1
|
Neagu AN, Whitham D, Bruno P, Versaci N, Biggers P, Darie CC. Tumor-on-chip platforms for breast cancer continuum concept modeling. Front Bioeng Biotechnol 2024; 12:1436393. [PMID: 39416279 PMCID: PMC11480020 DOI: 10.3389/fbioe.2024.1436393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Our previous article entitled "Proteomics and its applications in breast cancer", proposed a Breast Cancer Continuum Concept (BCCC), including a Breast Cancer Cell Continuum Concept as well as a Breast Cancer Proteomic Continuum Concept. Breast cancer-on-chip (BCoC), breast cancer liquid biopsy-on-chip (BCLBoC), and breast cancer metastasis-on-chip (BCMoC) models successfully recapitulate and reproduce in vitro the principal mechanisms and events involved in BCCC. Thus, BCoC, BCLBoC, and BCMoC platforms allow for multiple cell lines co-cultivation to reproduce BC hallmark features, recapitulating cell proliferation, cell-to-cell communication, BC cell-stromal crosstalk and stromal activation, effects of local microenvironmental conditions on BC progression, invasion/epithelial-mesenchymal transition (EMT)/migration, intravasation, dissemination through blood and lymphatic circulation, extravasation, distant tissues colonization, and immune escape of cancer cells. Moreover, tumor-on-chip platforms are used for studying the efficacy and toxicity of chemotherapeutic drugs/nano-drugs or nutraceuticals. Therefore, the aim of this review is to summarize and analyse the main bio-medical roles of on-chip platforms that can be used as powerful tools to study the metastatic cascade in BC. As future direction, integration of tumor-on-chip platforms and proteomics-based specific approaches can offer important cues about molecular profile of the metastatic cascade, alowing for novel biomarker discovery. Novel microfluidics-based platforms integrating specific proteomic landscape of human milk, urine, and saliva could be useful for early and non-invasive BC detection. Also, risk-on-chip models may improve BC risk assessment and prevention based on the identification of biomarkers of risk. Moreover, multi-organ-on-chip systems integrating patient-derived BC cells and patient-derived scaffolds have a great potential to study BC at integrative level, due to the systemic nature of BC, for personalized and precision medicine. We also emphasized the strengths and weaknesses of BCoC and BCMoC platforms.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
2
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
3
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
4
|
Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling. Adv Healthc Mater 2024:e2401307. [PMID: 39175382 DOI: 10.1002/adhm.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The replication of bone physiology under laboratory conditions is a prime target behind the development of in vitro bone models. The model should be robust enough to elicit an unbiased response when stimulated experimentally, giving reproducible outcomes. In vitro bone tissue generation majorly requires the availability of cellular components, the presence of factors promoting cellular proliferation and differentiation, efficient nutrient supply, and a supporting matrix for the cells to anchor - gaining predefined topology. Calcium phosphates (CaP) are difficult to ignore while considering the above requirements of a bone model. Therefore, the current review focuses on the role of CaP in developing an in vitro bone model addressing the prerequisites of bone tissue generation. Special emphasis is given to the physico-chemical properties of CaP that promote osteogenesis, angiogenesis and provide sufficient mechanical strength for load-bearing applications. Finally, the future course of action is discussed to ensure efficient utilization of CaP in the in vitro bone model development field.
Collapse
Affiliation(s)
- Ashish Pandit
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka Street 3, Riga, LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, LV-1007, Latvia
| | - Abhishek Indurkar
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka Street 3, Riga, LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, LV-1007, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka Street 3, Riga, LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, LV-1007, Latvia
| | | | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka Street 3, Riga, LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, LV-1007, Latvia
| |
Collapse
|
5
|
Zhao L, Wang L, Huang J, Chen H, Liu L, Shi M, Zhang M. Label-Free Imaging of Mesenchymal Stem Cell Spheroid Differentiation with Flexible-Probe SECM and a Microfluidic Device. Anal Chem 2024; 96:13473-13481. [PMID: 39122667 DOI: 10.1021/acs.analchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have emerged as an indispensable source for stem cell research and preclinical studies due to their capacity for in vitro proliferation and their potential to differentiate into mesodermal lineages, particularly into osteoblasts. This capability has propelled their application in the fields of bone regeneration and osteochondral repair. Traditional methodologies for assessing the differentiation status of MSCs necessitate invasive procedures such as cell lysis or fixation. In this study, we introduce a nondestructive technique that utilizes an integrated label-free approach to evaluate the osteogenic maturation of MSC spheroid aggregates. This method employs scanning electrochemical microscopy (SECM) with a flexible probe in conjunction with a top-removable microfluidic device designed for easy SECM access. By tracking the production rate of p-aminophenol (PAP) in the generation/collection mode and assessing morphological changes via the negative feedback mode using [Ru(NH3)6]Cl3 (Ruhex), we can discern variations in the alkaline phosphatase (ALP) activity indicative of osteogenic differentiation. This innovative strategy enables the direct evaluation of osteogenic differentiation in MSC spheroids cultured within microwell arrays without necessitating any labeling procedures. The utilization of a flexible microelectrode as the probe that scans in contact mode (with probe-substrate distances potentially as minimal as 0 μm) affords enhanced resolution compared to the traditional stiff-probe technique. Furthermore, this method is compatible with subsequent molecular biology assays, including gene expression analysis and immunofluorescence, thereby confirming the electrochemical findings and establishing the validity of this integrative approach.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, College of Chemistry and Life Science, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lin Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jing Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Hongyu Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lu Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Mi Shi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
6
|
Lee S, Kim YG, Jung HI, Lim JS, Nam KC, Choi HS, Kwak BS. Bone-on-a-chip simulating bone metastasis in osteoporosis. Biofabrication 2024; 16:045025. [PMID: 39116896 DOI: 10.1088/1758-5090/ad6cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Osteoporosis is the most common bone disorder, which is a highly dangerous condition that can promote bone metastases. As the current treatment for osteoporosis involves long-term medication therapy and a cure for bone metastasis is not known, ongoing efforts are required for drug development for osteoporosis. Animal experiments, traditionally used for drug development, raise ethical concerns and are expensive and time-consuming. Organ-on-a-chip technology is being developed as a tool to supplement such animal models. In this study, we developed a bone-on-a-chip by co-culturing osteoblasts, osteocytes, and osteoclasts in an extracellular matrix environment that can represent normal bone, osteopenia, and osteoporotic conditions. We then simulated bone metastases using breast cancer cells in three different bone conditions and observed that bone metastases were most active in osteoporotic conditions. Furthermore, it was revealed that the promotion of bone metastasis in osteoporotic conditions is due to increased vascular permeability. The bone-on-a-chip developed in this study can serve as a platform to complement animal models for drug development for osteoporosis and bone metastasis.
Collapse
Affiliation(s)
- Sunghan Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Young Gyun Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Seok Lim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsanbuk-do 38541, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Ki Chang Nam
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Han Seok Choi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Bong Seop Kwak
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| |
Collapse
|
7
|
Luo Y. Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps. Bioengineering (Basel) 2024; 11:817. [PMID: 39199775 PMCID: PMC11351140 DOI: 10.3390/bioengineering11080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Personalized orthopedic devices are increasingly favored for their potential to enhance long-term treatment success. Despite significant advancements across various disciplines, the seamless integration and full automation of personalized orthopedic treatments remain elusive. This paper identifies key interdisciplinary gaps in integrating and automating advanced technologies for personalized orthopedic treatment. It begins by outlining the standard clinical practices in orthopedic treatments and the extent of personalization achievable. The paper then explores recent innovations in artificial intelligence, biomaterials, genomic and proteomic analyses, lab-on-a-chip, medical imaging, image-based biomechanical finite element modeling, biomimicry, 3D printing and bioprinting, and implantable sensors, emphasizing their contributions to personalized treatments. Tentative strategies or solutions are proposed to address the interdisciplinary gaps by utilizing innovative technologies. The key findings highlight the need for the non-invasive quantitative assessment of bone quality, patient-specific biocompatibility, and device designs that address individual biological and mechanical conditions. This comprehensive review underscores the transformative potential of these technologies and the importance of multidisciplinary collaboration to integrate and automate them into a cohesive, intelligent system for personalized orthopedic treatments.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biomedical Engineering (Graduate Program), University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
8
|
Sassi A, You L. Microfluidics-Based Technologies for the Assessment of Castration-Resistant Prostate Cancer. Cells 2024; 13:575. [PMID: 38607014 PMCID: PMC11011521 DOI: 10.3390/cells13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Castration-resistant prostate cancer remains a significant clinical challenge, wherein patients display no response to existing hormone therapies. The standard of care often includes aggressive treatment options using chemotherapy, radiation therapy and various drugs to curb the growth of additional metastases. As such, there is a dire need for the development of innovative technologies for both its diagnosis and its management. Traditionally, scientific exploration of prostate cancer and its treatment options has been heavily reliant on animal models and two-dimensional (2D) in vitro technologies. However, both laboratory tools often fail to recapitulate the dynamic tumor microenvironment, which can lead to discrepancies in drug efficacy and side effects in a clinical setting. In light of the limitations of traditional animal models and 2D in vitro technologies, the emergence of microfluidics as a tool for prostate cancer research shows tremendous promise. Namely, microfluidics-based technologies have emerged as powerful tools for assessing prostate cancer cells, isolating circulating tumor cells, and examining their behaviour using tumor-on-a-chip models. As such, this review aims to highlight recent advancements in microfluidics-based technologies for the assessment of castration-resistant prostate cancer and its potential to advance current understanding and to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 2V9, Canada
| |
Collapse
|
9
|
Rao WF, Wang YW, Li AQ, Zhou SS, Zheng ZM. An electromechanical stimulation regulating model with flexoelectric effect of piezoelectric laminated micro-beam for cell bionic culture. Sci Rep 2024; 14:6130. [PMID: 38480822 DOI: 10.1038/s41598-024-56708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/09/2024] [Indexed: 03/19/2024] Open
Abstract
Cell bionic culture requires the construction of cell growth microenvironments. In this paper, mechanical force and electrical stimulations are applied to the cells cultured on the surface of the piezoelectric laminated micro-beam driven by an excitation voltage. Based on the extended dielectric theory, the electromechanical microenvironment regulating model of the current piezoelectric laminated micro-beam is established. The variational principle is used to obtain the governing equations and boundary conditions. The differential quadrature method and the iterative method are used to solve two boundary value problems for cantilever beams and simply supported beams. In two cases, the mechanical force and electrical stimulations applied to the cells are analyzed in detail and the microscale effect is investigated. This study is meaningful for improving the quality of cell culture and promoting the cross-integration of mechanics and biomedicine.
Collapse
Affiliation(s)
- Wei-Feng Rao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, People's Republic of China
| | - Ya-Wen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, People's Republic of China
| | - An-Qing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, People's Republic of China.
| | - Sha-Sha Zhou
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, People's Republic of China
| | - Zu-Mei Zheng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, People's Republic of China
| |
Collapse
|
10
|
da Costa Sousa MG, Vignolo SM, Franca CM, Mereness J, Alves Fraga MA, Silva-Sousa AC, Benoit DSW, Bertassoni LE. Engineering models of head and neck and oral cancers on-a-chip. BIOMICROFLUIDICS 2024; 18:021502. [PMID: 38464668 PMCID: PMC10919958 DOI: 10.1063/5.0186722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Head and neck cancers (HNCs) rank as the sixth most common cancer globally and result in over 450 000 deaths annually. Despite considerable advancements in diagnostics and treatment, the 5-year survival rate for most types of HNCs remains below 50%. Poor prognoses are often attributed to tumor heterogeneity, drug resistance, and immunosuppression. These characteristics are difficult to replicate using in vitro or in vivo models, culminating in few effective approaches for early detection and therapeutic drug development. Organs-on-a-chip offer a promising avenue for studying HNCs, serving as microphysiological models that closely recapitulate the complexities of biological tissues within highly controllable microfluidic platforms. Such systems have gained interest as advanced experimental tools to investigate human pathophysiology and assess therapeutic efficacy, providing a deeper understanding of cancer pathophysiology. This review outlines current challenges and opportunities in replicating HNCs within microphysiological systems, focusing on mimicking the soft, glandular, and hard tissues of the head and neck. We further delve into the major applications of organ-on-a-chip models for HNCs, including fundamental research, drug discovery, translational approaches, and personalized medicine. This review emphasizes the integration of organs-on-a-chip into the repertoire of biological model systems available to researchers. This integration enables the exploration of unique aspects of HNCs, thereby accelerating discoveries with the potential to improve outcomes for HNC patients.
Collapse
Affiliation(s)
| | | | | | - Jared Mereness
- Departments of Biomedical Engineering and Dermatology and Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Ave, Rochester, New York 14642, USA
| | | | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo. Av. do Café - Subsetor Oeste—11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil
| | | | | |
Collapse
|
11
|
Anup A, Dieterich S, Oreffo ROC, Dailey HL, Lang A, Haffner-Luntzer M, Hixon KR. Embracing ethical research: Implementing the 3R principles into fracture healing research for sustainable scientific progress. J Orthop Res 2024; 42:568-577. [PMID: 38124294 DOI: 10.1002/jor.25741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
As scientific advancements continue to reshape the world, it becomes increasingly crucial to uphold ethical standards and minimize the potentially adverse impact of research activities. In this context, the implementation of the 3R principles-Replacement, Reduction, and Refinement-has emerged as a prominent framework for promoting ethical research practices in the use of animals. This article aims to explore recent advances in integrating the 3R principles into fracture healing research, highlighting their potential to enhance animal welfare, scientific validity, and societal trust. The review focuses on in vitro, in silico, ex vivo, and refined in vivo methods, which have the potential to replace, reduce, and refine animal experiments in musculoskeletal, bone, and fracture healing research. Here, we review material that was presented at the workshop "Implementing 3R Principles into Fracture Healing Research" at the 2023 Orthopedic Research Society (ORS) Annual Meeting in Dallas, Texas.
Collapse
Affiliation(s)
- Amritha Anup
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Sandra Dieterich
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hannah L Dailey
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annemarie Lang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Katherine R Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Zhao J, Zhou C, Xiao Y, Zhang K, Zhang Q, Xia L, Jiang B, Jiang C, Ming W, Zhang H, Long H, Liang W. Oxygen generating biomaterials at the forefront of regenerative medicine: advances in bone regeneration. Front Bioeng Biotechnol 2024; 12:1292171. [PMID: 38282892 PMCID: PMC10811251 DOI: 10.3389/fbioe.2024.1292171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Globally, an annual count of more than two million bone transplants is conducted, with conventional treatments, including metallic implants and bone grafts, exhibiting certain limitations. In recent years, there have been significant advancements in the field of bone regeneration. Oxygen tension regulates cellular behavior, which in turn affects tissue regeneration through metabolic programming. Biomaterials with oxygen release capabilities enhance therapeutic effectiveness and reduce tissue damage from hypoxia. However, precise control over oxygen release is a significant technical challenge, despite its potential to support cellular viability and differentiation. The matrices often used to repair large-size bone defects do not supply enough oxygen to the stem cells being used in the regeneration process. Hypoxia-induced necrosis primarily occurs in the central regions of large matrices due to inadequate provision of oxygen and nutrients by the surrounding vasculature of the host tissues. Oxygen generating biomaterials (OGBs) are becoming increasingly significant in enhancing our capacity to facilitate the bone regeneration, thereby addressing the challenges posed by hypoxia or inadequate vascularization. Herein, we discussed the key role of oxygen in bone regeneration, various oxygen source materials and their mechanism of oxygen release, the fabrication techniques employed for oxygen-releasing matrices, and novel emerging approaches for oxygen delivery that hold promise for their potential application in the field of bone regeneration.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yang Xiao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Kunyan Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Qiang Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
13
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
14
|
Ji X, Bei HP, Zhong G, Shao H, He X, Qian X, Zhang Y, Zhao X. Premetastatic Niche Mimicking Bone-On-A-Chip: A Microfluidic Platform to Study Bone Metastasis in Cancer Patients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207606. [PMID: 37605335 DOI: 10.1002/smll.202207606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/08/2023] [Indexed: 08/23/2023]
Abstract
Primary cancer modulates the bone microenvironment to sow the seeds of dormancy and metastasis in tumor cells, leading to multiple organ metastasis and death. In this study, 3D printing and bone-on-a-chip (BOC) are combined to develop a BOC platform that mimics the pre-metastatic niches (PMNs) and facilitates elucidation of the interactions between bone-resident cells and metastatic tumor cells under the influence of primary cancer. Photocrosslinkable gelatin methacrylate (GelMA) is used as a 3D culturing hydrogel to encapsulate cells, and circulate tumor culture medium (CM) adjacent to the hydrogel to verify the critical role of mesenchymal stem cells (MSCs) and osteoclasts (RAW264.7s). Three niches: the dormancy niche, the perivascular niche, and the "vicious cycle" niche, are devised to recapitulate bone metastasis in one chip with high cell viability and excellent nutrient exchange. With respect to tumor dormancy and reactivation, the invadopodia formation of A549 lung cancer cells in communication with MSCs and RAW264.7 via the cortactin pathway is researched. As a proof of concept, the functionality and practicality of the platform are demonstrated by analyzing the invadopodia formation and the influence of various cells, and the establishment of the dynamic niches paves the way to understanding PMN formation and related drug discovery.
Collapse
Affiliation(s)
- Xiongfa Ji
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Hongwei Shao
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Xuecheng He
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Xin Qian
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| |
Collapse
|
15
|
Mishra A, Kai R, Atkuru S, Dai Y, Piccinini F, Preshaw PM, Sriram G. Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater Sci 2023; 11:7432-7444. [PMID: 37819086 DOI: 10.1039/d3bm01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Developing physiologically relevant in vitro models for studying periodontitis is crucial for understanding its pathogenesis and developing effective therapeutic strategies. In this study, we aimed to integrate the spheroid culture of periodontal ligament stem cells (PDLSCs) within a spheroid-on-chip microfluidic perfusion platform and to investigate the influence of interstitial fluid flow on morphogenesis, cellular viability, and osteogenic differentiation of PDLSC spheroids. PDLSC spheroids were seeded onto the spheroid-on-chip microfluidic device and cultured under static and flow conditions. Computational analysis demonstrated the translation of fluid flow rates of 1.2 μl min-1 (low-flow) and 7.2 μl min-1 (high-flow) to maximum fluid shear stress of 59 μPa and 360 μPa for low and high-flow conditions, respectively. The spheroid-on-chip microfluidic perfusion platform allowed for modulation of flow conditions leading to larger PDLSC spheroids with improved cellular viability under flow compared to static conditions. Modulation of fluid flow enhanced the osteodifferentiation potential of PDLSC spheroids, demonstrated by significantly enhanced alizarin red staining and alkaline phosphatase expression. Additionally, flow conditions, especially high-flow conditions, exhibited extensive calcium staining across both peripheral and central regions of the spheroids, in contrast to the predominantly peripheral staining observed under static conditions. These findings highlight the importance of fluid flow in shaping the morphological and functional properties of PDLSC spheroids. This work paves the way for future investigations exploring the interactions between PDLSC spheroids, microbial pathogens, and biomaterials within a controlled fluidic environment, offering insights for the development of innovative periodontal therapies, tissue engineering strategies, and regenerative approaches.
Collapse
Affiliation(s)
- Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Ren Kai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| |
Collapse
|
16
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
17
|
Tong YW, Chen ACY, Lei KF. Analysis of Cellular Crosstalk and Molecular Signal between Periosteum-Derived Precursor Cells and Peripheral Cells During Bone Healing Process Using a Paper-Based Osteogenesis-On-A-Chip Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49051-49059. [PMID: 37846857 DOI: 10.1021/acsami.3c12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Periosteum-derived progenitor cells (PDPCs) are highly promising cell sources that are indispensable in the bone healing process. Adipose-derived stem cells (ADSCs) are physiologically close to periosteum tissue and release multiple growth factors to promote the bone healing process. Co-culturing PDPCs and ADSCs can construct periosteum-bone tissue microenvironments for the study of cellular crosstalk and molecular signal in the bone healing process. In the current work, a paper-based osteogenesis-on-a-chip platform was successfully developed to provide an in vitro three-dimensional coculture model. The platform was a paper substrate sandwiched between PDPC-hydrogel and ADSC-hydrogel suspensions. Cell secretion could be transferred through the paper substrate from one side to another side. Growth factors including BMP2, TGF-β, POSTN, Wnt proteins, PDGFA, and VEGFA were directly analyzed by a paper-based immunoassay. Cellular crosstalk was studied by protein expression on the paper substrate. Moreover, osteogenesis of PDPCs was investigated by examining the mRNA expressions of PDPCs after culture. Neutralizing and competitive assays were conducted to understand the correlation between growth factors secreted from ADSCs and the osteogenesis of PDPCs. In vitro periosteum-bone tissue microenvironment was established by the paper-based osteogenesis-on-a-chip platform. The proposed approach provides a promising assay of cellular crosstalk and molecular signal in 3D coculture microenvironment that may potentially lead to the development of effective bone regeneration therapy.
Collapse
Affiliation(s)
- Yun-Wen Tong
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Alvin Chao-Yu Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Bone and Joint Research Center and Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
18
|
Deng S, Li C, Cao J, Cui Z, Du J, Fu Z, Yang H, Chen P. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics 2023; 13:4526-4558. [PMID: 37649608 PMCID: PMC10465229 DOI: 10.7150/thno.87266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Drug evaluation has always been an important area of research in the pharmaceutical industry. However, animal welfare protection and other shortcomings of traditional drug development models pose obstacles and challenges to drug evaluation. Organ-on-a-chip (OoC) technology, which simulates human organs on a chip of the physiological environment and functionality, and with high fidelity reproduction organ-level of physiology or pathophysiology, exhibits great promise for innovating the drug development pipeline. Meanwhile, the advancement in artificial intelligence (AI) provides more improvements for the design and data processing of OoCs. Here, we review the current progress that has been made to generate OoC platforms, and how human single and multi-OoCs have been used in applications, including drug testing, disease modeling, and personalized medicine. Moreover, we discuss issues facing the field, such as large data processing and reproducibility, and point to the integration of OoCs and AI in data analysis and automation, which is of great benefit in future drug evaluation. Finally, we look forward to the opportunities and challenges faced by the coupling of OoCs and AI. In summary, advancements in OoCs development, and future combinations with AI, will eventually break the current state of drug evaluation.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang Du
- Yunnan Biovalley Pharmaceutical Co., Ltd, Kunming 650503, China
| | - Zheng Fu
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Yunnan Biovalley Pharmaceutical Co., Ltd, Kunming 650503, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| |
Collapse
|
19
|
Vis MAM, Zhao F, Bodelier ESR, Bood CM, Bulsink J, van Doeselaar M, Amirabadi HE, Ito K, Hofmann S. Osteogenesis and osteoclastogenesis on a chip: Engineering a self-assembling 3D coculture. Bone 2023; 173:116812. [PMID: 37236415 DOI: 10.1016/j.bone.2023.116812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Healthy bone is maintained by the process of bone remodeling. An unbalance in this process can lead to pathologies such as osteoporosis which are often studied with animal models. However, data from animals have limited power in predicting the results that will be obtained in human clinical trials. In search for alternatives to animal models, human in vitro models are emerging as they address the principle of reduction, refinement, and replacement of animal experiments (3Rs). At the moment, no complete in vitro model for bone-remodeling exists. Microfluidic chips offer great possibilities, particularly because of the dynamic culture options, which are crucial for in vitro bone formation. In this study, a scaffold free, fully human, 3D microfluidic coculture model of bone remodeling is presented. A bone-on-a-chip coculture system was developed in which human mesenchymal stromal cells differentiated into the osteoblastic lineage and self-assembled into scaffold free bone-like tissues with the shape and dimensions of human trabeculae. Human monocytes were able to attach to these tissues and to fuse into multinucleated osteoclast-like cells, establishing the coculture. Computational modeling was used to determine the fluid flow induced shear stress and strain in the formed tissue. Furthermore, a set-up was developed allowing for long-term (35 days) on-chip cell culture with benefits including continuous fluid-flow, low bubble formation risk, easy culture medium exchange inside the incubator and live cell imaging options. This on-chip coculture is a crucial advance towards developing in vitro bone remodeling models to facilitate drug testing.
Collapse
Affiliation(s)
- M A M Vis
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands.
| | - F Zhao
- Department of Biomedical Engineering and Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - E S R Bodelier
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - C M Bood
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - J Bulsink
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - M van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
20
|
Lee D, Yang K, Xie J. Advances in Nerve Injury Models on a Chip. Adv Biol (Weinh) 2023; 7:e2200227. [PMID: 36709421 DOI: 10.1002/adbi.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/19/2022] [Indexed: 01/30/2023]
Abstract
Regeneration and functional recovery of the damaged nerve are challenging due to the need for effective therapeutic drugs, biomaterials, and approaches. The poor outcome of the treatment of nerve injury stems from the incomplete understanding of axonal biology and interactions between neurons and the surrounding environment, such as glial cells and extracellular matrix. Microfluidic devices, in combination with various injury techniques, have been applied to test biological hypotheses in nerve injury and nerve regeneration. The microfluidic devices provide multiple advantages over the in vitro cell culture on a petri dish and in vivo animal models because a specific part of the neuronal environment can be manipulated using physical and chemical interventions. In addition, single-cell behavior and interactions between neurons and glial cells can be visualized and quantified on microfluidic platforms. In this article, current in vitro nerve injury models on a chip that mimics in vivo axonal injuries and the regeneration process of axons are summarized. The microfluidic-based nerve injury models could enhance the understanding of the physiological and pathophysiological mechanisms of nerve tissues and simultaneously serve as powerful drug and biomaterial screening platforms.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kai Yang
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
21
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
22
|
Kim MK, Paek K, Woo SM, Kim JA. Bone-on-a-Chip: Biomimetic Models Based on Microfluidic Technologies for Biomedical Applications. ACS Biomater Sci Eng 2023. [PMID: 37183366 DOI: 10.1021/acsbiomaterials.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the increasing importance of preclinical evaluation of newly developed drugs or treatments, in vitro organ or disease models are necessary. Although various organ-specific on-chip (organ-on-a-chip, or OOC) systems have been developed as emerging in vitro models, bone-on-a-chip (BOC) systems that recapitulate the bone microenvironment have been less developed or reviewed compared with other OOCs. The bone is one of the most dynamic organs and undergoes continuous remodeling throughout its lifetime. The aging population is growing worldwide, and healthcare costs are rising rapidly. Since in vitro BOC models that recapitulate native bone niches and pathological features can be important for studying the underlying mechanism of orthopedic diseases and predicting drug responses in preclinical trials instead of in animals, the development of biomimetic BOCs with high efficiency and fidelity will be accelerated further. Here, we review recently engineered BOCs developed using various microfluidic technologies and investigate their use to model the bone microenvironment. We have also explored various biomimetic strategies based on biological, geometrical, and biomechanical cues for biomedical applications of BOCs. Finally, we addressed the limitations and challenging issues of current BOCs that should be overcome to obtain more acceptable BOCs in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| |
Collapse
|
23
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
24
|
Cao D, Martinez JG, Anada R, Hara ES, Kamioka H, Jager EWH. Electrochemical control of bone microstructure on electroactive surfaces for modulation of stem cells and bone tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2183710. [PMID: 36926200 PMCID: PMC10013253 DOI: 10.1080/14686996.2023.2183710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Controlling stem cell behavior at the material interface is crucial for the development of novel technologies in stem cell biology and regenerative medicine. The composition and presentation of bio-factors on a surface strongly influence the activity of stem cells. Herein, we designed an electroactive surface that mimics the initial process of trabecular bone formation, by immobilizing chondrocyte-derived plasma membrane nanofragments (PMNFs) on its surface for rapid mineralization within 2 days. Moreover, the electroactive surface was based on the conducting polymer polypyrrole (PPy), which enabled dynamic control of the presentation of PMNFs on the surface via electrochemical redox switching, further resulting in the formation of bone minerals with different morphologies. Furthermore, bone minerals with contrasting surface morphologies had differential effects on the differentiation of human bone marrow-derived stem cells (hBMSCs) cultured on the surface. Together, this electroactive surface showed multifunctional characteristics, not only allowing dynamic control of PMNF presentation but also promoting the formation of bone minerals with different morphologies within 2 days. This electroactive substrate could be valuable for more precise control of stem cell growth and differentiation, and further development of more suitable microenvironments containing bone apatite for housing a bone marrow stem cell niche, such as biochips/bone-on-chips.
Collapse
Affiliation(s)
- Danfeng Cao
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Jose G. Martinez
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Risa Anada
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Edwin W. H. Jager
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Farazin A, Zhang C, Gheisizadeh A, Shahbazi A. 3D bio-printing for use as bone replacement tissues: A review of biomedical application. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
26
|
Zhang Y, Yu T, Ding J, Li Z. Bone-on-a-chip platforms and integrated biosensors: Towards advanced in vitro bone models with real-time biosensing. Biosens Bioelectron 2023; 219:114798. [PMID: 36257118 DOI: 10.1016/j.bios.2022.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/25/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Bone diseases, such as osteoporosis and bone defects, often lead to structural and functional deformities of the patient's body. Understanding the complicated pathophysiology and finding new drugs for bone diseases are in dire need but challenging with the conventional cell and animal models. Bone-on-a-chip (BoC) models recapitulate key features of bone at an unprecedented level and can potentially shift the paradigm of future bone research and therapeutic development. Nevertheless, current BoC models predominantly rely on off-chip analysis which provides only endpoint measurements. To this end, integrating biosensors within the BoC can provide non-invasive, continuous monitoring of the experiment progression, significantly facilitating bone research. This review aims to summarize research progress in BoC and biosensor integrations and share perspectives on this exciting but rudimentary research area. We first introduce the research progress of BoC models in the study of bone remodeling and bone diseases, respectively. We then summarize the need for BoC characterization and reported works on biosensor integration in organ chips. Finally, we discuss the limitations and future directions of BoC models and biosensor integrations as next-generation technologies for bone research.
Collapse
Affiliation(s)
- Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518060, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Taozhao Yu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jingyi Ding
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zida Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Alamán‐Díez P, García‐Gareta E, Arruebo M, Pérez MÁ. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J Biomed Mater Res A 2023; 111:88-105. [PMID: 36205241 PMCID: PMC9828068 DOI: 10.1002/jbm.a.37448] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D-in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán‐Díez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| | - Elena García‐Gareta
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental InstituteUniversity College LondonLondonUK
| | - Manuel Arruebo
- Aragón Institute of Nanoscience and Materials (INMA), Consejo Superior de Investigaciones Científicas (CSIC)University of ZaragozaZaragozaSpain,Department of Chemical EngineeringUniversity of ZaragozaZaragozaSpain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| |
Collapse
|
28
|
Paek K, Kim S, Tak S, Kim MK, Park J, Chung S, Park TH, Kim JA. A high-throughput biomimetic bone-on-a-chip platform with artificial intelligence-assisted image analysis for osteoporosis drug testing. Bioeng Transl Med 2023; 8:e10313. [PMID: 36684077 PMCID: PMC9842054 DOI: 10.1002/btm2.10313] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
Although numerous organ-on-a-chips have been developed, bone-on-a-chip platforms have rarely been reported because of the high complexity of the bone microenvironment. With an increase in the elderly population, a high-risk group for bone-related diseases such as osteoporosis, it is essential to develop a precise bone-mimicking model for efficient drug screening and accurate evaluation in preclinical studies. Here, we developed a high-throughput biomimetic bone-on-a-chip platform combined with an artificial intelligence (AI)-based image analysis system. To recapitulate the key aspects of natural bone microenvironment, mouse osteocytes (IDG-SW3) and osteoblasts (MC3T3-E1) were cocultured within the osteoblast-derived decellularized extracellular matrix (OB-dECM) built in a well plate-based three-dimensional gel unit. This platform spatiotemporally and configurationally mimics the characteristics of the structural bone unit, known as the osteon. Combinations of native and bioactive ingredients obtained from the OB-dECM and coculture of two types of bone cells synergistically enhanced osteogenic functions such as osteocyte differentiation and osteoblast maturation. This platform provides a uniform and transparent imaging window that facilitates the observation of cell-cell interactions and features high-throughput bone units in a well plate that is compatible with a high-content screening system, enabling fast and easy drug tests. The drug efficacy of anti-SOST antibody, which is a newly developed osteoporosis drug for bone formation, was tested via β-catenin translocation analysis, and the performance of the platform was evaluated using AI-based deep learning analysis. This platform could be a cutting-edge translational tool for bone-related diseases and an efficient alternative to bone models for the development of promising drugs.
Collapse
Affiliation(s)
- Kyurim Paek
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
- Program in Micro/Nano SystemKorea UniversitySeoulSouth Korea
| | - Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea
| | - Sungho Tak
- Research Center for Bioconvergence AnalysisKorea Basic Science InstituteCheongjuChungbukSouth Korea
| | - Min Kyeong Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
| | - Jubin Park
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
- Program in Micro/Nano SystemKorea UniversitySeoulSouth Korea
| | - Seok Chung
- Program in Micro/Nano SystemKorea UniversitySeoulSouth Korea
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea
| | - Jeong Ah Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteDaejeonSouth Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
29
|
Current Advances in 3D Dynamic Cell Culture Systems. Gels 2022; 8:gels8120829. [PMID: 36547353 PMCID: PMC9778081 DOI: 10.3390/gels8120829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The traditional two-dimensional (2D) cell culture methods have a long history of mimicking in vivo cell growth. However, these methods cannot fully represent physiological conditions, which lack two major indexes of the in vivo environment; one is a three-dimensional 3D cell environment, and the other is mechanical stimulation; therefore, they are incapable of replicating the essential cellular communications between cell to cell, cell to the extracellular matrix, and cellular responses to dynamic mechanical stimulation in a physiological condition of body movement and blood flow. To solve these problems and challenges, 3D cell carriers have been gradually developed to provide a 3D matrix-like structure for cell attachment, proliferation, differentiation, and communication in static and dynamic culture conditions. 3D cell carriers in dynamic culture systems could primarily provide different mechanical stimulations which further mimic the real in vivo microenvironment. In this review, the current advances in 3D dynamic cell culture approaches have been introduced, with their advantages and disadvantages being discussed in comparison to traditional 2D cell culture in static conditions.
Collapse
|
30
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
31
|
Wang Y, Wang N, Yang Y, Chen Y, Zhang Z. Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. J Nanobiotechnology 2022; 20:499. [DOI: 10.1186/s12951-022-01713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractGene transfection was supposed to be the most promising technology to overcome the vast majority of diseases and it has been popularly reported in clinical applications of gene therapy. In spite of the rapid development of novel transfection materials and methods, the influence of morphology-dependent nanomechanics of malignant osteosarcoma on gene transfection is still unsettled. In this study, cell spreading and adhesion area was adjusted by the prepared micropatterns to regulate focal adhesion (FA) formation and cytoskeletal organization in osteosarcoma cells. The micropattern-dependent FA and cytoskeleton could induce different cellular nanomechanics to affect cell functions. Our results indicated that transfection efficiency was improved with enlarging FA area and cell nanomechanics in micropatterned osteosarcoma. The difference of gene transfection in micropatterned cells was vigorously supported by cellular internalization capacity, Ki67 proliferation ability and YAP mechanotranduction through the regulation of focal adhesion and cytoskeletal mechanics. This study is an attempt to disclose the relationship of cell nanomechanics and gene transfection for efficient gene delivery and develop multifunctional nanomedicine biomaterials for accurate gene therapy in osteosarcoma cells.
Collapse
|
32
|
Kim S, Wan Z, Jeon JS, Kamm RD. Microfluidic vascular models of tumor cell extravasation. Front Oncol 2022; 12:1052192. [PMID: 36439519 PMCID: PMC9698448 DOI: 10.3389/fonc.2022.1052192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging microfluidic disease models have amply demonstrated their value in many fields of cancer research. These in vitro technologies recapitulate key aspects of metastatic cancer, including the process of tumor cell arrest and extravasation at the site of the metastatic tumor. To date, extensive efforts have been made to capture key features of the microvasculature to reconstitute the pre-metastatic niche and investigate dynamic extravasation behaviors using microfluidic systems. In this mini-review, we highlight recent microfluidic vascular models of tumor cell extravasation and explore how this approach contributes to development of in vitro disease models to enhance understanding of metastasis in vivo.
Collapse
Affiliation(s)
- Seunggyu Kim
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Biomicrofluidics Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Zhengpeng Wan
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jessie S. Jeon
- Biomicrofluidics Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Roger D. Kamm
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
33
|
Khodabukus A, Guyer T, Moore AC, Stevens MM, Guldberg RE, Bursac N. Translating musculoskeletal bioengineering into tissue regeneration therapies. Sci Transl Med 2022; 14:eabn9074. [PMID: 36223445 PMCID: PMC7614064 DOI: 10.1126/scitranslmed.abn9074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and a considerable socioeconomic burden. The lack of effective therapies has driven the development of novel bioengineering approaches that have recently started to gain clinical approvals. In this review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes of musculoskeletal dysfunction. We then review the development of novel biomaterial, immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Last, we consider the recent regulatory changes and future areas of technological progress that can accelerate translation of these therapies to clinical practice.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tyler Guyer
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Axel C Moore
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Molly M Stevens
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
34
|
Kim JK, Ha L, Kwon YE, Lee SG, Kim DP. Rapid Flow Synthesis of a Biomimetic Carbonate Apatite as an Effective Drug Carrier. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29626-29638. [PMID: 35724663 DOI: 10.1021/acsami.2c06900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A facile synthesis of apatite nanocrystals analogous to bioapatites with increased biocompatibility and biodegradability can remedy the shortcomings of the widely applied synthetic hydroxyapatite (HAp) for bone defect treatment. Here, we propose an expeditious synthesis method to develop a biomimetic B-type carbonate apatite (CAp) with a simple capillary microfluidic device at room temperature. The process not only eliminates fluctuations with the addition of carbonate but also produces safe CAp drug carriers through simultaneous alendronate incorporation to the CAp structure. CAp displayed superior mineralization on osteoblast-like MG-63 cells when compared with HAp and HAp drug carriers that were produced using identical methods. Furthermore, alendronate-incorporated CAp drug carriers potentially displayed higher cancer cell suppression when applied to breast cancer cells attached to the bone tissue model, which signifies enhanced cancer metastasis to bone suppression due to the likelihood of increased alendronate release of CAp owing to its faster dissolution. Overall, our results may provide promising opportunities for enhanced clinical CAp application for bone defect treatment, particularly for bone loss and cancer to bone metastasis.
Collapse
Affiliation(s)
- Jung-Kyun Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, South Korea
| | - Sang-Gil Lee
- Center for Research Equipment, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
35
|
Rothbauer M, Reihs EI, Fischer A, Windhager R, Jenner F, Toegel S. A Progress Report and Roadmap for Microphysiological Systems and Organ-On-A-Chip Technologies to Be More Predictive Models in Human (Knee) Osteoarthritis. Front Bioeng Biotechnol 2022; 10:886360. [PMID: 35782494 PMCID: PMC9240813 DOI: 10.3389/fbioe.2022.886360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA), a chronic debilitating joint disease affecting hundreds of million people globally, is associated with significant pain and socioeconomic costs. Current treatment modalities are palliative and unable to stop the progressive degeneration of articular cartilage in OA. Scientific attention has shifted from the historical view of OA as a wear-and-tear cartilage disorder to its recognition as a whole-joint disease, highlighting the contribution of other knee joint tissues in OA pathogenesis. Despite much progress in the field of microfluidic systems/organs-on-a-chip in other research fields, current in vitro models in use do not yet accurately reflect the complexity of the OA pathophenotype. In this review, we provide: 1) a detailed overview of the most significant recent developments in the field of microsystems approaches for OA modeling, and 2) an OA-pathophysiology-based bioengineering roadmap for the requirements of the next generation of more predictive and authentic microscale systems fit for the purpose of not only disease modeling but also of drug screening to potentially allow OA animal model reduction and replacement in the near future.
Collapse
Affiliation(s)
- Mario Rothbauer
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Eva I. Reihs
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Anita Fischer
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Florien Jenner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopeadic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
36
|
Neto E, Monteiro AC, Leite Pereira C, Simões M, Conde JP, Chu V, Sarmento B, Lamghari M. Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Adv Healthc Mater 2022; 11:e2102305. [PMID: 35158409 PMCID: PMC11468530 DOI: 10.1002/adhm.202102305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip in vitro platforms accurately mimic complex microenvironments offering the ability to recapitulate and dissect mechanisms of physiological and pathological settings, revealing their major importance to develop new therapeutic targets. Bone diseases, such as osteoarthritis, are extremely complex, comprising of the action of inflammatory mediators leading to unbalanced bone homeostasis and de-regulation of sensory innervation and angiogenesis. Although there are models to mimic bone vascularization or innervation, in vitro platforms merging the complexity of bone, vasculature, innervation, and inflammation are missing. Therefore, in this study a microfluidic-based neuro-vascularized bone chip (NVB chip) is proposed to 1) model the mechanistic interactions between innervation and angiogenesis in the inflammatory bone niche, and 2) explore, as a screening tool, novel strategies targeting inflammatory diseases, using a nano-based drug delivery system. It is possible to set the design of the platform and achieve the optimized conditions to address the neurovascular network under inflammation. Moreover, this system is validated by delivering anti-inflammatory drug-loaded nanoparticles to counteract the neuronal growth associated with pain perception. This reliable in vitro tool will allow understanding the bone neurovascular system, enlightening novel mechanisms behind the inflammatory bone diseases, bone destruction, and pain opening new avenues for new therapies discovery.
Collapse
Affiliation(s)
- Estrela Neto
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Ana Carolina Monteiro
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Catarina Leite Pereira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Miguel Simões
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- CESPUInstituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeRua Central da Gandra, 137Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| |
Collapse
|
37
|
Lui FHY, Xu L, Michaux P, Biazik J, Harm GFS, Oliver RA, Koshy P, Walsh WR, Mobbs RJ, Brennan‐Speranza TC, Wang Y, You L, Sorrell CC. Microfluidic device with a carbonate‐rich hydroxyapatite micro‐coating. NANO SELECT 2022. [DOI: 10.1002/nano.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Florence H. Y. Lui
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia
| | - Liangcheng Xu
- Institute of Biomedical Engineering University of Toronto Toronto Ontario Canada
| | - Pierrette Michaux
- Australian National Fabrication Facility (NSW Node) School of Physics UNSW Sydney Sydney New South Wales Australia
| | - Joanna Biazik
- Mark Wainwright Cell Culture Facility UNSW Sydney Sydney New South Wales Australia
| | - Gregory F. S. Harm
- Mark Wainwright Cell Culture Facility UNSW Sydney Sydney New South Wales Australia
| | - Rema A. Oliver
- Surgical & Orthopaedic Research Laboratories (SORL) Prince of Wales Clinical School UNSW Sydney Sydney New South Wales Australia
| | - Pramod Koshy
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia
| | - William R. Walsh
- Surgical & Orthopaedic Research Laboratories (SORL) Prince of Wales Clinical School UNSW Sydney Sydney New South Wales Australia
| | - Ralph J. Mobbs
- Prince of Wales Hospital School of Medicine UNSW Sydney Sydney New South Wales Australia
| | | | - Yu Wang
- Mark Wainwright Analytical Centre UNSW Sydney Sydney New South Wales Australia
| | - Lidan You
- Institute of Biomedical Engineering University of Toronto Toronto Ontario Canada
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Charles C. Sorrell
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
38
|
Mainardi A, Cambria E, Occhetta P, Martin I, Barbero A, Schären S, Mehrkens A, Krupkova O. Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Front Bioeng Biotechnol 2022; 9:826867. [PMID: 35155416 PMCID: PMC8832503 DOI: 10.3389/fbioe.2021.826867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Discogenic back pain is one of the most diffused musculoskeletal pathologies and a hurdle to a good quality of life for millions of people. Existing therapeutic options are exclusively directed at reducing symptoms, not at targeting the underlying, still poorly understood, degenerative processes. Common intervertebral disc (IVD) disease models still do not fully replicate the course of degenerative IVD disease. Advanced disease models that incorporate mechanical loading are needed to investigate pathological causes and processes, as well as to identify therapeutic targets. Organs-on-chip (OoC) are microfluidic-based devices that aim at recapitulating tissue functions in vitro by introducing key features of the tissue microenvironment (e.g., 3D architecture, soluble signals and mechanical conditioning). In this review we analyze and depict existing OoC platforms used to investigate pathological alterations of IVD cells/tissues and discuss their benefits and limitations. Starting from the consideration that mechanobiology plays a pivotal role in both IVD homeostasis and degeneration, we then focus on OoC settings enabling to recapitulate physiological or aberrant mechanical loading, in conjunction with other relevant features (such as inflammation). Finally, we propose our view on design criteria for IVD-on-a-chip systems, offering a future perspective to model IVD mechanobiology.
Collapse
Affiliation(s)
- Andrea Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Arne Mehrkens
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
- Lepage Research Institute, University of Prešov, Prešov, Slovakia
| |
Collapse
|
39
|
Zhang X, Karim M, Hasan MM, Hooper J, Wahab R, Roy S, Al-Hilal TA. Cancer-on-a-Chip: Models for Studying Metastasis. Cancers (Basel) 2022; 14:648. [PMID: 35158914 PMCID: PMC8833392 DOI: 10.3390/cancers14030648] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The microfluidic-based cancer-on-a-chip models work as a powerful tool to study the tumor microenvironment and its role in metastasis. The models recapitulate and systematically simplify the in vitro tumor microenvironment. This enables the study of a metastatic process in unprecedented detail. This review examines the development of cancer-on-a-chip microfluidic platforms at the invasion/intravasation, extravasation, and angiogenesis steps over the last three years. The on-chip modeling of mechanical cues involved in the metastasis cascade are also discussed. Finally, the popular design of microfluidic chip models for each step are discussed along with the challenges and perspectives of cancer-on-a-chip models.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
| | - Mazharul Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jacob Hooper
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
| | - Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
| | - Sourav Roy
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Taslim A. Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
- Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
40
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
41
|
Mestres G, Carter SSD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater 2021; 130:115-137. [PMID: 34087437 DOI: 10.1016/j.actbio.2021.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Biomaterials offer a promising approach to repair bone defects. Whereas traditional studies predominantly focused on optimizing the osteogenic capacity of biomaterials, less focus has been on the immune response elicited by them. However, the immune and skeletal systems extensively interact, a concept which is referred to as 'osteoimmunology'. This realization has fuelled the development of biomaterials with favourable osteoimmunomodulatory (OIM) properties, aiming to modulate the immune response and to support bone regeneration, thereby affecting the success of an implant. Given the plethora of in vitro assays used to evaluate the OIM properties of biomaterials, it may be challenging to select the right methods to produce conclusive results. In this review, we aim to provide a comprehensive and practical guide for researchers interested in studying the OIM properties of biomaterials in vitro. After a concise overview of the concept of osteoimmunology, emphasis is put on the methodologies that are regularly used to evaluate the OIM properties of biomaterials. First, a description of the most commonly used cell types and cell culture media is provided. Second, typical experimental set-ups and their relevant characteristics are discussed. Third, a detailed overview of the generally used methodologies and readouts, including cell type-specific markers and time points of analysis, is given. Finally, we highlight the promise of advanced approaches, namely microarrays, bioreactors and microfluidic-based systems, and the potential that these may offer to the osteoimmunology field. STATEMENT OF SIGNIFICANCE: Osteoimmunology focuses on the connection and communication between the skeletal and immune systems. This interaction has been recognized to play an important role in the clinical success of biomaterials, which has resulted in an increasing amount of research on the osteoimmunomodulatory (OIM) properties of biomaterials. However, the amount of literature makes it challenging to extract the information needed to design experiments from beginning to end, and to compare obtained results to existing work. This article intends to serve as a guide for those aiming to learn more about the commonly used experimental approaches in the field. We cover early-stage choices, such as cell types and experimental set-ups, but also discuss specific assays, including cell markers and time points of analysis.
Collapse
Affiliation(s)
- Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| | - Sarah-Sophia D Carter
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Nils P Hailer
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
42
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Designing Hydrogel-Based Bone-On-Chips for Personalized Medicine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent development of bone-on-chips (BOCs) holds the main advantage of requiring a low quantity of cells and material, compared to traditional In Vitro models. By incorporating hydrogels within BOCs, the culture system moved to a three dimensional culture environment for cells which is more representative of bone tissue matrix and function. The fundamental components of hydrogel-based BOCs, namely the cellular sources, the hydrogel and the culture chamber, have been tuned to mimic the hematopoietic niche in the bone aspirate marrow, cancer bone metastasis and osteo/chondrogenic differentiation. In this review, we examine the entire process of developing hydrogel-based BOCs to model In Vitro a patient specific situation. First, we provide bone biological understanding for BOCs design and then how hydrogel structural and mechanical properties can be tuned to meet those requirements. This is followed by a review on hydrogel-based BOCs, developed in the last 10 years, in terms of culture chamber design, hydrogel and cell source used. Finally, we provide guidelines for the definition of personalized pathological and physiological bone microenvironments. This review covers the information on bone, hydrogel and BOC that are required to develop personalized therapies for bone disease, by recreating clinically relevant scenarii in miniaturized devices.
Collapse
|