1
|
Neagu AN, Whitham D, Bruno P, Versaci N, Biggers P, Darie CC. Tumor-on-chip platforms for breast cancer continuum concept modeling. Front Bioeng Biotechnol 2024; 12:1436393. [PMID: 39416279 PMCID: PMC11480020 DOI: 10.3389/fbioe.2024.1436393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Our previous article entitled "Proteomics and its applications in breast cancer", proposed a Breast Cancer Continuum Concept (BCCC), including a Breast Cancer Cell Continuum Concept as well as a Breast Cancer Proteomic Continuum Concept. Breast cancer-on-chip (BCoC), breast cancer liquid biopsy-on-chip (BCLBoC), and breast cancer metastasis-on-chip (BCMoC) models successfully recapitulate and reproduce in vitro the principal mechanisms and events involved in BCCC. Thus, BCoC, BCLBoC, and BCMoC platforms allow for multiple cell lines co-cultivation to reproduce BC hallmark features, recapitulating cell proliferation, cell-to-cell communication, BC cell-stromal crosstalk and stromal activation, effects of local microenvironmental conditions on BC progression, invasion/epithelial-mesenchymal transition (EMT)/migration, intravasation, dissemination through blood and lymphatic circulation, extravasation, distant tissues colonization, and immune escape of cancer cells. Moreover, tumor-on-chip platforms are used for studying the efficacy and toxicity of chemotherapeutic drugs/nano-drugs or nutraceuticals. Therefore, the aim of this review is to summarize and analyse the main bio-medical roles of on-chip platforms that can be used as powerful tools to study the metastatic cascade in BC. As future direction, integration of tumor-on-chip platforms and proteomics-based specific approaches can offer important cues about molecular profile of the metastatic cascade, alowing for novel biomarker discovery. Novel microfluidics-based platforms integrating specific proteomic landscape of human milk, urine, and saliva could be useful for early and non-invasive BC detection. Also, risk-on-chip models may improve BC risk assessment and prevention based on the identification of biomarkers of risk. Moreover, multi-organ-on-chip systems integrating patient-derived BC cells and patient-derived scaffolds have a great potential to study BC at integrative level, due to the systemic nature of BC, for personalized and precision medicine. We also emphasized the strengths and weaknesses of BCoC and BCMoC platforms.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
2
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
3
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-triggered protease-mediated release of actin-bound cargo from synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613133. [PMID: 39314483 PMCID: PMC11419145 DOI: 10.1101/2024.09.15.613133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Pan T, Tang L, Chu R, Zheng S, Wang J, Yang Y, Wang W, He J. Microfluidic-Enabled Assembly of Multicomponent Artificial Organelle for Synergistic Tumor Starvation Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39069732 DOI: 10.1021/acsami.4c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Artificial organelles (AOs) encapsulating enzymes are engineered to facilitate biocatalytic reactions for exerting therapeutic effects in various diseases. Exploiting the confinement effect, these catalytic properties exhibit significant enhancements without being influenced by the surrounding medium, enabling more efficient cascade reactions. In this study, we present a novel approach for synergistic tumor starvation therapy by developing multicomponent artificial organelles that combine enzymatic oncotherapy with chemotherapy. The construction process involves a microfluidic-based approach that enables the encapsulation of cationic cores containing doxorubicin (DOX), electrostatic adsorption of cascade enzymes, and surface assembly of the protective lipid membrane. Additionally, these multicomponent AOs possess multicompartment structures that enable the separation and sequential release of each component. By coencapsulating enzymes and chemotherapeutic agent DOX within AOs, we achieve enhanced enzymatic cascade reactions (ECR) and improved intrinsic permeability of DOX due to spatial confinement. Furthermore, exceptional therapeutic effects on 4T1 xenograft tumors are observed, demonstrating the feasibility of utilizing AOs as biomimetic implants in living organisms. This innovative approach that combines starvation therapy with chemotherapy using multicompartment AOs represents a promising paradigm in the field of precise cancer therapy.
Collapse
Affiliation(s)
- Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Shumin Zheng
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Junji Wang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| |
Collapse
|
5
|
Okamura H, Yao T, Nagatsugi F. Reversible Control of Gene Expression by Guest-Modified Adenosines in a Cell-Free System via Host-Guest Interaction. J Am Chem Soc 2024; 146:18513-18523. [PMID: 38941287 PMCID: PMC11240562 DOI: 10.1021/jacs.4c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/30/2024]
Abstract
Gene expression technology has become an indispensable tool for elucidating biological processes and developing biotechnology. Cell-free gene expression (CFE) systems offer a fundamental platform for gene expression-based technology, in which the reversible and programmable control of transcription can expand its use in synthetic biology and medicine. This study shows that CFE can be controlled via the host-guest interaction of cucurbit[7]uril (CB[7]) with N6-guest-modified adenosines. These adenosine derivatives were conveniently incorporated into the DNA strand using a post-synthetic approach and formed a selective and stable base pair with complementary thymidine in DNA. Meanwhile, alternate addition of CB[7] and the exchanging guest molecule induced the reversible formation of a duplex structure through the formation and dissociation of a bulky complex on DNA. The kinetics of the reversibility was fine-tuned by changing the size of the modified guest moieties. When incorporated into a specific region of the T7 promoter sequence, the guest-modified adenosines enabled tight and reversible control of in vitro transcription and protein expression in the CFE system. This study marks the first utility of the host-guest interaction for gene expression control in the CFE system, opening new avenues for developing DNA-based technology, particularly for precise gene therapy and DNA nanotechnology.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Takeyuki Yao
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
6
|
Valente S, Galanti A, Maghin E, Najdi N, Piccoli M, Gobbo P. Matching Together Living Cells and Prototissues: Will There Be Chemistry? Chembiochem 2024:e202400378. [PMID: 39031571 DOI: 10.1002/cbic.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Scientific advancements in bottom-up synthetic biology have led to the development of numerous models of synthetic cells, or protocells. To date, research has mainly focused on increasing the (bio)chemical complexity of these bioinspired micro-compartmentalized systems, yet the successful integration of protocells with living cells remains one of the major challenges in bottom-up synthetic biology. In this review, we aim to summarize the current state of the art in hybrid protocell/living cell and prototissue/living cell systems. Inspired by recent breakthroughs in tissue engineering, we review the chemical, bio-chemical, and mechano-chemical aspects that hold promise for achieving an effective integration of non-living and living matter. The future production of fully integrated protocell/living cell systems and increasingly complex prototissue/living tissue systems not only has the potential to revolutionize the field of tissue engineering, but also paves the way for new technologies in (bio)sensing, personalized therapy, and drug delivery.
Collapse
Affiliation(s)
- Stefano Valente
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Agostino Galanti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Edoardo Maghin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Nahid Najdi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology, Unit of Trieste, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
7
|
Søgaard AB, Løvschall KB, Montasell MC, Cramer CB, Marcet PM, Pedersen AB, Jakobsen JH, Zelikin AN. Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis. Adv Biol (Weinh) 2024:e2400053. [PMID: 38767247 DOI: 10.1002/adbi.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
The design of artificial, synthetic cells is a fundamentally important and fast-developing field of science. Of the diverse attributes of cellular life, artificial transmembrane signaling across the biomolecular barriers remains a high challenge with only a few documented successes. Herein, the study achieves signaling across lipid bilayers and connects an exofacial enzymatic receptor activation to an intracellular biochemical catalytic response using an artificial receptor. The mechanism of signal transduction for the artificial receptor relies on the triggered decomposition of a self-immolative linker. Receptor activation ensues its head-to-tail decomposition and the release of a secondary messenger molecule into the internal volume of the synthetic cell. Transmembrane signaling is demonstrated in synthetic cells based on liposomes and mammalian cell-sized giant unilamellar vesicles and illustrates receptor performance in cell mimics with a diverse size and composition of the lipid bilayer. In giant unilamellar vesicles, transmembrane signaling connects exofacial receptor activation with intracellular activation of proteolysis. Taken together, the results of this study take a step toward engineering receptor-mediated, responsive behavior in synthetic cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
8
|
Westensee IN, Paffen LJMM, Pendlmayr S, De Dios Andres P, Ramos Docampo MA, Städler B. Artificial Cells and HepG2 Cells in 3D-Bioprinted Arrangements. Adv Healthc Mater 2024; 13:e2303699. [PMID: 38277695 DOI: 10.1002/adhm.202303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.
Collapse
Affiliation(s)
- Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Lars J M M Paffen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Stefan Pendlmayr
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
9
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
10
|
Adamala KP, Dogterom M, Elani Y, Schwille P, Takinoue M, Tang TYD. Present and future of synthetic cell development. Nat Rev Mol Cell Biol 2024; 25:162-167. [PMID: 38102450 DOI: 10.1038/s41580-023-00686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Katarzyna P Adamala
- Department of Genetics, Cellular Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, London, UK.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan.
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| | - T-Y Dora Tang
- Max Planck Institute of Molecular Cell Biology & Genetics, Dresden, Germany.
- Synthetic Biology, Department of Biology, University of Saarland, Saarbrucken, Germany.
| |
Collapse
|
11
|
Andersen DG, Pedersen AB, Jørgensen MH, Montasell MC, Søgaard AB, Chen G, Schroeder A, Andersen GR, Zelikin AN. Chemical Zymogens and Transmembrane Activation of Transcription in Synthetic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309385. [PMID: 38009384 DOI: 10.1002/adma.202309385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Indexed: 11/28/2023]
Abstract
In this work, synthetic cells equipped with an artificial signaling pathway that connects an extracellular trigger event to the activation of intracellular transcription are engineered. Learning from nature, this is done via an engineering of responsive enzymes, such that activation of enzymatic activity can be triggered by an external biochemical stimulus. Reversibly deactivated creatine kinase to achieve triggered production of adenosine triphosphate, and a reversibly deactivated nucleic acid polymerase for on-demand synthesis of RNA are engineered. An extracellular, enzyme-activated production of a diffusible zymogen activator is also designed. The key achievement of this work is that the importance of cellularity is illustrated whereby the separation of biochemical partners is essential to resolve their incompatibility, to enable transcription within the confines of a synthetic cell. The herein designed biochemical pathway and the engineered synthetic cells are arguably primitive compared to their natural counterpart. Nevertheless, the results present a significant step toward the design of synthetic cells with responsive behavior, en route from abiotic to life-like cell mimics.
Collapse
Affiliation(s)
| | | | | | | | | | - Gal Chen
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
12
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
14
|
Llopis-Lorente A, Schotman MJG, Humeniuk HV, van Hest JCM, Dankers PYW, Abdelmohsen LKEA. Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles. Chem Sci 2024; 15:629-638. [PMID: 38179539 PMCID: PMC10763548 DOI: 10.1039/d3sc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 València Spain
| | - Maaike J G Schotman
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Heorhii V Humeniuk
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| |
Collapse
|
15
|
Powers J, Jang Y. Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis. Biomacromolecules 2023; 24:5539-5550. [PMID: 37962115 DOI: 10.1021/acs.biomac.3c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synthetic cells are artificial constructs that mimic the structures and functions of living cells. They are attractive for studying diverse biochemical processes and elucidating the origins of life. While creating a living synthetic cell remains a grand challenge, researchers have successfully synthesized hundreds of unique synthetic cell platforms. One promising approach to developing more sophisticated synthetic cells is to integrate cell-free protein synthesis (CFPS) mechanisms into vesicle platforms. This makes it possible to create synthetic cells with complex biomimetic functions such as genetic circuits, autonomous membrane modifications, sensing and communication, and artificial organelles. This Review explores recent advances in the use of CFPS to impart advanced biomimetic structures and functions to bottom-up synthetic cell platforms. We also discuss the potential applications of synthetic cells in biomedicine as well as the future directions of synthetic cell research.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
17
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Netzer A, Katzir I, Baruch Leshem A, Weitman M, Lampel A. Emergent properties of melanin-inspired peptide/RNA condensates. Proc Natl Acad Sci U S A 2023; 120:e2310569120. [PMID: 37871222 PMCID: PMC10622964 DOI: 10.1073/pnas.2310569120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Most biocatalytic processes in eukaryotic cells are regulated by subcellular microenvironments such as membrane-bound or membraneless organelles. These natural compartmentalization systems have inspired the design of synthetic compartments composed of a variety of building blocks. Recently, the emerging field of liquid-liquid phase separation has facilitated the design of biomolecular condensates composed of proteins and nucleic acids, with controllable properties including polarity, diffusivity, surface tension, and encapsulation efficiency. However, utilizing phase-separated condensates as optical sensors has not yet been attempted. Here, we were inspired by the biosynthesis of melanin pigments, a key biocatalytic process that is regulated by compartmentalization in organelles, to design minimalistic biomolecular condensates with emergent optical properties. Melanins are ubiquitous pigment materials with a range of functionalities including photoprotection, coloration, and free radical scavenging activity. Their biosynthesis in the confined melanosomes involves oxidation-polymerization of tyrosine (Tyr), catalyzed by the enzyme tyrosinase. We have now developed condensates that are formed by an interaction between a Tyr-containing peptide and RNA and can serve as both microreactors and substrates for tyrosinase. Importantly, partitioning of Tyr into the condensates and subsequent oxidation-polymerization gives rise to unique optical properties including far-red fluorescence. We now demonstrate that individual condensates can serve as sensors to detect tyrosinase activity, with a limit of detection similar to that of synthetic fluorescent probes. This approach opens opportunities to utilize designer biomolecular condensates as diagnostic tools for various disorders involving abnormal enzymatic activity.
Collapse
Affiliation(s)
- Amit Netzer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Michal Weitman
- Department of Chemistry Materials, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
19
|
Westensee IN, Städler B. Artificial cells eavesdropping on HepG2 cells. Interface Focus 2023; 13:20230007. [PMID: 37577001 PMCID: PMC10415741 DOI: 10.1098/rsfs.2023.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cellular communication is a fundamental feature to ensure the survival of cellular assemblies, such as multicellular tissue, via coordinated adaption to changes in their surroundings. Consequently, the development of integrated semi-synthetic systems consisting of artificial cells (ACs) and mammalian cells requires feedback-based interactions. Here, we illustrate that ACs can eavesdrop on HepG2 cells focusing on the activity of cytochrome P450 1A2 (CYP1A2), an enzyme from the cytochrome P450 enzyme family. Specifically, d-cysteine is sent as a signal from the ACs via the triggered reduction of disulfide bonds. Simultaneously, HepG2 cells enzymatically convert 2-cyano-6-methoxybenzothiazole into 2-cyano-6-hydroxybenzothiazole that is released in the extracellular space. d-Cysteine and 2-cyano-6-hydroxybenzothiazole react to form d-luciferin. The ACs respond to this signal by converting d-luciferin into luminescence due to the presence of encapsulated luciferase in the ACs. As a result, the ACs can eavesdrop on the mammalian cells to evaluate the level of hepatic CYP1A2 function.
Collapse
Affiliation(s)
- Isabella Nymann Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
20
|
Stano P. Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research. Int J Mol Sci 2023; 24:14138. [PMID: 37762444 PMCID: PMC10532297 DOI: 10.3390/ijms241814138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The recent and important advances in bottom-up synthetic biology (SB), in particular in the field of the so-called "synthetic cells" (SCs) (or "artificial cells", or "protocells"), lead us to consider the role of wetware technologies in the "Sciences of Artificial", where they constitute the third pillar, alongside the more well-known pillars hardware (robotics) and software (Artificial Intelligence, AI). In this article, it will be highlighted how wetware approaches can help to model life and cognition from a unique perspective, complementary to robotics and AI. It is suggested that, through SB, it is possible to explore novel forms of bio-inspired technologies and systems, in particular chemical AI. Furthermore, attention is paid to the concept of semantic information and its quantification, following the strategy recently introduced by Kolchinsky and Wolpert. Semantic information, in turn, is linked to the processes of generation of "meaning", interpreted here through the lens of autonomy and cognition in artificial systems, emphasizing its role in chemical ones.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
21
|
Building light-activated synthetic cells that induce gene expression in bacteria via quorum sensing. Nat Chem Biol 2023; 19:1052-1053. [PMID: 37414975 DOI: 10.1038/s41589-023-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
|
22
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
23
|
Xu X, Guan W, Yu X, Xu G, Wang C. Non-interfacial self-assembly of synthetic protocells. Biomater Res 2023; 27:64. [PMID: 37400932 PMCID: PMC10318706 DOI: 10.1186/s40824-023-00402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Protocell refers to the basic unit of life and synthetic molecular assembly with cell structure and function. The protocells have great applications in the field of biomedical technology. Simulating the morphology and function of cells is the key to the preparation of protocells. However, some organic solvents used in the preparation process of protocells would damage the function of the bioactive substance. Perfluorocarbon, which has no toxic effect on bioactive substances, is an ideal solvent for protocell preparation. However, perfluorocarbon cannot be emulsified with water because of its inertia. METHODS Spheroids can be formed in nature even without emulsification, since liquid can reshape the morphology of the solid phase through the scouring action, even if there is no stable interface between the two phases. Inspired by the formation of natural spheroids such as pebbles, we developed non-interfacial self-assembly (NISA) of microdroplets as a step toward synthetic protocells, in which the inert perfluorocarbon was utilized to reshape the hydrogel through the scouring action. RESULTS The synthetic protocells were successfully obtained by using NISA-based protocell techniques, with the morphology very similar to native cells. Then we simulated the cell transcription process in the synthetic protocell and used the protocell as an mRNA carrier to transfect 293T cells. The results showed that protocells delivered mRNAs, and successfully expressed proteins in 293T cells. Further, we used the NISA method to fabricate an artificial cell by extracting and reassembling the membrane, proteins, and genomes of ovarian cancer cells. The results showed that the recombination of tumor cells was successfully achieved with similar morphology as tumor cells. In addition, the synthetic protocell prepared by the NISA method was used to reverse cancer chemoresistance by restoring cellular calcium homeostasis, which verified the application value of the synthetic protocell as a drug carrier. CONCLUSION This synthetic protocell fabricated by the NISA method simulates the occurrence and development process of primitive life, which has great potential application value in mRNA vaccine, cancer immunotherapy, and drug delivery.
Collapse
Affiliation(s)
- Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China
| | - Xiaolei Yu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China.
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China.
| |
Collapse
|
24
|
Peruzzi JA, Galvez NR, Kamat NP. Engineering transmembrane signal transduction in synthetic membranes using two-component systems. Proc Natl Acad Sci U S A 2023; 120:e2218610120. [PMID: 37126679 PMCID: PMC10175788 DOI: 10.1073/pnas.2218610120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023] Open
Abstract
Cells use signal transduction across their membranes to sense and respond to a wide array of chemical and physical signals. Creating synthetic systems which can harness cellular signaling modalities promises to provide a powerful platform for biosensing and therapeutic applications. As a first step toward this goal, we investigated how bacterial two-component systems (TCSs) can be leveraged to enable transmembrane-signaling with synthetic membranes. Specifically, we demonstrate that a bacterial two-component nitrate-sensing system (NarX-NarL) can be reproduced outside of a cell using synthetic membranes and cell-free protein expression systems. We find that performance and sensitivity of the TCS can be tuned by altering the biophysical properties of the membrane in which the histidine kinase (NarX) is integrated. Through protein engineering efforts, we modify the sensing domain of NarX to generate sensors capable of detecting an array of ligands. Finally, we demonstrate that these systems can sense ligands in relevant sample environments. By leveraging membrane and protein design, this work helps reveal how transmembrane sensing can be recapitulated outside of the cell, adding to the arsenal of deployable cell-free systems primed for real world biosensing.
Collapse
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL60208
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
| | - Nina R. Galvez
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Neha P. Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| |
Collapse
|
25
|
Mazzotti G, Hartmann D, Booth MJ. Precise, Orthogonal Remote-Control of Cell-Free Systems Using Photocaged Nucleic Acids. J Am Chem Soc 2023; 145:9481-9487. [PMID: 37074404 PMCID: PMC10161223 DOI: 10.1021/jacs.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 04/20/2023]
Abstract
Cell-free expression of a gene to protein has become a vital tool in nanotechnology and synthetic biology. Remote-control of cell-free systems with multiple, orthogonal wavelengths of light would enable precise, noninvasive modulation, opening many new applications in biology and medicine. While there has been success in developing ON switches, the development of OFF switches has been lacking. Here, we have developed orthogonally light-controlled cell-free expression OFF switches by attaching nitrobenzyl and coumarin photocages to antisense oligonucleotides. These light-controlled OFF switches can be made from commercially available oligonucleotides and show a tight control of cell-free expression. Using this technology, we have demonstrated orthogonal degradation of two different mRNAs, depending on the wavelength used. By combining with our previously generated blue-light-activated DNA template ON switch, we were able to start transcription with one wavelength of light and then halt the translation of the corresponding mRNA to protein with a different wavelength, at multiple timepoints. This precise, orthogonal ON and OFF remote-control of cell-free expression will be an important tool for the future of cell-free biology, especially for use with biological logic gates and synthetic cells.
Collapse
Affiliation(s)
- Giacomo Mazzotti
- Department
of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, U.K.
| | - Denis Hartmann
- Department
of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, U.K.
| | - Michael J. Booth
- Department
of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U.K.
| |
Collapse
|
26
|
Hartmann D, Chowdhry R, Smith JM, Booth MJ. Orthogonal Light-Activated DNA for Patterned Biocomputing within Synthetic Cells. J Am Chem Soc 2023; 145:9471-9480. [PMID: 37125650 PMCID: PMC10161232 DOI: 10.1021/jacs.3c02350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Indexed: 05/02/2023]
Abstract
Cell-free gene expression is a vital research tool to study biological systems in defined minimal environments and has promising applications in biotechnology. Developing methods to control DNA templates for cell-free expression will be important for precise regulation of complex biological pathways and use with synthetic cells, particularly using remote, nondamaging stimuli such as visible light. Here, we have synthesized blue light-activatable DNA parts that tightly regulate cell-free RNA and protein synthesis. We found that this blue light-activated DNA could initiate expression orthogonally to our previously generated ultraviolet (UV) light-activated DNA, which we used to generate a dual-wavelength light-controlled cell-free AND-gate. By encapsulating these orthogonal light-activated DNAs into synthetic cells, we used two overlapping patterns of blue and UV light to provide precise spatiotemporal control over the logic gate. Our blue and UV orthogonal light-activated DNAs will open the door for precise control of cell-free systems in biology and medicine.
Collapse
Affiliation(s)
- Denis Hartmann
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Razia Chowdhry
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jefferson M. Smith
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael J. Booth
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
27
|
Zhang Y, Obuchi H, Toyota T. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets. MEMBRANES 2023; 13:440. [PMID: 37103867 PMCID: PMC10144487 DOI: 10.3390/membranes13040440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Haruto Obuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
28
|
Cooper A, Girish V, Subramaniam AB. Osmotic Pressure Enables High-Yield Assembly of Giant Vesicles in Solutions of Physiological Ionic Strengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5579-5590. [PMID: 37021722 PMCID: PMC10116648 DOI: 10.1021/acs.langmuir.3c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Giant unilamellar vesicles (GUVs) are micrometer-scale minimal cellular mimics that are useful for bottom-up synthetic biology and drug delivery. Unlike assembly in low-salt solutions, assembly of GUVs in solutions with ionic concentrations of 100-150 mM Na/KCl (salty solutions) is challenging. Chemical compounds deposited on the substrate or incorporated into the lipid mixture could assist in the assembly of GUVs. Here, we investigate quantitatively the effects of temperature and chemical identity of six polymeric compounds and one small molecule compound on the molar yields of GUVs composed of three different lipid mixtures using high-resolution confocal microscopy and large data set image analysis. All the polymers moderately increased the yields of GUVs either at 22 or 37 °C, whereas the small molecule compound was ineffective. Low-gelling temperature agarose is the singular compound that consistently produces yields of GUVs of greater than 10%. We propose a free energy model of budding to explain the effects of polymers in assisting the assembly of GUVs. The osmotic pressure exerted on the membranes by the dissolved polymer balances the increased adhesion between the membranes, thus reducing the free energy for bud formation. Data obtained by modulating the ionic strength and ion valency of the solution shows that the evolution of the yield of GUVs supports our model's prediction. In addition, polymer-specific interactions with the substrate and the lipid mixture affects yields. The uncovered mechanistic insights provide a quantitative experimental and theoretical framework to guide future studies. Additionally, this work shows a facile means for obtaining GUVs in solutions of physiological ionic strengths.
Collapse
Affiliation(s)
- Alexis Cooper
- Department
of Chemistry and Biochemistry, University
of California, Merced, Merced, California 95343, United States
| | - Vaishnavi Girish
- Department
of Bioengineering, University of California,
Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department
of Bioengineering, University of California,
Merced, Merced, California 95343, United States
| |
Collapse
|
29
|
Chen M, Liu G, Zhang M, Li Y, Hong X, Yang H. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206437. [PMID: 36564366 DOI: 10.1002/smll.202206437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The desire for exploration of cellular functional mechanisms has substantially increased the rapid development of artificial cells. However, the construction of synthetic cells with high organizational complexity remains challenging due to the lack of facile approaches ensuring dynamic multi-compartments of cytoplasm and stability of membranes in protocells. Herein, a stable coacervate-in-Pickering emulsion protocell model comprising a membraneless coacervate phase formed by poly-l-lysine (PLys) and adenosine triphosphate (ATP) encapsulated in Pickering emulsion is put forward only through simple one-step emulsification. The dynamic distribution of intracellular components (coacervates in this protocell model) can be manipulated by changes in temperature or pH. This coacervate-in-Pickering emulsion protocell system exhibits repeatable cycle stability in response to external stimuli (at least 24 cycles for temperature and 3 cycles for pH). By encapsulating antagonistic enzymes into coacervates, glucose oxidase (GOx) and urease as an example, the control of local enzyme concentration is achieved by introducing glucose and urea to adjust the pH value in Pickering emulsion droplets. This hybrid protocell model with programmatically dynamic microcompartmentation and sufficient stability is expected to be further studied and applied in cellular biology, facilitating the development of lifelike systems with potential in practical applications.
Collapse
Affiliation(s)
- Mengqing Chen
- College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, China
| | - Guoliang Liu
- College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yanyan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xinlin Hong
- College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
30
|
Cash B, Gaut NJ, Deich C, Johnson LL, Engelhart AE, Adamala KP. Parasites, Infections, and Inoculation in Synthetic Minimal Cells. ACS OMEGA 2023; 8:7045-7056. [PMID: 36844541 PMCID: PMC9948217 DOI: 10.1021/acsomega.2c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Synthetic minimal cells provide a controllable and engineerable model for biological processes. While much simpler than any live natural cell, synthetic cells offer a chassis for investigating the chemical foundations of key biological processes. Herein, we show a synthetic cell system with host cells, interacting with parasites and undergoing infections of varying severity. We demonstrate how the host can be engineered to resist infection, we investigate the metabolic cost of carrying resistance, and we show an inoculation that immunizes the host against pathogens. Our work expands the synthetic cell engineering toolbox by demonstrating host-pathogen interactions and mechanisms for acquiring immunity. This brings synthetic cell systems one step closer to providing a comprehensive model of complex, natural life.
Collapse
|
31
|
Gentili PL, Stano P. Monitoring the advancements in the technology of artificial cells by determining their complexity degree: Hints from complex systems descriptors. Front Bioeng Biotechnol 2023; 11:1132546. [PMID: 36815888 PMCID: PMC9928734 DOI: 10.3389/fbioe.2023.1132546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy,*Correspondence: Pier Luigi Gentili, ; Pasquale Stano,
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, Lecce, Italy,*Correspondence: Pier Luigi Gentili, ; Pasquale Stano,
| |
Collapse
|
32
|
Gonzales DT, Suraritdechachai S, Tang TYD. Compartmentalized Cell-Free Expression Systems for Building Synthetic Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:77-101. [PMID: 37306700 DOI: 10.1007/10_2023_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the grand challenges in bottom-up synthetic biology is the design and construction of synthetic cellular systems. One strategy toward this goal is the systematic reconstitution of biological processes using purified or non-living molecular components to recreate specific cellular functions such as metabolism, intercellular communication, signal transduction, and growth and division. Cell-free expression systems (CFES) are in vitro reconstitutions of the transcription and translation machinery found in cells and are a key technology for bottom-up synthetic biology. The open and simplified reaction environment of CFES has helped researchers discover fundamental concepts in the molecular biology of the cell. In recent decades, there has been a drive to encapsulate CFES reactions into cell-like compartments with the aim of building synthetic cells and multicellular systems. In this chapter, we discuss recent progress in compartmentalizing CFES to build simple and minimal models of biological processes that can help provide a better understanding of the process of self-assembly in molecularly complex systems.
Collapse
Affiliation(s)
- David T Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | | | - T -Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Physics of Life, Cluster of Excellence, TU Dresden, Dresden, Germany.
| |
Collapse
|
33
|
Ghosh B. Artificial cell design: reconstructing biology for life science applications. Emerg Top Life Sci 2022; 6:619-627. [PMID: 36398710 DOI: 10.1042/etls20220050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Artificial cells are developed to redesign novel biological functions in a programmable and tunable manner. Although it aims to reconstitute living cell features and address 'origin of life' related questions, rapid development over the years has transformed artificial cells into an engineering tool with huge potential in applied biotechnology. Although the application of artificial cells was introduced decades ago as drug carriers, applications in other sectors are relatively new and could become possible with the technological advancement that can modulate its designing principles. Artificial cells are non-living system that includes no prerequisite designing modules for their formation and therefore allow freedom of assembling desired biological machinery within a physical boundary devoid of complex contemporary living-cell counterparts. As stimuli-responsive biomimetic tools, artificial cells are programmed to sense the surrounding, recognise their target, activate its function and perform the defined task. With the advantage of their customised design, artificial cells are being studied in biosensing, drug delivery, anti-cancer therapeutics or artificial photosynthesis type fields. This mini-review highlights those advanced fields where artificial cells with a minimalistic setup are developed as user-defined custom-made microreactors, targeting to reshape our future 'life'.
Collapse
Affiliation(s)
- Basusree Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
34
|
Staufer O, Gantner G, Platzman I, Tanner K, Berger I, Spatz JP. Bottom-up assembly of viral replication cycles. Nat Commun 2022; 13:6530. [PMID: 36323671 PMCID: PMC9628313 DOI: 10.1038/s41467-022-33661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Bottom-up synthetic biology provides new means to understand living matter by constructing minimal life-like systems. This principle can also be applied to study infectious diseases. Here we summarize approaches and ethical considerations for the bottom-up assembly of viral replication cycles.
Collapse
Affiliation(s)
- Oskar Staufer
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, OX3 7FY, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Gösta Gantner
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Theological Seminary, Heidelberg University, Kisselgasse 1, 69117, Heidelberg, Germany
| | - Ilia Platzman
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Klaus Tanner
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Theological Seminary, Heidelberg University, Kisselgasse 1, 69117, Heidelberg, Germany
| | - Imre Berger
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Joachim P Spatz
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
36
|
Stano P. A four-track perspective for bottom-up synthetic cells. Front Bioeng Biotechnol 2022; 10:1029446. [PMID: 36246382 PMCID: PMC9563707 DOI: 10.3389/fbioe.2022.1029446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
|
37
|
Chen G, Levin R, Landau S, Kaduri M, Adir O, Ianovici I, Krinsky N, Doppelt-Flikshtain O, Shklover J, Shainsky-Roitman J, Levenberg S, Schroeder A. Implanted synthetic cells trigger tissue angiogenesis through de novo production of recombinant growth factors. Proc Natl Acad Sci U S A 2022; 119:e2207525119. [PMID: 36095208 PMCID: PMC9499519 DOI: 10.1073/pnas.2207525119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Progress in bottom-up synthetic biology has stimulated the development of synthetic cells (SCs), autonomous protein-manufacturing particles, as dynamic biomimetics for replacing diseased natural cells and addressing medical needs. Here, we report that SCs genetically encoded to produce proangiogenic factors triggered the physiological process of neovascularization in mice. The SCs were constructed of giant lipid vesicles and were optimized to facilitate enhanced protein production. When introduced with the appropriate genetic code, the SCs synthesized a recombinant human basic fibroblast growth factor (bFGF), reaching expression levels of up to 9⋅106 protein copies per SC. In culture, the SCs induced endothelial cell proliferation, migration, tube formation, and angiogenesis-related intracellular signaling, confirming their proangiogenic activity. Integrating the SCs with bioengineered constructs bearing endothelial cells promoted the remodeling of mature vascular networks, supported by a collagen-IV basement membrane-like matrix. In vivo, prolonged local administration of the SCs in mice triggered the infiltration of blood vessels into implanted Matrigel plugs without recorded systemic immunogenicity. These findings emphasize the potential of SCs as therapeutic platforms for activating physiological processes by autonomously producing biological drugs inside the body.
Collapse
Affiliation(s)
- Gal Chen
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
- The Interdisciplinary Program for Biotechnology, Technion, Haifa 32000, Israel
| | - Rotem Levin
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Shira Landau
- Department of Biomedical Engineering, Technion, Haifa 32000, Israel
| | - Maya Kaduri
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Omer Adir
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion, Haifa 32000, Israel
| | - Iris Ianovici
- Department of Biomedical Engineering, Technion, Haifa 32000, Israel
| | - Nitzan Krinsky
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Ofri Doppelt-Flikshtain
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jeny Shklover
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | | | - Avi Schroeder
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| |
Collapse
|
38
|
Einoch Amor R, Zinger A, Broza YY, Schroeder A, Haick H. Artificially Intelligent Nanoarray Detects Various Cancers by Liquid Biopsy of Volatile Markers. Adv Healthc Mater 2022; 11:e2200356. [PMID: 35765713 PMCID: PMC11468493 DOI: 10.1002/adhm.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Cancer is usually not symptomatic in its early stages. However, early detection can vastly improve prognosis. Liquid biopsy holds great promise for early detection, although it still suffers from many disadvantages, mainly searching for specific cancer biomarkers. Here, a new approach for liquid biopsies is proposed, based on volatile organic compound (VOC) patterns in the blood headspace. An artificial intelligence nanoarray based on a varied set of chemi-sensitive nano-based structured films is developed and used to detect and stage cancer. As a proof-of-concept, three cancer models are tested showing high incidence and mortality rates in the population: breast cancer, ovarian cancer, and pancreatic cancer. The nanoarray has >84% accuracy, >81% sensitivity, and >80% specificity for early detection and >97% accuracy, 100% sensitivity, and >88% specificity for metastasis detection. Complementary mass spectrometry analysis validates these results. The ability to analyze such a complex biological fluid as blood, while considering data of many VOCs at a time using the artificially intelligent nanoarray, increases the sensitivity of predictive models and leads to a potential efficient early diagnosis and disease-monitoring tool for cancer.
Collapse
Affiliation(s)
- Reef Einoch Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine TechnologiesDepartment of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
39
|
Versatile tools of synthetic biology applied to drug discovery and production. Future Med Chem 2022; 14:1325-1340. [PMID: 35975897 DOI: 10.4155/fmc-2022-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.
Collapse
|
40
|
Abstract
Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.
Collapse
|
41
|
Stano P. Exploring Information and Communication Theories for Synthetic Cell Research. Front Bioeng Biotechnol 2022; 10:927156. [PMID: 35910013 PMCID: PMC9334554 DOI: 10.3389/fbioe.2022.927156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/24/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
42
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
43
|
Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nat Commun 2022; 13:2328. [PMID: 35484097 PMCID: PMC9050678 DOI: 10.1038/s41467-022-29871-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the design and implementation of bioluminescent intercellular and intracellular signaling mechanisms in synthetic cells, dismissing the need for an external light source. First, we engineer light generating SCs with an optimized lipid membrane and internal composition, to maximize luciferase expression levels and enable high-intensity emission. Next, we show these cells’ capacity to trigger bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent intracellular signaling with self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of controlling engineered processes inside tissues. Synthetic biology and engineering approaches are harnessed to incorporate new capabilities in synthetic cells. Here, the authors designed bioluminescent signaling mechanisms for intracellular and intercellular synthetic-to-natural cell communication.
Collapse
|
44
|
Zhang T, Yang Y, Huang L, Liu Y, Chong G, Yin W, Dong H, Li Y, Li Y. Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14040734. [PMID: 35456568 PMCID: PMC9024915 DOI: 10.3390/pharmaceutics14040734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
In cancer immunotherapy, immune cells are the main force for tumor eradication. However, they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenvironment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct inanimate entities whose functions are similar to natural living cells, or engineer immune cells with functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these advanced strategies in different cell types, as well as discussing the prospects of this field.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Yushan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Li Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Ying Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Weimin Yin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| |
Collapse
|
45
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
46
|
Pantoja Angles A, Valle-Pérez AU, Hauser C, Mahfouz MM. Microbial Biocontainment Systems for Clinical, Agricultural, and Industrial Applications. Front Bioeng Biotechnol 2022; 10:830200. [PMID: 35186907 PMCID: PMC8847691 DOI: 10.3389/fbioe.2022.830200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Many applications of synthetic biology require biological systems in engineered microbes to be delivered into diverse environments, such as for in situ bioremediation, biosensing, and applications in medicine and agriculture. To avoid harming the target system (whether that is a farm field or the human gut), such applications require microbial biocontainment systems (MBSs) that inhibit the proliferation of engineered microbes. In the past decade, diverse molecular strategies have been implemented to develop MBSs that tightly control the proliferation of engineered microbes; this has enabled medical, industrial, and agricultural applications in which biological processes can be executed in situ. The customization of MBSs also facilitate the integration of sensing modules for which different compounds can be produced and delivered upon changes in environmental conditions. These achievements have accelerated the generation of novel microbial systems capable of responding to external stimuli with limited interference from the environment. In this review, we provide an overview of the current approaches used for MBSs, with a specific focus on applications that have an immediate impact on multiple fields.
Collapse
Affiliation(s)
- Aaron Pantoja Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz, ; Charlotte Hauser,
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz, ; Charlotte Hauser,
| |
Collapse
|
47
|
Lussier F, Schröter M, Diercks NJ, Jahnke K, Weber C, Frey C, Platzman I, Spatz JP. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells. ACS Synth Biol 2022; 11:366-382. [PMID: 34889607 PMCID: PMC8787813 DOI: 10.1021/acssynbio.1c00472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/29/2022]
Abstract
By using electrostatic interactions as driving force to assemble vesicles, the droplet-stabilized method was recently applied to reconstitute and encapsulate proteins, or compartments, inside giant unilamellar vesicles (GUVs) to act as minimal synthetic cells. However, the droplet-stabilized approach exhibits low production efficiency associated with the troublesome release of the GUVs from the stabilized droplets, corresponding to a major hurdle for the droplet-stabilized approach. Herein, we report the use of pH as a potential trigger to self-assemble droplet-stabilized GUVs (dsGUVs) by either bulk or droplet-based microfluidics. Moreover, pH enables the generation of compartmentalized GUVs with flexibility and robustness. By co-encapsulating pH-sensitive small unilamellar vesicles (SUVs), negatively charged SUVs, and/or proteins, we show that acidification of the droplets efficiently produces dsGUVs while sequestrating the co-encapsulated material. Most importantly, the pH-mediated assembly of dsGUVs significantly improves the production efficiency of free-standing GUVs (i.e., released from the stabilizing-droplets) compared to its previous implementation.
Collapse
Affiliation(s)
- Félix Lussier
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Martin Schröter
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Nicolas J. Diercks
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Cornelia Weber
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Christoph Frey
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
48
|
Sugiyama H, Osaki T, Takeuchi S, Toyota T. Role of Negatively Charged Lipids Achieving Rapid Accumulation of Water-Soluble Molecules and Macromolecules into Cell-Sized Liposomes against a Concentration Gradient. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:112-121. [PMID: 34967642 DOI: 10.1021/acs.langmuir.1c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liposomes, molecular self-assemblies resembling biological membranes, are a promising scaffold to investigate the physicochemical logic behind the complexity of living cells. Despite elaborate synthetic studies constructing cell-like chemical systems using liposomes, less attention has been paid to the proactive role of the membrane emerging as dynamics of the molecular self-assembly. This study investigated the liposomes containing anionic phospholipids by exposing them to steady flow conditions using a newly constructed automatic microfluidic observation platform. We demonstrated that the liposomes accumulated even macromolecules under the microfluidic condition without pore formation. By investigating the effect of composition of liposomes and visualizing negatively charged phospholipids upon the flow, we presumed that the external flow caused a compositional asymmetry of anionic phospholipids between the inner/outer leaflets, and the asymmetry enabled a rapid accumulation of those molecules against the concentration gradient. The current study opens new research interests regarding the nature of biological membranes under steady flow conditions.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihisa Osaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
49
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Staufer O, De Lora JA, Bailoni E, Bazrafshan A, Benk AS, Jahnke K, Manzer ZA, Otrin L, Díez Pérez T, Sharon J, Steinkühler J, Adamala KP, Jacobson B, Dogterom M, Göpfrich K, Stefanovic D, Atlas SR, Grunze M, Lakin MR, Shreve AP, Spatz JP, López GP. Building a community to engineer synthetic cells and organelles from the bottom-up. eLife 2021; 10:e73556. [PMID: 34927583 PMCID: PMC8716100 DOI: 10.7554/elife.73556] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.
Collapse
Affiliation(s)
- Oskar Staufer
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
- Max Planck Bristol Center for Minimal Biology, University of BristolBristolUnited Kingdom
| | | | | | | | - Amelie S Benk
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Kevin Jahnke
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | | | - Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | | | | | | | | | | | - Kerstin Göpfrich
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
| | | | | | - Michael Grunze
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
| | | | | | - Joachim P Spatz
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
- Max Planck Bristol Center for Minimal Biology, University of BristolBristolUnited Kingdom
| | | |
Collapse
|