1
|
Wilson BK, Prud'homme RK. Co-encapsulation of organic polymers and inorganic superparamagnetic iron oxide colloidal crystals requires matched diffusion time scales. SOFT MATTER 2024; 20:8312-8325. [PMID: 39387564 DOI: 10.1039/d4sm00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nanoparticles (NPs) that contain both organic molecules and inorganic metal or metal oxide colloids in the same NP core are "composite nanoparticles" which are of interest in many applications, particularly in biomedicine as "theranostics" for the combined delivery of colloidal diagnostic imaging agents with therapeutic drugs. The rapid precipitation technique Flash NanoPrecipitation (FNP) enables continuous and scalable production of composite nanoparticles with hydrodynamic diameters between 40-200 nanometers (nm) that contain hydrophobic superparamagnetic iron oxide primary colloids. Composite NPs co-encapsulate these primary colloids (diameters of 6 nm, 15 nm, or 29 nm), a fluorescent dye (600 Daltons), and poly(styrene) homopolymer (1800, 50 000, or 200 000 Daltons) with NPs stabilized by a poly(styrene)-block-poly(ethylene glycol) (1600 Da-b-5000 Da) block copolymer. Nanoparticle assembly in FNP occurs by diffusion limited aggregation of the hydrophobic core components followed by adsorption of the hydrophobic block of the stabilizing polymer. The hydrodynamic diameter mismatch between the collapsed organic species and the primary colloids (0.5-5 nm versus 6-29 nm) creates a diffusion-aggregation time scale mismatch between components that can lead to nonstoichiometric co-encapsulation in the final nanoparticles; some nanoparticles are composites with primary colloids co-encapsulated alongside organics while others are devoid of the primary colloids and contain only organic species. We use a magnetic capture process to separate magnetic composite nanoparticles from organic-only nanoparticles and quantify the amount of iron oxide colloids and hydrophobic fluorescent dye (as a proxy for total hydrophobic polymer content) in the magnetic and nonmagnetic fractions of each formulation. Analysis of the microstructure in over 1100 individual nanoparticles by TEM imaging and composition measurements identifies the conditions that produce nonstoichiometric composite NP populations without co-encapsulated magnetic iron oxide colloids. Stoichiometric magnetically responsive composite NPs are produced when the ratio of characteristic diffusion-aggregation time scales between the inorganic primary colloid and the organic core component is less than 30 and all NPs in a dispersion contain organic and inorganic species in approximately the same ratio. These rules for assembly of colloids and organic components into homogeneous composite nanoparticles are broadly applicable.
Collapse
Affiliation(s)
- Brian K Wilson
- Department of Chemical and Biological Engineering, ACE34 Engineering Quadrangle, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, ACE34 Engineering Quadrangle, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
2
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
3
|
Zhao X, Xu Y, Chen Z, Tang C, Mi X. Encoding fluorescence intensity with tetrahedron DNA nanostructure based FRET effect for bio-detection. Biosens Bioelectron 2024; 248:115994. [PMID: 38181517 DOI: 10.1016/j.bios.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Biocoding technology constructed by readable tags with distinct signatures is a brand-new bioanalysis method to realize multiplexed identification and bio-information decoding. In this study, a novel fluorescence intensity coding technology termed Tetra-FICT was reported based on tetrahedron DNA nanostructure (TDN) carrier and Főrster Resonance Energy Transfer (FRET) effect. By modulating numbers and distances of Cy3 and Cy5 at four vertexes of TDN, different fluorescence intensities of twenty-six samples were produced at ∼565.0 nm (FICy3) and ∼665.0 nm (FICy5) by detecting fluorescence spectra. By developing an error correction mechanism, eleven codes were established based on divided intensity ranges of the final FICy3 together with FICy5 (Final-FICy3&FICy5). These resulting codes were used to construct barcode probes, with three miRNA biomarkers (miRNA-210, miRNA-199a and miRNA-21) as cases for multiplexed bio-assay. The high specificity and sensitivity were also demonstrated for the detection of miRNA-210. Overall, the proposed Tetra-FICT enriched the toolbox of fluorescence coding, which could be applied to multiplexing biomarkers detection.
Collapse
Affiliation(s)
- Xiaoshuang Zhao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi Xu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Ziting Chen
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Chengren Tang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Xianqiang Mi
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China; School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
4
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
5
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
6
|
Dai J, Xu Z, Xu J, Lin H, Yang X, Wang J, Ruan G. Improving crossing of multiple bio-delivery barriers by a novel bio-interface design based on hydrophobic nanoparticle surfaces. J Mater Chem B 2023; 11:1344-1355. [PMID: 36655543 DOI: 10.1039/d2tb01919a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological delivery remains a major challenge in biotechnology, partly because it is often not enough to overcome a single delivery barrier. It is highly desirable, yet rarely available, to design delivery carriers with both simple structures and the ability to cross multiple delivery barriers with high efficiency. Herein, we describe a distinct design (dubbed 'SDot') of delivery carriers with a single structural feature that can enhance the crossing of multiple delivery barriers. The bio-interface (the interface with a biological environment) of an SDot nanoparticle is highly hydrophobic, thus enhancing its interactions with lipid membranes, which are the primary components of many bio-delivery barriers. We used quantum dots (QDs) as the model core material of SDots and conjugated them with a RGD peptide. Thus-formed SDots-RGD demonstrated greatly improved abilities of cellular uptake and transcytosis in a brain tumor cell line, U87MG, compared with the conventional nanoparticle counterpart with a hydrophilic bio-interface (wQDs-RGD). Further, after loading a microtubule-binding anticancer drug, paclitaxel (PTX), onto the nanoparticle surface of SDots-RGD, the resulting drug formulation PTX@SDots-RGD displayed excellent ability of intracellular targeting to microtubules in U87MG cells. In a small animal cancer model, PTX@SDots-RGD exhibited significantly higher ability to slow down brain tumor growth than that of PTX@wQDs-RGD and free PTX. Taken together, these experimental results indicated the significant potential of SDots-RGD for bio-delivery, although the possible long-term toxicity of QDs used as the core material needs to be addressed in future work by replacing QDs with clinically approved materials.
Collapse
Affiliation(s)
- Jie Dai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Zixing Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinhua Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Huoyue Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China. .,Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Jun Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.,Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China. .,Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.,Institute of Materials Engineering of Nanjing University, Nantong, 226001, China.,Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
7
|
Luo M, Yukawa H, Baba Y. Micro-/nano-fluidic devices and in vivo fluorescence imaging based on quantum dots for cytologic diagnosis. LAB ON A CHIP 2022; 22:2223-2236. [PMID: 35583091 DOI: 10.1039/d2lc00113f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductor quantum dots (QDs) possess attractive merits over traditional organic dyes, such as tunable emission, narrow emission spectra and good resistance against optical bleaching, and play a vital role in biosensing and bioimaging for cytologic diagnoses. Microfluidic technology is a potentially useful strategy, as it provides a rapid platform for tracing of disease markers. In vivo fluorescence imaging (FI) based on QDs has become popular for the analysis of complex biological processes. We herein report the applications of multifunctional fluorescent QDs as sensitive probes for diagnoses on cancer medicine and stem cell therapy via microfluidic chips and in vivo imaging.
Collapse
Affiliation(s)
- Minchuan Luo
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroshi Yukawa
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinobu Baba
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
8
|
Brett MW, Gordon CK, Hardy J, Davis NJLK. The Rise and Future of Discrete Organic-Inorganic Hybrid Nanomaterials. ACS PHYSICAL CHEMISTRY AU 2022; 2:364-387. [PMID: 36855686 PMCID: PMC9955269 DOI: 10.1021/acsphyschemau.2c00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid nanomaterials (HNs), the combination of organic semiconductor ligands attached to nanocrystal semiconductor quantum dots, have applications that span a range of practical fields, including biology, chemistry, medical imaging, and optoelectronics. Specifically, HNs operate as discrete, tunable systems that can perform prompt fluorescence, energy transfer, singlet fission, upconversion, and/or thermally activated delayed fluorescence. Interest in HNs has naturally grown over the years due to their tunability and broad spectrum of applications. This Review presents a brief introduction to the components of HNs, before expanding on the characterization and applications of HNs. Finally, the future of HN applications is discussed.
Collapse
|
9
|
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, Wu J. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Mol Pharm 2022; 19:1273-1293. [PMID: 35436123 DOI: 10.1021/acs.molpharmaceut.2c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Due to the low efficiency of single-component nano materials, there are more and more studies on high-efficiency composites. As zero dimensional (0D) non-metallic semiconductor material, the emergence of graphene quantum dots (GQDs) overcomes the shortcomings of traditional photocatalysts (rapid rate of electron-hole recombination and narrow range of optical response). Their uniqueness is that they can combine the advantages of quantum dots (rich functional groups at edge) and sp2 carbon materials (large specific surface area). The inherent inert carbon stabilizes chemical and physical properties, and brings new breakthroughs to the development of benchmark photocatalysts. The photocatalytic efficiency of GQDs composite with semiconductor materials (SCs) can be improved by the following three points: (1) accelerating charge transfer, (2) extending light absorption range, (3) increasing active sites. The methods of preparation (bottom-up and top-down), types of heterojunctions, mechanisms of photocatalysis, and applications of GQDs/SCs (wastewater treatment, energy storage, gas sensing, UV detection, antibiosis and biomedicine) are comprehensively discussed. And it is hoped that this review can provide some guidance for the future research on of GQDs/SCs on photocatalysis.
Collapse
Affiliation(s)
- Chunyu Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
11
|
Lin T, Huang X, Guo L, Zhou S, Li X, Liu Y, Hu J, Chen X, Xiong Y. Boronate affinity-assisted oriented antibody conjugation on quantum dot nanobeads for improved detection performance in lateral flow immunoassay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Abstract
Quantum dots (QDs) offer bright and robust photoluminescence among several other advantages in comparison to fluorescent dyes. In order to leverage the advantageous properties of QDs for applications in bioanalysis and imaging, simple and reliable methods for bioconjugation are required. One such method for conjugating peptides to QDs is the use of polyhistidine tags, which spontaneously bind to the surface of QDs. We describe protocols for assembling polyhistidine-tagged peptides to QDs and for characterizing the resultant QD-peptide conjugates. The latter include both electrophoretic and FRET-based protocols for confirming successful peptide assembly, estimating the maximum peptide loading capacity, and measuring the assembly kinetics. Sensors for protease activity and intracellular delivery are briefly noted as prospective applications of QD-peptide conjugates.
Collapse
|
13
|
Luo S, Chen X, He Y, Gu Y, Zhu C, Yang GH, Qu LL. Recent advances in graphene nanoribbons for biosensing and biomedicine. J Mater Chem B 2021; 9:6129-6143. [PMID: 34291262 DOI: 10.1039/d1tb00871d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, a new type of quasi-one-dimensional graphene-based material, graphene nanoribbons (GNRs), has attracted increasing attention. The limited domain width and rich edge configurations of GNRs endow them with unique properties and wide applications in comparison to two-dimensional graphene. This review article mainly focuses on the electrical, chemical and other properties of GNRs, and further introduces the typical preparation methods of GNRs, including top-down and bottom-up strategies. Then, their biosensing and biomedical applications are highlighted in detail, such as biosensors, photothermal therapy, drug delivery, etc. Finally, the challenges and future prospects in the synthesis and application of functionalized GNRs are discussed. It is expected that GNRs will have significant practical use in biomedical applications in the future.
Collapse
Affiliation(s)
- Siyu Luo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
15
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Cheng Y, Ling SD, Geng Y, Wang Y, Xu J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. NANOSCALE ADVANCES 2021; 3:2180-2195. [PMID: 36133767 PMCID: PMC9417800 DOI: 10.1039/d0na00933d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Bio-sensing and bio-imaging of organisms or molecules can provide key information for the study of physiological processes or the diagnosis of diseases. Quantum dots (QDs) stand out to be promising optical detectors because of their excellent optical properties such as high brightness, stability, and multiplexing ability. Diverse approaches have been developed to generate QDs, while microfluidic technology is one promising path for their industrial production. In fact, microfluidic devices provide a controllable, rapid and effective route to produce high-quality QDs, while serving as an effective in situ platform to understand the synthetic mechanism or optimize reaction parameters for QD production. In this review, the recent research progress in microfluidic synthesis and bio-detection applications of QDs is discussed. The definitions of different QDs are first introduced, and the advances in microfluidic-based fabrication of quantum dots are summarized with a focus on perovskite QDs and carbon QDs. In addition, QD-based bio-sensing and bio-imaging technologies for organisms of different scales are described in detail. Finally, perspectives for future development of microfluidic synthesis and applications of QDs are presented.
Collapse
Affiliation(s)
- Yu Cheng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Si Da Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuhao Geng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yundong Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Liu C, Yang M, Hu J, Bao L, Tang B, Wei X, Zhao JL, Jin Z, Luo QY, Pang DW. Quantitatively Switchable pH-Sensitive Photoluminescence of Carbon Nanodots. J Phys Chem Lett 2021; 12:2727-2735. [PMID: 33705142 DOI: 10.1021/acs.jpclett.1c00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH sensing plays a key role in the life sciences as well as the environmental, industrial, and agricultural fields. Carbon nanodots (C-dots) with small size, low toxicity, and excellent stability hold great potential in pH sensing as nanoprobes due to their intrinsic pH-sensitive photoluminescence (PL). Nonetheless, the undesirable sensitivity and response range of C-dot PL toward pH cannot meet the requirements of practical applications, and the unclear pH-sensitive PL mechanism makes it difficult to control their pH sensitivity. Herein, the quantitative correlation of pH-sensitive PL with specific surface structures of C-dots is uncovered for the first time, to our best knowledge. The association of carboxylate and H+ increases the ratio of nonradiation to radiation decay of C-dots through excited-state proton transfer, resulting in the decrease of PL intensity. Meanwhile, the dissociation of α-H in β-dicarbonyl forming enolate increases the extent of delocalization of the C-dots conjugated system, which induces the PL broadening to the red region and a decreasing intensity. Based on the understanding of the pH-sensitive PL mechanism, the pH-sensitive PL of C-dots can be switched by quantitative modulation of carboxyl and β-dicarbonyl groups to achieve a desirable pH response range with high sensitivity. This work contributes to a better understanding of the pH-sensitive PL of C-dots and therefore presents an effective strategy for controllably tuning their pH sensitivity, facilitating the rational design of C-dot-based pH sensors.
Collapse
Affiliation(s)
- Cui Liu
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Mengli Yang
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Jiao Hu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Bao
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoyuan Wei
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jiang-Lin Zhao
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zongwen Jin
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qing-Ying Luo
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
19
|
Feng J, Ren WX, Kong F, Dong YB. Recent insight into functional crystalline porous frameworks for cancer photodynamic therapy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01051k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We summarize and illustrate the recent developments of MOF- and COF-based nanomedicines for PDT and its combined antitumor treatments. Furthermore, major challenges and future development prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen-Xiu Ren
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fei Kong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
20
|
|
21
|
Zhao T, Fu Y, Jang MS, Sun XS, Wu T, Lee JH, Li Y, Lee DS, Yang HY. A pH-activated charge convertible quantum dot as a novel nanocarrier for targeted protein delivery and real-time cancer cell imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111449. [PMID: 33255037 DOI: 10.1016/j.msec.2020.111449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The rapid developments of nanocarriers based on quantum dots (QDs) have been confirmed to show substantial promise for drug delivery and bioimaging. However, optimal QDs-based nanocarriers still need to have their controlled behavior in vitro and in vivo and decrease heavy metal-associated cytotoxicity. Herein, a pH-activated charge convertible QD-based nanocarrier was fabricated by capping multifunctional polypeptide ligands (mPEG-block-poly(ethylenediamine-dihydrolipoic acid-2,3-dimethylmaleic anhydride)-L-glutamate, PEG-P(ED-DLA-DMA)LG) onto the surface of core/multishell CdSe@ZnS/ZnS QD by means of a ligand exchange strategy, followed by uploading of cytochrome C (CC) (CC-loaded QD-PEG-P(ED-DLA-DMA)LG) via electrostatic interactions, in which QDs that were water-soluble and protein-loading were perfectly integrated. That is, the CC-loaded QD-PEG-P(ED-DLA-DMA)LG inherited excellent fluorescence properties from CdSe@ZnS/ZnS QD for real-time imaging, as well as tumor-microenvironment sensitivities from PEG-P(ED-DLA-DMA)LG for enhanced cellular uptake and CC release. Experimental results verified that the QD-PEG-P(ED-DLA-DMA)LG showed enhanced internalization, rapid endo/lysosomal escape, and supplied legible real-time imaging for lung carcinoma cells. Furthermore, pH-triggered charge-convertible ability enabled the QD-PEG-P(ED-DLA-DMA)LG-CC to effectively kill cancer cells better than did the control groups. Hence, constructing smart nanocomposites by facile ligand-exchange strategy is beneficial to QD-based nanocarrier for tumor-targeting cancer therapy.
Collapse
Affiliation(s)
- Ting Zhao
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China; College of Chemistry, Jilin University, Changchun City 130012, People's Republic of China
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Tepeng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China.
| |
Collapse
|
22
|
Chen M, Nguyen TT, Varongchayakul N, Grazon C, Chern M, Baer RC, Lecommandoux S, Klapperich CM, Galagan JE, Dennis AM, Grinstaff MW. Surface Immobilized Nucleic Acid-Transcription Factor Quantum Dots for Biosensing. Adv Healthc Mater 2020; 9:e2000403. [PMID: 32691962 DOI: 10.1002/adhm.202000403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/17/2020] [Indexed: 12/23/2022]
Abstract
Immobilization of biosensors on surfaces is a key step toward development of devices for real-world applications. Here the preparation, characterization, and evaluation of a surface-bound transcription factor-nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore-labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)-the analyte-the TetR-QDs release from the surface-bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose-dependent manner over the relevant range of 0-200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real-time quantitative measurements establish a framework for the design of future surface-bound, affinity-based biosensors using allosteric transcription factors for molecular recognition.
Collapse
Affiliation(s)
- Mingfu Chen
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | - Thuy T. Nguyen
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | | | - Chloé Grazon
- Department of Chemistry Boston University Boston MA 02215 USA
- CNRS Bordeaux INP LCPO UMR 5629 Univ. Bordeaux Pessac F‐33600 France
| | - Margaret Chern
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| | - R. C. Baer
- Department of Microbiology Boston University Boston MA 02118 USA
| | | | - Catherine M. Klapperich
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| | - James E. Galagan
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Department of Microbiology Boston University Boston MA 02118 USA
| | - Allison M. Dennis
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Department of Chemistry Boston University Boston MA 02215 USA
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| |
Collapse
|
23
|
Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosens Bioelectron 2020; 157:112168. [DOI: 10.1016/j.bios.2020.112168] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022]
|
24
|
Liu H, Zhang Y, Zhao Y, Zhao Y, Yang X, Han L, Xin J, Yang B, Lin Q. Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. Talanta 2020; 211:120755. [DOI: 10.1016/j.talanta.2020.120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
|
25
|
Guan Q, Zhou LL, Li WY, Li YA, Dong YB. Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chemistry 2020; 26:5583-5591. [PMID: 31880368 DOI: 10.1002/chem.201905150] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/21/2019] [Indexed: 12/27/2022]
Abstract
As newly emerged crystalline porous materials, covalent organic frameworks (COFs) possess fascinating structures and some specific features such as modularity, crystallinity, porosity, stability, versatility, and biocompatibility. Besides adsorption/separation, sensing, catalysis, and energy applications, COFs have recently shown a promise in biomedical applications. This contribution provides an overview of the recent developments of COF-based medicines in cancer therapeutics, including drug delivery, photodynamic therapy (PDT), photothermal therapy (PTT), and combined therapy. Furthermore, the major challenges and developing trends in this field are also discussed. These recent developments are summarized and discussed to help encourage further contributions in this emerging and promising field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of, Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
26
|
Kuriakose AC, Nampoori V, Thomas S. Enhancement of optical properties in Neutral Red Dye through energy transfer from CdS Quantum Dots. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Yang L, Zhou Z, Song J, Chen X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem Soc Rev 2019; 48:5140-5176. [PMID: 31464313 PMCID: PMC6768714 DOI: 10.1039/c9cs00011a] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review contributes towards a systematic understanding of the mechanism of shape-dependent effects on nanoparticles (NPs) for elaborating and predicting their properties and applications based on the past two decades of research. Recently, the significance of shape-dependent physical chemistry and biomedicine has drawn ever increasing attention. While there has been a great deal of effort to utilize NPs with different morphologies in these fields, so far research studies are largely localized in particular materials, synthetic methods, or biomedical applications, and have ignored the interactional and interdependent relationships of these areas. This review is a comprehensive description of the NP shapes from theory, synthesis, property to application. We figure out the roles that shape plays in the properties of different kinds of nanomaterials together with physicochemical and biomedical applications. Through systematic elaboration of these shape-dependent impacts, better utilization of nanomaterials with diverse morphologies would be realized and definite strategies would be expected for breakthroughs in these fields. In addition, we have proposed some critical challenges and open problems that need to be addressed in nanotechnology.
Collapse
Affiliation(s)
- Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Xue EY, Wong RCH, Wong CTT, Fong WP, Ng DKP. Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Adv 2019; 9:20652-20662. [PMID: 35515550 PMCID: PMC9065697 DOI: 10.1039/c9ra03911b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
A peptide-conjugated zinc(ii) phthalocyanine containing the epidermal growth factor receptor-targeted heptapeptide QRHKPRE has been prepared. The conjugate labelled as ZnPc-QRH* can selectively bind to the cell membrane of HT29 human colorectal adenocarcinoma cells in 10 min followed by internalisation upon prolonged incubation via receptor-mediated endocytosis, leading to localisation in lysosomes eventually. By manipulating the incubation time, the subcellular localisation of the conjugate can be varied and the cell-death pathways induced upon irradiation can also be altered. It has been found that photosensitisation initiated at the cell membrane and in the lysosomes would trigger cell death mainly through necrosis and apoptosis respectively. Intravenous administration of the conjugate into HT29 tumour-bearing nude mice resulted in higher accumulation in the tumour than in most major organs. The selective binding of this conjugate to tumour has also been demonstrated by comparing the results with those of the analogue with a scrambled peptide sequence (EPRQRHK). The overall results indicate that ZnPc-QRH* is a promising EGFR-targeted photosensitiser for photodynamic therapy.
Collapse
Affiliation(s)
- Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Roy C H Wong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| |
Collapse
|
29
|
Rodríguez-Rodríguez H, Acebrón M, Iborra FJ, Arias-Gonzalez JR, Juárez BH. Photoluminescence Activation of Organic Dyes via Optically Trapped Quantum Dots. ACS NANO 2019; 13:7223-7230. [PMID: 31194513 DOI: 10.1021/acsnano.9b02835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laser tweezers afford quantum dot (QD) manipulation for use as localized emitters. Here, we demonstrate fluorescence by radiative energy transfer from optically trapped colloidal QDs (donors) to fluorescent dyes (acceptors). To this end, we synthesized silica-coated QDs of different compositions and triggered their luminescence by simultaneous trapping and two-photon excitation in a microfluidic chamber filled with dyes. This strategy produces a near-field light source with great spatial maneuverability, which can be exploited to scan nanostructures. In this regard, we demonstrate induced photoluminescence of dye-labeled cells via optically trapped silica-coated colloidal QDs placed at their vicinity. Allocating nanoscale donors at controlled distances from a cell is an attractive concept in fluorescence microscopy because it dramatically reduces the number of excited dyes, which improves resolution by preventing interferences from the whole sample, while prolonging dye luminescence lifetime due to the lower power absorbed from the QDs.
Collapse
Affiliation(s)
- Héctor Rodríguez-Rodríguez
- IMDEA Nanoscience , Faraday 9, Campus de Cantoblanco, 28049 Madrid , Spain
- Department of Applied Physical Chemistry , Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid , Spain
| | - María Acebrón
- IMDEA Nanoscience , Faraday 9, Campus de Cantoblanco, 28049 Madrid , Spain
| | - Francisco J Iborra
- National Center for Biotechnology (CNB-CSIC) , Campus de Cantoblanco, 28049 Madrid , Spain
| | | | - Beatriz H Juárez
- IMDEA Nanoscience , Faraday 9, Campus de Cantoblanco, 28049 Madrid , Spain
- Department of Applied Physical Chemistry , Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid , Spain
- Condensed Matter Physics Center (IFIMAC) , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
30
|
Shi W, Ng DKP, Zhao S, Lo P. A Phthalocyanine‐Based Glutathione‐Activated Photosensitizer with a Ferrocenyl Boron Dipyrromethene Dark Quencher for Photodynamic Therapy. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wen‐Jing Shi
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 China
- Department of ChemistryThe Chinese University of Hong Kong Shatin, N.T., Hong Kong China
| | - Dennis K. P. Ng
- Department of ChemistryThe Chinese University of Hong Kong Shatin, N.T., Hong Kong China
| | - Shirui Zhao
- Department of ChemistryThe Chinese University of Hong Kong Shatin, N.T., Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
31
|
Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal Bioanal Chem 2019; 411:2619-2633. [DOI: 10.1007/s00216-019-01710-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
|
32
|
Ding F, Li C, Xu Y, Li J, Li H, Yang G, Sun Y. PEGylation Regulates Self-Assembled Small-Molecule Dye-Based Probes from Single Molecule to Nanoparticle Size for Multifunctional NIR-II Bioimaging. Adv Healthc Mater 2018; 7:e1800973. [PMID: 30358138 DOI: 10.1002/adhm.201800973] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/04/2018] [Indexed: 12/14/2022]
Abstract
To date, small-molecule dye-based probes have been at the forefront of research in biomedical imaging, especially in the second near-infrared (NIR-II) window (1.0-1.7 µm). However, how to precisely regulate the synthesized size of NIR-II organic dye-based probes remains challenging. Moreover, systematic studies on whether the size of NIR-II probes affects optical/pharmacokinetic properties are still rare. Here, an ingenious PEGylation strategy is developed to regulate the self-assembly size of organic dye-based (CH1055 scaffold) NIR-II probes (SCH1-SCH4) from nanoparticles to the single molecule, and the relationship between their size and chemical/physical properties is thoroughly investigated. Based on their own merits, nanoprobe SCH1 (≈170 nm), with outstanding fluorescent brightness (quantum yield ≈0.14%), performs accurate tracing of the lymphatic system as well as identification of vessel networks in mice brains with excellent signal-to-background ratio images. Meanwhile, rapidly excreted SCH4, showing fast and high passive liver tumor uptake and promising tumor/normal tissue ratios (>7), is capable of facilitating precise image-guided tumor surgery, and also demonstrates the first example of the assessment of liver fibrosis in the NIR-II window.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Chonglu Li
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Yuling Xu
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Jiaxin Li
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing University Nanjing 210023 China
| | - Haibing Li
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| |
Collapse
|
33
|
Lai Q, Liu Q, He Y, Zhao K, Wei C, Wojtas L, Shi X, Song Z. Triazole-imidazole (TA-IM) derivatives as ultrafast fluorescent probes for selective Ag + detection. Org Biomol Chem 2018; 16:7801-7805. [PMID: 30328458 PMCID: PMC6493330 DOI: 10.1039/c8ob02482k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1,2,3-Triazole-imidazole derivatives (TA-IM) were prepared as fluorescent probes for silver ion detection. The design principle is the incorporation of an intramolecular H-bond between the imidazole and triazole moiety that enables a co-planar conformation to achieve fluorescence emission in the UV-blue range. Screening of different metal ions revealed excellent binding affinity of this new class of compounds toward silver ions in aqueous solution. The novel probe provided ultrafast detection (<30 s) even for a very low concentration of silver ions (in the nM range) with good linear correlation, making it a practical sensor for detection of silver ions.
Collapse
Affiliation(s)
- Qi Lai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 13002, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bao B, Yang Z, Liu Y, Xu Y, Gu B, Chen J, Su P, Tong L, Wang L. Two-photon semiconducting polymer nanoparticles as a new platform for imaging of intracellular pH variation. Biosens Bioelectron 2018; 126:129-135. [PMID: 30396020 DOI: 10.1016/j.bios.2018.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022]
Abstract
Intracellular pH (pHi) plays a crucial role in cell physiological and pathological processes. We herein report an efficient pH-sensitive sensor based on two-photon excitable semiconducting polymer nanoparticles (PFV/PSMA-DA NPs) for pHi sensing. PFV/PSMA NPs were functionalized with redox-active dopamine (DA) and the obtained PFV/PSMA-DA NPs showed sensitive and reversible pH response over the pH range of 5.0-9.0. Owning to the high biocompatibility and pH-responsive DA, PFV/PSMA-DA NPs show low cytotoxicity and the quantification and imaging of intracellular pH changes of HeLa cells were successfully realized. Moreover, the detection of intracellular pH fluctuation induced by redox species such as NAC (N-acetylcysteine) and H2O2 was also achieved by both one- and two-photon excitation of the PFV/PSMA-DA NPs probe. This work clearly shows that nanoprobe based on two-photon PFV/PSMA-DA NPs could serve as a promising platform for quantitatively monitoring the intracellular pH fluctuations.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Zhenyuan Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Yunfei Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Bingbing Gu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Li Tong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
35
|
Quantum dot-based fluorescent probes for targeted imaging of the EJ human bladder urothelial cancer cell line. Exp Ther Med 2018; 16:4779-4783. [PMID: 30546399 DOI: 10.3892/etm.2018.6805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/16/2018] [Indexed: 12/28/2022] Open
Abstract
QDs are a type of inorganic nanoparticle with unique optical properties. As a fluorescent label, QDs are widely used in biomedical fields. In the present study, fluorescent probes of quantum dots (QDs) conjugated with a prostate stem cell antigen (PSCA) monoclonal antibody (QD-PSCA) were prepared to study the targeted imaging of QD-PSCA probes in EJ human bladder urothelial cancer cells and analyze the feasibility of QD-based non-invasive tumor-targeted imaging in vivo. QDs with an emission wavelength of 605 nm (QD605) were conjugated with PSCA to prepare QD605-PSCA fluorescent probes by chemical covalent coupling. The optical properties of the probes coupled and uncoupled with PSCA were measured and assessed using an ultraviolet spectrophotometer and a fluorescence spectrophotometer. Direct immune-fluorescent labeling was utilized to detect and analyze imaging of the probes for EJ cells. The results revealed that QD605-PSCA probes retained the fluorescent properties of QD605 and the immunogenicity of the PSCA protein. The probes were able to specifically recognize the PSCA protein expressed in bladder cancer cells, while fluorescence was stable and had a long duration. The present study suggests that QD-PSCA fluorescent probes may be useful for specific targeted labeling and imaging in bladder urothelial cancer cells. Furthermore, the probes possess good optical stability and may be useful for research into non-invasive targeted imaging, early diagnosis and targeted in vivo tumor therapy.
Collapse
|