1
|
Ma J, Zhu R, Li M, Jiao H, Fan S, Ma X, Xiang G. Proteolysis-targeting chimera-doxorubicin conjugate nanoassemblies for dual treatment of EGFR-TKI sensitive and resistant non-small cell lung cancer. Acta Biomater 2025; 195:421-435. [PMID: 39922514 DOI: 10.1016/j.actbio.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/12/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. However, traditional PROTACs face inherent limitations and may also contribute to induce drug resistance. These challenges have driven the development of innovative strategies to overcome these obstacles. In current study, a PROTAC-DOX conjugates (PDCs) nanoassembly strategy was introduced to enhance tumor-targeting capability and overcome the drawbacks of conventional PROTACs. The designed PDC-S nanoparticles (PDC-S NPs) demonstrated potent anti-tumor activity against drug-resistant strains (IC50 = 4.7 µM) and improved in vivo efficacy (TGI = 76 %) against drug-sensitive strains, while minimizing side effects. Additionally, PDC-S NPs have great potential in tumor immunotherapy. This study provides a novel and promising strategy for the development of PROTAC-Drug Conjugates (PDCs). STATEMENT OF SIGNIFICANCE: We developed a PROTAC-DOX conjugates (PDCs) nanoassembly strategy to address the limitations of traditional PROTACs, such as poor solubility, low targeting specificity, and drug resistance. PDC-S NPs were constructed via self-assembly, which simplified preparation and minimized the toxicity typically associated with carrier-assisted delivery systems. The PDC-S NPs showed improved aqueous solubility and cellular uptake, resulting in efficient EGFR degradation in HCC827 cells. In vivo, PDC-S NPs accumulated at tumor sites via the EPR effect, resulting in enhanced anti-tumor potency with reduced side effects. Furthermore, PDC-S NPs induced immunogenic cell death (ICD) and suppressed PD-L1 and VEGF expression, highlighting great potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Junhui Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ruixue Zhu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meijing Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Jiao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Sijun Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China; The Higher Education Edible and Medicinal Fungi Engineering Research Center of Guizhou Province, Tongren, Guizhou 554300, China.
| |
Collapse
|
2
|
Amparo TR, Almeida TC, Sousa LRD, Xavier VF, da Silva GN, Brandão GC, dos Santos ODH. Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities. Pharmaceutics 2025; 17:205. [PMID: 40006574 PMCID: PMC11859672 DOI: 10.3390/pharmaceutics17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500–Butantã, São Paulo 05503-900, Brazil;
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Glenda Nicioli da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| |
Collapse
|
3
|
Zhao M, Zhou Q, Ge Z. Supramolecular Assemblies via Host-Guest Interactions for Tumor Immunotherapy. Chemistry 2025; 31:e202403508. [PMID: 39448542 DOI: 10.1002/chem.202403508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapy has emerged as one of the most promising modalities for cancer treatment providing hopes of cancer patients with the significant advantages over traditional antitumor therapy methods. Supramolecular assemblies based on host-guest interactions have been widely explored in the field of cancer immunotherapy as the delivery systems. A variety of supramolecular materials show unique features for efficient drug encapsulation, targeting delivery and release, which are favorable to activate antitumor immune responses especially through combination of different treatment strategies. In this review article, we summarize the research progresses of supramolecular assemblies via host-guest interactions for tumor immunotherapy. The construction of various drug delivery systems including hydrogels, liposomes, and polymeric nanoparticles, the drug encapsulation and delivery, as well as advantages and disadvantages are discussed. The perspectives related to future developments in this field are also described.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
4
|
Tang Y, Li Q, Zhou Z, Bai H, Xiao N, Xie J, Li C. Nitric oxide-based multi-synergistic nanomedicine: an emerging therapeutic for anticancer. J Nanobiotechnology 2024; 22:674. [PMID: 39497134 PMCID: PMC11536969 DOI: 10.1186/s12951-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Gas therapy has emerged as a promising approach for treating cancer, with gases like NO, H2S, and CO showing positive effects. Among these, NO is considered a key gas molecule with significant potential in stopping cancer progression. However, due to its high reactivity and short half-life, delivering NO directly to tumors is crucial for enhancing cancer treatment. NO-driven nanomedicines (NONs) have been developed to effectively deliver NO donors to tumors, showing great progress in recent years. This review provides an overview of the latest advancements in NO-based cancer nanotherapeutics. It discusses the types of NO donors used in current research, the mechanisms of action behind NO therapy for cancer, and the different delivery systems for NO donors in nanotherapeutics. It also explores the potential of combining NO donors with other treatments for enhanced cancer therapy. Finally, it examines the future prospects and challenges of using NONs in clinical settings for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qiyu Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Huayang Bai
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Jin SM, Cho JH, Gwak Y, Park SH, Choi K, Choi J, Shin HS, Hong J, Bae Y, Ju J, Shin M, Lim YT. Transformable Gel-to-Nanovaccine Enhances Cancer Immunotherapy via Metronomic-Like Immunomodulation and Collagen-Mediated Paracortex Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409914. [PMID: 39380383 PMCID: PMC11602686 DOI: 10.1002/adma.202409914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Indexed: 10/10/2024]
Abstract
The generation of non-exhausted effector T-cells depends on vaccine's spatiotemporal profile, and untimely delivery and low targeting to lymph node (LN) paracortex by standard bolus immunization show limited efficacy. By recapitulating the dynamic processes of acute infection, a bioadhesive immune niche domain (BIND) is developed that facilitates the delivery of timely-activating conjugated nanovaccine (t-CNV) in a metronomic-like manner and increased the accumulation and retention of TANNylated t-CNV (tannic acid coated t-CNV) in LN by specifically binding to collagen in subcapsular sinus where they gradually transformed into TANNylated antigen-adjuvant conjugate by proteolysis, inducing their penetration into paracortex through the collagen-binding in LN conduit and evoking durable antigen-specific CD8+ T-cell responses. The BIND combined with t-CNV, mRNA vaccine, IL-2, and anti-PD-1 antibody also significantly enhanced cancer immunotherapy by the dynamic modulation of immunological landscape of tumor microenvironment. The results provide material design strategy for dynamic immunomodulation that can potentiate non-exhausted T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Ju Hee Cho
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yejin Gwak
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Kyungmin Choi
- Progeneer12 Digital‐ro 31‐gil, Guro‐guSeoul08380Republic of Korea
| | - Jin‐Ho Choi
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - JungHyub Hong
- Department of Biological SciencesScience Research Center (SRC) for Immune Research on Non‐lymphoid Organ (CIRNO)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yong‐Soo Bae
- Department of Biological SciencesScience Research Center (SRC) for Immune Research on Non‐lymphoid Organ (CIRNO)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Jaewon Ju
- Department of Biomedical EngineeringCenter for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Mikyung Shin
- Department of Biomedical EngineeringCenter for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| |
Collapse
|
6
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
7
|
Yang Z, Chen L, Guo T, Huang L, Yang Y, Ye R, Zhang Y, Lin X, Fan Y, Gong C, Yang N, Guan W, Liang D, Ouyang W, Yang W, Zhao X, Zhang J. Cationic liposomes overcome neutralizing antibodies and enhance reovirus efficacy in ovarian cancer. Virology 2024; 598:110196. [PMID: 39098183 DOI: 10.1016/j.virol.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Reovirus (Reo) has shown promising potential in specifically killing tumor cells, and offering new possibilities for ovarian cancer (OC) treatment. However, neutralizing antibodies in the ascites from OC patients greatly limit the further application of Reo. In this study, we employed cationic liposomes (Lipo) to deliver Reo, significantly enhancing its ability to enter OC cells and its effectiveness in killing these cells under ascitic conditions. Pre-treatment with the MβCD inhibitor notably decreased Reo-mediated tumor cell death, indicating that Lipo primarily enables Reo's cellular uptake through caveolin-mediated endocytosis. Our results demonstrate that Lipo effectively facilitates the entry of Reo into the cytoplasm and triggers cell apoptosis. The above findings provide a new strategy to overcome the obstacle of neutralizing antibodies in the clinical application of Reo.
Collapse
Affiliation(s)
- Zhiru Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Liang Chen
- Department of Thoracic and Breast Surgery, Anshun People's Hospital, Anshun, Guizhou, China
| | - Ting Guo
- Department of Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Huang
- Department of Thoracic and Breast Surgery, Anshun People's Hospital, Anshun, Guizhou, China
| | - Yuxin Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Ye
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chulan Gong
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weili Guan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Liang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, The Affiliated Hospital/The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Department of Oncology, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China; Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jing Zhang
- Department of Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Li F, Yan J, Wei C, Zhao Y, Tang X, Xu L, He B, Sun Y, Chang J, Liang Y. "Cicada Out of the Shell" Deep Penetration and Blockage of the HSP90 Pathway by ROS-Responsive Supramolecular Gels to Augment Trimodal Synergistic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401214. [PMID: 38647420 PMCID: PMC11220648 DOI: 10.1002/advs.202401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Deep penetration and downregulation of heat shock protein (HSP) expression in multimodal synergistic therapy are promising approaches for curing cancer in clinical trials. However, free small-molecule drugs and most drug vehicles have a low delivery efficiency deep into the tumor owing to poor drug penetration and hypoxic conditions at the tumor site. In this study, the objective is to use reactive oxygen species (ROS)-responsive supramolecular gels co-loaded with the photosensitizer Zn(II) phthalocyanine tetrasulfonic acid (ZnPCS4) and functionalized tetrahedral DNA (TGSAs) (G@P/TGSAs) to enhance deep tissue and cell penetration and block the HSP90 pathway for chemo- photodynamic therapy (PDT) - photothermal therapy (PTT) trimodal synergistic therapy. The (G@P/TGSAs) are injected in situ into the tumor to release ZnPCS4 and TGSAs under high ROS concentrations originating from both the tumor and PDT. TGSAs penetrate deeply into tumor tissues and augment photothermal therapy by inhibiting the HSP90 pathway. Proteomics show that HSP-related proteins and molecular chaperones are inhibited/activated, inhibiting the HSP90 pathway. Simultaneously, the TGSA-regulated apoptotic pathway is activated. In vivo study demonstrates efficient tumor penetration and excellent trimodal synergistic therapy (45% tumor growth inhibition).
Collapse
Affiliation(s)
- Fashun Li
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| | - Jianqin Yan
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| | - Chen Wei
- Department of PharmacyQingdao Women and Children's HospitalQingdao266034China
| | - Yi Zhao
- Department of Recuperation MedicineQingdao Special Service Sanatorium of PLA NavyQingdao266071China
| | - Xiaowen Tang
- Department of Medicinal ChemistrySchool of PharmacyQingdao UniversityQingdao266073China
| | - Long Xu
- School of Materials Science and Chemical EngineeringNingbo UniversityNingbo315211China
| | - Bin He
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| | - Jing Chang
- College of Marine Life ScienceOcean University of ChinaQingdao266003China
| | - Yan Liang
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266073China
| |
Collapse
|
9
|
Ji W, Zhang Y, Shao W, Kankala RK, Chen A. β-Cyclodextrin-based nanoassemblies for the treatment of atherosclerosis. Regen Biomater 2024; 11:rbae071. [PMID: 38966400 PMCID: PMC11223813 DOI: 10.1093/rb/rbae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
Atherosclerosis, a chronic and progressive condition characterized by the accumulation of inflammatory cells and lipids within artery walls, remains a leading cause of cardiovascular diseases globally. Despite considerable advancements in drug therapeutic strategies aimed at managing atherosclerosis, more effective treatment options for atherosclerosis are still warranted. In this pursuit, the emergence of β-cyclodextrin (β-CD) as a promising therapeutic agent offers a novel therapeutic approach to drug delivery targeting atherosclerosis. The hydrophobic cavity of β-CD facilitates its role as a carrier, enabling the encapsulation and delivery of various therapeutic compounds to affected sites within the vasculature. Notably, β-CD-based nanoassemblies possess the ability to reduce cholesterol levels, mitigate inflammation, solubilize hydrophobic drugs and deliver drugs to affected tissues, making these nanocomponents promising candidates for atherosclerosis management. This review focuses on three major classes of β-CD-based nanoassemblies, including β-CD derivatives-based, β-CD/polymer conjugates-based and polymer β-CD-based nanoassemblies, highlighting a variety of formulations and assembly methods to improve drug delivery and therapeutic efficacy. These β-CD-based nanoassemblies exhibit a variety of therapeutic mechanisms for atherosclerosis and offer systematic strategies for overcoming barriers to drug delivery. Finally, we discuss the present obstacles and potential opportunities in the development and application of β-CD-based nanoassemblies as novel therapeutics for managing atherosclerosis and addressing cardiovascular diseases.
Collapse
Affiliation(s)
- Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yuanxing Zhang
- The Institute of Forensic Science, Xiamen Public Security Bureau, Xiamen, Fujian 361104, PR China
| | - Weichen Shao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
10
|
Zhao L, Zheng R, Rao X, Huang C, Zhou H, Yu X, Jiang X, Li S. Chemotherapy-Enabled Colorectal Cancer Immunotherapy of Self-Delivery Nano-PROTACs by Inhibiting Tumor Glycolysis and Avoiding Adaptive Immune Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309204. [PMID: 38239040 PMCID: PMC11022706 DOI: 10.1002/advs.202309204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Indexed: 04/18/2024]
Abstract
The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo-regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD-L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo-regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self-delivery nano-PROTACs may provide a new insight for chemotherapy-enabled tumor immunotherapy.
Collapse
Affiliation(s)
- Lin‐Ping Zhao
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou510700P. R. China
| | - Rong‐Rong Zheng
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Xiao‐Na Rao
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Chu‐Yu Huang
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Hang‐Yu Zhou
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou510700P. R. China
| | - Xi‐Yong Yu
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Xue‐Yan Jiang
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Shi‐Ying Li
- The Fifth Affiliated HospitalGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory Diseasethe School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
- Department of Pulmonary and Critical Care MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280P. R. China
| |
Collapse
|
11
|
Nah Y, Sobha S, Saravanakumar G, Kang BY, Yoon JB, Kim WJ. Nitric oxide-scavenging hyaluronic acid nanoparticles for osteoarthritis treatment. Biomater Sci 2024; 12:1477-1489. [PMID: 38294258 DOI: 10.1039/d3bm01918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Osteoarthritis (OA) is a degenerative arthritis disease marked by inflammation, pain, and cartilage deterioration. Elevated nitric oxide (NO) levels play a pivotal role in mediating OA-related inflammation and are found in abundance within OA joints. This study introduces a NO-scavenging hyaluronic acid conjugate (HA-NSc) bearing both lubrication and anti-inflammatory properties for the treatment of osteoarthritis. For this, a derivative of o-phenylenediamine (o-PD) with good NO-scavenging capability (NSc) is designed, synthesized and chemically conjugated to HA. Owing to the amphiphilicity, this as-synthesized HA-NSc conjugate formed self-assembled nanoparticles (HA-NSc NPs) under aqueous conditions. When treated with activated murine macrophage RAW 264.7 cells that produce high levels of NO, these nanoparticles effectively reduced intracellular NO concentrations and inflammatory cytokines. In an OA animal model, the HA-NSc NPs significantly alleviated pain and diminished the cartilage damage due to the combined lubricating property of HA and NO-scavenging ability of NSc. Overall, the results from the study suggest HA-NSc NPs as a dual-action therapeutic agent for the treatment of OA by alleviating pain, inflammation, and joint damage, and also positioning the HA-NSc NPs as a promising candidate for innovative treatment of OA.
Collapse
Affiliation(s)
- Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | | | | | | | | | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
- OmniaMed Co., Ltd, Pohang 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
12
|
Wang J, Sang Y, Chen W, Cheng L, Du W, Zhang H, Zheng B, Song L, Hu Y, Ma X. Glutathione Depletion-Induced ROS/NO Generation for Cascade Breast Cancer Therapy and Enhanced Anti-Tumor Immune Response. Int J Nanomedicine 2024; 19:2301-2315. [PMID: 38469056 PMCID: PMC10926878 DOI: 10.2147/ijn.s440709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction As an effective alternative choice to traditional mono-therapy, multifunctional nanoplatforms hold great promise for cancer therapy. Based on the strategies of Fenton-like reactions and reactive oxygen species (ROS)-mediated therapy, black phosphorus (BP) nanoplatform BP@Cu2O@L-Arg (BCL) co-assembly of cuprous oxide (Cu2O) and L-Arginine (L-Arg) nanoparticles was developed and evaluated for synergistic cascade breast cancer therapy. Methods Cu2O particles were generated in situ on the surface of the BP nanosheets, followed by L-Arg incorporation through electrostatic interactions. In vitro ROS/nitric oxide (NO) generation and glutathione (GSH) depletion were evaluated. In vitro and in vivo anti-cancer activity were also assessed. Finally, immune response of BCL under ultrasound was investigated. Results Cu2O was incorporated into BP to exhaust the overexpressed intracellular GSH in cancer cells via the Fenton reaction, thereby decreasing ROS consumption. Apart from being used as biocompatible carriers, BP nanoparticles served as sonosensitizers to produce excessive ROS under ultrasound irradiation. The enhanced ROS accumulation accelerated the oxidation of L-Arg, which further promoted NO generation for gas therapy. In vitro experiments revealed the outstanding therapeutic killing effects of BCL under ultrasound via mechanisms involving GSH deletion and excessive ROS and NO generation. In vivo studies have illustrated that the nanocomplex modified the immune response by promoting macrophage and CD8+ cell infiltration and inhibiting MDSC infiltration. Discussion BCL nanoparticles exhibited multifunctional characteristics for GSH depletion-induced ROS/NO generation, making a new multitherapy strategy for cascade breast cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Yanxiang Sang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Weijian Chen
- Technology Center, China Tobacco Anhui Industrial Co, Ltd, Hefei, Anhui, 230088, People’s Republic of China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Benyan Zheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230006, People’s Republic of China
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
13
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
14
|
Wei X, Yu CY, Wei H. Application of Cyclodextrin for Cancer Immunotherapy. Molecules 2023; 28:5610. [PMID: 37513483 PMCID: PMC10384645 DOI: 10.3390/molecules28145610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor immunotherapy, compared with other treatment strategies, has the notable advantage of a long-term therapeutic effect for preventing metastasis and the recurrence of tumors, thus holding great potential for the future of advanced tumor therapy. However, due to the poor water solubility of immune modulators and immune escape properties of tumor cells, the treatment efficiency of immunotherapy is usually significantly reduced. Cyclodextrin (CD) has been repeatedly highlighted to be probably one of the most investigated building units for cancer therapy due to its elegant integration of an internal hydrophobic hollow cavity and an external hydrophilic outer surface. The application of CD for immunotherapy provides new opportunities for overcoming the aforementioned obstacles. However, there are few published reviews, to our knowledge, summarizing the use of CD for cancer immunotherapy. For this purpose, this paper provides a comprehensive summary on the application of CD for immunotherapy with an emphasis on the role, function, and reported strategies of CD in mediating immunotherapy. This review summarizes the research progress made in using CD for tumor immunotherapy, which will facilitate the generation of various CD-based immunotherapeutic delivery systems with superior anticancer efficacy.
Collapse
Affiliation(s)
- Xiaojie Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
16
|
Shen S, Zhang Z, Huang H, Yang J, Tao X, Meng Z, Ren H, Li X. Copper-induced injectable hydrogel with nitric oxide for enhanced immunotherapy by amplifying immunogenic cell death and regulating cancer associated fibroblasts. Biomater Res 2023; 27:44. [PMID: 37165428 PMCID: PMC10170699 DOI: 10.1186/s40824-023-00389-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) induced by different cancer treatments has been widely evaluated to recruit immune cells and trigger the specific antitumor immunity. However, cancer associated fibroblasts (CAFs) can hinder the invasion of immune cells and polarize the recruited monocytes to M2-type macrophages, which greatly restrict the efficacy of immunotherapy (IT). METHODS In this study, an injectable hydrogel induced by copper (Cu) has been designed to contain antibody of PD-L1 and nitric oxide (NO) donor. The therapeutic efficacy of hydrogel was studied in 4T1 cells and CAFs in vitro and 4T1 tumor-bearing mice in vivo. The immune effects on cytotoxic T lymphocytes, dendritic cells (DCs) and macrophages were analyzed by flow cytometry. Enzyme-linked immunosorbent assay, immunofluorescence and transcriptome analyses were also performed to evaluate the underlying mechanism. RESULTS Due to the absorbance of Cu with the near-infrared laser irradiation, the injectable hydrogel exhibits persistent photothermal effect to kill cancer cells. In addition, the Cu of hydrogel shows the Fenton-like reaction to produce reactive oxygen species as chemodynamic therapy, thereby enhancing cancer treatment and amplifying ICD. More interestingly, we have found that the released NO can significantly increase depletion of CAFs and reduce the proportion of M2-type macrophages in vitro. Furthermore, due to the amplify of ICD, injectable hydrogel can effectively increase the infiltration of immune cells and reverse the immunosuppressive tumor microenvironment (TME) by regulating CAFs to enhance the therapeutic efficacy of anti-PD-L1 in vivo. CONCLUSIONS The ion induced self-assembled hydrogel with NO could enhance immunotherapy via amplifying ICD and regulating CAFs. It provides a novel strategy to provoke a robust antitumor immune response for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Shuilin Shen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zimeng Zhang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Haixiao Huang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xinyue Tao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zhengjie Meng
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
17
|
Lu S, Hao D, Xiang X, Pei Q, Xie Z. Carboxylated paclitaxel prodrug nanofibers for enhanced chemotherapy. J Control Release 2023; 355:528-537. [PMID: 36787820 DOI: 10.1016/j.jconrel.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The facile availability of nanoformulations with enhanced antitumor performance remains a big challenge. Herein, we synthesize paclitaxel prodrugs with amphiphilic structures and robust assembling ability. Carboxylated paclitaxel prodrugs (PSCB) containing disulfide bonds prefer to form exquisite nanofibers, while phenylcarbinol end capped paclitaxel prodrugs (PSP) assemble into spherical nanoparticles. The transformation of morphology from nanofibers to nanorods can be realized via tuning the content of paclitaxel. Hydrophilic domains of PSCB nanofibers accelerate the cleavage of disulfide bond for rapid drug release in tumor cells, thus exhibiting the enhanced cytotoxicity and antitumor activity. This study provides a crucial insight into the functional design of hydrophobic drugs to improve chemotherapy.
Collapse
Affiliation(s)
- Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
18
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
19
|
Zhang Y, Gabere M, Taylor MA, Simoes CC, Dumbauld C, Barro O, Tesfay MZ, Graham AL, Ferdous KU, Savenka AV, Chamcheu JC, Washam CL, Alkam D, Gies A, Byrum SD, Conti M, Post SR, Kelly T, Borad MJ, Cannon MJ, Basnakian A, Nagalo BM. Repurposing live attenuated trivalent MMR vaccine as cost-effective cancer immunotherapy. Front Oncol 2022; 12:1042250. [PMID: 36457491 PMCID: PMC9706410 DOI: 10.3389/fonc.2022.1042250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2024] Open
Abstract
It has long been known that oncolytic viruses wield their therapeutic capability by priming an inflammatory state within the tumor and activating the tumor immune microenvironment, resulting in a multifaceted antitumor immune response. Vaccine-derived viruses, such as measles and mumps, have demonstrated promising potential for treating human cancer in animal models and clinical trials. However, the extensive cost of manufacturing current oncolytic viral products makes them far out of reach for most patients. Here by analyzing the impact of intratumoral (IT) administrations of the trivalent live attenuated measles, mumps, and rubella viruses (MMR) vaccine, we unveil the cellular and molecular basis of MMR-induced anti-cancer activity. Strikingly, we found that IT delivery of low doses of MMR correlates with tumor control and improved survival in murine hepatocellular cancer and colorectal cancer models via increased tumor infiltration of CD8+ granzyme B+ T-cells and decreased macrophages. Moreover, our data indicate that MMR activates key cellular effectors of the host's innate and adaptive antitumor immunity, culminating in an immunologically coordinated cancer cell death. These findings warrant further work on the potential for MMR to be repurposed as safe and cost-effective cancer immunotherapy to impact cancer patients globally.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Musa Gabere
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mika A. Taylor
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chelsae Dumbauld
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Oumar Barro
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alicia L. Graham
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Khandoker Usran Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Charity L. Washam
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Duah Alkam
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Allen Gies
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Stephanie D. Byrum
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Matteo Conti
- Public Health Department, AUSL Imola, Imola, Italy
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Mitesh J. Borad
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Martin J. Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alexei Basnakian
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Bolni M. Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| |
Collapse
|
20
|
Li G, Ling M, Yu K, Yang W, Liu Q, He L, Cai X, Zhong M, Mai Z, Sun R, Xiao Y, Yu Z, Wang X. Synergetic delivery of artesunate and isosorbide 5-mononitrate with reduction-sensitive polymer nanoparticles for ovarian cancer chemotherapy. J Nanobiotechnology 2022; 20:471. [PMID: 36335352 PMCID: PMC9636721 DOI: 10.1186/s12951-022-01676-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Ovarian cancer is a highly fatal gynecologic malignancy worldwide. Chemotherapy remains the primary modality both for primary and maintenance treatments of ovarian cancer. However, the progress in developing chemotherapeutic agents for ovarian cancer has been slow in the past 20 years. Thus, new and effective chemotherapeutic drugs are urgently needed for ovarian cancer treatment. A reduction-responsive synergetic delivery strategy (PSSP@ART-ISMN) with co-delivery of artesunate and isosorbide 5-mononitrate was investigated in this research study. PSSP@ART-ISMN had various effects on tumor cells, such as (i) inducing the production of reactive oxygen species (ROS), which contributes to mitochondrial damage; (ii) providing nitric oxide and ROS for the tumor cells, which further react to generate highly toxic reactive nitrogen species (RNS) and cause DNA damage; and (iii) arresting cell cycle at the G0/G1 phase and inducing apoptosis. PSSP@ART-ISMN also demonstrated excellent antitumor activity with good biocompatibility in vivo. Taken together, the results of this work provide a potential delivery strategy for chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Guang Li
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Mingjian Ling
- Southern Medical University Shenzhen Stomatology Hospital (Pingshan), Shenzhen, 518000 China
| | - Kunyi Yu
- grid.513392.fShenzhen Longhua District Central Hospital, Shenzhen, 518110 China
| | - Wei Yang
- grid.417404.20000 0004 1771 3058Zhujiang Hospital of Southern Medical University, Guangzhou, 510280 China
| | - Qiwen Liu
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Lijuan He
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Xuzi Cai
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Min Zhong
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Ziyi Mai
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515 China
| | - Rui Sun
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515 China
| | - Yuanling Xiao
- grid.417404.20000 0004 1771 3058Department of Gynecology, Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Zhiqiang Yu
- grid.284723.80000 0000 8877 7471Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018 China
| | - Xuefeng Wang
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| |
Collapse
|
21
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
22
|
Kim T, Nah Y, Kim J, Lee S, Kim WJ. Nitric-Oxide-Modulatory Materials for Biomedical Applications. Acc Chem Res 2022; 55:2384-2396. [PMID: 35786846 DOI: 10.1021/acs.accounts.2c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that participates in various physiological and biological pathways associated with vasodilation, immune response, and cell apoptosis. Interestingly, NO has versatile and distinct functions in vivo depending on its concentration and the duration of exposure; it aids cellular proliferation at nanomolar concentrations but causes cellular death at micromolar concentrations. Therefore, achieving the precise and on-demand modulation of microenvironmental NO concentrations has become a major research target in biomedical fields. To this end, many studies have investigated feasible means for developing functional moieties that can either exogenously donate or selectively scavenge NO. However, these advances are limited by poor stability and a lack of target specificity, which represent two significant obstacles regarding the spatiotemporal adjustment of NO in vivo. Our group has addressed this issue by contributing to the development of next-generation NO-modulatory materials over the past decade. Over this period, we utilized various polymeric, inorganic, and hybrid systems to enhance the bioavailability of traditional NO donors or scavengers in an attempt to maximize their clinical usage while also minimizing their unwanted side effects. In this Account, strategies regarding the rational design of NO-modulatory materials are first summarized and discussed, depending on their specific purposes. These strategies include chemical approaches for encapsulating traditional NO donors inside specific vehicles; this prevents spontaneous NO release and allows said donors to be exposed on-demand, under a certain stimulus. The current status of these approaches and the recent contributions of other groups are also comprehensively discussed here to ensure an objective understanding of the topic. Moreover, in this paper, we discuss strategies for the selective depletion of NO from local inflammatory sites, where the overproduction of NO is problematic. Finally, the major challenges for current NO-modulatory systems are discussed, and requirements are outlined that need to be tackled to achieve their future therapeutic development. Starting from this current, relatively early stage of development, we propose that, through continuous efforts to surmount existing challenges, it will be possible in the future to achieve clinical translations regarding NO-modulatory systems. This Account provides insightful guidelines regarding the rational design of NO-modulatory systems for various biomedical applications. Moreover, it can facilitate the achievement of previously unattainable goals while revolutionizing future therapeutics.
Collapse
Affiliation(s)
- Taejeong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Jeonghyun Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Sangmin Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Jigok-ro 64, Nam-gu, Pohang 37666, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37666, Republic of Korea
| |
Collapse
|
23
|
Manspeaker MP, O'Melia MJ, Thomas SN. Elicitation of stem-like CD8 + T cell responses via lymph node-targeted chemoimmunotherapy evokes systemic tumor control. J Immunother Cancer 2022; 10:jitc-2022-005079. [PMID: 36100312 PMCID: PMC9472119 DOI: 10.1136/jitc-2022-005079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tumor-draining lymph nodes (TdLNs) are critical in the regulation of local and systemic antitumor T cell immunity and are implicated in coordinating responses to immunomodulatory therapies. Methods Biomaterial nanoparticles that deliver chemotherapeutic drug paclitaxel to TdLNs were leveraged to explore its effects in combination and immune checkpoint blockade (ICB) antibody immunotherapy to determine the benefit of TdLN-directed chemoimmunotherapy on tumor control. Results Accumulation of immunotherapeutic drugs in combination within TdLNs synergistically enhanced systemic T cell responses that led to improved control of local and disseminated disease and enhanced survival in multiple murine breast tumor models. Conclusions These findings suggest a previously underappreciated role of secondary lymphoid tissues in mediating effects of chemoimmunotherapy and demonstrate the potential for nanotechnology to unleashing drug synergies via lymph node targeted delivery to elicit improved response of breast and other cancers.
Collapse
Affiliation(s)
- Margaret P Manspeaker
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Susan N Thomas
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Andorko JI, Tsai SJ, Gammon JM, Carey ST, Zeng X, Gosselin EA, Edwards C, Shah SA, Hess KL, Jewell CM. Spatial delivery of immune cues to lymph nodes to define therapeutic outcomes in cancer vaccination. Biomater Sci 2022; 10:4612-4626. [PMID: 35796247 PMCID: PMC9392868 DOI: 10.1039/d2bm00403h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently approved cancer immunotherapies - including CAR-T cells and cancer vaccination, - show great promise. However, these technologies are hindered by the complexity and cost of isolating and engineering patient cells ex vivo. Lymph nodes (LNs) are key tissues that integrate immune signals to coordinate adaptive immunity. Directly controlling the signals and local environment in LNs could enable potent and safe immunotherapies without cell isolation, engineering, and reinfusion. Here we employ intra-LN (i.LN.) injection of immune signal-loaded biomaterial depots to directly control cancer vaccine deposition, revealing how the combination and geographic distribution of signals in and between LNs impact anti-tumor response. We show in healthy and diseased mice that relative proximity of antigen and adjuvant in LNs - and to tumors - defines unique local and systemic characteristics of innate and adaptive response. These factors ultimately control survival in mouse models of lymphoma and melanoma. Of note, with appropriate geographic signal distributions, a single i.LN. vaccine treatment confers near-complete survival to tumor challenge and re-challenge 100 days later, without additional treatments. These data inform design criteria for immunotherapies that leverage biomaterials for loco-regional LN therapy to generate responses that are systemic and specific, without systemically exposing patients to potent or immunotoxic drugs.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Krystina L Hess
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev 2022; 51:5136-5174. [PMID: 35666131 DOI: 10.1039/d2cs00247g] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.
Collapse
Affiliation(s)
- Xianbin Ma
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Tian Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Fang Y, Zhang Z, Liu Y, Gao T, Liang S, Chu Q, Guan L, Mu W, Fu S, Yang H, Zhang N, Liu Y. Artificial Assembled Macrophage Co-Deliver Black Phosphorus Quantum Dot and CDK4/6 Inhibitor for Colorectal Cancer Triple-Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20628-20640. [PMID: 35477252 DOI: 10.1021/acsami.2c01305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In recent years, therapeutic strategies based on macrophages have been inspiringly developed, but due to the high intricacy and immunosuppression of the tumor microenvironment, the widespread use of these strategies still faces significant challenges. Herein, an artificial assembled macrophage concept (AB@LM) was presented to imitate the main antitumor abilities of macrophages of tumor targeting, promoting the antitumor immunity, and direct tumor-killing effects. The artificial assembled macrophage (AB@LM) was prepared through an extrusion method, which is to fuse the macrophage membrane with abemaciclib and black phosphorus quantum dot (BPQD)-loaded liposomes. AB@LM showed good stability and tumor targeting ability with the help of macrophage membrane. Furthermore, AB@LM reversed the immunosuppressive tumor microenvironment by inhibiting regulatory T cells (Tregs) and stimulating the maturation of antigen-presenting cells to activate the antitumor immune response through triggering an immunogenic cell death effect. More importantly, in the colorectal tumor model in vivo, a strong cooperative therapeutic effect of photo/chemo/immunotherapy was observed with high tumor inhibition rate (95.3 ± 2.05%). In conclusion, AB@LM exhibits excellent antitumor efficacy by intelligently mimicking the abilities of macrophages. A promising therapeutic strategy for tumor treatment based on imitating macrophages was provided in this study.
Collapse
Affiliation(s)
- Yuxiao Fang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Zipeng Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Tong Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Shuang Liang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Qihui Chu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Li Guan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Huizhen Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
27
|
Jiang W, Dong W, Li M, Guo Z, Wang Q, Liu Y, Bi Y, Zhou H, Wang Y. Nitric Oxide Induces Immunogenic Cell Death and Potentiates Cancer Immunotherapy. ACS NANO 2022; 16:3881-3894. [PMID: 35238549 DOI: 10.1021/acsnano.1c09048] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor cells undergoing immunogenic cell death (ICD) release immunogenic damage-associated molecular patterns (DAMPs) to trigger a long-term protective antitumor response. ICD can be induced by certain pathogens, chemotherapeutics, and physical modalities. In this work, we demonstrate that a gaseous molecule, specifically nitric oxide (NO), can induce a potent ICD effect. NO exerts cytotoxic effects that are accompanied by the emission of DAMPs based on the endoplasmic reticulum stress and mitochondrial dysfunction pathways. Released DAMPs elicit immunological protection against a subsequent rechallenge of syngeneic tumor cells in immunocompetent mice. We prepare polynitrosated polyesters with high NO storage capacity through a facile polycondensation reaction followed by a postsynthetic modification. The polynitrosated polyesters-based NO nanogenerator (NanoNO) that enables efficient NO delivery and controlled NO release in tumors induces a sufficient ICD effect. In different immune-intact models of tumors, the NanoNO exhibits significant tumor growth suppression and increases the local dose of immunogenic signals and T cell infiltrations, ultimately prolonging survival. In addition, the NanoNO synergizes with the PD-1 blockade to prevent metastasis. We conclude not only that NO is a potent ICD inducer for cancer immunotherapy but also that it expands the range of ICD inducers into the field of gaseous molecules.
Collapse
Affiliation(s)
- Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wang Dong
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Min Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zixuan Guo
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qin Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yi Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yihui Bi
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Han Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
28
|
Kim J, Francis DM, Sestito LF, Archer PA, Manspeaker MP, O'Melia MJ, Thomas SN. Thermosensitive hydrogel releasing nitric oxide donor and anti-CTLA-4 micelles for anti-tumor immunotherapy. Nat Commun 2022; 13:1479. [PMID: 35304456 PMCID: PMC8933465 DOI: 10.1038/s41467-022-29121-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Due to their autosynchronous roles in shaping the anti-tumor immune response, complex immune regulatory networks acting both locally within the tumor microenvironment as well as in its draining lymph nodes play critical roles in the cancer immunotherapy response. We describe herein a thermosensitive co-polymer hydrogel system formed from biocompatible polymers gelatin and Pluronic® F127 that are widely used in humans to enable the sustained release of a nitric oxide donor and antibody blocking immune checkpoint cytotoxic T-lymphocyte-associated protein-4 for efficient and durable anti-tumor immunotherapy. By virtue of its unique gel formation and degradation properties that sustain drug retention at the tumor tissue site for triggered release by the tumor microenvironment and formation of in situ micelles optimum in size for lymphatic uptake, this rationally designed thermosensitive hydrogel facilitates modulation of two orthogonal immune signaling networks relevant to the regulation of the anti-tumor immune response to improve local and abscopal effects of cancer immunotherapy.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - David M Francis
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.,Wallace H. Coulter Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.,Wallace H. Coulter Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA. .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA. .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA. .,Wallace H. Coulter Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA. .,Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Kim T, Suh J, Kim J, Kim WJ. Lymph-Directed Self-Immolative Nitric Oxide Prodrug for Inhibition of Intractable Metastatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2101935. [PMID: 35317221 PMCID: PMC8922110 DOI: 10.1002/advs.202101935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/30/2021] [Indexed: 05/05/2023]
Abstract
There has been a significant clinical demand for lymph-directed anti-metastatic therapy as tumor-draining lymph nodes play pivotal roles in cancer metastasis which accounts for more than 90% of tumor-related deaths. Despite the high potential of nitric oxide (NO) in anti-cancer therapy owing to its biocompatibility and tumor cell-specific cytotoxicity, the poor stability and lack of target specificity of present NO donors and delivery systems have limited its clinical applications. Herein, a redox-triggered self-immolative NO prodrug that can be readily conjugated to various materials containing free thiol groups such as albumin, is reported. The prodrug and its conjugates demonstrate smart release of NO donor via intramolecular cyclization under reductive conditions, followed by spontaneously generating NO in physiological conditions. The albumin-prodrug conjugate inhibits tumor metastasis by inducing cytotoxicity preferentially on tumor cells after efficiently draining into lymph nodes. This novel prodrug can contribute to the development of on-demand NO delivery systems for anti-metastatic therapy and other treatments.
Collapse
Affiliation(s)
- Taejeong Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
| | - Jeeyeon Suh
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
| | - Jihoon Kim
- Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology315 Ferst Dr NWAtlantaGA30332USA
| | - Won Jong Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
- OmniaMed Co. LtdPohang37666Republic of Korea
| |
Collapse
|
30
|
Wang K, Jiang M, Zhou J, Liu Y, Zong Q, Yuan Y. Tumor-Acidity and Bioorthogonal Chemistry-Mediated On-Site Size Transformation Clustered Nanosystem to Overcome Hypoxic Resistance and Enhance Chemoimmunotherapy. ACS NANO 2022; 16:721-735. [PMID: 34978422 DOI: 10.1021/acsnano.1c08232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hypoxia, a common feature of most solid tumors, causes severe tumor resistance to chemotherapy and immunotherapy. Herein, a tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem is designed to overcome hypoxic resistance and enhance chemoimmunotherapy. The nanosystem utilized the tumor-acidity responsive group poly(2-azepane ethyl methacrylate) with a rapid response rate and highly efficient bioorthogonal click chemistry to form large-sized aggregates in tumor tissue to enhance accumulation and retention. Subsequently, another tumor-acidity responsive group of the maleic acid amide with a slow response rate was cleaved allowing the aggregates to slowly dissociate into ultrasmall nanoparticles with better tumor penetration ability for the delivery of doxorubicin (DOX) and nitric oxide (NO) to a hypoxic tumor tissue. NO can reverse a hypoxia-induced DOX resistance and boost the antitumor immune response through a reprogrammed tumor immune microenvironment. This tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem not only helps to counteract a hypoxia-induced chemoresistance and enhance antitumor immune responses but also provides a general drug delivery strategy for enhanced tumor accumulation and penetration.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jielian Zhou
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ye Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingyu Zong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
31
|
Duan XC, Peng LY, Yao X, Xu MQ, Li H, Zhang SQ, Li ZY, Wang JR, Feng ZH, Wang GX, Liao A, Chen Y, Zhang X. The synergistic antitumor activity of 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) and anti-PD-L1 antibody inducing immunogenic cell death. Drug Deliv 2021; 28:800-813. [PMID: 33866918 PMCID: PMC8079060 DOI: 10.1080/10717544.2021.1909180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy is a strategy that is moving to the frontier of cancer treatment in the current decade. In this study, we show evidence that 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs), act as immunogenic cell death (ICD) inducers, stimulating an antitumor response which results in synergistic antitumor activity by combining anti-PD-L1 antibody (aPD-L1) in vivo. To investigate the antitumor immunity induced by NPPA-PTX NPs, the expression of both ICD marker calreticulin (CRT) and high mobility group box 1 (HMGB1) were analyzed. In addition, the antitumor activity of NPPA-PTX NPs combined with aPD-L1 in vivo was also investigated. The immune response was also measured through quantitation of the infiltration of T cells and the secretion of pro-inflammatory cytokines. The results demonstrate that NPPA-PTX NPs induce ICD of MDA-MB-231 and 4T1 cells through upregulation of CRT and HMGB1, reactivating the antitumor immunity via recruitment of infiltrating CD3+, CD4+, CD8+ T cells, secreting IFN-γ, TNF-α, and the enhanced antitumor activity by combining with aPD-L1. These data suggest that the combined therapy has a synergistic antitumor activity and has the potential to be developed into a novel therapeutic regimen for cancer patients.
Collapse
Affiliation(s)
- Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Li-Yuan Peng
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Shuai-Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Jing-Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhen-Han Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Guang-Xue Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Ai Liao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Sun Y, Hu Y, Wan C, Lovell JF, Jin H, Yang K. Local biomaterial-assisted antitumour immunotherapy for effusions in the pleural and peritoneal cavities caused by malignancies. Biomater Sci 2021; 9:6381-6390. [PMID: 34582527 DOI: 10.1039/d1bm00971k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant pleural effusion (MPE) and malignant ascites (MA), which are common but serious conditions caused by malignancies, are related to poor quality of life and high mortality. Current treatments, including therapeutic thoracentesis and indwelling pleural catheters or paracentesis and catheter drainage, are largely palliative. An effective treatment is urgently needed. MPE and MA are excellent candidates for intratumoural injections that have direct contact with tumour cells and kill tumour cells more effectively and efficiently with fewer side effects, and the fluid environment of MPE and MA can provide a homogeneous area for drug distribution. The immunosuppressive environments within the pleural and peritoneal cavities suggest the feasibility of local immunotherapy. In this review, we introduce the current management of MPE and MA, discuss the latest advances and challenges in utilizing local biomaterial-assisted antitumour therapies for the treatment of MPE and MA, and discuss further opportunities in this field.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jonathan F Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York. Buffalo, New York, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
33
|
Babu NS, Vuai SAH. Theoretical studies of optoelectronic and photovoltaic properties of D-A polymer monomers by Density Functional Theory (DFT). Des Monomers Polym 2021; 24:224-237. [PMID: 34366700 PMCID: PMC8317939 DOI: 10.1080/15685551.2021.1956209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this research article, the new donor–acceptor (D–A) monomers developed using 4-methoxy-9-methyl-9 H-carbazole (MMCB) as electron donors and various electron acceptors. DFT and TD-DFT methods at the level of B3LYP with a 6–311 G basis set in a gas and chloroform solvent were used to calculate electronic and optoelectronic properties. To dissect the relationship between the molecular and optoelectronic structures, the impacts of specific acceptors on the geometry of molecules and optoelectronic properties of these D–A monomers were discussed. The calculations are also carried out on HOMO–LUMO, atomic orbital densities. The calculated band gap Eg of the monomers considered increases 3,6-MMCB-OCP ≈ 3,6-MMCB-BCO < 3,6-MMCB-SDP < 3,6-MMCB-SCP < 3,6-MMCB-TCP < 3,6-MMCB-TDP < 3,6-MMCB-BCS < 3,6-MMCB-BCT in both in the gas and solvent phases. Subsequently, the optoelectrical properties of EHOMO, ELUMO, Eopt, and EB energies were critically updated. Compared to different monomers, the far lower Eg of the 3,6-MMCB-OCP and 3,6-CB-BCO has shown optoelectronic applications in organic solar cells like BHJ.
Collapse
Affiliation(s)
- Numbury Surendra Babu
- Computational Quantum Chemistry Lab, Department of Chemistry, College of Natural and Mathematical Sciences, the University of Dodoma, Dodoma, Tanzania
| | - Said A H Vuai
- Computational Quantum Chemistry Lab, Department of Chemistry, College of Natural and Mathematical Sciences, the University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
34
|
Zhou Y, Zhou D, Cao P, Zhang X, Wang Q, Wang T, Li Z, He W, Ju J, Zhang Y. 4D Printing of Shape Memory Vascular Stent Based on βCD-g-Polycaprolactone. Macromol Rapid Commun 2021; 42:e2100176. [PMID: 34121258 DOI: 10.1002/marc.202100176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Indexed: 11/07/2022]
Abstract
The 4D-printing technology is applied to fabricate a shape memory peripheral stent with good biocompatibility, which sustains long-term drug release. The star polymer s-PCL is prepared by ring opening polymerization of ε-caprolactone with the -OH of β-cyclodextrin (βCD) as initiator, and then the s-PCL is modified with acrylate endgroup which allows the polymerization under UV light to form the crosslinking network c-PCL. Attributed to the feature of the high crosslinked structure and chemical nature of polycaprolactone (PCL) and βCD, the composite exhibits appropriate tensile strength and sufficient elasticity and bursting pressure, and it is comparable with great saphenous vein in human body. The radial support of the 4D-printed stent is 0.56 ± 0.11 N and is equivalent to that of commercial stent. The cell adhesion and proliferation results show a good biocompatibility of the stent with human umbilical vein endothelial cells. Due to the presence of βCD, the wettability and biocompatibility of the materials are improved, and the sustained paclitaxel release based on the host-guest complexion shows the potential of the drug-loaded stent for long-term release. This study provides a new strategy to solve the urgent need of small-diameter scaffolds to treat critical limb ischemia.
Collapse
Affiliation(s)
- Yanyi Zhou
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China.,Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dong Zhou
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Pengrui Cao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaolong Li
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Wenyang He
- Vascular Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Junping Ju
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, P. R. China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
36
|
Wan MM, Chen H, Da Wang Z, Liu ZY, Yu YQ, Li L, Miao ZY, Wang XW, Wang Q, Mao C, Shen J, Wei J. Nitric Oxide-Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002525. [PMID: 33552861 PMCID: PMC7856908 DOI: 10.1002/advs.202002525] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Indexed: 05/19/2023]
Abstract
Poor permeation of therapeutic agents and multidrug resistance (MDR) in solid tumors are the two major challenges that lead to the failure of the current chemotherapy methods. Herein, a zero-waste doxorubicin-loaded heparin/folic acid/l-arginine (HFLA-DOX) nanomotor with motion ability and sustained release of nitric oxide (NO) to achieve deep drug penetration and effective reversal of MDR in cancer chemotherapy is designed. The targeted recognition, penetration of blood vessels, intercellular penetration, special intracellular distribution (escaping from lysosomes and accumulating in Golgi and nucleus), 3D multicellular tumor spheroids (3D MTSs) penetration, degradation of tumor extracellular matrix (ECM), and reversal of MDR based on the synergistic effects of the motion ability and sustained NO release performance of the NO-driven nanomotors are investigated in detail. Correspondingly, a new chemotherapy mode called recognition-penetration-reversal-elimination is proposed, whose effectiveness is verified by in vitro cellular experiments and in vivo animal tumor model, which can not only provide effective solutions to these challenges encountered in cancer chemotherapy, but also apply to other therapy methods for the special deep-tissue penetration ability of a therapeutic agent.
Collapse
Affiliation(s)
- Mi Mi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Zhong Da Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Zhi Yong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Yue Qi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lin Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Zhuo Yue Miao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Xing Wen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| |
Collapse
|
37
|
Manspeaker MP, Thomas SN. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv Drug Deliv Rev 2020; 160:19-35. [PMID: 33058931 PMCID: PMC7736326 DOI: 10.1016/j.addr.2020.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Though immunotherapy has revolutionized the treatment of cancer to improve disease outcomes, an array of challenges remain that limit wider clinical success, including low rate of response and immune-related adverse events. Targeting immunomodulatory drugs to therapeutically relevant tissues offers a way to overcome these challenges by potentially enabling enhanced therapeutic efficacy and decreased incidence of side effects. Research highlighting the importance of lymphatic tissues in the response to immunotherapy has increased interest in the application of engineered drug delivery systems (DDSs) to enable specific targeting of immunomodulators to lymphatic tissues and cells that they house. To this end, a variety of DDS platforms have been developed that enable more efficient uptake into lymphatic vessels and lymph nodes to provide targeted modulation of the immune response to cancer. This can occur either by delivery of immunotherapeutics to lymphatics tissues or by direct modulation of the lymphatic vasculature itself due to their direct involvement in tumor immune processes. This review will highlight DDS platforms that, by enabling the activities of cancer vaccines, chemotherapeutics, immune checkpoint blockade (ICB) antibodies, and anti- or pro-lymphangiogenic factors to lymphatic tissues through directed delivery and controlled release, augment cancer immunotherapy.
Collapse
Affiliation(s)
- Margaret P Manspeaker
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
38
|
Low LE, Wu J, Lee J, Tey BT, Goh BH, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. J Control Release 2020; 324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
|