1
|
Marquez G, Dechiraju H, Baniya P, Li H, Tebyani M, Pansodtee P, Jafari M, Barbee A, Orozco J, Teodorescu M, Rolandi M, Gomez M. Delivering biochemicals with precision using bioelectronic devices enhanced with feedback control. PLoS One 2024; 19:e0298286. [PMID: 38743674 PMCID: PMC11093312 DOI: 10.1371/journal.pone.0298286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/22/2024] [Indexed: 05/16/2024] Open
Abstract
Precision medicine endeavors to personalize treatments, considering individual variations in patient responses based on factors like genetic mutations, age, and diet. Integrating this approach dynamically, bioelectronics equipped with real-time sensing and intelligent actuation present a promising avenue. Devices such as ion pumps hold potential for precise therapeutic drug delivery, a pivotal aspect of effective precision medicine. However, implementing bioelectronic devices in precision medicine encounters formidable challenges. Variability in device performance due to fabrication inconsistencies and operational limitations, including voltage saturation, presents significant hurdles. To address this, closed-loop control with adaptive capabilities and explicit handling of saturation becomes imperative. Our research introduces an enhanced sliding mode controller capable of managing saturation, adept at satisfactory control actions amidst model uncertainties. To evaluate the controller's effectiveness, we conducted in silico experiments using an extended mathematical model of the proton pump. Subsequently, we compared the performance of our developed controller with classical Proportional Integral Derivative (PID) and machine learning (ML)-based controllers. Furthermore, in vitro experiments assessed the controller's efficacy using various reference signals for controlled Fluoxetine delivery. These experiments showcased consistent performance across diverse input signals, maintaining the current value near the reference with a relative error of less than 7% in all trials. Our findings underscore the potential of the developed controller to address challenges in bioelectronic device implementation, offering reliable precision in drug delivery strategies within the realm of precision medicine.
Collapse
Affiliation(s)
- Giovanny Marquez
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Harika Dechiraju
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Prabhat Baniya
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Houpu Li
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Maryam Tebyani
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Pattawong Pansodtee
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mohammad Jafari
- Department of Earth and Space Sciences, Columbus State University, Columbus, GA, United States of America
| | - Alexie Barbee
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Jonathan Orozco
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mircea Teodorescu
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marco Rolandi
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marcella Gomez
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
2
|
Catacchio M, Caputo M, Sarcina L, Scandurra C, Tricase A, Marchianò V, Macchia E, Bollella P, Torsi L. Spiers Memorial Lecture: Challenges and prospects in organic photonics and electronics. Faraday Discuss 2024; 250:9-42. [PMID: 38380468 DOI: 10.1039/d3fd00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While a substantial amount of research activity has been conducted in fields related to organic photonics and electronics, including the development of devices such as organic field-effect transistors, organic photovoltaics, and organic light-emitting diodes for applications encompassing organic thermoelectrics, organic batteries, excitonic organic materials for photochemical and optoelectronic applications, and organic thermoelectrics, this perspective review will primarily concentrate on the emerging and rapidly expanding domain of organic bioelectronics and neuromorphics. Here we present the most recent research findings on organic transistors capable of sensing biological biomarkers down at the single-molecule level (i.e., oncoproteins, genomes, etc.) for the early diagnosis of pathological states and to mimic biological synapses, paving the way to neuromorphic applications that surpass the limitations of the traditional von Neumann computing architecture. Both organic bioelectronics and neuromorphics exhibit several challenges but will revolutionize human life, considering the development of artificial synapses to counteract neurodegenerative disorders and the development of ultrasensitive biosensors for the early diagnosis of cancer to prevent its development. Moreover, organic bioelectronics for sensing applications have also triggered the development of several wearable, flexible and stretchable biodevices for continuous biomarker monitoring.
Collapse
Affiliation(s)
- Michele Catacchio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Angelo Tricase
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Verdiana Marchianò
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
3
|
Park Y, Hernandez S, Hernandez CO, Schweiger HE, Li H, Voitiuk K, Dechiraju H, Hawthorne N, Muzzy EM, Selberg JA, Sullivan FN, Urcuyo R, Salama SR, Aslankoohi E, Knight HJ, Teodorescu M, Mostajo-Radji MA, Rolandi M. Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters. CELL REPORTS METHODS 2024; 4:100686. [PMID: 38218190 PMCID: PMC10831944 DOI: 10.1016/j.crmeth.2023.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.
Collapse
Affiliation(s)
- Yunjeong Park
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian Hernandez
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501 2060, Costa Rica
| | - Cristian O Hernandez
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hunter E Schweiger
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kateryna Voitiuk
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nico Hawthorne
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Elana M Muzzy
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - John A Selberg
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Frederika N Sullivan
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Roberto Urcuyo
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501 2060, Costa Rica
| | - Sofie R Salama
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Heather J Knight
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
4
|
Park Y, Hernandez S, Hernandez CO, Schweiger HE, Li H, Voitiuk K, Dechiraju H, Hawthorne N, Muzzy EM, Selberg JA, Sullivan FN, Urcuyo R, Salama SR, Aslankoohi E, Teodorescu M, Mostajo-Radji MA, Rolandi M. Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544416. [PMID: 37333351 PMCID: PMC10274913 DOI: 10.1101/2023.06.10.544416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.
Collapse
Affiliation(s)
- Yunjeong Park
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501 2060, Costa Rica
| | - Cristian O. Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hunter E. Schweiger
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kateryna Voitiuk
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nico Hawthorne
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Elana M. Muzzy
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John A. Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Roberto Urcuyo
- Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501 2060, Costa Rica
| | - Sofie R. Salama
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mohammed A. Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
5
|
Bernacka-Wojcik I, Talide L, Abdel Aziz I, Simura J, Oikonomou VK, Rossi S, Mohammadi M, Dar AM, Seitanidou M, Berggren M, Simon DT, Tybrandt K, Jonsson MP, Ljung K, Niittylä T, Stavrinidou E. Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206409. [PMID: 36935365 DOI: 10.1002/advs.202206409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
Collapse
Affiliation(s)
- Iwona Bernacka-Wojcik
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Loïc Talide
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Jan Simura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Vasileios K Oikonomou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Stefano Rossi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Abdul Manan Dar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Maria Seitanidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| |
Collapse
|
6
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|
7
|
Sharma R, Geranpayehvaghei M, Ejeian F, Razmjou A, Asadnia M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021; 235:122815. [PMID: 34517671 DOI: 10.1016/j.talanta.2021.122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications.
Collapse
Affiliation(s)
- Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marzieh Geranpayehvaghei
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
8
|
Oh MA, Shin CI, Kim M, Kim J, Kang CM, Han SH, Sun JY, Oh SS, Kim YR, Chung TD. Inverted Ion Current Rectification-Based Chemical Delivery Probes for Stimulation of Neurons. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26748-26758. [PMID: 34078075 DOI: 10.1021/acsami.1c04949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion current rectification (ICR), diodelike behavior in surface-charged nanopores, shows promise in the design of delivery probes for manipulation of neural networks as it can solve diffusive leakages that might be critical in clinical and research applications. However, it has not been achieved because ICR has restrictions in nanosized dimension and low electrolyte concentration, and rectification direction is inappropriate for delivery. Herein, we present a polyelectrolyte gel-filled (PGF) micropipette harnessing inverted ICR as a delivery probe, which quantitatively transports glutamate to stimulate primary cultured neurons with high efficiency while minimizing leakages. Since the gel works as an ensemble of numerous surface-charged nanopores, the current is rectified in the micro-opening and physiological environment. By extending the charge-selective region using the gel, inverted ICR is generated, which drives outward deliveries of major charge carriers. This study will help in exploring new aspects of ICR and broaden its applications for advanced chemical delivery.
Collapse
Affiliation(s)
- Min-Ah Oh
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Moonjoo Kim
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jayol Kim
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chung Mu Kang
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Seok Hee Han
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, 08826 Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Yang-Rae Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Liang Y, Offenhäusser A, Ingebrandt S, Mayer D. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv Healthc Mater 2021; 10:e2100061. [PMID: 33970552 PMCID: PMC11468774 DOI: 10.1002/adhm.202100061] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Indexed: 12/16/2022]
Abstract
To understand the physiology and pathology of electrogenic cells and the corresponding tissue in their full complexity, the quantitative investigation of the transmission of ions as well as the release of chemical signals is important. Organic (semi-) conducting materials and in particular organic electrochemical transistor are gaining in importance for the investigation of electrophysiological and recently biochemical signals due to their synthetic nature and thus chemical diversity and modifiability, their biocompatible and compliant properties, as well as their mixed electronic and ionic conductivity featuring ion-to-electron conversion. Here, the aim is to summarize recent progress on the development of bioelectronic devices utilizing polymer polyethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) to interface electronics and biological matter including microelectrode arrays, neural cuff electrodes, organic electrochemical transistors, PEDOT:PSS-based biosensors, and organic electronic ion pumps. Finally, progress in the material development is summarized for the improvement of polymer conductivity, stretchability, higher transistor transconductance, or to extend their field of application such as cation sensing or metabolite recognition. This survey of recent trends in PEDOT:PSS electrophysiological sensors highlights the potential of this multifunctional material to revolve current technology and to enable long-lasting, multichannel polymer probes for simultaneous recordings of electrophysiological and biochemical signals from electrogenic cells.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Andreas Offenhäusser
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| | - Sven Ingebrandt
- Faculty of Electrical Engineering and Information TechnologyInstitute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachen52074Germany
| | - Dirk Mayer
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| |
Collapse
|
10
|
Chen S, Renny MN, C. Tomé L, Olmedo‐Martínez JL, Udabe E, Jenkins EPW, Mecerreyes D, Malliaras GG, McLeod RR, Proctor CM. Reducing Passive Drug Diffusion from Electrophoretic Drug Delivery Devices through Co-Ion Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003995. [PMID: 34194928 PMCID: PMC8224430 DOI: 10.1002/advs.202003995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/17/2021] [Indexed: 05/13/2023]
Abstract
Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion-conducting membrane out to the local implanted area. This solvent-flow-free "dry" delivery enables controlled drug release with minimal pressure increase at the outlet. However, a major challenge these devices face is limiting drug leakage in their idle state. Here, a method of reducing passive drug leakage through the choice of the drug co-ion is presented. By switching acetylcholine's associated co-ion from chloride to carboxylate co-ions as well as sulfopropyl acrylate-based polyanions, steady-state drug leakage rate is reduced up to sevenfold with minimal effect on the active drug delivery rate. Numerical simulations further illustrate the potential of this method and offer guidance for new material systems to suppress passive drug leakage in electrophoretic drug delivery devices.
Collapse
Affiliation(s)
- Shao‐Tuan Chen
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Megan N. Renny
- Materials Science and Engineering ProgramUniversity of ColoradoBoulderCO80309USA
| | - Liliana C. Tomé
- POLYMAT, University of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San Sebastian20018Gipuzkoa, Spain
| | - Jorge L. Olmedo‐Martínez
- POLYMAT, University of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San Sebastian20018Gipuzkoa, Spain
| | - Esther Udabe
- POLYMAT, University of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San Sebastian20018Gipuzkoa, Spain
| | - Elise P. W. Jenkins
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San Sebastian20018Gipuzkoa, Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Robert R. McLeod
- Materials Science and Engineering ProgramUniversity of ColoradoBoulderCO80309USA
- Department of Electrical, Computer & Energy EngineeringUniversity of ColoradoBoulderCO80309USA
| | - Christopher M. Proctor
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
11
|
Abrahamsson T, Vagin M, Seitanidou M, Roy A, Phopase J, Petsagkourakis I, Moro N, Tybrandt K, Crispin X, Berggren M, Simon DT. Investigating the role of polymer size on ionic conductivity in free-standing hyperbranched polyelectrolyte membranes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Waldherr L, Seitanidou M, Jakešová M, Handl V, Honeder S, Nowakowska M, Tomin T, Karami Rad M, Schmidt T, Distl J, Birner‐Gruenberger R, von Campe G, Schäfer U, Berggren M, Rinner B, Asslaber M, Ghaffari‐Tabrizi‐Wizsy N, Patz S, Simon DT, Schindl R. Targeted Chemotherapy of Glioblastoma Spheroids with an Iontronic Pump. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001302. [PMID: 34195355 PMCID: PMC8218220 DOI: 10.1002/admt.202001302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/15/2021] [Indexed: 05/13/2023]
Abstract
Successful treatment of glioblastoma multiforme (GBM), the most lethal tumor of the brain, is presently hampered by (i) the limits of safe surgical resection and (ii) "shielding" of residual tumor cells from promising chemotherapeutic drugs such as Gemcitabine (Gem) by the blood brain barrier (BBB). Here, the vastly greater GBM cell-killing potency of Gem compared to the gold standard temozolomide is confirmed, moreover, it shows neuronal cells to be at least 104-fold less sensitive to Gem than GBM cells. The study also demonstrates the potential of an electronically-driven organic ion pump ("GemIP") to achieve controlled, targeted Gem delivery to GBM cells. Thus, GemIP-mediated Gem delivery is confirmed to be temporally and electrically controllable with pmol min-1 precision and electric addressing is linked to the efficient killing of GBM cell monolayers. Most strikingly, GemIP-mediated GEM delivery leads to the overt disintegration of targeted GBM tumor spheroids. Electrically-driven chemotherapy, here exemplified, has the potential to radically improve the efficacy of GBM adjuvant chemotherapy by enabling exquisitely-targeted and controllable delivery of drugs irrespective of whether these can cross the BBB.
Collapse
Affiliation(s)
- Linda Waldherr
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Maria Seitanidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Marie Jakešová
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Verena Handl
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
| | - Marta Nowakowska
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Tamara Tomin
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
- Institute of Chemical Technologies and AnalyticsTechnische Universität WienVienna1060Austria
| | - Meysam Karami Rad
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Tony Schmidt
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Joachim Distl
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Ruth Birner‐Gruenberger
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
- Institute of Chemical Technologies and AnalyticsTechnische Universität WienVienna1060Austria
| | - Gord von Campe
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Ute Schäfer
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Beate Rinner
- Division of Biomedical ResearchMedical University of GrazGraz8036Austria
| | - Martin Asslaber
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
| | | | - Silke Patz
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Rainer Schindl
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| |
Collapse
|
13
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Ohayon D, Inal S. Organic Bioelectronics: From Functional Materials to Next-Generation Devices and Power Sources. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001439. [PMID: 32691880 DOI: 10.1002/adma.202001439] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Conjugated polymers (CPs) possess a unique set of features setting them apart from other materials. These properties make them ideal when interfacing the biological world electronically. Their mixed electronic and ionic conductivity can be used to detect weak biological signals, deliver charged bioactive molecules, and mechanically or electrically stimulate tissues. CPs can be functionalized with various (bio)chemical moieties and blend with other functional materials, with the aim of modulating biological responses or endow specificity toward analytes of interest. They can absorb photons and generate electronic charges that are then used to stimulate cells or produce fuels. These polymers also have catalytic properties allowing them to harvest ambient energy and, along with their high capacitances, are promising materials for next-generation power sources integrated with bioelectronic devices. In this perspective, an overview of the key properties of CPs and examination of operational mechanism of electronic devices that leverage these properties for specific applications in bioelectronics is provided. In addition to discussing the chemical structure-functionality relationships of CPs applied at the biological interface, the development of new chemistries and form factors that would bring forth next-generation sensors, actuators, and their power sources, and, hence, advances in the field of organic bioelectronics is described.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Jia M, Rolandi M. Soft and Ion-Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels. Adv Healthc Mater 2020; 9:e1901372. [PMID: 31976634 DOI: 10.1002/adhm.201901372] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Bioelectronics devices that directly interface with cells and tissue have applications in neural and cardiac stimulation and recording, electroceuticals, and brain machine interfaces for prostheses. The interface between bioelectronic devices and biological tissue is inherently challenging due to the mismatch in both mechanical properties (hard vs soft) and charge carriers (electrons vs ions). In addition to conventional metals and silicon, new materials have bridged this interface, including conducting polymers, carbon-based nanomaterials, as well as ion-conducting polymers and hydrogels. This review provides an update on advances in soft bioelectronic materials for current and future therapeutic applications. Specifically, this review focuses on soft materials that can conduct both electrons and ions, and also deliver drugs and small molecules. The future opportunities and emerging challenges in the field are also highlighted.
Collapse
Affiliation(s)
- Manping Jia
- Department of Electrical and Computer Engineering University of California Santa Cruz CA 94064 USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering University of California Santa Cruz CA 94064 USA
| |
Collapse
|
16
|
Wu C, Selberg J, Nguyen B, Pansodtee P, Jia M, Dechiraju H, Teodorescu M, Rolandi M. A Microfluidic Ion Sensor Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906436. [PMID: 31965738 DOI: 10.1002/smll.201906436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
A balanced concentration of ions is essential for biological processes to occur. For example, [H+ ] gradients power adenosine triphosphate synthesis, dynamic changes in [K+ ] and [Na+ ] create action potentials in neuronal communication, and [Cl- ] contributes to maintaining appropriate cell membrane voltage. Sensing ionic concentration is thus important for monitoring and regulating many biological processes. This work demonstrates an ion-selective microelectrode array that simultaneously and independently senses [K+ ], [Na+ ], and [Cl- ] in electrolyte solutions. To obtain ion specificity, the required ion-selective membranes are patterned using microfluidics. As a proof of concept, the change in ionic concentration is monitored during cell proliferation in a cell culture medium. This microelectrode array can easily be integrated in lab-on-a-chip approaches to physiology and biological research and applications.
Collapse
Affiliation(s)
- Chunxiao Wu
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Brian Nguyen
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Manping Jia
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| |
Collapse
|