1
|
Ma W, Yang Y, Wang W, Qv J, Jia J, Ren X. Fabrication of N-halamine/MWPPy-ZnO hybrids based cellulose nanofibril composite films with improved UV-protective, antibacterial, and biofilm control functions. Int J Biol Macromol 2024; 278:135023. [PMID: 39182887 DOI: 10.1016/j.ijbiomac.2024.135023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The design and fabrication of synergistic hybrid antibacterial materials is a promising approach for achieving effective sterilization while compensating for the deficiency of a single component. Despite being highly effective biocidal components, the poor UV light stability of some N-halamines limits their applications. This study was conducted to address this issue by the rational integration of cyclic N-halamine precursor (PGHAPA) with microwaved zinc oxide (MWPPy-ZnO) nanoparticles via covalent bonds and the preparation of cellulose nanofibrils based antibacterial composite films after chlorination (CNF/MWPPy-ZnO-PGHAPA-Cl). The proposed films offered tight lamellar structure, considerable thermal stability and better mechanical properties. The results from the FT-IR and XPS experiments provided the evidence of chemical reactions among the PGHAPA, MWPPy-ZnO, and CNF film. Notably, the CNF/MWPPy-ZnO-PGHAPA-Cl films showed improved UV stability with a chlorine content of up to 0.16 % after 24 h of irradiation, which was much greater than that of the CNF/PGHAPA-Cl films. Furthermore, the CNF/MWPPy-ZnO-PGHAPA-Cl films displayed rapid bactericidal activity, inactivating all the contacted Staphylococcus aureus and Escherichia coli O157:H7 strains within 5 min, along with prominent biofilm disruption, indicating great potential for daily food packaging applications.
Collapse
Affiliation(s)
- Wei Ma
- School of Textile Clothing and Design, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China
| | - Yutong Yang
- School of Textile Clothing and Design, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China
| | - Wei Wang
- School of Textile Clothing and Design, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China
| | - Jing Qv
- School of Textile Clothing and Design, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China
| | - Jiru Jia
- School of Textile Clothing and Design, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China
| | - Xuehong Ren
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Key Laboratory of Textile Fiber and Products, Ministry of Education, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China.
| |
Collapse
|
2
|
Zuo H, Lyu B, Yao J, Long W, Shi Y, Li X, Hu H, Thomas A, Yuan J, Hou B, Zhang W, Liao Y. Bioinspired Gradient Covalent Organic Framework Membranes for Ultrafast and Asymmetric Solvent Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305755. [PMID: 38227620 DOI: 10.1002/adma.202305755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function-related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much-enhanced flux (10-18 times) of the "large-to-small" pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar-1) and polar (methanol ≈175.93 LMH bar-1) solvents, together with narrow molecular weight cut-off (MWCO, 472 g mol-1) and molecular weight retention onset (MWRO, <182 g mol-1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.
Collapse
Affiliation(s)
- Hongyu Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Baokang Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaao Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenhua Long
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinghao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technical University of Berlin, Sekretariat BA 2, 4010623, Hardenbergstr, Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Wales CF24 3AA, Cardiff, CF10 3AT, UK
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
ZnO-containing nanocomposites produced from Mentha pulegium L. of a new HEMA-based methacrylate copolymer: improvement the thermal and antimicrobial effect. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Boarino A, Wang H, Olgiati F, Artusio F, Özkan M, Bertella S, Razza N, Cagno V, Luterbacher JS, Klok HA, Stellacci F. Lignin: A Sustainable Antiviral Coating Material. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:14001-14010. [PMID: 36312454 PMCID: PMC9597781 DOI: 10.1021/acssuschemeng.2c04284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Indexed: 05/15/2023]
Abstract
Transmission of viruses through contact with contaminated surfaces is an important pathway for the spread of infections. Antiviral surface coatings are useful to minimize such risks. Current state-of-the-art approaches toward antiviral surface coatings either involve metal-based materials or complex synthetic polymers. These approaches, however, even if successful, will have to face great challenges when it comes to large-scale applications and their environmental sustainability. Here, an antiviral surface coating was prepared by spin-coating lignin, a natural biomass residue of the paper production industry. We show effective inactivation of herpes simplex virus type 2 (>99% after 30 min) on a surface coating that is low-cost and environmentally sustainable. The antiviral mechanism of the lignin surface was investigated and is attributed to reactive oxygen species generated upon oxidation of lignin phenols. This mechanism does not consume the surface coating (as opposed to the release of a specific antiviral agent) and does not require regeneration. The coating is stable in ambient conditions, as demonstrated in a 6 month aging study that did not reveal any decrease in antiviral activity. This research suggests that natural compounds may be used for the development of affordable and sustainable antiviral coatings.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Heyun Wang
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Fiora Artusio
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Melis Özkan
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Stefania Bertella
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Nicolò Razza
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Valeria Cagno
- Institute
of Microbiology, Lausanne University Hospital,
University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Jeremy S. Luterbacher
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- Institute
of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale
de Lausanne (EPFL), Station
12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Zhang Y, Choi YW, Demir B, Ekbataniamiri F, Fulton ML, Ma M, Schang LM, Purevdorj-Gage L, Qiao M. Novel chlorine-extending polymer coating with prolonged antiviral activity against SARS-CoV-2. Lett Appl Microbiol 2022; 75:1346-1353. [PMID: 35965454 DOI: 10.1111/lam.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
We previously reported a novel polymeric surface coating, namely HaloFilmTM , that can immobilize and extend the antimicrobial activity of chlorine on surfaces. In this study, we demonstrated the continuous antiviral efficacy of HaloFilmTM when applied on stainless steel and cotton gauze as two representative models for non-porous and porous surfaces against SARS-CoV-2. Forty-eight hours post HaloFilm application and chlorination, and 2 hours post the viral challenge, the inoculum titer was reduced by 2.25±0.33 and ≥4.36±0.23 log10 TCIDA50 on non-porous and porous surfaces, respectively. The half-life of the virus was shorter (13.86 min) on a HaloFilmTM -coated surface compared to what has been reported on copper (46.44 min).
Collapse
Affiliation(s)
| | - Young W Choi
- Battelle Biomedical Research Center, West Jefferson, OH
| | | | | | | | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY
| | - Luis M Schang
- Department of Microbiology and Immunology, Baker Institute for Animal Health, Cornell University, Ithaca, NY
| | | | | |
Collapse
|
6
|
Dahanayake MH, Athukorala SS, Jayasundera ACA. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 2022; 12:16369-16385. [PMID: 35747530 PMCID: PMC9158512 DOI: 10.1039/d2ra01567f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
COVID-19 persists as the most challenging pandemic of the 21st century with a high rate of transmission. The main pathway of SARS-CoV-2 transmission is aerosol-mediated infection transfer through virus-laden droplets that are expelled by infected people, whereas indirect transmission occurs when contact is made with a contaminated surface. This mini review delivers an overview of the current state of knowledge, research directions, and applications by examining the most recent developments in antiviral surface coatings and filters and analyzing their efficiencies. Reusable masks and other personal protective devices with antiviral properties and self-decontamination could be valuable tools in the fight against viral spread. Moreover, antiviral surface coatings that repel pathogens by preventing adhesion or neutralize pathogens with self-sanitizing ability are assumed to be the most desirable for terminating indirect transmission of viruses. Although many nanomaterials have shown high antiviral capacities, additional research is unquestionably required to develop next-generation antiviral agents with unique characteristics to face future viral outbreaks.
Collapse
Affiliation(s)
- Madushani H Dahanayake
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- National Institute of Fundamental Studies Hanthana Kandy Sri Lanka
| | - Sandya S Athukorala
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya Sri Lanka
| | - A C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Division of Mathematics and Science, Missouri Valley College Marshall MO 65340 USA
| |
Collapse
|
7
|
Liu M, Bauman L, Nogueira CL, Aucoin MG, Anderson WA, Zhao B. Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100395. [PMID: 35434438 PMCID: PMC8995198 DOI: 10.1016/j.cobme.2022.100395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial polymer composites have long been utilized in the healthcare field as part of the first line of defense. These composites are desirable in that they pose a minimal risk of developing contagions with antibiotic resistance. For this reason, the field of antimicrobial composites has seen steady growth over recent years and is becoming increasingly important during the current COVID-19 pandemic. In this article, we first review the need of the antimicrobial polymers in high tough surfaces, the antimicrobial mechanism, and then the recent advances in the development of antimicrobial polymer composite including the utilization of intrinsic antimicrobial polymers, the addition of antimicrobial additives, and new exploration of surface patterning. While there are many established and developing methods of imbuing a material with antimicrobial activity, there currently is no standard quantification method for these properties leading to difficulty comparing the efficacy of these materials within the literature. A discussion of the common antimicrobial characterization methods is provided along with highlights on the need of a standardized quantification of antiviral and antibacterial properties in testing to allow ease of comparison between generated libraries and to facilitate proper screening. We also discuss and comment on the current trends of the development of antimicrobial polymer composites with long-lasting and specific antimicrobial activities, nontoxic properties, and environmental friendliness against a broad-spectrum of microbes.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lukas Bauman
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | - Boxin Zhao
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
8
|
Manakhov AM, Permyakova ES, Sitnikova NA, Tsygankova AR, Alekseev AY, Solomatina MV, Baidyshev VS, Popov ZI, Blahová L, Eliáš M, Zajíčková L, Kovalskii AM, Sheveyko AN, Kiryukhantsev-Korneev PV, Shtansky DV, Nečas D, Solovieva AO. Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas. Molecules 2022; 27:1333. [PMID: 35209122 PMCID: PMC8878124 DOI: 10.3390/molecules27041333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
Collapse
Affiliation(s)
- Anton M. Manakhov
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
| | - Elizaveta S. Permyakova
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Natalya A. Sitnikova
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia;
| | - Alexander Y. Alekseev
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., Novosibirsk 630060, Russia; (A.Y.A.); (M.V.S.)
| | - Maria V. Solomatina
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., Novosibirsk 630060, Russia; (A.Y.A.); (M.V.S.)
| | - Victor S. Baidyshev
- Department of Computer Engineering and Automated Systems Software, Katanov Khakas State University, Pr. Lenin 90, Abakan 655017, Russia;
| | - Zakhar I. Popov
- Emanuel Institute of Biochemical Physics RAS, Kosygina 4, Moscow 119334, Russia;
| | - Lucie Blahová
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Marek Eliáš
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Lenka Zajíčková
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Andrey M. Kovalskii
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Alexander N. Sheveyko
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Philipp V. Kiryukhantsev-Korneev
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Dmitry V. Shtansky
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - David Nečas
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Anastasiya O. Solovieva
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
| |
Collapse
|