1
|
Li Y, Sun K, Shao Y, Wang C, Xue F, Chu C, Gu Z, Chen Z, Bai J. Next-Generation Approaches for Biomedical Materials Evaluation: Microfluidics and Organ-on-a-Chip Technologies. Adv Healthc Mater 2024:e2402611. [PMID: 39440635 DOI: 10.1002/adhm.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biological evaluation of biomedical materials faces constraints imposed by the limitations of traditional in vitro and animal experiments. Currently, miniaturized and biomimetic microfluidic technologies and organ-on-chip systems have garnered widespread attention in the field of drug development. However, their exploration in the context of biomedical material evaluation and medical device development remains relatively limited. In this review, a summary of existing biological evaluation methods, highlighting their respective advantages and drawbacks is provided. The application of microfluidic technologies in the evaluation of biomedical materials, emphasizing the potential of organ-on-chip systems as highly biomimetic in vitro models in material evaluation is then focused. Finally, the challenges and opportunities associated with utilizing organ-on-chip systems to evaluate biomedical materials in the field of material evaluation are discussed. In conclusion, the integration of advanced microfluidic technologies and organ-on-chip systems presents a potential paradigm shift in the biological assessment of biomedical materials, offering the prospective of more accurate and predictive in vitro models in the development of medical devices.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Ke Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Zhongze Gu
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zaozao Chen
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| |
Collapse
|
2
|
Morrison AI, Sjoerds MJ, Vonk LA, Gibbs S, Koning JJ. In vitro immunity: an overview of immunocompetent organ-on-chip models. Front Immunol 2024; 15:1373186. [PMID: 38835750 PMCID: PMC11148285 DOI: 10.3389/fimmu.2024.1373186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Impressive advances have been made to replicate human physiology in vitro over the last few years due to the growth of the organ-on-chip (OoC) field in both industrial and academic settings. OoCs are a type of microphysiological system (MPS) that imitates functional and dynamic aspects of native human organ biology on a microfluidic device. Organoids and organotypic models, ranging in their complexity from simple single-cell to complex multi-cell type constructs, are being incorporated into OoC microfluidic devices to better mimic human physiology. OoC technology has now progressed to the stage at which it has received official recognition by the Food and Drug Administration (FDA) for use as an alternative to standard procedures in drug development, such as animal studies and traditional in vitro assays. However, an area that is still lagging behind is the incorporation of the immune system, which is a critical element required to investigate human health and disease. In this review, we summarise the progress made to integrate human immunology into various OoC systems, specifically focusing on models related to organ barriers and lymphoid organs. These models utilise microfluidic devices that are either commercially available or custom-made. This review explores the difference between the use of innate and adaptive immune cells and their role for modelling organ-specific diseases in OoCs. Immunocompetent multi-OoC models are also highlighted and the extent to which they recapitulate systemic physiology is discussed. Together, the aim of this review is to describe the current state of immune-OoCs, the limitations and the future perspectives needed to improve the field.
Collapse
Affiliation(s)
- Andrew I. Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Mirthe J. Sjoerds
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leander A. Vonk
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Jasper J. Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| |
Collapse
|
3
|
Carvalho DJ, Kip AM, Tegel A, Stich M, Krause C, Romitti M, Branca C, Verhoeven B, Costagliola S, Moroni L, Giselbrecht S. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks. Adv Healthc Mater 2024; 13:e2303444. [PMID: 38247306 PMCID: PMC11481080 DOI: 10.1002/adhm.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The convergence of organoid and organ-on-a-chip (OoC) technologies is urgently needed to overcome limitations of current 3D in vitro models. However, integrating organoids in standard OoCs faces several technical challenges, as it is typically laborious, lacks flexibility, and often results in even more complex and less-efficient cell culture protocols. Therefore, specifically adapted and more flexible microfluidic platforms need to be developed to facilitate the incorporation of complex 3D in vitro models. Here, a modular, tubeless fluidic circuit board (FCB) coupled with reversibly sealed cell culture bricks for dynamic culture of embryonic stem cell-derived thyroid follicles is developed. The FCB is fabricated by milling channels in a polycarbonate (PC) plate followed by thermal bonding against another PC plate. LEGO-like fluidic interconnectors allow plug-and-play connection between a variety of cell culture bricks and the FCB. Lock-and-play clamps are integrated in the organoid brick to enable easy (un)loading of organoids. A multiplexed perfusion experiment is conducted with six FCBs, where thyroid organoids are transferred on-chip within minutes and cultured up to 10 d without losing their structure and functionality, thus validating this system as a flexible, easy-to-use platform, capable of synergistically combining organoids with advanced microfluidic platforms.
Collapse
Affiliation(s)
- Daniel J. Carvalho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna M. Kip
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Andreas Tegel
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Matthias Stich
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Christian Krause
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Carlotta Branca
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Bart Verhoeven
- IDEE Instrument Development Engineering and Evaluation – Research EngineeringUniversiteitssingel 50Maastricht6200 MDThe Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
4
|
Piatnitskaia S, Rafikova G, Bilyalov A, Chugunov S, Akhatov I, Pavlov V, Kzhyshkowska J. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol 2024; 15:1349461. [PMID: 38596667 PMCID: PMC11002093 DOI: 10.3389/fimmu.2024.1349461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Cell Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Guzel Rafikova
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, Russia
| | - Azat Bilyalov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Svyatoslav Chugunov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Iskander Akhatov
- Laboratory of Mathematical modeling, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
5
|
Pierfelice TV, D'Amico E, Petrini M, Romano M, D'Arcangelo C, Sbordone L, Barone A, Plebani R, Iezzi G. A Systematic Review on Organ-on-a-Chip in PDMS or Hydrogel in Dentistry: An Update of the Literature. Gels 2024; 10:102. [PMID: 38391432 PMCID: PMC10887950 DOI: 10.3390/gels10020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Organs-on-a-chip (OoCs) are microfluidic devices constituted by PDMS or hydrogel in which different layers of cells are separated by a semipermeable membrane. This technology can set many parameters, like fluid shear stress, chemical concentration gradient, tissue-organ interface, and cell interaction. The use of these devices in medical research permits the investigation of cell patterning, tissue-material interface, and organ-organ interaction, mimicking the complex structures and microenvironment of human and animal bodies. This technology allows us to reconstitute in vitro complex conditions that recapitulate in vivo environments. One of the main advantages of these systems is that they represent a very realistic model that, in many cases, can replace animal experimentation, eliminating costs and related ethical issues. Organ-on-a-chip can also contain bacteria or cancer cells. This technology could be beneficial in dentistry for testing novel antibacterial substances and biomaterials, performing studies on inflammatory disease, or planning preclinical studies. A significant number of publications and reviews have been published on this topic. Still, to our knowledge, they mainly focus on the materials used for fabrication and the different patterns of the chip applied to the experimentations. This review presents the most recent applications of organ-on-a-chip models in dentistry, starting from the reconstituted dental tissues to their clinical applications and future perspectives.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario Romano
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D'Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Ludovico Sbordone
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Antonio Barone
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy
- Complex Unit of Stomatology and Oral Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Luo Y, Li X, Zhao Y, Zhong W, Xing M, Lyu G. Development of Organs-on-Chips and Their Impact on Precision Medicine and Advanced System Simulation. Pharmaceutics 2023; 15:2094. [PMID: 37631308 PMCID: PMC10460056 DOI: 10.3390/pharmaceutics15082094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Drugs may undergo costly preclinical studies but still fail to demonstrate their efficacy in clinical trials, which makes it challenging to discover new drugs. Both in vitro and in vivo models are essential for disease research and therapeutic development. However, these models cannot simulate the physiological and pathological environment in the human body, resulting in limited drug detection and inaccurate disease modelling, failing to provide valid guidance for clinical application. Organs-on-chips (OCs) are devices that serve as a micro-physiological system or a tissue-on-a-chip; they provide accurate insights into certain functions and the pathophysiology of organs to precisely predict the safety and efficiency of drugs in the body. OCs are faster, more economical, and more precise. Thus, they are projected to become a crucial addition to, and a long-term replacement for, traditional preclinical cell cultures, animal studies, and even human clinical trials. This paper first outlines the nature of OCs and their significance, and then details their manufacturing-related materials and methodology. It also discusses applications of OCs in drug screening and disease modelling and treatment, and presents the future perspective of OCs.
Collapse
Affiliation(s)
- Ying Luo
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiaoxiao Li
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Department of General Surgery, Huai’an 82 Hospital, Huai’an 223003, China
| | - Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (Y.Z.); (W.Z.)
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (Y.Z.); (W.Z.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- National Research Center for Emergency Medicine, Beijing 100000, China
| |
Collapse
|
7
|
Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2023; 91:101108. [PMID: 35987701 PMCID: PMC9384546 DOI: 10.1016/j.mam.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The field of precision medicine allows for tailor-made treatments specific to a patient and thereby improve the efficiency and accuracy of disease prevention, diagnosis, and treatment and at the same time would reduce the cost, redundant treatment, and side effects of current treatments. Here, the combination of organ-on-a-chip and bioprinting into engineering high-content in vitro tissue models is envisioned to address some precision medicine challenges. This strategy could be employed to tackle the current coronavirus disease 2019 (COVID-19), which has made a significant impact and paradigm shift in our society. Nevertheless, despite that vaccines against COVID-19 have been successfully developed and vaccination programs are already being deployed worldwide, it will likely require some time before it is available to everyone. Furthermore, there are still some uncertainties and lack of a full understanding of the virus as demonstrated in the high number new mutations arising worldwide and reinfections of already vaccinated individuals. To this end, efficient diagnostic tools and treatments are still urgently needed. In this context, the convergence of bioprinting and organ-on-a-chip technologies, either used alone or in combination, could possibly function as a prominent tool in addressing the current pandemic. This could enable facile advances of important tools, diagnostics, and better physiologically representative in vitro models specific to individuals allowing for faster and more accurate screening of therapeutics evaluating their efficacy and toxicity. This review will cover such technological advances and highlight what is needed for the field to mature for tackling the various needs for current and future pandemics as well as their relevancy towards precision medicine.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Thiago Domingues Stocco
- Bioengineering Program, Technological and Scientific Institute, Brazil University, 08230-030, São Paulo, SP, Brazil; Faculty of Medical Sciences, Unicamp - State University of Campinas, 13083-877, Campinas, SP, Brazil
| | | | - André Sales Aguiar Furtado
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo Fernandes de Sousa
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Thomas J Webster
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Hebei University of Technology, Tianjin, China
| | - Fernanda R Marciano
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA.
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
8
|
Van Os L, Engelhardt B, Guenat OT. Integration of immune cells in organs-on-chips: a tutorial. Front Bioeng Biotechnol 2023; 11:1191104. [PMID: 37324438 PMCID: PMC10267470 DOI: 10.3389/fbioe.2023.1191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Viral and bacterial infections continue to pose significant challenges for numerous individuals globally. To develop novel therapies to combat infections, more insight into the actions of the human innate and adaptive immune system during infection is necessary. Human in vitro models, such as organs-on-chip (OOC) models, have proven to be a valuable addition to the tissue modeling toolbox. The incorporation of an immune component is needed to bring OOC models to the next level and enable them to mimic complex biological responses. The immune system affects many (patho)physiological processes in the human body, such as those taking place during an infection. This tutorial review introduces the reader to the building blocks of an OOC model of acute infection to investigate recruitment of circulating immune cells into the infected tissue. The multi-step extravasation cascade in vivo is described, followed by an in-depth guide on how to model this process on a chip. Next to chip design, creation of a chemotactic gradient and incorporation of endothelial, epithelial, and immune cells, the review focuses on the hydrogel extracellular matrix (ECM) to accurately model the interstitial space through which extravasated immune cells migrate towards the site of infection. Overall, this tutorial review is a practical guide for developing an OOC model of immune cell migration from the blood into the interstitial space during infection.
Collapse
Affiliation(s)
- Lisette Van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Tahir N, Sharifi F, Khan TA, Khan MM, Madni A, Rehman M. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
10
|
Dhall A, Tan JY, Oh MJ, Islam S, Kim J, Kim A, Hwang G. A dental implant-on-a-chip for 3D modeling of host-material-pathogen interactions and therapeutic testing platforms. LAB ON A CHIP 2022; 22:4905-4916. [PMID: 36382363 PMCID: PMC9732915 DOI: 10.1039/d2lc00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The precise spatiotemporal control and manipulation of fluid dynamics on a small scale granted by lab-on-a-chip devices provide a new biomedical research realm as a substitute for in vivo studies of host-pathogen interactions. While there has been a rise in the use of various medical devices/implants for human use, the applicability of microfluidic models that integrate such functional biomaterials is currently limited. Here, we introduced a novel dental implant-on-a-chip model to better understand host-material-pathogen interactions in the context of peri-implant diseases. The implant-on-a-chip integrates gingival cells with relevant biomaterials - keratinocytes with dental resin and fibroblasts with titanium while maintaining a spatially separated co-culture. To enable this co-culture, the implant-on-a-chip's core structure necessitates closely spaced, tall microtrenches. Thus, an SU-8 master mold with a high aspect-ratio pillar array was created by employing a unique backside UV exposure with a selective optical filter. With this model, we successfully replicated the morphology of keratinocytes and fibroblasts in the vicinity of dental implant biomaterials. Furthermore, we demonstrated how photobiomodulation therapy might be used to protect the epithelial layer from recurrent bacterial challenges (∼3.5-fold reduction in cellular damage vs. control). Overall, our dental implant-on-a-chip approach proposes a new microfluidic model for multiplexed host-material-pathogen investigations and the evaluation of novel treatment strategies for infectious diseases.
Collapse
Affiliation(s)
- Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Ying Tan
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Min Jun Oh
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sayemul Islam
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Jungkwun Kim
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA.
| | - Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
McCloskey MC, Zhang VZ, Ahmad SD, Walker S, Romanick SS, Awad HA, McGrath JL. Sourcing cells for in vitro models of human vascular barriers of inflammation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:979768. [PMID: 36483299 PMCID: PMC9724237 DOI: 10.3389/fmedt.2022.979768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samantha S. Romanick
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
12
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
13
|
A 3D in vitro co-culture model for evaluating biomaterial-mediated modulation of foreign-body responses. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
15
|
|
16
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
17
|
Cecen B, Bal-Ozturk A, Yasayan G, Alarcin E, Kocak P, Tutar R, Kozaci LD, Shin SR, Miri AK. Selection of natural biomaterials for micro-tissue and organ-on-chip models. J Biomed Mater Res A 2022; 110:1147-1165. [PMID: 35102687 PMCID: PMC10700148 DOI: 10.1002/jbm.a.37353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
The desired organ in micro-tissue models of organ-on-a-chip (OoC) devices dictates the optimum biomaterials, divided into natural and synthetic biomaterials. They can resemble biological tissues' biological functions and architectures by constructing bioactivity of macromolecules, cells, nanoparticles, and other biological agents. The inclusion of such components in OoCs allows them having biological processes, such as basic biorecognition, enzymatic cleavage, and regulated drug release. In this report, we review natural-based biomaterials that are used in OoCs and their main characteristics. We address the preparation, modification, and characterization methods of natural-based biomaterials and summarize recent reports on their applications in the design and fabrication of micro-tissue models. This article will help bioengineers select the proper biomaterials based on developing new technologies to meet clinical expectations and improve patient outcomes fusing disease modeling.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Ayca Bal-Ozturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Polen Kocak
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Leyla Didem Kozaci
- Faculty of Medicine, Department of Medical Biochemistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts, USA
| | - Amir K. Miri
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
18
|
Coburn PT, Li X, Li JY, Kishimoto Y, Li-Jessen NY. Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100119. [PMID: 35434718 PMCID: PMC9007544 DOI: 10.1002/anbr.202100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vocal folds, housed in the upper respiratory tract, are important to daily breathing, speech and swallowing functions. Irreversible changes to the vocal fold mucosae, such as scarring and atrophy, require a regenerative medicine approach to promote a controlled regrowth of the extracellular matrix (ECM)-rich mucosa. Various biomaterial systems have been engineered with an emphasis on stimulating local vocal fold fibroblasts to produce new ECM. At the same time, it is imperative to limit the foreign body reaction and associated immune components that can hinder the integration of the biomaterial into the host tissue. Modern biomaterial designs have become increasingly focused on actively harnessing the immune system to accelerate and optimize the process of tissue regeneration. An array of physical and chemical biomaterial parameters have been reported to effectively modulate local immune cells, such as macrophages, to initiate tissue repair, stimulate ECM production, promote biomaterial-tissue integration, and restore the function of the vocal folds. In this perspective paper, the unique immunological profile of the vocal folds will first be reviewed. Key physical and chemical biomaterial properties relevant to immunomodulation will then be highlighted and discussed. A further examination of the physicochemical properties of recent vocal fold biomaterials will follow to generate deeper insights into corresponding immune-related outcomes. Lastly, a perspective will be offered on the opportunity of integrating material-led immunomodulatory strategies into future vocal fold tissue engineering therapies.
Collapse
Affiliation(s)
- Patrick T. Coburn
- School of Communication Sciences and Disorders, McGill University, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, Canada
| | - Jianyu. Y. Li
- Department of Mechanical Engineering, McGill University, Canada
- Department of Biomedical Engineering, McGill University, Canada
| | - Yo Kishimoto
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nicole Y.K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Canada
- Department of Biomedical Engineering, McGill University, Canada
- Department of Otolaryngology – Head & Neck Surgery, McGill University, Canada
| |
Collapse
|
19
|
Zhang X, Jiang L, Li X, Zheng L, Dang R, Liu X, Wang X, Chen L, Zhang YS, Zhang J, Yang D. A Bioinspired Hemostatic Powder Derived from the Skin Secretion of Andrias davidianus for Rapid Hemostasis and Intraoral Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101699. [PMID: 34817129 DOI: 10.1002/smll.202101699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
High-performance hemostasis has become increasingly essential in treating various traumas. However, available topical hemostats still have various drawbacks and side-effects. Herein, hemostatic powders derived from the skin secretion of Andrias davidianus (SSAD) with controllable particle size are prepared using feasible frozen-ball milling following lyophilization for hemorrhage-control. Scanning electron microscopy, rheometry, and Brunauer-Emmett-Teller test are used to characterize the coagulation-promoting surface topography, rheological properties, and porous structure of the SSAD particles. The blood-coagulation assays showed that the SSAD powders can induce blood-absorption in a particle size-dependent manner. Particle sizes of the SSAD powders larger than 200 µm and smaller than 800 µm greatly affect the blood-clotting rate. Associated with the thromboelastography (TEG) and amino acid/protein composition analyses, the accessibility and diffusion of blood are mainly dependent on the wettability, adhesivity, and clotting factors of the SSAD particles. Rapid hemostasis in vivo further involves three hemorrhage models (liver, femoral artery, and tail) as well as an oral wound model, which suggest favorable hemostatic and simultaneous regenerative effects of the SSAD hemostatic powder. Considering its degradability and good biocompatibility, SSAD can be an optimal candidate for a new class of inexpensive, natural, and promising hemostatic and wound-dressing agent.
Collapse
Affiliation(s)
- Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Lin Jiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Liwen Zheng
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| |
Collapse
|
20
|
Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials 2021; 280:121302. [PMID: 34894584 DOI: 10.1016/j.biomaterials.2021.121302] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Monotherapy with a single chemotherapeutic regimen has met with significant hurdles in terms of clinical efficacy. The complexity of cancer accentuates the need for an alternative approach with a combination of two or more therapeutic regimens to win the battle. However, it is still a challenge to develop a successful combination of drugs with high efficiency and low toxicity to control cancer growth. While gemcitabine monotherapy remains a choice of standard treatment for advanced breast cancer, the approach has not prolonged the median survival time of metastatic breast cancer patients. Here, we report a hyaluronic acid (HA)-based drug combination of gemcitabine (GEM) with imiquimod (IMQ) to stimulate immune cells for anticancer activity. Treatment of the drug combination (IMQ-HA-GEM) showed enhanced anticancer activity against 4T1 breast tumor cells in vitro. Our study with a microfluidics-based 3D, compartmentalized cancer model showed that infiltration of THP-1 monocytes occurred particularly at the site of cancer cells treated with IMQ-HA-GEM. Moreover, IMQ-HA-GEM significantly suppressed the volume of 4T1 breast tumor of mice in vivo. Flow cytometry study displayed a significantly higher activation of CD11b+ immune cells in the blood of mice treated with IMQ-HA-GEM, whereas immunohistochemistry study revealed greater prevalence of CD68+ tumor-associated macrophages in the tumor. Histological examination of isolated tumors of mice treated with IMQ-HA-GEM further confirmed the efficacy of drug combination on cancer cells. This study supports the conclusion that imiquimod potentiates the effect of gemcitabine by activating immune cells to suppress tumors in the form of combination nanoparticles.
Collapse
|
21
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Mondadori C, Palombella S, Salehi S, Talò G, Visone R, Rasponi M, Redaelli A, Sansone V, Moretti M, Lopa S. Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 2021; 13. [PMID: 34139683 DOI: 10.1088/1758-5090/ac0c5e] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The synovium of osteoarthritis (OA) patients can be characterized by an abnormal accumulation of macrophages originating from extravasated monocytes. Since targeting monocyte extravasation may represent a promising therapeutic strategy, our aim was to develop an organotypic microfluidic model recapitulating this process. Synovium and cartilage were modeled by hydrogel-embedded OA synovial fibroblasts and articular chondrocytes separated by a synovial fluid channel. The synovium compartment included a perfusable endothelialized channel dedicated to monocyte injection. Monocyte extravasation in response to chemokines and OA synovial fluid was quantified. The efficacy of chemokine receptor antagonists, RS-504393 (CCR2 antagonist) and Cenicriviroc (CCR2/CCR5 antagonist) in inhibiting extravasation was tested pre-incubating monocytes with the antagonists before injection. After designing and fabricating the chip, culture conditions were optimized to achieve an organotypic model including synovial fibroblasts, articular chondrocytes, and a continuous endothelial monolayer expressing intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. A significantly higher number of monocytes extravasated in response to the chemokine mix (p< 0.01) and OA synovial fluid (p< 0.01), compared to a control condition. In both cases, endothelium pre-activation enhanced monocyte extravasation. The simultaneous blocking of CCR2 and CCR5 proved to be more effective (p< 0.001) in inhibiting monocyte extravasation in response to OA synovial fluid than blocking of CCR2 only (p< 0.01). The study of extravasation in the model provided direct evidence that OA synovial fluid induces monocytes to cross the endothelium and invade the synovial compartment. The model can be exploited either to test molecules antagonizing this process or to investigate the effect of extravasated monocytes on synovium and cartilage cells.
Collapse
Affiliation(s)
- Carlotta Mondadori
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milan, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milan, Italy
| | - Shima Salehi
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milan, Italy
| |
Collapse
|
23
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
24
|
Gori M, Vadalà G, Giannitelli SM, Denaro V, Di Pino G. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Front Bioeng Biotechnol 2021; 9:659033. [PMID: 34113605 PMCID: PMC8185207 DOI: 10.3389/fbioe.2021.659033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Neural-interfaced prostheses aim to restore sensorimotor limb functions in amputees. They rely on bidirectional neural interfaces, which represent the communication bridge between nervous system and neuroprosthetic device by controlling its movements and evoking sensory feedback. Compared to extraneural electrodes (i.e., epineural and perineural implants), intraneural electrodes, implanted within peripheral nerves, have higher selectivity and specificity of neural signal recording and nerve stimulation. However, being implanted in the nerve, their main limitation is represented by the significant inflammatory response that the body mounts around the probe, known as Foreign Body Reaction (FBR), which may hinder their rapid clinical translation. Furthermore, the mechanical mismatch between the consistency of the device and the surrounding neural tissue may contribute to exacerbate the inflammatory state. The FBR is a non-specific reaction of the host immune system to a foreign material. It is characterized by an early inflammatory phase eventually leading to the formation of a fibrotic capsule around intraneural interfaces, which increases the electrical impedance over time and reduces the chronic interface biocompatibility and functionality. Thus, the future in the reduction and control of the FBR relies on innovative biomedical strategies for the fabrication of next-generation neural interfaces, such as the development of more suitable designs of the device with smaller size, appropriate stiffness and novel conductive and biomimetic coatings for improving their long-term stability and performance. Here, we present and critically discuss the latest biomedical approaches from material chemistry and tissue engineering for controlling and mitigating the FBR in chronic neural implants.
Collapse
Affiliation(s)
- Manuele Gori
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sara Maria Giannitelli
- Laboratory of Tissue Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Denaro
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
25
|
Yildiz-Ozturk E, Saglam-Metiner P, Yesil-Celiktas O. Lung carcinoma spheroids embedded in a microfluidic platform. Cytotechnology 2021; 73:457-471. [PMID: 34149177 DOI: 10.1007/s10616-021-00470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 01/13/2023] Open
Abstract
Three-dimensional (3D) spheroid cell cultures are excellent models used in cancer biology research and drug screening. The objective of this study was to develop a lung carcinoma spheroid based microfluidic platform with perfusion function to mimic lung cancer pathology and investigate the effect of a potential drug molecule, panaxatriol. Spheroids were successfully formed on agar microtissue molds at the end of 10 days, reaching an average diameter of about 317.18 ± 4.05 μm and subsequently transferred to 3D dynamic microfluidic system with perfusion function. While the size of the 3D spheroids embedded in the Matrigel matrix in the platform had gradually increased both in the static and dynamic control groups, the size of the spheroids were reduced and fragmented in the drug treated groups. Cell viability results showed that panaxatriol exhibited higher cytotoxic effect on cancer cells than healthy cells and the IC50 value was determined as 61.55 µM. Furthermore, panaxatriol has been more effective on single cells around the spheroid structure, whereas less in 3D spheroid tissues with a compact structure in static conditions compared to dynamic systems, where a flow rate of 2 µL/min leading to a shear stress of 0.002 dyne/cm2 was applied. Application of such dynamic systems will contribute to advancing basic research and increasing the predictive accuracy of potential drug molecules, which may accelerate the translation of novel therapeutics to the clinic, possibly decreasing the use of animal models. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00470-7.
Collapse
Affiliation(s)
- Ece Yildiz-Ozturk
- Ege University Translational Pulmonary Research Center (Ege TPRC), 35100 Izmir, Turkey
| | - Pelin Saglam-Metiner
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100 Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Ege University Translational Pulmonary Research Center (Ege TPRC), 35100 Izmir, Turkey.,Faculty of Engineering, Department of Bioengineering, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
26
|
Devamoglu U, Duman I, Saygili E, Yesil-Celiktas O. Development of an Integrated Optical Sensor for Determination of β-Hydroxybutyrate Within the Microplatform. Appl Biochem Biotechnol 2021; 193:2759-2768. [PMID: 33834362 DOI: 10.1007/s12010-021-03563-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Ketone bodies (acetoacetate, beta-hydroxybutyrate (βHB), acetone) are generated as a result of fatty acid oxidation in the liver and exist at low concentrations in urine and blood. Elevated concentrations can indicate health problems such as diabetes, childhood hypoglycemia, alcohol, or salicylate poisoning. Development of portable and cost-effective bedside point-of-care (POC) tests to detect such compounds can help to reduce the risk of disease progression. In this study, βHB was chosen as a model molecule for developing an optical sensor-integrated microplatform. Prior to sensor optimization, βHB levels were measured at a concentration range of 0.02 and 0.1 mM spectrophotometrically, which is far below the reported elevated ranges of 1-2 mM and resulting absorbance changes were converted into an Arduino microcontroller code for the correlation. Measurements performed with the designed integrated microplatform were found significant. Integrated microplatform was verified with the benchtop spectrophotometer. Measurements between 0.02 and 0.1 mM substrate concentration were found highly sensitive with "y = 0.7347x + 0.00184" with R2 value of 0.9796, and the limit of detection was determined as 0.02 mM. Based on these results, the proposed system will allow on-site and early intervention.
Collapse
Affiliation(s)
- Utku Devamoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Irem Duman
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
27
|
Boeri L, Perottoni S, Izzo L, Giordano C, Albani D. Microbiota-Host Immunity Communication in Neurodegenerative Disorders: Bioengineering Challenges for In Vitro Modeling. Adv Healthc Mater 2021; 10:e2002043. [PMID: 33661580 PMCID: PMC11468246 DOI: 10.1002/adhm.202002043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Human microbiota communicates with its host by secreting signaling metabolites, enzymes, or structural components. Its homeostasis strongly influences the modulation of human tissue barriers and immune system. Dysbiosis-induced peripheral immunity response can propagate bacterial and pro-inflammatory signals to the whole body, including the brain. This immune-mediated communication may contribute to several neurodegenerative disorders, as Alzheimer's disease. In fact, neurodegeneration is associated with dysbiosis and neuroinflammation. The interplay between the microbial communities and the brain is complex and bidirectional, and a great deal of interest is emerging to define the exact mechanisms. This review focuses on microbiota-immunity-central nervous system (CNS) communication and shows how gut and oral microbiota populations trigger immune cells, propagating inflammation from the periphery to the cerebral parenchyma, thus contributing to the onset and progression of neurodegeneration. Moreover, an overview of the technological challenges with in vitro modeling of the microbiota-immunity-CNS axis, offering interesting technological hints about the most advanced solutions and current technologies is provided.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Diego Albani
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSvia Mario Negri 2Milan20156Italy
| |
Collapse
|
28
|
Vargas R, Egurbide-Sifre A, Medina L. Organ-on-a-Chip systems for new drugs development. ADMET AND DMPK 2021; 9:111-141. [PMID: 35299767 PMCID: PMC8920106 DOI: 10.5599/admet.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Research on alternatives to the use of animal models and cell cultures has led to the creation of organ-on-a-chip systems, in which organs and their physiological reactions to the presence of external stimuli are simulated. These systems could even replace the use of human beings as subjects for the study of drugs in clinical phases and have an impact on personalized therapies. Organ-on-a-chip technology present higher potential than traditional cell cultures for an appropriate prediction of functional impairments, appearance of adverse effects, the pharmacokinetic and toxicological profile and the efficacy of a drug. This potential is given by the possibility of placing different cell lines in a three-dimensional-arranged polymer piece and simulating and controlling specific conditions. Thus, the normal functioning of an organ, tissue, barrier, or physiological phenomenon can be simulated, as well as the interrelation between different systems. Furthermore, this alternative allows the study of physiological and pathophysiological processes. Its design combines different disciplines such as materials engineering, cell cultures, microfluidics and physiology, among others. This work presents the main considerations of OoC systems, the materials, methods and cell lines used for their design, and the conditions required for their proper functioning. Examples of applications and main challenges for the development of more robust systems are shown. This non-systematic review is intended to be a reference framework that facilitates research focused on the development of new OoC systems, as well as their use as alternatives in pharmacological, pharmacokinetic and toxicological studies.
Collapse
Affiliation(s)
- Ronny Vargas
- Industrial Pharmacy Department, Faculty of Pharmacy, University of Costa Rica 11501-2060, San José, Costa Rica
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| | - Andrea Egurbide-Sifre
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| | - Laura Medina
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| |
Collapse
|
29
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
30
|
Humayun L, Smith C, Li W, Zhang YS, Park C, Feng W, Yao J. SARS-CoV-2-related vascular injury: mechanisms, imaging and models. ACTA ACUST UNITED AC 2021; 5. [PMID: 33981988 PMCID: PMC8112618 DOI: 10.21037/mps-20-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lucas Humayun
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Colin Smith
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
32
|
Jesmer AH, Wylie RG. Controlling Experimental Parameters to Improve Characterization of Biomaterial Fouling. Front Chem 2020; 8:604236. [PMID: 33363113 PMCID: PMC7759637 DOI: 10.3389/fchem.2020.604236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled protein adsorption and cell binding to biomaterial surfaces may lead to degradation, implant failure, infection, and deleterious inflammatory and immune responses. The accurate characterization of biofouling is therefore crucial for the optimization of biomaterials and devices that interface with complex biological environments composed of macromolecules, fluids, and cells. Currently, a diverse array of experimental conditions and characterization techniques are utilized, making it difficult to compare reported fouling values between similar or different biomaterials. This review aims to help scientists and engineers appreciate current limitations and conduct fouling experiments to facilitate the comparison of reported values and expedite the development of low-fouling materials. Recent advancements in the understanding of protein-interface interactions and fouling variability due to experiment conditions will be highlighted to discuss protein adsorption and cell adhesion and activation on biomaterial surfaces.
Collapse
Affiliation(s)
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Hayward KL, Kouthouridis S, Zhang B. Organ-on-a-Chip Systems for Modeling Pathological Tissue Morphogenesis Associated with Fibrosis and Cancer. ACS Biomater Sci Eng 2020; 7:2900-2925. [PMID: 34275294 DOI: 10.1021/acsbiomaterials.0c01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tissue building does not occur exclusively during development. Even after a whole body is built from a single cell, tissue building can occur to repair and regenerate tissues of the adult body. This confers resilience and enhanced survival to multicellular organisms. However, this resiliency comes at a cost, as the potential for misdirected tissue building creates vulnerability to organ deformation and dysfunction-the hallmarks of disease. Pathological tissue morphogenesis is associated with fibrosis and cancer, which are the leading causes of morbidity and mortality worldwide. Despite being the priority of research for decades, scientific understanding of these diseases is limited and existing therapies underdeliver the desired benefits to patient outcomes. This can largely be attributed to the use of two-dimensional cell culture and animal models that insufficiently recapitulate human disease. Through the synergistic union of biological principles and engineering technology, organ-on-a-chip systems represent a powerful new approach to modeling pathological tissue morphogenesis, one with the potential to yield better insights into disease mechanisms and improved therapies that offer better patient outcomes. This Review will discuss organ-on-a-chip systems that model pathological tissue morphogenesis associated with (1) fibrosis in the context of injury-induced tissue repair and aging and (2) cancer.
Collapse
Affiliation(s)
- Kristen L Hayward
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
34
|
Li H, Cheng F, Li W, Cao X, Wang Z, Wang M, Robledo-Lara JA, Liao J, Chávez-Madero C, Hassan S, Xie J, Trujillo-de Santiago G, Álvarez MM, He J, Zhang YS. Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication 2020; 12:045027. [PMID: 32945271 DOI: 10.1088/1758-5090/abb11e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a method for expanding microchannel-embedded paper devices using a precisely controlled gas-foaming technique for the generation of volumetric tissue models in vitro. We successfully fabricated hollow, perfusable microchannel patterns contained in a densely entangled network of bacterial cellulose nanofibrils using matrix-assisted sacrificial three-dimensional printing, and demonstrated the maintenance of their structural integrity after gas-foaming-enabled expansion in an aqueous solution of NaBH4. The resulting expanded microchannel-embedded paper devices showed multilayered laminar structures with controllable thicknesses as a function of both NaBH4 concentration and expansion time. With expansion, the thickness and porosity of the bacterial cellulose network were significantly increased. As such, cellular infiltration was promoted comparing to as-prepared, non-expanded devices. This simple technique enables the generation of truly volumetric, cost-effective human-based tissue models, such as vascularized tumor models, for potential applications in preclinical drug screening and personalized therapeutic selection.
Collapse
Affiliation(s)
- Hongbin Li
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, United States of America. College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, People's Republic of China. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maharjan S, Cecen B, Zhang YS. 3D Immunocompetent Organ-on-a-Chip Models. SMALL METHODS 2020; 4:2000235. [PMID: 33072861 PMCID: PMC7567338 DOI: 10.1002/smtd.202000235] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 05/15/2023]
Abstract
In recent years, engineering of various human tissues in microphysiologically relevant platforms, known as organs-on-chips (OOCs), has been explored to establish in vitro tissue models that recapitulate the microenvironments found in native organs and tissues. However, most of these models have overlooked the important roles of immune cells in maintaining tissue homeostasis under physiological conditions and in modulating the tissue microenvironments during pathophysiology. Significantly, gradual progress is being made in the development of more sophisticated microphysiologically relevant human-based OOC models that allow the studies of the key biophysiological aspects of specific tissues or organs, interactions between cells (parenchymal, vascular, and immune cells) and their extracellular matrix molecules, effects of native tissue architectures (geometry, dynamic flow or mechanical forces) on tissue functions, as well as unravelling the mechanism underlying tissue-specific diseases and drug testing. In this Progress Report, we discuss the different components of the immune system, as well as immune OOC platforms and immunocompetent OOC approaches that have simulated one or more components of the immune system. We also outline the challenges to recreate a fully functional tissue system in vitro with a focus on the incorporation of the immune system.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Mondadori C, Crippa M, Moretti M, Candrian C, Lopa S, Arrigoni C. Advanced Microfluidic Models of Cancer and Immune Cell Extravasation: A Systematic Review of the Literature. Front Bioeng Biotechnol 2020; 8:907. [PMID: 32984267 PMCID: PMC7479057 DOI: 10.3389/fbioe.2020.00907] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Extravasation is a multi-step process implicated in many physiological and pathological events. This process is essential to get leukocytes to the site of injury or infection but is also one of the main steps in the metastatic cascade in which cancer cells leave the primary tumor and migrate to target sites through the vascular route. In this perspective, extravasation is a double-edged sword. This systematic review analyzes microfluidic 3D models that have been designed to investigate the extravasation of cancer and immune cells. The purpose of this systematic review is to provide an exhaustive summary of the advanced microfluidic 3D models that have been designed to study the extravasation of cancer and immune cells, offering a perspective on the current state-of-the-art. To this end, we set the literature search cross-examining PUBMED and EMBASE databases up to January 2020 and further included non-indexed references reported in relevant reviews. The inclusion criteria were defined in agreement between all the investigators, aimed at identifying studies which investigate the extravasation process of cancer cells and/or leukocytes in microfluidic platforms. Twenty seven studies among 174 examined each step of the extravasation process exploiting 3D microfluidic devices and hence were included in our review. The analysis of the results obtained with the use of microfluidic models allowed highlighting shared features and differences in the extravasation of immune and cancer cells, in view of the setup of a common framework, that could be beneficial for the development of therapeutic approaches fostering or hindering the extravasation process.
Collapse
Affiliation(s)
- Carlotta Mondadori
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Martina Crippa
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Christian Candrian
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| |
Collapse
|
37
|
|
38
|
Sharifi F, Yesil-Celiktas O, Kazan A, Maharjan S, Saghazadeh S, Firoozbakhsh K, Firoozabadi B, Zhang YS. A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Ilhan-Ayisigi E, Saglam-Metiner P, Manzi G, Giannasi K, van Hoeve W, Yesil-Celiktas O. One-Step Microfluidic Coating of Phospholipid Microbubbles with Natural Alginate Polymer as a Delivery System for Human Epithelial Lung Adenocarcinoma. Macromol Biosci 2020; 20:e2000084. [PMID: 32346989 DOI: 10.1002/mabi.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/24/2020] [Indexed: 12/14/2022]
Abstract
In this study, the neoplastic drug frequently used in the treatment of lung cancer, carboplatin is loaded to microbubbles via a microfluidic platform. In order to increase the drug loading capacity of microbubbles, carboplatin is encapsulated into alginate polymer layer. The phospholipid microbubbles (MBs) are synthesized by MicroSphere Creator, which is connected with T-junction and micromixer for the treatment with CaCl2 solution to provide gelation of the alginate coated phospholipid microbubbles (AMBs). The carboplatin loaded alginate coated phospholipid microbubbles (CAMBs) result in 12.2 ± 0.21 µm mean size, obtained by mixing with 0.05% CaCl2 using T-junction. The cytotoxic activities of the synthesized MBs, AMBs, and CAMBs are also investigated with the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) and live/dead fluorescent dying assays in the A549 and BEAS-2B cell lines. The one-step microfluidic coating of lipid microbubbles with natural alginate polymer appears to be a promising strategy for enhanced drug reservoir properties.
Collapse
Affiliation(s)
- Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, 35100, Turkey.,Genetic and Bioengineering Department, Faculty of Engineering and Architecture, Ahi Evran University, Kirsehir, 40100, Turkey.,Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, 35100, Turkey
| | - Giuliana Manzi
- Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Katharine Giannasi
- Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Wim van Hoeve
- Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, 35100, Turkey
| |
Collapse
|
40
|
Ungemach M, Doll T, Vrana NE. How to Predict Adverse Immune Reactions to Implantable Biomaterials? Eur J Immunol 2019; 49:517-520. [DOI: 10.1002/eji.201970045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Melanie Ungemach
- Steinbeis 2i GmbH Steinhaeuserstrasse 12 76135 Karlsruhe Germany
| | - Timo Doll
- Steinbeis 2i GmbH Steinhaeuserstrasse 12 76135 Karlsruhe Germany
| | - Nihal Engin Vrana
- Protip Medical8 Place de l'Hopital Strasbourg France
- INSERM UMR 1121 “Biomaterials and Bioengineering 11 Rue Humann 67085 Strasbourg France
| |
Collapse
|