetration depth in contrast with the second near-infrared wavelength window (NIR-II, 1000-1700 nm) for optical bioimaging. Herein, 5,15-bis(2,6-bis(dodecyloxy)phenyl)-porphyrin platinum(II) (PpyPt) with J-aggregation induced NIR-II phosphorescence is reported. J-aggregates of PpyPt are confirmed by the X-ray diffraction data in the crystalline state. Moreover, the emission and excitation spectra of PpyPt in the solid states reveal NIR-II luminescence feature of PpyPt in J-aggregates. More importantly, by preparation of water-soluble PpyPt nanoparticles (PpyPt NPs4.76 ) with J-aggregates, it has NIR-II phosphorescent lifetime of microseconds and good oxygen-sensitivity in water. Moreover, the good biological hypoxia-sensing potential of PpyPt NPs4.76 is demonstrated in cells and 4T1-tumor-bearing mice. This study provides an efficient strategy to design NIR-II phosphorescent probe for sensitive tumor-hypoxia detection through the construction of J-aggregates.
Collapse
Affiliation(s)
- Wansu Zhang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Kowloon Hong Kong 999077 P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Shangyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM) Nanjing University of Posts Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM) Nanjing University of Posts Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Shuai Ye
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM) Nanjing University of Posts Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
| | - Pengju Zeng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) Moscow 115409 Russian Federation
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Kowloon Hong Kong 999077 P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
40
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022; 61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Small-molecule-based second near-infrared (NIR-II) activatable fluorescent probes can potentially provide a high target-to-background ratio and deep tissue penetration. However, most of the reported NIR-II activatable small-molecule probes exhibit poor versatility owing to the lack of a general and stable optically tunable group. In this study, we designed NIRII-HDs, a novel dye scaffold optimized for NIR-II probe development. In particular, dye NIRII-HD5 showed the best optical properties such as proper pKa value, excellent stability, and high NIR-II brightness, which can be beneficial for in vivo imaging with high contrast. To demonstrate the applicability of the NIRII-HD5 dye, we designed three target-activatable NIR-II probes for ROS, thiols, and enzymes. Using these novel probes, we not only realized reliable NIR-II imaging of different diseases in mouse models but also evaluated the redox potential of liver tissue during a liver injury in vivo with high fidelity.
Collapse
Affiliation(s)
- Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huijie Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
41
|
Feng X, Cao Y, Zhuang P, Cheng R, Zhang X, Liu H, Wang G, Sun SK. Rational synthesis of IR820-albumin complex for NIR-II fluorescence imaging-guided surgical treatment of tumors and gastrointestinal obstruction. RSC Adv 2022; 12:12136-12144. [PMID: 35481109 PMCID: PMC9023119 DOI: 10.1039/d2ra00449f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
IR820, an analog of FDA-approved indocyanine green, is a promising second near-infrared window (NIR-II) fluorescence probe with better NIR-II fluorescence stability and great clinical transformation potential. Moreover, its fluorescence can be further remarkably enhanced by the interaction with albumin. Therefore, it is significant to flexibly design IR820-albumin complex using endogenous or exogenetic albumin to meet the requirements of different biological applications. Herein, we show the rational synthesis of IR820-albumin complex for NIR-II fluorescence imaging-guided surgical treatment of tumors and gastrointestinal obstruction. We compared the NIR-II fluorescence imaging ability of IR820 pre-incubated with albumin or not to visualize tumors and the gastrointestinal tract in vivo and found that the formation of IR820-albumin was essential for the intense NIR-II fluorescence. For imaging-guided tumor treatment, after intravenous injection of free IR820, IR820-albumin complex can be formed in vivo due to the presence of plenty of albumin in the blood. For imaging-guided gastrointestinal obstruction removal, IR820-albumin complex should be synthesized in vitro before oral administration. NIR-II fluorescence imaging-guided surgeries were successfully realized in both tumor resection and gastrointestinal obstruction removal. Besides, toxicity assessments in vitro and in vivo confirmed the good biocompatibility of IR820. Our study provides a flexible paradigm for IR820-based NIR-II fluorescence imaging and surgical navigation towards different diseases.
Collapse
Affiliation(s)
- Xinyu Feng
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Yuan Cao
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Pengrui Zhuang
- Department of Radiology, The Second Hospital of Tianjin Medical University Tianjin 300211 China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer Tianjin 300060 China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| |
Collapse
|
42
|
Wang F, Qu L, Ren F, Baghdasaryan A, Jiang Y, Hsu R, Liang P, Li J, Zhu G, Ma Z, Dai H. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci U S A 2022; 119:e2123111119. [PMID: 35380898 PMCID: PMC9169804 DOI: 10.1073/pnas.2123111119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
In vivo fluorescence/luminescence imaging in the near-infrared-IIb (NIR-IIb, 1,500 to 1,700 nm) window under <1,000 nm excitation can afford subcentimeter imaging depth without any tissue autofluorescence, promising high-precision intraoperative navigation in the clinic. Here, we developed a compact imager for concurrent visible photographic and NIR-II (1,000 to 3,000 nm) fluorescence imaging for preclinical image-guided surgery. Biocompatible erbium-based rare-earth nanoparticles (ErNPs) with bright down-conversion luminescence in the NIR-IIb window were conjugated to TRC105 antibody for molecular imaging of CD105 angiogenesis markers in 4T1 murine breast tumors. Under a ∼940 ± 38 nm light-emitting diode (LED) excitation, NIR-IIb imaging of 1,500- to 1,700-nm emission afforded noninvasive tumor–to–normal tissue (T/NT) signal ratios of ∼40 before surgery and an ultrahigh intraoperative tumor-to-muscle (T/M) ratio of ∼300, resolving tumor margin unambiguously without interfering background signal from surrounding healthy tissues. High-resolution imaging resolved small numbers of residual cancer cells during surgery, allowing thorough and nonexcessive tumor removal at the few-cell level. NIR-IIb molecular imaging afforded 10-times-higher and 100-times-higher T/NT and T/M ratios, respectively, than imaging with IRDye800CW-TRC105 in the ∼900- to 1,300-nm range. The vastly improved resolution of tumor margin and diminished background open a paradigm of molecular imaging-guided surgery.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Liangqiong Qu
- School of Medicine, Stanford University, Stanford, CA 94303
| | - Fuqiang Ren
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Yingying Jiang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - RuSiou Hsu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Peng Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Jiachen Li
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Guanzhou Zhu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| |
Collapse
|
43
|
Zhao Y, Liu L, Liu S, Wang Y, Li Y, Zhang XD. Electronic and Near-Infrared-II Optical Properties of I-Doped Monolayer MoTe 2: A First-Principles Study. ACS OMEGA 2022; 7:11956-11963. [PMID: 35449971 PMCID: PMC9016853 DOI: 10.1021/acsomega.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging is widely used for in vivo biological imaging. With the unique electronic structures and capability of band-gap engineering, two-dimensional (2D) materials can be potential candidates for NIR-II imaging. Herein, a theoretical investigation of the electronic structure and optical properties of iodine (I)-doped monolayer MoTe2 systems with different doping concentrations is carried out through simulations to explore their NIR optical properties. The results suggest that the emergence of impurity levels due to I doping effectively reduces the bandwidth of I-doped monolayer MoTe2 systems, and the bandwidth decreases with the increase in the I doping concentration. Although the I and Mo atoms possess clear covalent-bonding features according to the charge density difference, impurity levels induced by the strong hybridization between the I 5p and Mo 4d orbitals cross the Fermi level, making the doped systems exhibit metallic behavior. In addition, with the increase in the I doping concentration, the energy required for electron transition from valence bands to impurity levels gradually decreases, which can be linked to the enhancement of the optical absorption in the red-shifted NIR-II region. Meanwhile, with a higher I doping concentration, the emission spectra, which are the product of the absorption spectra and quasi-Fermi distributions for electrons and holes, can be enhanced in the NIR-II window.
Collapse
Affiliation(s)
- Yue Zhao
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Liu
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Physics, Shanxi Medical University, Taiyuan 030001, China
| | - Shuangjie Liu
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yonghui Li
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, Institute of Advanced Materials
Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, Institute of Advanced Materials
Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
44
|
Gao S, Yu Y, Wang Z, Wu Y, Qiu X, Jian C, Yu A. NIR-II Fluorescence Imaging Using Indocyanine Green Provides Early Prediction of Skin Avulsion-Injury in a Porcine Model. Clin Cosmet Investig Dermatol 2022; 15:447-454. [PMID: 35308638 PMCID: PMC8923835 DOI: 10.2147/ccid.s357989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 12/03/2022]
Abstract
Purpose Currently, skin avulsion–injury reconstruction is mainly based on subjective evaluation of traditional clinical signs. It frequently results in unnecessary tissue loss and incomplete debridement-related infection. This pilot study aimed to develop a novel near-infrared (NIR) II fluorescence imaging method to assess avulsed skin–perfusion status and thus predict its outcome early. Methods Skin avulsion–injury models were established by avulsing 10×4 cm pedicled flaps on porcine hindlimbs. A clinically available improved NIR-Ι/II multispectral imaging system was applied for NIR imaging using indocyanine green (ICG) fluorescence. Continuous NIR-wavelength filters and dynamic imaging were used to investigate optimal imaging conditions and time window. NIR-Ι/II imaging was synchronously conducted for quality comparison of the two methods. Visual inspection and histological studies were used for assessing the final outcome of avulsed skin. Results NIR-II fluorescence imaging with a 1,100 nm filter obtained satisfactory performance and reached maximum fluorescence intensity at 1 minute after ICG injection. NIR-II imaging clearly visualized the microvascular network in vascularized avulsed skin and revealed “dark areas” in nonvascularized avulsed skin in a real-time fashion. NIR-II fluorescence imaging demonstrated higher resolution than NIR-I imaging, as indicated by ae higher signal-to-background ratio (2.11) and lower full width at half maximum (6.50614). The dark area of avulsed skin on imaging finally developed to necroses that were confirmed by histology. Conclusion NIR-II real-time fluorescence imaging clearly maps the microvascular network and shows the perfusion status of avulsed skin at higher resolution than traditional NIR-I imaging, and thus precisely predicts the outcome of avulsed skin early.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Yifan Wu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Xingan Qiu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Chao Jian
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| |
Collapse
|
45
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
46
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR‐II Window. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing Mu
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Ming Xiao
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Yu Shi
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xuewen Geng
- Department of Biology University of Rochester Rochester NY 14627 USA
| | - Hui Li
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yuxin Yin
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
47
|
Mala R, Divya D, Vijayan P, Narayanasamy M, Thennarasu S. Two Imidazo[1,2‐a]pyridine Congeners Show Aggregation‐Induced Emission (AIE): Exploring AIE Potential for Sensor and Imaging Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202103408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramanjaneyulu Mala
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Dhakshinamurthy Divya
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Priyadharshni Vijayan
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Mathivanan Narayanasamy
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Sathiah Thennarasu
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| |
Collapse
|
48
|
Yang M, Zeng Z, Lam JWY, Fan J, Pu K, Tang BZ. State-of-the-art self-luminescence: a win–win situation. Chem Soc Rev 2022; 51:8815-8831. [DOI: 10.1039/d2cs00228k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The working principles, luminescent mechanisms, versatile integrated approaches and advantages, and future perspectives of AIE-assisted “enhanced” self-luminescence systems are reviewed.
Collapse
Affiliation(s)
- Mingwang Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
49
|
Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022; 6:91-102. [PMID: 34976583 PMCID: PMC8671960 DOI: 10.7150/ntno.63124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomedical luminescence imaging in the near-infrared (NIR, 700-1700 nm) region has shown great potential in visualizing biological processes and pathological conditions at cellular and animal levels, owing to the reduced tissue absorption and scattering compared to light in the visible (400-700 nm) region. To overcome the background interference and signal attenuation during intensity-based luminescence imaging, lifetime imaging has demonstrated a reliable imaging modality complementary to intensity measurement. Several selective or environment-responsive probes have been successfully developed for luminescence lifetime imaging and multiplex detection. This review summarizes recent advances in the application of luminescence lifetime imaging at cellular and animal levels in NIR-I and NIR-II regions. Finally, the challenges and further directions of luminescence lifetime imaging are also discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
50
|
Hsu KF, Su SP, Lu HF, Liu MH, Chang YJ, Lee YJ, Chiang HK, Hsu CP, Lu CW, Chan YH. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging. Chem Sci 2022; 13:10074-10081. [PMID: 36128252 PMCID: PMC9430315 DOI: 10.1039/d2sc03271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Intraoperative fluorescence imaging in the second near-infrared (NIR-II) region heralds a new era in image-guided surgery since the success in the first-in-human liver-tumor surgery guided by NIR-II fluorescence. Limited by the conventional small organic NIR dyes such as FDA-approved indocyanine green with suboptimal NIR-II fluorescence and non-targeting ability, the resulting shallow penetration depth and high false positive diagnostic values have been challenging. Described here is the design of NIR-II emissive semiconducting polymer dots (Pdots) incorporated with thermally activated delayed fluorescence (TADF) moieties to exhibit emission maxima of 1064–1100 nm and fluorescence quantum yields of 0.40–1.58% in aqueous solutions. To further understand how the TADF units affect the molecular packing and the resulting optical properties of Pdots, in-depth and thorough density-functional theory calculations were carried out to better understand the underlying mechanisms. We then applied these Pdots for in vivo 3D bone imaging in mice. This work provides a direction for future designs of NIR-II Pdots and holds promising applications for bone-related diseases. A series of NIR-II fluorescent TADF-incorporated polymer dots were successfully synthesized. The function of the TADF moiety was fully studied and the bio-applications of these polymer dots including bone imaging were also demonstrated.![]()
Collapse
Affiliation(s)
- Keng-Fang Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
| | - Shih-Po Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Huihua Kenny Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan 80708
| |
Collapse
|