1
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
3
|
Liu P. Polyprodrugs for tumor chemotherapy: from molecular structure to drug release performance. J Mater Chem B 2023; 11:9565-9571. [PMID: 37791422 DOI: 10.1039/d3tb01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Polyprodrugs have been recognized as promising carrier-free drug delivery systems (DDSs) for tumor chemotherapy in recent years, showing distinct superiority in comparison with the conventional polymer prodrugs. In the present work, the structure-property relationship of polyprodrugs was explored from the perspective of molecular structure, by discussing the effects of the conjugations and linkers on their drug content and drug releasing performance, including drug releasing rate and drug releasing selectivity, as well as the anti-tumor performance of the released drugs. Moreover, the future challenges in the design of polyprodrug-based DDSs with high anti-tumor efficacy were also highlighted.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
4
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
5
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
6
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Lu H, He S, Zhang Q, Li X, Xie Z, Wang Z, Qi Y, Huang Y. Dual-sensitive dual-prodrug nanoparticles with light-controlled endo/lysosomal escape for synergistic photoactivated chemotherapy. Biomater Sci 2021; 9:7115-7123. [PMID: 34569561 DOI: 10.1039/d1bm01154e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical application of conventional chemotherapeutic agents, represented by cisplatin, is limited by severe side effects. So, it is essential to explore more safer and controlled drug delivery systems for synergistic chemotherapy. In this work, we designed dual-sensitive dual-prodrug nanoparticles (DDNPs) for photoactivated platinum-based synergistic chemotherapy. With photosensitivity, DDNPs could be photoactivated from inert Pt(IV) to toxic Pt(II) under safe UVA light in a spatiotemporally controlled manner. Concurrently, mild could be generated from DDNPs to assist the endo/lysosomal escape of DDNPs for better photoactivated chemotherapy (PACT). Furthermore, with acid-sensitivity, demethylcantharidin (DMC), a protein phosphatase 2A (PP2A) inhibitor, was released to block the DNA repair pathway and thereby could sensitize platinum-based chemotherapy in intracellular acidic microenvironments. Along with a precise ratio (Pt : DMC = 1 : 2), DDNPs had a powerful synergistic anti-cancer effect in vitro and in vivo. In the future, DDNPs have great potential as a safe and multifunctional drug delivery system for precise nanomedicine in clinical treatments.
Collapse
Affiliation(s)
- Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zigui Wang
- Zhengzhou Immunobiotech Co., Ltd, Zhengzhou 450016, P.R. China.
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
10
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
11
|
Gandioso A, Rovira A, Shi H, Sadler PJ, Marchán V. Unexpected photoactivation pathways in a folate-receptor-targeted trans-diazido Pt(IV) anticancer pro-drug. Dalton Trans 2021; 49:11828-11834. [PMID: 32815971 DOI: 10.1039/d0dt02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conjugate between a photoactive trans-diazido Pt(iv) pro-drug, trans,trans,trans-[Pt(N3)2(OH)2(py)2], and folic acid has been synthesized and fully characterized by high resolution ESI-MS, NMR and UV-vis spectroscopy. Photoactivation of the Pt-folate conjugate with visible light confirmed the generation of cytotoxic Pt(ii) species capable of binding to guanine nucleobases. Importantly, photoreduction of the Pt(iv) complex triggered the photodecomposition of the folate vector into a p-aminobenzoate-containing fragment and several pterin derivatives, including 6-formylpterin. Besides exhibiting high dark stability in physiological-like conditions, the Pt-folate conjugate was ca. 2× more photocytotoxic towards MCF-7 breast cancer cell line than its parent Pt(iv) complex with a high photoselectivity index (PI > 6.9). The higher photocytotoxicity of the conjugate may be a consequence of its higher cellular accumulation and of the generation of a set of different cytotoxic species, including Pt(ii) photoproducts and several pterin derivatives, which are known to generate ROS.
Collapse
Affiliation(s)
- Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| | - Huayun Shi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
12
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
13
|
Ma S, Li X, Ran M, Ji M, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int J Pharm 2021; 601:120577. [PMID: 33839227 DOI: 10.1016/j.ijpharm.2021.120577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 01/13/2023]
Abstract
Resistance to platinum agents is a crucial challenge in the treatment of cancer using platinum drugs. To overcome the resistance of cells, the survivin protein is supposed to be decreased, since it has previously been found to be overexpressed in drug-resistant cancer cells in anti-apoptosis pathways, while the intracellular effective platinum accumulation should be increased. In the present work, a protamine/hyaluronic acid nanocarrier was used to load survivin siRNA with Pt(IV) loaded outside the coated polyglutamic acid (PGA) by chemical conjugation. The siRNA was released from the co-loaded nanoparticle prior to Pt(IV), in this way, the expression of survivin protein was effectively reduced, which, in turn, could avoid the anti-apoptosis of drug resistant cells. Here, Pt(IV) displayed a sustained release effect and gradually reduced to the toxic Pt(II) species, which reduced drug efflux and enhance apoptosis of the cancer cells. In vitro studies demonstrated that co-loaded nanoparticles resulted in similar cell killing performance in A549/DDP cells (cisplatin resistant) compared with non-siRNA loaded nanoparticles in A549 cells (cisplatin sensitive). NP-siRNA/Pt(IV) exhibited a greatly improved therapeutic effect (TIR, 82.46%) in a nude mice A549/DDP tumor model, with no serious adverse effects observed. Thus, co-loading of Pt(IV) and survivin siRNA nanoparticles could reverse cisplatin resistance and therefore has promising prospects for efficient cancer chemotherapy.
Collapse
Affiliation(s)
- Shuting Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xiaowen Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Meixin Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| |
Collapse
|
14
|
Rapp TL, DeForest CA. Targeting drug delivery with light: A highly focused approach. Adv Drug Deliv Rev 2021; 171:94-107. [PMID: 33486009 PMCID: PMC8127392 DOI: 10.1016/j.addr.2021.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022]
Abstract
Light is a uniquely powerful tool for controlling molecular events in biology. No other external input (e.g., heat, ultrasound, magnetic field) can be so tightly focused or so highly regulated as a clinical laser. Drug delivery vehicles that can be photonically activated have been developed across many platforms, from the simplest "caging" of therapeutics in a prodrug form, to more complex micelles and circulating liposomes that improve drug uptake and efficacy, to large-scale hydrogel platforms that can be used to protect and deliver macromolecular agents including full-length proteins. In this Review, we discuss recent innovations in photosensitive drug delivery and highlight future opportunities to engineer and exploit such light-responsive technologies in the clinical setting.
Collapse
Affiliation(s)
- Teresa L Rapp
- Department of Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Chemistry, University of Washington, Seattle, WA 98105, USA; Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
15
|
Zhang Q, Kuang G, Zhou D, Qi Y, Wang M, Li X, Huang Y. Photoactivated polyprodrug nanoparticles for effective light-controlled Pt(iv) and siRNA codelivery to achieve synergistic cancer therapy. J Mater Chem B 2021; 8:5903-5911. [PMID: 32538396 DOI: 10.1039/d0tb01103g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endo/lysosomal escape and the subsequent controllable/precise release of drugs and genes are key challenges for efficient synergistic cancer therapy. Herein, we report a photoactivated polyprodrug nanoparticle system (PPNPsiRNA) centered on effective light-controlled codelivery of Pt(iv) prodrug and siRNA for synergistic cancer therapy. Under green-light irradiation, PPNPsiRNA can sustainedly generate oxygen-independent azidyl radicals to facilitate endo/lysosomal escape through the photochemical internalization (PCI) mechanism. Besides, concurrent Pt(ii) release and siRNA unpacking could occur in a controllable manner after the decomposition of Pt(iv), main chain shattering of photoactivated polyprodrug and the PPNPsiRNA disassociation. Based on these innovative features, excellent synergistic therapeutic efficacy of chemo- and RNAi therapies of PPNPsiBcl-2 could be achieved on ovarian cancer cells under light irradiation. The facile synthesized and prepared photoactivatable polyprodrug nanoparticle system provides a new strategy for effective gene/drug codelivery, where controllable endo/lysosomal escape and the subsequent drug/gene release/unpacking play vital roles, which could be adopted as a versatile codelivery nanoplatform for the treatment of various cancers.
Collapse
Affiliation(s)
- Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Q, Kuang G, He S, Liu S, Lu H, Li X, Zhou D, Huang Y. Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy. NANO RESEARCH 2021; 14:601-610. [DOI: 10.1007/s12274-020-3066-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 08/30/2023]
|
17
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Wang L, Liu Z, He S, He S, Wang Y. Fighting against drug-resistant tumors by the inhibition of γ-glutamyl transferase with supramolecular platinum prodrug nano-assemblies. J Mater Chem B 2021; 9:4587-4595. [PMID: 34059856 DOI: 10.1039/d1tb00149c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(ii)-based antitumor drugs (e.g. cisplatin and oxaliplatin) are one of the most successful and frequently used drugs in cancer chemotherapy at present. However, drug resistance and severe side effects are the major problems in the application of platinum drugs. Detoxification of Pt(ii) drugs is one of the most important mechanisms of drug resistance. Herein, a supramolecular Pt(iv) prodrug nano-assembly delivery system is designed and used to encapsulate a γ-glutamyl transferase (GGT) inhibitor (OU749) (Pt-CD/Dex-Ad@OU nano-assemblies) for the synergistic chemotherapy of cisplatin-resistant cancer. Pt-CD/Dex-Ad@OU nano-assemblies could be efficiently taken up by cisplatin-resistant cancer cells and release a drug in the intracellular reductive environment. The Pt-CD/Dex-Ad@OU nano-assemblies can efficiently suppress the expression of GGT, depleting GSH and augmenting ROS via the reduction of the Pt(iv) prodrug. Thereby, by breaking the redox balance the detoxification and antiapoptosis mechanisms of Pt(ii) drugs can be overcome. Thereafter, the excellent therapeutic efficacy of Pt-CD/Dex-Ad@OU nano-assemblies is validated on a cisplatin-resistant human non-small cell lung cancer (A549/DDP) model. Furthermore, the inhibition of GGT protein is expected to reduce the nephrotoxicity of cisplatin. Collectively, this study provides a promising strategy to break the redox balance for overcoming drug resistance and maximizing the efficacy of platinum-based cancer therapy.
Collapse
Affiliation(s)
- Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Zejun Liu
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Shumei He
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Yupeng Wang
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, P. R. China.
| |
Collapse
|
19
|
Hou W, Liu R, Bi S, He Q, Wang H, Gu J. Photo-Responsive Polymersomes as Drug Delivery System for Potential Medical Applications. Molecules 2020; 25:E5147. [PMID: 33167426 PMCID: PMC7663911 DOI: 10.3390/molecules25215147] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N'-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic block copolymers have a suitable hydrophobic/hydrophilic ratio and can self-assemble into photoresponsive polymersomes for co-loading hydrophobic and hydrophilic cargos into hydrophobic membranes and aqueous compartments of the polymersomes. The polymersomes demonstrate a clear photo-responsive characteristic. Exposure to light irradiation at 365 nm can trigger a photocleavage reaction of o-nitrobenzyl groups, which results in dissociation of the polymersomes with simultaneous co-release of hydrophilic and hydrophobic cargoes on demand. Therefore, these polymersomes have great potential as a smart drug delivery nanocarrier for controllable loading and releasing of hydrophilic and hydrophobic drug molecules. Moreover, taking advantage of the conditional releasing of hydrophilic and hydrophobic drugs, the drug delivery system has potential use in medical applications such as cancer therapy.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China;
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, Sichuan, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China; (R.L.); (S.B.)
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China; (R.L.); (S.B.)
| | - Qian He
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China;
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, Sichuan, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| |
Collapse
|
20
|
Yu H, Ingram N, Rowley JV, Green DC, Thornton PD. Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot. Chemistry 2020; 26:13352-13358. [PMID: 32330327 DOI: 10.1002/chem.202000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 12/27/2022]
Abstract
The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin-loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) in dimethyl sulfoxide solution into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.
Collapse
Affiliation(s)
- Huayang Yu
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola Ingram
- Leeds Institute of Biomedical and Clinical Sciences, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Jason V Rowley
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, Qi B, Patel D, Shi B, Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020; 56:102821. [PMID: 32505922 PMCID: PMC7280365 DOI: 10.1016/j.ebiom.2020.102821] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The rapid development of nanotechnology results in the emergence of nanomedicines, but the effective delivery of drugs to tumor sites remains a great challenge. Prodrug-based cancer nanomedicines thus emerged due to their unique advantages, including high drug load efficiency, reduced side effects, efficient targeting, and real-time controllability. A distinctive characteristic of prodrug-based nanomedicines is that they need to be activated by a stimulus or multi-stimulus to produce an anti-tumor effect. A better understanding of various responsive approaches could allow researchers to perceive the mechanism of prodrug-based nanomedicines effectively and further optimize their design strategy. In this review, we highlight the stimuli-responsive pathway of prodrug-based nanomedicines and their anticancer applications. Furthermore, various types of prodrug-based nanomedicines, recent progress and prospects of stimuli-responsive prodrug-based nanomedicines and patient data in the clinical application are also summarized. Additionally, the current development and future challenges of prodrug-based nanomedicines are discussed. We expect that this review will be valuable for readers to gain a deeper understanding of the structure and development of prodrug-based cancer nanomedicines to design rational and effective drugs for clinical use.
Collapse
Affiliation(s)
- Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Singapore American School, Singapore, 738547
| | - Sumaira Hanif
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Yoon Kim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Patel
- Jericho High School, New York, NY 11753, USA
| | - Bingyang Shi
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Zhang Q, Kuang G, He S, Lu H, Cheng Y, Zhou D, Huang Y. Photoactivatable Prodrug-Backboned Polymeric Nanoparticles for Efficient Light-Controlled Gene Delivery and Synergistic Treatment of Platinum-Resistant Ovarian Cancer. NANO LETTERS 2020; 20:3039-3049. [PMID: 32250633 DOI: 10.1021/acs.nanolett.9b04981] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combination of chemotherapy and gene therapy provides an effective strategy for cancer treatment. However, the lack of suitable codelivery systems with efficient endo/lysosomal escape and controllable drug release/gene unpacking is the major bottleneck for maximizing the combinational therapeutic efficacy. In this work, we developed a photoactivatable Pt(IV) prodrug-backboned polymeric nanoparticle system (CNPPtCP/si(c-fos)) for light-controlled si(c-fos) delivery and synergistic photoactivated chemotherapy (PACT) and RNA interference (RNAi) on platinum-resistant ovarian cancer (PROC). Upon blue-light irradiation (430 nm), CNPPtCP/si(c-fos) generates oxygen-independent N3• with mild oxidation energy for efficient endo/lysosomal escape through N3•-assisted photochemical internalization with less gene deactivation. Thereafter, along with Pt(IV) prodrug activation, CNPPtCP/si(c-fos) dissociates to release active Pt(II) and unpack si(c-fos) simultaneously. Both in vitro and in vivo results demonstrated that CNPPtCP/si(c-fos) displayed excellent synergistic therapeutic efficacy on PROC with low toxicity. This PACT prodrug-backboned polymeric nanoplatform may provide a promising gene/drug codelivery tactic for treatment of various hard-to-tackle cancers.
Collapse
Affiliation(s)
- Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gaizhen Kuang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, P. R. China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yilong Cheng
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
23
|
Kong L, Chen Q, Campbell F, Snaar‐Jagalska E, Kros A. Light-Triggered Cancer Cell Specific Targeting and Liposomal Drug Delivery in a Zebrafish Xenograft Model. Adv Healthc Mater 2020; 9:e1901489. [PMID: 32052583 DOI: 10.1002/adhm.201901489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Indexed: 01/30/2023]
Abstract
Cell-specific drug delivery remains a major unmet challenge for cancer nanomedicines. Here, light-triggered, cell-specific delivery of liposome-encapsulated doxorubicin to xenograft human cancer cells in live zebrafish embryos is demonstrated. This method relies on light-triggered dePEGylation of liposome surfaces to reveal underlying targeting functionality. To demonstrate general applicability of this method, light-triggered, MDA-MB-231 breast cancer cell specific targeting in vivo (embryonic zebrafish) is shown using both clinically relevant, folate-liposomes, as well as an experimental liposome-cell fusion system. In the case of liposome-cell fusion, the delivery of liposomal doxorubicin direct to the cytosol of target cancer cells results in enhanced cytotoxicity, compared to doxorubicin delivery via either folate-liposomes or free doxorubicin, as well as a significant reduction in xenograft cancer cell burden within the embryonic fish.
Collapse
Affiliation(s)
- Li Kong
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Quanchi Chen
- Institute of BiologyLeiden University Leiden 2311 EZ The Netherlands
| | - Frederick Campbell
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | | | - Alexander Kros
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
24
|
Chen SQ, Song G, He C, Hou M, He WD, Li HJ, Haleem A, Li QL, Hu RF. Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum( iv) prodrugs for improved intracellular delivery and cytosolic reductive-triggered release. Polym Chem 2020. [DOI: 10.1039/c9py01838g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular pH-sensitive Pt(iv)-based nanodrugs enable preferential toxicity to tumor cells via a selectively endocytosed and triggered drug release strategy.
Collapse
Affiliation(s)
- Sheng-Qi Chen
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Gang Song
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Chen He
- Institute of Aerospace Materials and Processing
- Beijing 100076
- China
| | - Mei Hou
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Wei-Dong He
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Hui-Juan Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Abdul Haleem
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Qing-Lin Li
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| | - Rong-Feng Hu
- Key Laboratory of Xin'an Medicine
- Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
- Anhui Province; Anhui University of Chinese Medicine
- Hefei
- China
| |
Collapse
|
25
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
26
|
Wang Z, Kuang G, Yu Z, Li A, Zhou D, Huang Y. Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater 2019; 94:459-468. [PMID: 31128323 DOI: 10.1016/j.actbio.2019.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/09/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
Abstract
The synergistic efficacy and clinical application of light-responsive polymeric co-delivery systems are severely restricted by uncontrollable/imprecise drug loading, release, and adverse effects caused by the introduction of additional light-responsive molecules or contrast agents when diagnostic imaging is applied to guide therapy. Here, we report the design of a light-activatable dual prodrug polymer nanoparticle (DPP NP) for precise synergistic chemotherapy guided by drug-mediated computed tomography (DMCT) imaging without the introduction of any additional diagnostic imaging agent. DPP NP enables visible light-triggered prodrug polymer backbone cleavage and bioactive Pt(II) release in cancer cell/tumor site; the light-cleaved polymer fragments are further hydrolyzed to produce demethyl cantharidin (DMC). Notably, the drug loading ratio of Pt(IV) and DMC in DPP NP was fixed at an optimal value to achieve maximum synergistic cancer cell killing, which was kept even after cellular uptake, thereby resulting in enhanced synergistic antitumor efficacy both in vitro and in vivo. Because of the high content of the heavy metal Pt in the polymer chain, the spatial/temporal dynamic biodistribution as well as metabolism of DPP NP in vivo can be monitored by Pt DMCT imaging to guide the light irradiation parameters for optimized light-activatable synergistic chemotherapy. Guided by Pt DMCT imaging, DPP NP was able to achieve an improved light-activatable antitumor efficacy, with 75% tumors fully cured and low toxicity. The light-activatable DDP NP system exhibits tremendous potential as precise theranostic nanomedicine. STATEMENT OF SIGNIFICANCE: The synergistic efficacy and clinical application of light-responsive polymeric co-delivery systems are severely restricted by uncontrollable/imprecise drug loading, delivery, and release, as well as adverse effects caused by the introduction of additional light-responsive molecules or contrast agents when diagnostic imaging is applied to guide therapy. Herein, we report the design of a light-activatable dual prodrug polymer nanoparticle (DPP NP) for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging without the introduction of any additional diagnostic imaging agents. Notably, the drug loading ratio of Pt(II) and DMC in DPP NP was fixed at an optimal value to achieve maximum synergistic cancer cell killing, which was kept even after cellular uptake, thereby resulting in enhanced synergistic antitumor efficacy both in vitro and in vivo. The light-activatable DDP NP system exhibits tremendous potential as precise theranostic nanomedicine.
Collapse
Affiliation(s)
- Zigui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Gaizhen Kuang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, PR China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China.
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
27
|
|
28
|
Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Light-Activatable Prodrug and AIEgen Copolymer Nanoparticle for Dual-Drug Monitoring and Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18691-18700. [PMID: 31038909 DOI: 10.1021/acsami.9b02346] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyprodrug nanoparticles have been employed recently for safer and more effective cancer treatment. However, it remains a challenge to elucidate how and when the polyprodrug nanoparticles are dissociated and activated to release active drugs in cancer cells. Herein, a visible light-activatable Pt(IV) prodrug and an aggregation-induced emission luminogen (AIEgen) were copolymerized and embedded in the main chain of PtAIECP, and the chemotherapeutic doxorubicin (DOX) was subsequently encapsulated in the nanoparticles self-assembled by PtAIECP (PtAIECP@DOX NP). PtAIECP@DOX NP enabled the monitoring of both the light-activation of Pt(IV) prodrug to active Pt(II) and release of encapsulated DOX intracellularly through the fluorescence "turn-on" in the course of visible-light-induced polymer-main-chain cleavage and self-assembled structure dissociation in vitro and ex vivo. The synergistic anticancer efficacy of the activated Pt(II) drug and DOX in PtAIECP@DOX NP was also investigated in vitro and in vivo. The implementation of polyprodrug and AIE combination strategy empowered dual drug release and monitoring, which could be further used to guide the temporal and spatial control of light irradiation to maximize therapeutic efficiency, and will inspire other combinational bioimaging and therapy strategies.
Collapse
Affiliation(s)
- Peng Wu
- College of Chemistry , Jilin University , 2519 Jiefang Road , Changchun 130023 , P. R. China
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital , Southern Medical University , Guangzhou 510282 , P. R. China
| | - Zigui Wang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- School of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Jinshan Guo
- Department of Biomedical Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China
| | - Jizhen Li
- College of Chemistry , Jilin University , 2519 Jiefang Road , Changchun 130023 , P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
29
|
Yu Y, Xu Q, He S, Xiong H, Zhang Q, Xu W, Ricotta V, Bai L, Zhang Q, Yu Z, Ding J, Xiao H, Zhou D. Recent advances in delivery of photosensitive metal-based drugs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Li W, Fan X, Lv X, Du J, Liu Q, Lin J, Hu Z, Li Z. Reduction-responsive shell cross-linked micelles derived from amphiphilic triblock copolymer as anticancer drug delivery carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:383-390. [DOI: 10.1016/j.msec.2018.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022]
|
31
|
Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. NANOSCALE HORIZONS 2019; 4:378-387. [PMID: 32254090 DOI: 10.1039/c8nh00417j] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To maximize drug targeting to solid tumors, cancer nanomedicines with prolonged circulation times are required. To this end, poly(ethylene glycol) (PEG) has been widely used as a steric shield of nanomedicine surfaces to minimize serum protein absorption (opsonisation) and subsequent recognition and clearance by cells of the mononuclear phagocyte system (MPS). However, PEG also inhibits interactions of nanomedicines with target cancer cells, limiting the effective drug dose that can be reached within the target tumor. To overcome this dilemma, nanomedicines with stimuli-responsive cleavable PEG functionality have been developed. These benefit from both long circulation lifetimes en route to the targeted tumor as well as efficient drug delivery to target cancer cells. In this review, various stimuli-responsive strategies to dePEGylate nanomedicines within the tumor microenvironment will be critically reviewed.
Collapse
Affiliation(s)
- Li Kong
- Leiden Institute of Chemistry - Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | | | | |
Collapse
|
32
|
Shi H, Imberti C, Sadler PJ. Diazido platinum(iv) complexes for photoactivated anticancer chemotherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00288j] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diazido Pt(iv) complexes with a general formula [Pt(N3)2(L)(L′)(OR)(OR′)] are a new generation of anticancer prodrugs designed for use in photoactivated chemotherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
33
|
Shi H, Wang Q, Venkatesh V, Feng G, Young LS, Romero-Canelón I, Zeng M, Sadler PJ. Photoactive platinum(iv) complex conjugated to a cancer-cell-targeting cyclic peptide. Dalton Trans 2019; 48:8560-8564. [DOI: 10.1039/c9dt00909d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conjugate of a cancer-cell targeting cyclic peptide with a photoactive platinum(iv) complex exhibits enhanced photocytotoxicity and cell accumulation.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Qian Wang
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-Sen University Cancer Center
- Guangzhou 510060
- China
| | - V. Venkatesh
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Guokai Feng
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-Sen University Cancer Center
- Guangzhou 510060
- China
| | | | | | - Musheng Zeng
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-Sen University Cancer Center
- Guangzhou 510060
- China
| | - Peter J. Sadler
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| |
Collapse
|
34
|
Imran M, Ayub W, Butler IS, Zia-ur-Rehman. Photoactivated platinum-based anticancer drugs. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Zhang Z, Kuang G, Zong S, Liu S, Xiao H, Chen X, Zhou D, Huang Y. Sandwich-Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803217. [PMID: 30306650 DOI: 10.1002/adma.201803217] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/10/2018] [Indexed: 05/07/2023]
Abstract
Intraoperative bleeding is an essential factor leading to the earliest recurrence and tumor metastasis frequently seen after resection of solid tumors. Local drug delivery implants show the unique advantages on postoperative cancer therapy. Herein, a sandwich-like cisplatin-loaded fibers/sponge composite (CFSC) combining chemotherapy and hemostasis is constructed. The obtained implantable CFSC is able to simultaneously stop bleeding and absorb disseminated tumor cells after tumor resection. More importantly, sustained released cisplatin can kill local residual tumor cells as well as those concentrated in the CFSC, which significantly inhibits local tumor recurrence and distant tumor metastasis on the subcutaneous postoperative recurrence model and metastasis models. This dual functional implant strategy with low toxicity to healthy organs may inspire new aspects for efficient postoperative cancer therapy.
Collapse
Affiliation(s)
- Zhiyun Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Gaizhen Kuang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Gastroenterology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Shan Zong
- The First Hospital of Jinlin University, Changchun, 130021, P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Haihua Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
36
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhou L, Qiu T, Lv F, Liu L, Ying J, Wang S. Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800670. [PMID: 30080319 DOI: 10.1002/adhm.201800670] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/03/2018] [Indexed: 01/28/2023]
Abstract
Self-assembly strategies have been widely applied in the nanomedicine field, which provide a convenient approach for building various structures for delivery carriers. When cooperating with biomolecules, self-assembly systems have significant influence on the cell activity and life process and could be used for regulating nanodrug activity. In this review, self-assembled nanomedicines are introduced, including materials, encapsulation, and releasing strategies, where self-assembly strategies are involved. Furthermore, as a promising and emerging area for nanomedicine, in situ self-assembly of anticancer drugs and supramolecular antibiotic switches is also discussed about how to regulate drug activity. Selective pericellular assembly can block mass transformation of cancer cells inducing cell apoptosis, and the intracellular assembly can either cause cell death or effectively avoid drug elimination from cytosol of cancer cells because of the assembly-induced retention (AIR) effect. Host-guest interactions of drug and competitive molecules offer reversible regulations of antibiotic activity, which can reduce drug-resistance and inhibit the generation of drug-resistant bacteria. Finally, the challenges and development trend in the field are discussed.
Collapse
Affiliation(s)
- Lingyun Zhou
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Tian Qiu
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jianming Ying
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
38
|
He S, Li C, Zhang Q, Ding J, Liang XJ, Chen X, Xiao H, Chen X, Zhou D, Huang Y. Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS NANO 2018; 12:7272-7281. [PMID: 29906087 DOI: 10.1021/acsnano.8b03476] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drug, targeting ligand, and imaging agent are the three essential components in a nanoparticle-based drug delivery system. However, tremendous batch-to-batch variation of composition and drug content typically accompany the current approaches of building these components together. Herein, we report the design of photoactivatable platinum(IV) (Pt(IV)) amphiphiles containing one or two hydrophilic lactose targeting ligands per hydrophobic Pt(IV) prodrug for an all-in-one precise nanomedicine. Self-assembly of these Pt(IV) amphiphiles results in either micelle or vesicle formation with a fixed Pt/targeting moiety ratio and a constantly high content of Pt. The micelles and vesicles are capable of hepatoma cell-targeting, fluorescence/Pt-based CT imaging and have shown effective anticancer efficacy under laser irradiation in vitro and in vivo. This photoactivatable, active self-targeting, and multimodal theranostic amphiphile strategy shows great potential in constructing precise nanomedicine.
Collapse
Affiliation(s)
- Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chan Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Haihua Xiao
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
39
|
Wu P, Zhou D, Huang Y, Li J. Light-stimulus Dual-drug Responsive Nanoparticles for Photoactivated Therapy Using Mesoporous Silica Nanospheres. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Cong Y, Xiao H, Xiong H, Wang Z, Ding J, Li C, Chen X, Liang XJ, Zhou D, Huang Y. Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patient-Derived Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1706220. [PMID: 29349918 DOI: 10.1002/adma.201706220] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Most of the current nanoparticle-based therapeutics worldwide failing in clinical trials face three major challenges: (i) lack of an optimum drug delivery platform with precise composition, (ii) lack of a method of directly monitoring the fate of a specific drug rather than using any other labelling molecules as a compromise, and (iii) lack of reliable cancer models with high fidelity for drug screen and evaluation. Here, starting from a PP2A inhibitor demethylcantharidin (DMC) and cisplatin, the design of a dual sensitive dual drug backboned shattering polymer (DDBSP) with exact composition at a fixed DMC/Pt ratio for precise nanomedicine is shown. DDBSP self-assembled nanoparticle (DD-NP) can be triggered intracellularly to break down in a chain-shattering manner to release the dual drugs payload. Moreover, DD-NP with extremely high Pt heavy metal content in the polymer chain can directly track the drug itself via Pt-based drug-mediated computer tomography and ICP-MS both in vitro and in vivo. Finally, DD-NP is used to eradicate the tumor burden on a high-fidelity patient-derived lung cancer model for the first time.
Collapse
Affiliation(s)
- Yuwei Cong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haihua Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hejian Xiong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zigui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chan Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
41
|
Grimm O, Wendler F, Schacher FH. Micellization of Photo-Responsive Block Copolymers. Polymers (Basel) 2017; 9:E396. [PMID: 30965699 PMCID: PMC6418654 DOI: 10.3390/polym9090396] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
This review focuses on block copolymers featuring different photo-responsive building blocks and self-assembly of such materials in different selective solvents. We have subdivided the specific examples we selected: (1) according to the wavelength at which the irradiation has to be carried out to achieve photo-response; and (2) according to whether irradiation with light of a suitable wavelength leads to reversible or irreversible changes in material properties (e.g., solubility, charge, or polarity). Exemplarily, an irreversible change could be the photo-cleavage of a nitrobenzyl, pyrenyl or coumarinyl ester, whereas the photo-mediated transition between spiropyran and merocyanin form as well as the isomerization of azobenzenes would represent reversible response to light. The examples presented cover applications including drug delivery (controllable release rates), controlled aggregation/disaggregation, sensing, and the preparation of photochromic hybrid materials.
Collapse
Affiliation(s)
- Oliver Grimm
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix Wendler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| |
Collapse
|
42
|
Xiong H, Zhou D, Zheng X, Qi Y, Wang Y, Jing X, Huang Y. Stable amphiphilic supramolecular self-assembly based on cyclodextrin and carborane for the efficient photodynamic therapy. Chem Commun (Camb) 2017; 53:3422-3425. [PMID: 28211930 DOI: 10.1039/c6cc10059g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel and stable supramolecular nanoparticles (NP) were prepared based on the high affinity of carboranes to β-cyclodextrin for the efficient photodynamic therapy of porphyrin in vitro.
Collapse
Affiliation(s)
- Hejian Xiong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang Z, Wu P, He Z, He H, Rong W, Li J, Zhou D, Huang Y. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(iv) prodrug for liver cancer therapy. J Mater Chem B 2017; 5:7591-7597. [DOI: 10.1039/c7tb01704a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mesoporous silica nanoparticle system with a lactose-mediated targeting effect was demonstrated to deliver a platinum(iv) prodrug for liver cancer therapy.
Collapse
Affiliation(s)
- Zigui Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Peng Wu
- College of Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Zhilong He
- Department of Medical Oncology
- The First Affiliated Hospital of South China University
- Hengyang 421001
- P. R. China
| | - Hongyan He
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Weifeng Rong
- Shandong Institute of Nonmetallic Materials
- Jinan 250031
- P. R. China
| | - Jizhen Li
- College of Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
44
|
Zhang Z, Wu Y, Kuang G, Liu S, Zhou D, Chen X, Jing X, Huang Y. Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. J Mater Chem B 2017; 5:2115-2125. [DOI: 10.1039/c7tb00178a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An implantable Pt(iv) prodrug-backboned micelle and DCA loaded electrospun nanofiber system was developed for local combination chemotherapy.
Collapse
Affiliation(s)
- Zhiyun Zhang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Yanjuan Wu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Gaizhen Kuang
- Department of Gastroenterology
- the Second Affiliated Hospital
- Medical School of Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|