1
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
2
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
3
|
Ozbek I, Saybasili H, Ulgen KO. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomater Sci Eng 2024; 10:2616-2635. [PMID: 38664996 PMCID: PMC11094688 DOI: 10.1021/acsbiomaterials.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Primary brain tumor is one of the most fatal diseases. The most malignant type among them, glioblastoma (GBM), has low survival rates. Standard treatments reduce the life quality of patients due to serious side effects. Tumor aggressiveness and the unique structure of the brain render the removal of tumors and the development of new therapies challenging. To elucidate the characteristics of brain tumors and examine their response to drugs, realistic systems that mimic the tumor environment and cellular crosstalk are desperately needed. In the past decade, 3D GBM models have been presented as excellent platforms as they allowed the investigation of the phenotypes of GBM and testing innovative therapeutic strategies. In that scope, 3D bioprinting technology offers utilities such as fabricating realistic 3D bioprinted structures in a layer-by-layer manner and precisely controlled deposition of materials and cells, and they can be integrated with other technologies like the microfluidics approach. This Review covers studies that investigated 3D bioprinted brain tumor models, especially GBM using 3D bioprinting techniques and essential parameters that affect the result and quality of the study like frequently used cells, the type and physical characteristics of hydrogel, bioprinting conditions, cross-linking methods, and characterization techniques.
Collapse
Affiliation(s)
- Ilkay
Irem Ozbek
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| | - Hale Saybasili
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
4
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 2024; 31:260-274.e7. [PMID: 38306994 PMCID: PMC10883639 DOI: 10.1016/j.stem.2023.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Probing how human neural networks operate is hindered by the lack of reliable human neural tissues amenable to the dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate into neurons and form functional neural circuits within and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents, and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
Affiliation(s)
- Yuanwei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xueyan Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakthikumar Mathivanan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Linghai Kong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yi Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore, Singapore; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815.
| |
Collapse
|
5
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D Bioprinting of Human Neural Tissues with Functional Connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576289. [PMID: 38328181 PMCID: PMC10849546 DOI: 10.1101/2024.01.18.576289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Probing how the human neural networks operate is hindered by the lack of reliable human neural tissues amenable for dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate to neurons and form functional neural circuits in and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
|
6
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
7
|
Wang S, Bai L, Hu X, Yao S, Hao Z, Zhou J, Li X, Lu H, He J, Wang L, Li D. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Adv Healthc Mater 2023; 12:e2300004. [PMID: 37264745 PMCID: PMC11469067 DOI: 10.1002/adhm.202300004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/27/2023] [Indexed: 06/03/2023]
Abstract
In vitro neurovascular unit (NVU) models are valuable for investigating brain functions and developing drugs. However, it remains challenging to recapitulate the native architectural features and ultra-soft extracellular matrix (ECM) properties of the natural NVU. Cell-laden bioprinting is promising to prepare complex living tissues, but hard to balance the fidelity and cell growth. This study proposes a novel two-stage methodology for biomanufacturing functional 3D neurovascular constructs in vitro with low modulus of ECM. At the shaping stage, a low-viscosity alginate/collagen is printed through an embedded approach; at the culturing stage, the alginate is removed through targeted lysing. The low-viscosity and rapid crosslinking properties provide a printing resolution of ≈10 µm, and the lysis processing can decrease the hydrogels' modulus to ≈1 kPa and adjust the porosity of the microstructure, providing cells with an environment closing to the brain ECM. A 3D hollow coaxial neurovascular model is fabricated, in which the endothelial cells has expressed tight junction proteins and shown selective permeability, and the astrocytes outside of the endothelial layer are found to spread out with branches and directly interact with endothelial cells. The present study offers a promising modeling method for better understanding the NVU function and screening neuro-drugs.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Luge Bai
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Xiaoxuan Hu
- Institute of NeurobiologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
- Key Laboratory of Ministry of Education for Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'an710061China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Zhiyan Hao
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - JiaJia Zhou
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Xiao Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Haixia Lu
- Institute of NeurobiologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
- Key Laboratory of Ministry of Education for Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'an710061China
- Department of Human Anatomy & HistoembryologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
| | - Jiankang He
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Ling Wang
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Dichen Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| |
Collapse
|
8
|
Abstract
New developments in additive manufacturing and regenerative medicine have the potential to radically disrupt the traditional pipelines of therapy development and medical device manufacture. These technologies present a challenge for regulators because traditional regulatory frameworks are designed for mass manufactured therapies, rather than bespoke solutions. 3D bioprinting technologies present another dimension of complexity through the inclusion of living cells in the fabrication process. Herein we overview the challenge of regulating 3D bioprinting in comparison to existing cell therapy products as well as custom-made 3D printed medical devices. We consider a range of specific challenges pertaining to 3D bioprinting in regenerative medicine, including classification, risk, standardization and quality control, as well as technical issues related to the manufacturing process and the incorporated materials and cells.
Collapse
Affiliation(s)
- Tajanka Mladenovska
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
| | - Peter F Choong
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
| | - Gordon G Wallace
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Cathal D O'Connell
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
9
|
D'Antoni C, Mautone L, Sanchini C, Tondo L, Grassmann G, Cidonio G, Bezzi P, Cordella F, Di Angelantonio S. Unlocking Neural Function with 3D In Vitro Models: A Technical Review of Self-Assembled, Guided, and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10762. [PMID: 37445940 DOI: 10.3390/ijms241310762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara D'Antoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lorenza Mautone
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Greta Grassmann
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., 00165 Rome, Italy
| |
Collapse
|
10
|
A Gelatin Methacrylate-Based Hydrogel as a Potential Bioink for 3D Bioprinting and Neuronal Differentiation. Pharmaceutics 2023; 15:pharmaceutics15020627. [PMID: 36839949 PMCID: PMC9959598 DOI: 10.3390/pharmaceutics15020627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Neuronal loss is the ultimate pathophysiologic event in central nervous system (CNS) diseases and replacing these neurons is one of the most significant challenges in regenerative medicine. Providing a suitable microenvironment for new neuron engraftment, proliferation, and synapse formation is a primary goal for 3D bioprinting. Among the various biomaterials, gelatin methacrylate (GelMA) stands out due to its Arg-Gly-Asp (RGD) domains, which assure its biocompatibility and degradation under physiological conditions. This work aimed to produce different GelMA-based bioink compositions, verify their mechanical and biological properties, and evaluate their ability to support neurogenesis. We evaluated four different GelMA-based bioink compositions; however, when it came to their biological properties, incorporating extracellular matrix components, such as GeltrexTM, was essential to ensure human neuroprogenitor cell viability. Finally, GeltrexTM: 8% GelMA (1:1) bioink efficiently maintained human neuroprogenitor cell stemness and supported neuronal differentiation. Interestingly, this bioink composition provides a suitable environment for murine astrocytes to de-differentiate into neural stem cells and give rise to MAP2-positive cells.
Collapse
|
11
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
12
|
Merli M, Sardelli L, Baranzini N, Grimaldi A, Jacchetti E, Raimondi MT, Briatico-Vangosa F, Petrini P, Tunesi M. Pectin-based bioinks for 3D models of neural tissue produced by a pH-controlled kinetics. Front Bioeng Biotechnol 2022; 10:1032542. [PMID: 36619394 PMCID: PMC9815771 DOI: 10.3389/fbioe.2022.1032542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: In the view of 3D-bioprinting with cell models representative of neural cells, we produced inks to mimic the basic viscoelastic properties of brain tissue. Moving from the concept that rheology provides useful information to predict ink printability, this study improves and expands the potential of the previously published 3D-reactive printing approach by introducing pH as a key parameter to be controlled, together with printing time. Methods: The viscoelastic properties, printability, and microstructure of pectin gels crosslinked with CaCO3 were investigated and their composition was optimized (i.e., by including cell culture medium, HEPES buffer, and collagen). Different cell models representative of the major brain cell populations (i.e., neurons, astrocytes, microglial cells, and oligodendrocytes) were considered. Results and Discussion: The outcomes of this study propose a highly controllable method to optimize the printability of internally crosslinked polysaccharides, without the need for additives or post-printing treatments. By introducing pH as a further parameter to be controlled, it is possible to have multiple (pH-dependent) crosslinking kinetics, without varying hydrogel composition. In addition, the results indicate that not only cells survive and proliferate following 3D-bioprinting, but they can also interact and reorganize hydrogel microstructure. Taken together, the results suggest that pectin-based hydrogels could be successfully applied for neural cell culture.
Collapse
Affiliation(s)
- Marta Merli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
13
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
14
|
Kutlehria S, D'Souza A, Bleier BS, Amiji MM. Role of 3D Printing in the Development of Biodegradable Implants for Central Nervous System Drug Delivery. Mol Pharm 2022; 19:4411-4427. [PMID: 36154128 DOI: 10.1021/acs.molpharmaceut.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased life expectancy has led to a rise in age-related disorders including neurological diseases such as Alzheimer's disease and Parkinson's disease. Limited progress has been made in the development of clinically translatable therapies for these central nervous system (CNS) diseases. Challenges including the blood-brain barrier, brain complexity, and comorbidities in the elderly population are some of the contributing factors toward lower success rates. Various invasive and noninvasive ways are being employed to deliver small and large molecules across the brain. Biodegradable, implantable drug-delivery systems have gained lot of interest due to advantages such as sustained and targeted delivery, lower side effects, and higher patient compliance. 3D printing is a novel additive manufacturing technique where various materials and printing techniques can be used to fabricate implants with the desired complexity in terms of mechanical properties, shapes, or release profiles. This review discusses an overview of various types of 3D-printing techniques and illustrative examples of the existing literature on 3D-printed systems for CNS drug delivery. Currently, there are various technical and regulatory impediments that need to be addressed for successful translation from the bench to the clinical stage. Overall, 3D printing is a transformative technology with great potential in advancing customizable drug treatment in a high-throughput manner.
Collapse
Affiliation(s)
- Shallu Kutlehria
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|
16
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
17
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
18
|
Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, Xia L, Wang H, Chai R. Scaffolds with Anisotropic Structure for Neural Tissue Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
20
|
Yefroyev DA, Jin S. Induced Pluripotent Stem Cells for Treatment of Alzheimer’s and Parkinson’s Diseases. Biomedicines 2022; 10:biomedicines10020208. [PMID: 35203418 PMCID: PMC8869146 DOI: 10.3390/biomedicines10020208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are a group of debilitating pathologies in which neuronal tissue dies due to the buildup of neurotoxic plaques, resulting in detrimental effects on cognitive ability, motor control, and everyday function. Stem cell technology offers promise in addressing this problem on multiple fronts, but the conventional sourcing of pluripotent stem cells involves harvesting from aborted embryonic tissue, which comes with strong ethical and practical concerns. The keystone discovery of induced pluripotent stem cell (iPSC) technology provides an alternative and endless source, circumventing the unfavorable issues with embryonic stem cells, and yielding fundamental advantages. This review highlights iPSC technology, the pathophysiology of two major neurodegenerative diseases, Alzheimer’s and Parkinson’s, and then illustrates current state-of-the-art approaches towards the treatment of the diseases using iPSCs. The technologies discussed in the review emphasize in vitro therapeutic neural cell and organoid development for disease treatment, pathological modeling of neurodegenerative diseases, and 3D bioprinting as it applies to both.
Collapse
|
21
|
Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-Beik A, Rahim F, Aghayan HR, Larijani B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front Neurol 2022; 12:788462. [PMID: 35111126 PMCID: PMC8802668 DOI: 10.3389/fneur.2021.788462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis is a pernicious neurodegenerative disorder that is associated with the progressive degeneration of motor neurons, the disruption of impulse transmission from motor neurons to muscle cells, and the development of mobility impairments. Clinically, muscle paralysis can spread to other parts of the body. Hence it may have adverse effects on swallowing, speaking, and even breathing, which serves as major problems facing these patients. According to the available evidence, no definite treatment has been found for amyotrophic lateral sclerosis (ALS) that results in a significant outcome, although some pharmacological and non-pharmacological treatments are currently applied that are accompanied by some positive effects. In other words, available therapies are only used to relieve symptoms without any significant treatment effects that highlight the importance of seeking more novel therapies. Unfortunately, the process of discovering new drugs with high therapeutic potential for ALS treatment is fraught with challenges. The lack of a broad view of the disease process from early to late-stage and insufficiency of preclinical studies for providing validated results prior to conducting clinical trials are other reasons for the ALS drug discovery failure. However, increasing the combined application of different fields of regenerative medicine, especially tissue engineering and stem cell therapy can be considered as a step forward to develop more novel technologies. For instance, organ on a chip is one of these technologies that can provide a platform to promote a comprehensive understanding of neuromuscular junction biology and screen candidate drugs for ALS in combination with pluripotent stem cells (PSCs). The structure of this technology is based on the use of essential components such as iPSC- derived motor neurons and iPSC-derived skeletal muscle cells on a single miniaturized chip for ALS modeling. Accordingly, an organ on a chip not only can mimic ALS complexities but also can be considered as a more cost-effective and time-saving disease modeling platform in comparison with others. Hence, it can be concluded that lab on a chip can make a major contribution as a biomimetic micro-physiological system in the treatment of neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rabbani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia, and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Bagher Larijani
| |
Collapse
|
22
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
23
|
Restan Perez M, Sharma R, Masri NZ, Willerth SM. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink. Biomolecules 2021; 11:1250. [PMID: 34439916 PMCID: PMC8394541 DOI: 10.3390/biom11081250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Current treatments for neurodegenerative diseases aim to alleviate the symptoms experienced by patients; however, these treatments do not cure the disease nor prevent further degeneration. Improvements in current disease-modeling and drug-development practices could accelerate effective treatments for neurological diseases. To that end, 3D bioprinting has gained significant attention for engineering tissues in a rapid and reproducible fashion. Additionally, using patient-derived stem cells, which can be reprogrammed to neural-like cells, could generate personalized neural tissues. Here, adipose tissue-derived mesenchymal stem cells (MSCs) were bioprinted using a fibrin-based bioink and the microfluidic RX1 bioprinter. These tissues were cultured for 12 days in the presence of SB431542 (SB), LDN-193189 (LDN), purmorphamine (puro), fibroblast growth factor 8 (FGF8), fibroblast growth factor-basic (bFGF), and brain-derived neurotrophic factor (BDNF) to induce differentiation to dopaminergic neurons (DN). The constructs were analyzed for expression of neural markers, dopamine release, and electrophysiological activity. The cells expressed DN-specific and early neuronal markers (tyrosine hydroxylase (TH) and class III beta-tubulin (TUJ1), respectively) after 12 days of differentiation. Additionally, the tissues exhibited immature electrical signaling after treatment with potassium chloride (KCl). Overall, this work shows the potential of bioprinting engineered neural tissues from patient-derived MSCs, which could serve as an important tool for personalized disease models and drug-screening.
Collapse
Affiliation(s)
- Milena Restan Perez
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Nadia Zeina Masri
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Stephanie Michelle Willerth
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada;
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada;
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
24
|
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021; 174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.
Collapse
Affiliation(s)
- Aleeza Zilberman
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
25
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
26
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021; 6:460-471. [PMID: 32995673 PMCID: PMC7490764 DOI: 10.1016/j.bioactmat.2020.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bioprinting is a rapidly developing technology for the precise design and manufacture of tissues in various biological systems or organs. Coaxial extrusion bioprinting, an emergent branch, has demonstrated a strong potential to enhance bioprinting's engineering versatility. Coaxial bioprinting assists in the fabrication of complex tissue constructs, by enabling concentric deposition of biomaterials. The fabricated tissue constructs started with simple, tubular vasculature but have been substantially developed to integrate complex cell composition and self-assembly, ECM patterning, controlled release, and multi-material gradient profiles. This review article begins with a brief overview of coaxial printing history, followed by an introduction of crucial engineering components. Afterward, we review the recent progress and untapped potential in each specific organ or biological system, and demonstrate how coaxial bioprinting facilitates the creation of tissue constructs. Ultimately, we conclude that this growing technology will contribute significantly to capabilities in the fields of in vitro modeling, pharmaceutical development, and clinical regenerative medicine.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Bailey McFarland
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Keetch Mecham
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Nathan Harward
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
28
|
Honkamäki L, Joki T, Grigoryev NA, Levon K, Ylä-Outinen L, Narkilahti S. Novel method to produce a layered 3D scaffold for human pluripotent stem cell-derived neuronal cells. J Neurosci Methods 2020; 350:109043. [PMID: 33345946 DOI: 10.1016/j.jneumeth.2020.109043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Three-dimensional (3D) in vitro models have been developed into more in vivo resembling structures. In particular, there is a need for human-based models for neuronal tissue engineering (TE). To produce such a model with organized microenvironment for cells in central nervous system (CNS), a 3D layered scaffold composed of hydrogel and cell guiding fibers has been proposed. NEW METHOD Here, we describe a novel method for producing a layered 3D scaffold consisting of electrospun poly (L,D-lactide) fibers embedded into collagen 1 hydrogel to achieve better resemblance of cells' natural microenvironment for human pluripotent stem cell (hPSC)-derived neurons. The scaffold was constructed via a single layer-by-layer process using an electrospinning technique with a unique collector design. RESULTS The method enabled the production of layered 3D cell-containing scaffold in a single process. HPSC-derived neurons were found in all layers of the scaffold and exhibited a typical neuronal phenotype. The guiding fiber layers supported the directed cell growth and extension of the neurites inside the scaffold without additional functionalization. COMPARISON WITH EXISTING METHODS Previous methods have required several process steps to construct 3D layer-by-layer scaffolds. CONCLUSIONS We introduced a method to produce layered 3D scaffolds to mimic the cell guiding cues in CNS by alternating the soft hydrogel matrix and fibrous guidance cues. The produced scaffold successfully enabled the long-term culture of hPSC-derived neuronal cells. This layered 3D scaffold is a useful model for in vitro and in vivo neuronal TE applications.
Collapse
Affiliation(s)
- Laura Honkamäki
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Tiina Joki
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nikita A Grigoryev
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Laura Ylä-Outinen
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
29
|
Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev 2020; 120:11028-11055. [PMID: 32856892 PMCID: PMC7564085 DOI: 10.1021/acs.chemrev.0c00084] [Citation(s) in RCA: 441] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.
Collapse
Affiliation(s)
- Andrea Schwab
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Riccardo Levato
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Matteo D’Este
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Susanna Piluso
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - David Eglin
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jos Malda
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|