1
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Li N, Zhou Y, Li Y, Li C, Xiang W, Chen X, Zhang P, Zhang Q, Su J, Jin B, Song H, Cheng C, Guo M, Wang L, Liu J. Transformable 3D curved high-density liquid metal coils - an integrated unit for general soft actuation, sensing and communication. Nat Commun 2024; 15:7679. [PMID: 39237505 PMCID: PMC11377734 DOI: 10.1038/s41467-024-51648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Rigid solenoid coils have long been indispensable in modern intelligent devices. However, their sparse structure and challenging preparation of flexible coils for soft robots impose limitations. Here, a transformable 3D curved high-density liquid metal coil (HD-LMC) is introduced that surpasses the structural density level of enameled wire. The fabrication technique employed for high-density channels in elastomers is universally applicable. Such HD-LMCs demonstrated excellent performance in pressure, temperature, non-contact distance sensors, and near-field communication. Soft electromagnetic actuators thus achieved significantly improved the electromagnetic force and power density. Moreover, precise control of swinging tail motion enables a bionic pufferfish to swim. Finally, HD-LMC is further utilized to successfully implement a soft rotary robot with integrated sensing and actuation capabilities. This groundbreaking research provides a theoretical and experimental basis for expanding the applications of liquid metal-based multi-dimensional complex flexible electronics and is expected to be widely used in liquid metal-integrated robotic systems.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chunwei Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Xiang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueqing Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Su
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bohao Jin
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Huize Song
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cai Cheng
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China.
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
5
|
He C, Wu L, Gu G, Wei L, Yang C, Chen M. An Ionic Assisted Enhancement Strategy Enabled High Performance Flexible Pressure-Temperature Dual Sensor. NANO LETTERS 2024; 24:7040-7047. [PMID: 38804573 DOI: 10.1021/acs.nanolett.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Flexible pressure sensors with a broad range and high sensitivity are greatly desired yet challenging to build. Herein, we have successfully fabricated a pressure-temperature dual sensor via an ionic assisted charge enhancement strategy. Benefiting from the immobilization effect for [EMIM+] [TFSI-] ion pairs and charge transfer between ionic liquid (IL) and HFMO (H10Fe3Mo21O51), the formed IL-HFMO-TPU pressure sensor shows a high sensitivity of 25.35 kPa-1 and broad sensing range (∼10 MPa), respectively. Furthermore, the sensor device exhibits high durability and stability (5000 cycles@1 MPa). The IL-HFMO-TPU sensor also shows the merit of good temperature sensing properties. Attributed to these superior properties, the proposed sensor device could detect pressure in an ultrawide sensing range (from Pa to MPa), including breathe and biophysical signal monitoring etc. The proposed ionic assisted enhancement approach is a generic strategy for constructing high performance flexible pressure-temperature dual sensor.
Collapse
Affiliation(s)
- Chenying He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lie Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guoqiang Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
8
|
Henriques JT, do Carmo CC, Marques A, Ferreira IMM, Baptista AC. Carbon Threads Supercapacitors for Washable e-Textile Applications: Configurations and Electrochemical Performance. ACS APPLIED ENGINEERING MATERIALS 2024; 2:415-421. [PMID: 38419976 PMCID: PMC10897876 DOI: 10.1021/acsaenm.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Technological solutions for emerging e-textiles are being sought to enable e-wear technology to be self-sustaining and lightweight. A rippling 1D carbon fiber capacitor design was made with commercial carbon threads as electrodes using simulated sweat solution as the electrolyte. This is particularly relevant for potential sports textile applications in which sweat could serve as an electrochemical energy source. An electrospun cellulose acetate fiber membrane and a commercially available felt were used as separators capable of soaking the electrolyte. These were tested in braided and woven electrode configurations, respectively. Functionalizing the carbon wires with polypyrrole (PPy) enhanced the surface area and significantly increased the specific capacity by approximately an order of magnitude (0.62 F/g). Cyclic voltammetry and charge-discharge tests confirmed the washability and durability of the devices for at least 1000 cycles.
Collapse
Affiliation(s)
- João Tiago Henriques
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Catarina Cidade do Carmo
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Ana Marques
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Physics Department, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal
| | - Isabel M M Ferreira
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Ana Catarina Baptista
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| |
Collapse
|
9
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
10
|
Xu H, Lu J, Xi Y, Wang X, Liu J. Liquid metal biomaterials: translational medicines, challenges and perspectives. Natl Sci Rev 2024; 11:nwad302. [PMID: 38213519 PMCID: PMC10776368 DOI: 10.1093/nsr/nwad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Until now, significant healthcare challenges and growing urgent clinical requirements remain incompletely addressed by presently available biomedical materials. This is due to their inadequate mechanical compatibility, suboptimal physical and chemical properties, susceptibility to immune rejection, and concerns about long-term biological safety. As an alternative, liquid metal (LM) opens up a promising class of biomaterials with unique advantages like biocompatibility, flexibility, excellent electrical conductivity, and ease of functionalization. However, despite the unique advantages and successful explorations of LM in biomedical fields, widespread clinical translations and applications of LM-based medical products remain limited. This article summarizes the current status and future prospects of LM biomaterials, interprets their applications in healthcare, medical imaging, bone repair, nerve interface, and tumor therapy, etc. Opportunities to translate LM materials into medicine and obstacles encountered in practices are discussed. Following that, we outline a blueprint for LM clinics, emphasizing their potential in making new-generation artificial organs. Last, the core challenges of LM biomaterials in clinical translation, including bio-safety, material stability, and ethical concerns are also discussed. Overall, the current progress, translational medicine bottlenecks, and perspectives of LM biomaterials signify their immense potential to drive future medical breakthroughs and thus open up novel avenues for upcoming clinical practices.
Collapse
Affiliation(s)
- Hanchi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Jincheng Lu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Yikuang Xi
- Shanghai World Foreign Language Academy, Shanghai200233, China
| | - Xuelin Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
11
|
Jung Y, Gu J, Yeo J, Lee W, Han H, Choi J, Ha JH, Ahn J, Cho H, Ryu S, Park I. Highly Sensitive Soft Pressure Sensors for Wearable Applications Based on Composite Films with Curved 3D Carbon Nanotube Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303981. [PMID: 37670224 DOI: 10.1002/smll.202303981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Indexed: 09/07/2023]
Abstract
Soft pressure sensors based on 3D microstructures exhibit high sensitivity in the low-pressure range, which is crucial for various wearable and soft touch applications. However, it is still a challenge to manufacture soft pressure sensors with sufficient sensitivity under small mechanical stimuli for wearable applications. This work presents a novel strategy for extremely sensitive pressure sensors based on the composite film with local changes in curved 3D carbon nanotube (CNT) structure via expandable microspheres. The sensitivity is significantly enhanced by the synergetic effects of heterogeneous contact of the microdome structure and changes of percolation network within the curved 3D CNT structure. The finite-element method simulation is used to comprehend the relationships between the sensitivity and mechanical/electrical behavior of microdome structure under the applied pressure. The sensor shows an excellent sensitivity (571.64 kPa-1 ) with fast response time (85 ms), great repeatability, and long-term stability. Using the developed sensor, a wireless wearable health monitoring system to avoid carpel tunnel syndrome is built, and a multi-array pressure sensor for realizing a variety of movements in real-time is demonstrated.
Collapse
Affiliation(s)
- Young Jung
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jimin Gu
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Yeo
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wookjin Lee
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeonseok Han
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junseong Ahn
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanchul Cho
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology (KITECH), Busan, 46938, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
12
|
Parupelli SK, Desai S. The 3D Printing of Nanocomposites for Wearable Biosensors: Recent Advances, Challenges, and Prospects. Bioengineering (Basel) 2023; 11:32. [PMID: 38247910 PMCID: PMC10813523 DOI: 10.3390/bioengineering11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Notably, 3D-printed flexible and wearable biosensors have immense potential to interact with the human body noninvasively for the real-time and continuous health monitoring of physiological parameters. This paper comprehensively reviews the progress in 3D-printed wearable biosensors. The review also explores the incorporation of nanocomposites in 3D printing for biosensors. A detailed analysis of various 3D printing processes for fabricating wearable biosensors is reported. Besides this, recent advances in various 3D-printed wearable biosensors platforms such as sweat sensors, glucose sensors, electrocardiography sensors, electroencephalography sensors, tactile sensors, wearable oximeters, tattoo sensors, and respiratory sensors are discussed. Furthermore, the challenges and prospects associated with 3D-printed wearable biosensors are presented. This review is an invaluable resource for engineers, researchers, and healthcare clinicians, providing insights into the advancements and capabilities of 3D printing in the wearable biosensor domain.
Collapse
Affiliation(s)
- Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
13
|
Zhang Y, Zhang X, Ning C, Dai K, Zheng G, Liu C, Shen C. Mushroom-mimetic 3D hierarchical architecture-based e-skin with high sensitivity and a wide sensing range for intelligent perception. MATERIALS HORIZONS 2023; 10:5666-5676. [PMID: 37767809 DOI: 10.1039/d3mh00679d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Electronic skin (e-skin) is one of the most important components of future wearable electronic devices, whose sensing performances can be improved by constructing micropatterns on its sensitive layer. However, in traditional e-skins it is difficult to balance sensitivity and the pressure sensing range, and most micropatterns are generally prepared by some complex technologies. Herein, mushroom-mimetic micropatterns with 3D hierarchical architecture and an interdigital electrode are facilely prepared. The micropatterned sensitive layer is further developed through spraying carbon nanotube (CNT) dispersion on the thermoplastic polyurethane (TPU) film with mushroom-mimetic micropatterns (denoted as MMTC). Thanks to the "interlocking effect" between mushroom-mimetic micropatterns and the interdigital electrode in the as-prepared MMTC/interdigital electrode e-skin, the e-skin exhibits a high sensitivity (up to 600 kPa-1), a wide pressure sensing range (up to 150 kPa), a short response time (<20 ms) and excellent durability (15 000 cycles). The MMTC/interdigital electrode e-skin is capable of precisely monitoring health conditions via the as-acquired physiological parameters in real time. Moreover, such e-skins can be used to monitor gestures wirelessly, sense the trajectory of pressure stimuli and recognize Morse code under water. This study provides a cost-efficient, facile strategy to design e-skin for future-oriented wearable intelligent systems.
Collapse
Affiliation(s)
- Yajie Zhang
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Xinyu Zhang
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Chuan Ning
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Kun Dai
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Guoqiang Zheng
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Chuntai Liu
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Changyu Shen
- School of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
14
|
Lee J, Park S, Lee J, Kim N, Kim MK. Recent advances of additively manufactured noninvasive kinematic biosensors. Front Bioeng Biotechnol 2023; 11:1303004. [PMID: 38047290 PMCID: PMC10690938 DOI: 10.3389/fbioe.2023.1303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The necessity of reliable measurement data assessment in the realm of human life has experienced exponential growth due to its extensive utilization in health monitoring, rehabilitation, surgery, and long-term treatment. As a result, the significance of kinematic biosensors has substantially increased across various domains, including wearable devices, human-machine interaction, and bioengineering. Traditionally, the fabrication of skin-mounted biosensors involved complex and costly processes such as lithography and deposition, which required extensive preparation. However, the advent of additive manufacturing has revolutionized biosensor production by facilitating customized manufacturing, expedited processes, and streamlined fabrication. AM technology enables the development of highly sensitive biosensors capable of measuring a wide range of kinematic signals while maintaining a low-cost aspect. This paper provides a comprehensive overview of state-of-the-art noninvasive kinematic biosensors created using diverse AM technologies. The detailed development process and the specifics of different types of kinematic biosensors are also discussed. Unlike previous review articles that primarily focused on the applications of additively manufactured sensors based on their sensing data, this article adopts a unique approach by categorizing and describing their applications according to their sensing frequencies. Although AM technology has opened new possibilities for biosensor fabrication, the field still faces several challenges that need to be addressed. Consequently, this paper also outlines these challenges and provides an overview of future applications in the field. This review article offers researchers in academia and industry a comprehensive overview of the innovative opportunities presented by kinematic biosensors fabricated through additive manufacturing technologies.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Park
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Jaehoon Lee
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Namjung Kim
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Min Ku Kim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Liu YF, Wang W, Chen XF. Progress and prospects in flexible tactile sensors. Front Bioeng Biotechnol 2023; 11:1264563. [PMID: 37829569 PMCID: PMC10565956 DOI: 10.3389/fbioe.2023.1264563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Flexible tactile sensors have the advantages of large deformation detection, high fault tolerance, and excellent conformability, which enable conformal integration onto the complex surface of human skin for long-term bio-signal monitoring. The breakthrough of flexible tactile sensors rather than conventional tactile sensors greatly expanded application scenarios. Flexible tactile sensors are applied in fields including not only intelligent wearable devices for gaming but also electronic skins, disease diagnosis devices, health monitoring devices, intelligent neck pillows, and intelligent massage devices in the medical field; intelligent bracelets and metaverse gloves in the consumer field; as well as even brain-computer interfaces. Therefore, it is necessary to provide an overview of the current technological level and future development of flexible tactile sensors to ease and expedite their deployment and to make the critical transition from the laboratory to the market. This paper discusses the materials and preparation technologies of flexible tactile sensors, summarizing various applications in human signal monitoring, robotic tactile sensing, and human-machine interaction. Finally, the current challenges on flexible tactile sensors are also briefly discussed, providing some prospects for future directions.
Collapse
Affiliation(s)
- Ya-Feng Liu
- College of Artificial Intelligence, Southwest University, Chongqing, China
- College of Aerospace Engineering, Chongqing University, Chongqing, China
- Chongqing 2D Materials Institute, Chongqing, China
| | - Wei Wang
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Xu-Fang Chen
- College of Artificial Intelligence, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Gu X, Cheng H, Lu X, Li R, Ouyang X, Ma N, Zhang X. Plant-based Biomass/Polyvinyl Alcohol Gels for Flexible Sensors. Chem Asian J 2023; 18:e202300483. [PMID: 37553785 DOI: 10.1002/asia.202300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Flexible sensors show great application potential in wearable electronics, human-computer interaction, medical health, bionic electronic skin and other fields. Compared with rigid sensors, hydrogel-based devices are more flexible and biocompatible and can easily fit the skin or be implanted into the body, making them more advantageous in the field of flexible electronics. In all designs, polyvinyl alcohol (PVA) series hydrogels exhibit high mechanical strength, excellent sensitivity and fatigue resistance, which make them promising candidates for flexible electronic sensing devices. This paper has reviewed the latest progress of PVA/plant-based biomass hydrogels in the construction of flexible sensor applications. We first briefly introduced representative plant biomass materials, including sodium alginate, phytic acid, starch, cellulose and lignin, and summarized their unique physical and chemical properties. After that, the design principles and performance indicators of hydrogel sensors are highlighted, and representative examples of PVA/plant-based biomass hydrogel applications in wearable electronics are illustrated. Finally, the future research is briefly prospected. We hope it can promote the research of novel green flexible sensors based on PVA/biomass hydrogel.
Collapse
Affiliation(s)
- Xiaochun Gu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Haoge Cheng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyi Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Li
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiao Ouyang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyue Zhang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
17
|
Neupetsch C, Hensel E, Heinke A, Stapf T, Stecher N, Malberg H, Heyde CE, Drossel WG. Approach for Non-Intrusive Detection of the Fit of Orthopaedic Devices Based on Vibrational Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:6500. [PMID: 37514793 PMCID: PMC10386735 DOI: 10.3390/s23146500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The soft tissues of residual limb amputees are subject to large volume fluctuations over the course of a day. Volume fluctuations in residual limbs can lead to local pressure marks, causing discomfort, pain and rejection of prostheses. Existing methods for measuring interface stress encounter several limitations. A major problem is that the measurement instrumentation is applied in the sensitive interface between the prosthesis and residual limb. This paper presents the principle investigation of a non-intrusive technique to evaluate the fit of orthopaedic prosthesis sockets in transfemoral amputees based on experimentally obtained vibrational data. The proposed approach is based on changes in the dynamical behaviour detectable at the outer surface of prostheses; thus, the described interface is not affected. Based on the experimental investigations shown and the derived results, it can be concluded that structural dynamic measurements are a promising non-intrusive technique to evaluate the fit of orthopaedic prosthesis sockets in transfemoral amputee patients. The obtained resonance frequency changes of 2% are a good indicator of successful applicabilityas these changes can be detected without the need for complex measurement devices.
Collapse
Affiliation(s)
- Constanze Neupetsch
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
- Professorship Adaptronics and Lightweight Design, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09111 Chemnitz, Germany
- Department of Orthopaedic, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Eric Hensel
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
| | - Andreas Heinke
- Institute of Biomedical Engineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Tom Stapf
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
| | - Nico Stecher
- Institute of Biomedical Engineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopaedic, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Welf-Guntram Drossel
- Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany
- Professorship Adaptronics and Lightweight Design, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09111 Chemnitz, Germany
| |
Collapse
|
18
|
Wan Q, Chen Q, Freithaler MA, Velagala SR, Liu Y, To AC, Mahajan A, Mukkamala R, Xiong F. Toward Real-Time Blood Pressure Monitoring via High-Fidelity Iontronic Tonometric Sensors with High Sensitivity and Large Dynamic Ranges. Adv Healthc Mater 2023; 12:e2202461. [PMID: 36942993 PMCID: PMC11061714 DOI: 10.1002/adhm.202202461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Continuous, noninvasive blood pressure (CNIBP) monitoring provides valuable hemodynamic information that renders detection of the early onset of cardiovascular diseases. Wearable mechano-electric pressure sensors that mount on the skin are promising candidates for monitoring continuous blood pressure (BP) pulse waveforms due to their excellent conformability, simple sensing mechanisms, and convenient signal acquisition. However, it is challenging to acquire high-fidelity BP pulse waveforms since it requires highly sensitive sensors (sensitivity larger than 4 × 10-5 kPa-1 ) that respond linearly with pressure change over a large dynamic range, covering the typical BP range (5-25 kPa). Herein, this work introduces a high-fidelity, iontronic-based tonometric sensor (ITS) with high sensitivity (4.82 kPa-1 ), good linearity (R2 > 0.995), and a large dynamic range (up to 180% output change) over a broad working range (0 to 38 kPa). Additionally, the ITS demonstrates a low limit of detection at 40 Pa, a fast load response time (35 ms) and release time (35 ms), as well as a stable response over 5000 load per release cycles, paving ways for potential applications in human-interface interaction, electronic skins, and robotic haptics. This work further explores the application of the ITS in monitoring real-time, beat-to-beat BP by measuring the brachial and radial pulse waveforms. This work provides a rational design of a wearable pressure sensor with high sensitivity, good linearity, and a large dynamic range for real-time CNIBP monitoring.
Collapse
Affiliation(s)
- Qingzhou Wan
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Qian Chen
- Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Mark A Freithaler
- Department of BioEngineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Sridhar Reddy Velagala
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Yihan Liu
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Albert C. To
- Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Ramakrishna Mukkamala
- Department of BioEngineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Feng Xiong
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
19
|
Yang R, Dutta A, Li B, Tiwari N, Zhang W, Niu Z, Gao Y, Erdely D, Xin X, Li T, Cheng H. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat Commun 2023; 14:2907. [PMID: 37264026 DOI: 10.1038/s41467-023-38274-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Despite the extensive developments of flexible capacitive pressure sensors, it is still elusive to simultaneously achieve excellent linearity over a broad pressure range, high sensitivity, and ultrahigh pressure resolution under large pressure preloads. Here, we present a programmable fabrication method for microstructures to integrate an ultrathin ionic layer. The resulting optimized sensor exhibits a sensitivity of 33.7 kPa-1 over a linear range of 1700 kPa, a detection limit of 0.36 Pa, and a pressure resolution of 0.00725% under the pressure of 2000 kPa. Taken together with rapid response/recovery and excellent repeatability, the sensor is applied to subtle pulse detection, interactive robotic hand, and ultrahigh-resolution smart weight scale/chair. The proposed fabrication approaches and design toolkit from this work can also be leveraged to easily tune the pressure sensor performance for varying target applications and open up opportunities to create other iontronic sensors.
Collapse
Affiliation(s)
- Ruoxi Yang
- School of Mechanical Engineering, Hebei University of Technology, 300401, Tianjin, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bowen Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Naveen Tiwari
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wanqing Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhenyuan Niu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xin Xin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tiejun Li
- School of Mechanical Engineering, Hebei University of Technology, 300401, Tianjin, China.
- School of Mechanical Engineering, Hebei University of Science & Technology, 050018, Shijiazhuang, China.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Murakami K, Isano Y, Asada J, Usami N, Isoda Y, Takano T, Matsuda R, Ueno K, Fuchiwaki O, Ota H. Self-assembling bilayer wiring with highly conductive liquid metal and insulative ion gel layers. Sci Rep 2023; 13:5929. [PMID: 37045927 PMCID: PMC10097700 DOI: 10.1038/s41598-023-32580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Ga-based liquid metals (LMs) are expected to be suitable for wiring highly deformable devices because of their high electrical conductivity and stable resistance to extreme deformation. Injection and printed wiring, and wiring using LM-polymer composites are the most popular LM wiring approaches. However, additional processing is required to package the wiring after LM patterning, branch and interrupt wiring shape, and ensure adequate conductivity, which results in unnecessary wiring shape changes and increased complexity of the wiring methods. In this study, we propose an LM-polymer composite comprising LM particles and ion gel as a flexible matrix material with low viscosity and specific gravity before curing. Moreover, the casting method is used for wire patterning, and the material is cured at room temperature to ensure that the upper insulative layer of the ion gel self-assembles simultaneously with the formation of LM wiring in the lower layer. High conductivity and low resistance change rate of the formed wiring during deformation are achieved without an activation process. This ion gel-LM bilayer wiring can be used for three-dimensional wiring by stacking. Furthermore, circuits fabricated using ion gel-LM bilayer wiring exhibit stable operation. Therefore, the proposed method can significantly promote the development of flexible electronic devices.
Collapse
Affiliation(s)
- Koki Murakami
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Yuji Isano
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Juri Asada
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Natsuka Usami
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Yutaka Isoda
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Tamami Takano
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ryosuke Matsuda
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ohmi Fuchiwaki
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
| | - Hiroki Ota
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
| |
Collapse
|
22
|
Liu T, Gou GY, Gao F, Yao P, Wu H, Guo Y, Yin M, Yang J, Wen T, Zhao M, Li T, Chen G, Sun J, Ma T, Cheng J, Qi Z, Chen J, Wang J, Han M, Fang Z, Gao Y, Liu C, Xue N. Multichannel Flexible Pulse Perception Array for Intelligent Disease Diagnosis System. ACS NANO 2023; 17:5673-5685. [PMID: 36716225 PMCID: PMC10062340 DOI: 10.1021/acsnano.2c11897] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 05/25/2023]
Abstract
Pressure sensors with high sensitivity, a wide linear range, and a quick response time are critical for building an intelligent disease diagnosis system that directly detects and recognizes pulse signals for medical and health applications. However, conventional pressure sensors have limited sensitivity and nonideal response ranges. We proposed a multichannel flexible pulse perception array based on polyimide/multiwalled carbon nanotube-polydimethylsiloxane nanocomposite/polyimide (PI/MPN/PI) sandwich-structure pressure sensor that can be applied for remote disease diagnosis. Furthermore, we established a mechanical model at the molecular level and guided the preparation of MPN. At the structural level, we achieved high sensitivity (35.02 kPa-1) and a broad response range (0-18 kPa) based on a pyramid-like bilayer microstructure with different upper and lower surfaces. A 27-channel (3 × 9) high-density sensor array was integrated at the device level, which can extract the spatial and temporal distribution information on a pulse. Furthermore, two intelligent algorithms were developed for extracting six-dimensional pulse information and automatic pulse recognition (the recognition rate reaches 97.8%). The results indicate that intelligent disease diagnosis systems have great potential applications in wearable healthcare devices.
Collapse
Affiliation(s)
- Tiezhu Liu
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Guang-yang Gou
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Fupeng Gao
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Pan Yao
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Haoyu Wu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing10029, China
| | - Yusen Guo
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Minghui Yin
- Department
of Materials and Manufacturing, Beijing
University of Technology, Beijing100124, China
| | - Jie Yang
- TCM
Data Center & Institute of Information on Traditional Chinese
Medicine, China Academy of Chinese Medical
Sciences (CAMS), Beijing100700, China
| | - Tiancai Wen
- TCM
Data Center & Institute of Information on Traditional Chinese
Medicine, China Academy of Chinese Medical
Sciences (CAMS), Beijing100700, China
| | - Ming Zhao
- Department
of Neurosurgery, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
| | - Tong Li
- School
of Modern Post (School of Automation), Beijing
University of Posts and Telecommunications, Beijing100876, China
| | - Gang Chen
- School
of Modern Post (School of Automation), Beijing
University of Posts and Telecommunications, Beijing100876, China
| | - Jianhai Sun
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Tianjun Ma
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Jianqun Cheng
- School
of Integrated Circuit, Quanzhou University
of Information Engineering, Quanzhou, Fujian362000, China
| | - Zhimei Qi
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Jiamin Chen
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Junbo Wang
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Mengdi Han
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing100091, China
| | - Zhen Fang
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
- Personalized
Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing100190, China
| | - Yangyang Gao
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing10029, China
| | - Chunxiu Liu
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
- Personalized
Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing100190, China
| | - Ning Xue
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
- Personalized
Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing100190, China
| |
Collapse
|
23
|
Han H, Oh YS, Cho S, Park H, Lee SU, Ko K, Park JM, Choi J, Ha JH, Han C, Zhao Z, Liu Z, Xie Z, Lee JS, Min WG, Lee BJ, Koo J, Choi DY, Je M, Sun JY, Park I. Battery-Free, Wireless, Ionic Liquid Sensor Arrays to Monitor Pressure and Temperature of Patients in Bed and Wheelchair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205048. [PMID: 36534830 DOI: 10.1002/smll.202205048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Repositioning is a common guideline for the prevention of pressure injuries of bedridden or wheelchair patients. However, frequent repositioning could deteriorate the quality of patient's life and induce secondary injuries. This paper introduces a method for continuous multi-site monitoring of pressure and temperature distribution from strategically deployed sensor arrays at skin interfaces via battery-free, wireless ionic liquid pressure sensors. The wirelessly delivered power enables stable operation of the ionic liquid pressure sensor, which shows enhanced sensitivity, negligible hysteresis, high linearity and cyclic stability over relevant pressure range. The experimental investigations of the wireless devices, verified by numerical simulation of the key responses, support capabilities for real-time, continuous, long-term monitoring of the pressure and temperature distribution from multiple sensor arrays. Clinical trials on two hemiplegic patients confined on bed or wheelchair integrated with the system demonstrate the feasibility of sensor arrays for a decrease in pressure and temperature distribution under minimal repositioning.
Collapse
Affiliation(s)
- Hyeonseok Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - Seokjoo Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyunwoo Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sung-Uk Lee
- Advanced 3D Printing Technology Development Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Kabseok Ko
- Department of Electronics Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Man Park
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chankyu Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Zichen Zhao
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhuangjian Liu
- Institute of High-Performance Computing, Agency for Science, Technology and Research, Singapore, 138632, Singapore
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Je-Sang Lee
- Department of Rehabilitation Medicine, Gimhae Hansol Rehabilitation & Convalescent Hospital, Gimhae, 50924, Republic of Korea
| | - Weon Gi Min
- Department of Planning and Development, Gimhae Hansol Rehabilitation & Convalescent Hospital, Gimhae, 50924, Republic of Korea
| | - Byeong-Ju Lee
- Department of Rehabilitation Medicine, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology (KITECH), Yeongcheon, 38822, Republic of Korea
| | - Minkyu Je
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Jiang Q, Hu Z, Xie Y, Wu K, Zhang S, Wu Z. Liquid-Metal-Based Magnetic Controllable Soft Microswitch with Rapid and Reliable Response for Intelligent Soft Systems. MICROMACHINES 2022; 13:2255. [PMID: 36557554 PMCID: PMC9781719 DOI: 10.3390/mi13122255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
When combined with diverse sensors, soft robots significantly improve their functionalities and intelligence levels. However, most of the existing soft sensors require complex signal analysis devices or algorithms, which severely increase the complexity of soft robot systems. Here, based on the unique fluidic property of liquid metal, we propose a magnet-controllable soft microswitch that can be well-integrated into a soft robot system, e.g., a soft gripper to help it facilely detect and precisely grab objects. The microswitch consists of a flexible soft beam electrode and a fixed electrode, forming a soft microsystem. By tuning the cohesion force of the liquid metal between the electrodes, the microswitch can convert its states between an individual and a self-locking state. The microswitch can achieve a reasonable rapid response (~12 ms) and high switching frequency (~95 Hz). Furthermore, soft microswitches can be customized into logic units and also coupled to control a digital tube showing various numbers. Our work provides a new simple soft sensor unit that may enhance the intelligence of soft systems.
Collapse
|
25
|
Kim H, Moon SE, Im JP, Kim JH, Kang SM. Silver-Reduced Poly(Ethylene Glycol) Diacrylate Composites with Microline Arrays for Directional Bending Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44869-44877. [PMID: 36149333 DOI: 10.1021/acsami.2c13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a soft and flexible polymer composite sensor with a surface structure is manufactured that is sensitive to a wide range of mechanical stimuli, including small actions and large motions. A polymer sensor performing with a piezoresistive mechanism is proposed by synthesizing a new conductive polymer composite to fabricate a microline structure by itself, named Ag-reduced poly(ethylene glycol) diacrylate (PEGDA) composite directional bending sensor (ACBS). A simple but effective process of forming nanoparticles (NPs) and surface structures is a notable characteristic. High sensitivity to a small stimulus was achieved by forming Ag NPs within PEGDA, particularly concentrating on the surface and applying the microline structure. With the structural characteristics of a line structure, the ACBS achieved anisotropic sensitivity to bulk motion along the arranged line direction. The excellent sensitivity of this polymer sensor was experimentally demonstrated via water droplets, blowing, and breathing. Combining the advantages of a simple synthetic and simple fabrication process along with the fabrication ability of the microsurface structure with the material itself and the conductive Ag/PEGDA integrated layer, this ACBS is outstanding as a soft and flexible polymer composite sensor and has potential application in physical devices such as wearable devices and biosensors.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung Eon Moon
- Emerging Nano-Materials Research Section, Electronics and Telecommunications Research Institute, Daejeon 305-700, Republic of Korea
| | - Jong-Pil Im
- Emerging Nano-Materials Research Section, Electronics and Telecommunications Research Institute, Daejeon 305-700, Republic of Korea
| | - Jeong Hun Kim
- Emerging Nano-Materials Research Section, Electronics and Telecommunications Research Institute, Daejeon 305-700, Republic of Korea
| | - Seong Min Kang
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
26
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
27
|
Nan K, Babaee S, Chan WW, Kuosmanen JLP, Feig VR, Luo Y, Srinivasan SS, Patterson CM, Jebran AM, Traverso G. Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu. Nat Biomed Eng 2022; 6:1092-1104. [PMID: 35314802 DOI: 10.1038/s41551-022-00859-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The evaluation of the tone and contractile patterns of the gastrointestinal (GI) tract via manometry is essential for the diagnosis of GI motility disorders. However, manometry is expensive and relies on complex and bulky instrumentation. Here we report the development and performance of an inexpensive and easy-to-manufacture catheter-like device for capturing manometric data across the dynamic range observed in the human GI tract. The device, which we designed to resemble the quipu-knotted strings used by Andean civilizations for the capture and transmission of information-consists of knotted piezoresistive pressure sensors made by infusing a liquid metal (eutectic gallium-indium) through thin silicone tubing. By exploring a range of knotting configurations, we identified optimal design schemes that led to sensing performances comparable to those of commercial devices for GI manometry, as we show for the sensing of GI motility in multiple anatomic sites of the GI tract of anaesthetized pigs. Disposable and customizable piezoresistive catheters may broaden the use of GI manometry in low-resource settings.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sahab Babaee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter W Chan
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivian R Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiyue Luo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shriya S Srinivasan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christina M Patterson
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ahmad Mujtaba Jebran
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Hussain N, Scherer T, Das C, Heuer J, Debastiani R, Gumbsch P, Aghassi-Hagmann J, Hirtz M. Correlated Study of Material Interaction Between Capillary Printed Eutectic Gallium Alloys and Gold Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202987. [PMID: 36073667 DOI: 10.1002/smll.202202987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) play a growing role in flexible electronics and connected applications. Here, LMs come into direct contact with metal electrodes thus allowing for corrosion and additional alloying, potentially compromising device stability. Nevertheless, comprehensive studies on the interfacial interaction of the materials are still sparse. Therefore, a correlated material interaction study of capillary-printed Galinstan (eutetic alloy of Ga/In/Sn) with gold surfaces and electrodes is conducted. Comprehensive application of optical microscopy, vertical scanning interferometry, scanning electron microscopy/spectroscopy, x-ray photon spectroscopy, and atomic force microscopy allow for an in depth characterization of the spreading process of LM lines on gold films, revealing the differential spread of the different LM components and the formation of intermetallic nanostructures on the surface of the surrounding gold film. A model for the growth process based on the penetration of LM along the gold film grain boundaries is proposed based on the obtained time-dependent characterization. The distribution of gold, Galinstan, and intermetallic phases in a gold wire dipped into LM is observed using X-ray nano tomography as a complementary view on the internal nanostructure. Finally, resistance measurements on LM lines connecting gold electrodes over time allow to estimate the influence on the material interaction on electronic applications.
Collapse
Affiliation(s)
- Navid Hussain
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Torsten Scherer
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Chittaranjan Das
- Institute of Applied Materials (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Janis Heuer
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Rafaela Debastiani
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Gumbsch
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108, Freiburg, Germany
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
29
|
Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging Liquid Metal Biomaterials: From Design to Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201956. [PMID: 35545821 DOI: 10.1002/adma.202201956] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) as emerging biomaterials possess unique advantages including their favorable biosafety, high fluidity, and excellent electrical and thermal conductivities, thus providing a unique platform for a wide range of biomedical applications ranging from drug delivery, tumor therapy, and bioimaging to biosensors. The structural design and functionalization of LMs endow them with enhanced functions such as enhanced targeting ability and stimuli responsiveness, enabling them to achieve better and even multifunctional synergistic therapeutic effects. Herein, the advantages of LMs in biomedicine are presented. The design of LM-based biomaterials with different scales ranging from micro-/nanoscale to macroscale and various components is explored in-depth to promote the understanding of structure-property relationships, guiding their performance optimization and applications. Furthermore, the related advanced progress in the development of LM-based biomaterials in biomedicine is summarized. Current challenges and prospects of LMs in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runze Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichen Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Renmin Hospital of Wuhan University, Wuhan, 410013, China
| |
Collapse
|
30
|
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200745. [PMID: 35734914 DOI: 10.1002/adhm.202200745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.
Collapse
Affiliation(s)
- Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,Air Force Life Cycle Management Center, Human Systems Division, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Brandon L Reese
- Department of Physics, Miami University, Oxford, OH, 45056, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Katherine Ingram
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Mary E Huddleston
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Meghan Jenkins
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Allison Zaets
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew Reuter
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew W Grogg
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - M Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Ying Zhou
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Busra Sennik
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Zachary J Farrell
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| |
Collapse
|
31
|
Zhang C, Li Z, Li H, Yang Q, Wang H, Shan C, Zhang J, Hou X, Chen F. Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38328-38338. [PMID: 35951360 DOI: 10.1021/acsami.2c08835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pursuing flexible tactile electronic skin sensors with superior comprehensive performances is highly desired in practical applications. However, current flexible tactile electronic skin sensors suffer insufficient flexibility and sensitivity, as well as high-cost and low-efficiency in fabrication, and are susceptible to contamination in sensing performances. Here, a highly sensitive all-flexible tactile sensor (AFTS) is presented with capacitive sensing that combines a double-side micropyramids dielectric layer and a liquid metal (LM) electrode. The design and fabrication of LM-based AFTS are based on supermetalphobicity induced by femtosecond laser. The supermetalphobic micropyramids lead to a high sensitivity up to 2.78 kPa-1, an ultralow limit of detection of ∼3 Pa, a fast response time of 80 ms, and an excellent durability of cyclic load over 10 000 times. The used femtosecond laser enables programmable, high-efficiency, low-cost, and large-scale fabrication of supermetalphobic double-side micropyramids, which is difficult to implement using conventional techniques. Furthermore, the outer substrates are treated by a femtosecond laser, endowing the AFTS with excellent antifouling performance and stable sensing signals in the highly humid environment. Successful monitoring of human physiological and motion signals demonstrates the potential of our developed AFTS for wearable biomonitoring applications.
Collapse
Affiliation(s)
- Chengjun Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhikang Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haoyu Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hao Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chao Shan
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jingzhou Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
32
|
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. NANO-MICRO LETTERS 2022; 14:141. [PMID: 35789444 PMCID: PMC9256895 DOI: 10.1007/s40820-022-00874-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively. Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way. Future challenges and perspectives of flexible pressure sensors are critically discussed. As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Collapse
Affiliation(s)
- Zhengya Shi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, People's Republic of China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
33
|
Anwer AH, Khan N, Ansari MZ, Baek SS, Yi H, Kim S, Noh SM, Jeong C. Recent Advances in Touch Sensors for Flexible Wearable Devices. SENSORS 2022; 22:s22124460. [PMID: 35746242 PMCID: PMC9229189 DOI: 10.3390/s22124460] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Many modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch sensors are bulky, complicated, inflexible, and difficult-to-wear devices made of stiff materials. The touch screen is gaining further importance with the trend of current IoT technology flexibly and comfortably used on the skin or clothing to affect different aspects of human life. This review presents an updated overview of the recent advances in this area. Exciting advances in various aspects of touch sensing are discussed, with particular focus on materials, manufacturing, enhancements, and applications of flexible wearable sensors. This review further elaborates on the theoretical principles of various types of touch sensors, including resistive, piezoelectric, and capacitive sensors. The traditional and novel hybrid materials and manufacturing technologies of flexible sensors are considered. This review highlights the multidisciplinary applications of flexible touch sensors, such as e-textiles, e-skins, e-control, and e-healthcare. Finally, the obstacles and prospects for future research that are critical to the broader development and adoption of the technology are surveyed.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202 002, India;
| | - Nishat Khan
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202 002, India;
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics Co., 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Soeun Kim
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
- Correspondence: (S.M.N.); (C.J.); Tel.: +82-52-241-6070 (S.M.N.); +82-52-810-2442 (C.J.)
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Correspondence: (S.M.N.); (C.J.); Tel.: +82-52-241-6070 (S.M.N.); +82-52-810-2442 (C.J.)
| |
Collapse
|
34
|
Flexible Wearable Pressure Sensor Based on Collagen Fiber Material. MICROMACHINES 2022; 13:mi13050694. [PMID: 35630161 PMCID: PMC9143406 DOI: 10.3390/mi13050694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
Flexible wearable pressure sensors play a pivotal role in healthcare monitoring, disease prevention, and humanmachine interactions. However, their narrow sensing ranges, low detection sensitivities, slow responses, and complex preparation processes restrict their application in smart wearable devices. Herein, a capacitive pressure sensor with high sensitivity and flexibility that uses an ionic collagen fiber material as the dielectric layer is proposed. The sensor exhibits a high sensitivity (5.24 kPa−1), fast response time (40 ms), long-term stability, and excellent repeatability over 3000 cycles. Because the sensor is resizable, flexible, and has a simple preparation process, it can be flexibly attached to clothes and the human body for wearable monitoring. Furthermore, the practicality of the sensor is proven by attaching it to different measurement positions on the human body to monitor the activity signal.
Collapse
|
35
|
Li X, Zhu P, Zhang S, Wang X, Luo X, Leng Z, Zhou H, Pan Z, Mao Y. A Self-Supporting, Conductor-Exposing, Stretchable, Ultrathin, and Recyclable Kirigami-Structured Liquid Metal Paper for Multifunctional E-Skin. ACS NANO 2022; 16:5909-5919. [PMID: 35312286 DOI: 10.1021/acsnano.1c11096] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Electronic skin (E-skin) is a crucial seamless human-machine interface (HMI), holding promise in healthcare monitoring and personal electronics. Liquid metal (LM) has been recognized as an ideal electrode material to fabricate E-skins. However, conventional sealed LM electrodes cannot expose the LM layer for direct contact with the skin resulting in the low performance of electrophysiological monitoring. Furthermore, traditional printed LM electrodes are difficult to transfer or recycle, and fractures easily occur under stretching of the substrate. Here, we report a kind of LM electrode that we call a kirigami-structured LM paper (KLP), which is self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable for multifunctional E-skin. The KLP is fabricated by the kirigami paper cutting art with three types of structures including uniaxial, biaxial, and square spiral. The KLP can act as an E-skin to acquire high-quality electrophysiological signals, such as electroencephalogram (EEG), electrocardiogram (ECG), and electromyogram (EMG). Upon integration with a triboelectric nanogenerator (TENG), the KLP can also operate as a self-powered E-skin. On the basis of the self-powered E-skin, we further developed a smart dialing communication system, which is applied on human skin to call a cellphone. Compared with conventional sealed or printed LM electrodes, the KLP can simultaneously achieve self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable features. Such KLP offers potential for E-skins in healthcare monitoring and intelligent control, as well as smart robots, virtual reality, on-skin personal electronics, etc.
Collapse
Affiliation(s)
- Xing Li
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shichuan Zhang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangcheng Wang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xuepeng Luo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziwei Leng
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Zhou
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
36
|
Mao L, Pan T, Ke Y, Yan Z, Huang S, Guo D, Gao N, Huang W, Yao G, Gao M, Lin Y. Configurable direction sensitivity of skin-mounted microfluidic strain sensor with auxetic metamaterial. LAB ON A CHIP 2022; 22:1630-1639. [PMID: 35348159 DOI: 10.1039/d2lc00141a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electromechanical coupling plays a key role in determining the performance of stretchable strain sensor. Current regulation of the electromechanical coupling in stretchable strain sensor is largely restricted by the intrinsic mechanical properties of the device. In this study, a microfluidic strain sensor based on the core-shell package design with the auxetic metamaterial (AM) is presented. By overriding the mechanical properties of the device, the AM in the package effectively tunes the deformation of the microfluidic channel with the applied strain and configures the directional strain sensitivity with a large modulation range. The gauge factor (GF) of the strain sensor in the radial direction of the channel can be gradually shifted from the intrinsically negative value to a positive one by adopting the AMs with different designs. By simply replacing the AM in the package, the microfluidic strain sensor with the core-shell package can be configurated as an omnidirectional or directional stretchable strain sensor. With the directional sensitivity brought by the rational AM design, the application of the AM-integrated strain sensor in the skin-mounted tactile detection is demonstrated with high tolerance to unintended wrist movements.
Collapse
Affiliation(s)
- Linna Mao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Yizhen Ke
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Zhuocheng Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Sirong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Dengji Guo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Neng Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Wen Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| |
Collapse
|
37
|
Abstract
Low melting point metals and alloys are the group of materials that combine metallic and liquid properties, simultaneously. The fascinating characteristics of liquid metals (LMs) including softness and high electrical and thermal conductivity, as well as their unique interfacial chemistry, have started to dominate various research disciplines. Utilization of LMs as responsive interfaces, enabling sensing in a flexible and versatile manner, is one of the most promising traits demonstrated for LMs. In the context of LMs-enabled sensors, gallium (Ga) and its alloys have emerged as multipurpose functional materials with many compelling physical and chemical properties. Responsiveness to different stimuli and easy-to-functionalize interfaces of Ga-based LMs make them ideal candidates for a variety of sensing applications. However, despite the vast capabilities of Ga-based LMs in sensing, applications of these materials for developing different sensors have not been fully explored. In the present review, we provide a comprehensive overview regarding the applications of Ga-based LMs in a wide range of sensing approaches that cover different physical and chemical sensors. The unique features of Ga-based LMs, which make them promising materials for sensing, are discussed in subsections followed by relevant case studies. Finally, challenges as well as the prospected future and developing motifs are highlighted for each type of LM-based sensors.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
38
|
Ali MA, Hu C, Yttri EA, Panat R. Recent Advances in 3D Printing of Biomedical Sensing Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2107671. [PMID: 36324737 PMCID: PMC9624470 DOI: 10.1002/adfm.202107671] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| |
Collapse
|
39
|
Kim MS, Kim S, Choi J, Kim S, Han C, Lee Y, Jung Y, Park J, Oh S, Bae BS, Lim H, Park I. Stretchable Printed Circuit Board Based on Leak-Free Liquid Metal Interconnection and Local Strain Control. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1826-1837. [PMID: 34931517 DOI: 10.1021/acsami.1c16177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to realize a transition from conventional to stretchable electronics, it is necessary to make a universal stretchable circuit board in which passive/active components can be robustly integrated. We developed a stretchable printed circuit board (s-PCB) platform that enables easy and reliable integration of various electronic components by utilizing a modulus-gradient polymeric substrate, liquid metal amalgam (LMA) circuit traces, and Ag nanowire (AgNW) contact pads. Due to the LMA-AgNW biphasic structure of interconnection, the LMA is hermetically sealed by a homogeneous interface, realizing complete leak-free characteristics. Furthermore, integration reliability is successfully achieved by local strain control of the stretchable substrate with a selective glass fiber reinforcement (GFR). A strain localization derived by GFR makes almost 50,000% of strain difference within the board, and the amount of deformation applied to the constituent elements can be engineered. We finally demonstrated that the proposed integrated platform can be utilized as a universal s-PCB capable of integrating rigid/conventional electronic components and soft material-based functional elements with negligible signal distortion under various mechanical deformations.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwan Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seonggi Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Chankyu Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngdo Jung
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jaeho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunjong Oh
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Byeong-Soo Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuneui Lim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Othman W, Lai ZHA, Abril C, Barajas-Gamboa JS, Corcelles R, Kroh M, Qasaimeh MA. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies. Front Robot AI 2022; 8:705662. [PMID: 35071332 PMCID: PMC8777132 DOI: 10.3389/frobt.2021.705662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
As opposed to open surgery procedures, minimally invasive surgery (MIS) utilizes small skin incisions to insert a camera and surgical instruments. MIS has numerous advantages such as reduced postoperative pain, shorter hospital stay, faster recovery time, and reduced learning curve for surgical trainees. MIS comprises surgical approaches, including laparoscopic surgery, endoscopic surgery, and robotic-assisted surgery. Despite the advantages that MIS provides to patients and surgeons, it remains limited by the lost sense of touch due to the indirect contact with tissues under operation, especially in robotic-assisted surgery. Surgeons, without haptic feedback, could unintentionally apply excessive forces that may cause tissue damage. Therefore, incorporating tactile sensation into MIS tools has become an interesting research topic. Designing, fabricating, and integrating force sensors onto different locations on the surgical tools are currently under development by several companies and research groups. In this context, electrical force sensing modality, including piezoelectric, resistive, and capacitive sensors, is the most conventionally considered approach to measure the grasping force, manipulation force, torque, and tissue compliance. For instance, piezoelectric sensors exhibit high sensitivity and accuracy, but the drawbacks of thermal sensitivity and the inability to detect static loads constrain their adoption in MIS tools. Optical-based tactile sensing is another conventional approach that facilitates electrically passive force sensing compatible with magnetic resonance imaging. Estimations of applied loadings are calculated from the induced changes in the intensity, wavelength, or phase of light transmitted through optical fibers. Nonetheless, new emerging technologies are also evoking a high potential of contributions to the field of smart surgical tools. The recent development of flexible, highly sensitive tactile microfluidic-based sensors has become an emerging field in tactile sensing, which contributed to wearable electronics and smart-skin applications. Another emerging technology is imaging-based tactile sensing that achieved superior multi-axial force measurements by implementing image sensors with high pixel densities and frame rates to track visual changes on a sensing surface. This article aims to review the literature on MIS tactile sensing technologies in terms of working principles, design requirements, and specifications. Moreover, this work highlights and discusses the promising potential of a few emerging technologies towards establishing low-cost, high-performance MIS force sensing.
Collapse
Affiliation(s)
- Wael Othman
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mechanical and Aerospace Engineering, New York University, New York, NY, United States
| | - Zhi-Han A. Lai
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Carlos Abril
- Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Juan S. Barajas-Gamboa
- Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ricard Corcelles
- Digestive Disease and Surgery Institute, Cleveland Clinic Main Campus, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Matthew Kroh
- Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Qasaimeh
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mechanical and Aerospace Engineering, New York University, New York, NY, United States
| |
Collapse
|
41
|
Ju B, Kim I, Li BM, Knowles CG, Mills A, Grace L, Jur JS. Inkjet Printed Textile Force Sensitive Resistors for Wearable and Healthcare Devices. Adv Healthc Mater 2021; 10:e2100893. [PMID: 34212513 PMCID: PMC8542615 DOI: 10.1002/adhm.202100893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Indexed: 01/21/2023]
Abstract
Pressure sensors for wearable healthcare devices, particularly force sensitive resistors (FSRs) are widely used to monitor physiological signals and human motions. However, current FSRs are not suitable for integration into wearable platforms. This work presents a novel technique for developing textile FSRs (TFSRs) using a combination of inkjet printing of metal-organic decomposition silver inks and heat pressing for facile integration into textiles. The insulating void by a thermoplastic polyurethane (TPU) membrane between the top and bottom textile electrodes creates an architectured piezoresistive structure. The structure functions as a simple logic switch where under a threshold pressure the electrodes make contact to create conductive paths (on-state) and without pressure return to the prior insulated condition (off-state). The TFSR can be controlled by arranging the number of layers and hole diameters of the TPU spacer to specify a wide range of activation pressures from 4.9 kPa to 7.1 MPa. For a use-case scenario in wearable healthcare technologies, the TFSR connected with a readout circuit and a mobile app shows highly stable signal acquisition from finger movement. According to the on/off state of the TFSR with LED bulbs by different weights, it can be utilized as a textile switch showing tactile feedback.
Collapse
Affiliation(s)
- Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Inhwan Kim
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Caitlin G Knowles
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Amanda Mills
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Landon Grace
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
42
|
Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft Wearable Healthcare Materials and Devices. Adv Healthc Mater 2021; 10:e2100577. [PMID: 34019737 DOI: 10.1002/adhm.202100577] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Indexed: 12/16/2022]
Abstract
In spite of advances in electronics and internet technologies, current healthcare remains hospital-centred. Disruptive technologies are required to translate state-of-art wearable devices into next-generation patient-centered diagnosis and therapy. In this review, recent advances in the emerging field of soft wearable materials and devices are summarized. A prerequisite for such future healthcare devices is the need of novel materials to be mechanically compliant, electrically conductive, and biologically compatible. It is begun with an overview of the two viable design strategies reported in the literatures, which is followed by description of state-of-the-art wearable healthcare devices for monitoring physical, electrophysiological, chemical, and biological signals. Self-powered wearable bioenergy devices are also covered and sensing systems, as well as feedback-controlled wearable closed-loop biodiagnostic and therapy systems. Finally, it is concluded with an overall summary and future perspective.
Collapse
Affiliation(s)
- Quanxia Lyu
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Shu Gong
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Jialiang Yin
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Jennifer M. Dyson
- Department of Biochemistry & Molecular Biology Biomedicine Discovery Institute Clayton VIC 3800 Australia
- Faculty of Engineering Monash Institute of Medical Engineering (MIME) Monash University Clayton VIC 3800 Australia
| | - Wenlong Cheng
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
43
|
Park Y, Lee G, Jang J, Yun SM, Kim E, Park J. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv Healthc Mater 2021; 10:e2002280. [PMID: 33724723 DOI: 10.1002/adhm.202002280] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Wearable healthcare devices have garnered substantial interest for the realization of personal health management by monitoring the physiological parameters of individuals. Attaining the integrity between the devices and the biological interfaces is one of the greatest challenges to achieving high-quality body information in dynamic conditions. Liquid metals, which exist in the liquid phase at room temperatures, are advanced intensively as conductors for deformable devices because of their excellent stretchability and self-healing ability. The unique surface chemistry of liquid metals allows the development of various sensors and devices in wearable form. Also, the biocompatibility of liquid metals, which is verified through numerous biomedical applications, holds immense potential in uses on the surface and inside of a living body. Here, the recent progress of liquid metal-based wearable electronic devices for healthcare with respect to the featured properties and the processing technologies is discussed. Representative examples of applications such as biosensors, neural interfaces, and a soft interconnection for devices are reviewed. The current challenges and prospects for further development are also discussed, and the future directions of advances in the latest research are explored.
Collapse
Affiliation(s)
- Young‐Geun Park
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Ga‐Yeon Lee
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| | - Jiuk Jang
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Su Min Yun
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jang‐Ung Park
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
44
|
Oh YS, Kim JH, Xie Z, Cho S, Han H, Jeon SW, Park M, Namkoong M, Avila R, Song Z, Lee SU, Ko K, Lee J, Lee JS, Min WG, Lee BJ, Choi M, Chung HU, Kim J, Han M, Koo J, Choi YS, Kwak SS, Kim SB, Kim J, Choi J, Kang CM, Kim JU, Kwon K, Won SM, Baek JM, Lee Y, Kim SY, Lu W, Vazquez-Guardado A, Jeong H, Ryu H, Lee G, Kim K, Kim S, Kim MS, Choi J, Choi DY, Yang Q, Zhao H, Bai W, Jang H, Yu Y, Lim J, Guo X, Kim BH, Jeon S, Davies C, Banks A, Sung HJ, Huang Y, Park I, Rogers JA. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat Commun 2021; 12:5008. [PMID: 34429436 PMCID: PMC8385057 DOI: 10.1038/s41467-021-25324-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023] Open
Abstract
Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.
Collapse
Affiliation(s)
- Yong Suk Oh
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hwan Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, People's Republic of China
- Ningbo Institute of Dalian University of Technology, Ningbo, People's Republic of China
| | - Seokjoo Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyeonseok Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Woo Jeon
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Minsu Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhen Song
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, People's Republic of China
- Ningbo Institute of Dalian University of Technology, Ningbo, People's Republic of China
| | - Sung-Uk Lee
- Advanced 3D Printing Technology Development Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | | | | | - Je-Sang Lee
- Department of Rehabilitation Medicine, Gimhae Hansol Rehabilitation & Convalescent Hospital, Gimhae, Republic of Korea
| | - Weon Gi Min
- Department of Planning and Development, Gimhae Hansol Rehabilitation & Convalescent Hospital, Gimhae, Republic of Korea
| | - Byeong-Ju Lee
- Department of Rehabilitation Medicine, Pusan national university hospital, Busan, Republic of Korea
| | - Myungwoo Choi
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury (KINC), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | - Jongwon Kim
- Sibel Health Inc, Niles, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Yeon Sik Choi
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Sung Soo Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Sung Bong Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Jeonghyun Kim
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, Seoul, Republic of Korea
| | - Chang-Mo Kang
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyeongha Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Janice Mihyun Baek
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Yujin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - So Young Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Wei Lu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Abraham Vazquez-Guardado
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Hyoyoung Jeong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Hanjun Ryu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Kyuyoung Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seunghwan Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Seong Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology (KITECH), Yeongcheon, Republic of Korea
| | - Quansan Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hokyung Jang
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Jaeman Lim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xu Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, People's Republic of China
- Ningbo Institute of Dalian University of Technology, Ningbo, People's Republic of China
| | - Bong Hoon Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury (KINC), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Charles Davies
- Carle Neuroscience Institute, Carle, Physician Group, Urbana, IL, USA
| | - Anthony Banks
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Hyung Jin Sung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yonggang Huang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury (KINC), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
45
|
Abstract
Soft wearable electronics are rapidly developing through exploration of new materials, fabrication approaches, and design concepts. Although there have been many efforts for decades, a resurgence of interest in liquid metals (LMs) for sensing and wiring functional properties of materials in soft wearable electronics has brought great advances in wearable electronics and materials. Various forms of LMs enable many routes to fabricate flexible and stretchable sensors, circuits, and functional wearables with many desirable properties. This review article presents a systematic overview of recent progresses in LM-enabled wearable electronics that have been achieved through material innovations and the discovery of new fabrication approaches and design architectures. We also present applications of wearable LM technologies for physiological sensing, activity tracking, and energy harvesting. Finally, we discuss a perspective on future opportunities and challenges for wearable LM electronics as this field continues to grow.
Collapse
Affiliation(s)
- Phillip Won
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design / Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
46
|
Jung Y, Lee T, Oh J, Park BG, Ko JS, Kim H, Yun JP, Cho H. Linearly Sensitive Pressure Sensor Based on a Porous Multistacked Composite Structure with Controlled Mechanical and Electrical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28975-28984. [PMID: 34121395 DOI: 10.1021/acsami.1c07640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Capacitive pressure sensors based on porous structures have been extensively explored for various applications because their sensing performance is superior to that of conventional polymer sensors. However, it is challenging to develop sufficiently sensitive pressure sensors with linearity over a wide pressure range owing to the trade-off between linearity and sensitivity. This study demonstrates a novel strategy for the fabrication of a pressure sensor consisting of stacked carbon nanotubes (CNTs) and polydimethylsiloxane. With the addition of carbon nanotubes, the structure is linearly compressed due to the reinforced mechanical properties, thereby resulting in high linearity. Additionally, the percolation effect is boosted by the CNTs having a high dielectric constant, thus improving the sensitivity. The pressure sensor exhibits linear sensitivity (R2 = 0.991) in the medium-pressure range (10-100 kPa). Furthermore, it delivers excellent performance with a fast response time (∼60 ms), in conjunction with high repeatability, reproducibility, and reliability (5 and 50 kPa/1000 cycles). The fabricated sensors are applied in wearable devices to monitor finger bending and detect finger motions in real time with high precision. The large-area sensor is integrated with a neural network to accurately recognize the sitting posture on a plane, thereby demonstrating the wide-range detection performance.
Collapse
Affiliation(s)
- Young Jung
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology (KITECH), Busan 46938, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taehan Lee
- Safety System Research Group, Korea Institute of Industrial Technology (KITECH), Daegu 42994, Republic of Korea
| | - Jiyoon Oh
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology (KITECH), Busan 46938, Republic of Korea
| | - Byung-Geon Park
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology (KITECH), Busan 46938, Republic of Korea
- Graduate School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jong Soo Ko
- Graduate School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Institute of Information Technology, University of Seoul, Seoul 02504, Republic of Korea
| | - Jong Pil Yun
- Safety System Research Group, Korea Institute of Industrial Technology (KITECH), Daegu 42994, Republic of Korea
| | - Hanchul Cho
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology (KITECH), Busan 46938, Republic of Korea
| |
Collapse
|
47
|
Vu CC, Kim SJ, Kim J. Flexible wearable sensors - an update in view of touch-sensing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:26-36. [PMID: 33854405 PMCID: PMC8018418 DOI: 10.1080/14686996.2020.1862629] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 05/27/2023]
Abstract
Nowadays, much of user interface is based on touch and the touch sensors have been common for displays, Internet of things (IoT) projects, or robotics. They can be found in lamps, touch screens of smartphones, or other wide arrays of applications as well. However, the conventional touch sensors, fabricated from rigid materials, are bulky, inflexible, hard, and hard-to-wear devices. The current IoT trend has made these touch sensors increasingly important when it added in the skin or clothing to affect different aspects of human life flexibly and comfortably. The paper provides an overview of the recent developments in this field. We discuss exciting advances in materials, fabrications, enhancements, and applications of flexible wearable sensors under view of touch-sensing. Therein, the review describes the theoretical principles of touch sensors, including resistive, capacitive, and piezoelectric types. Following that, the conventional and novel materials, as well as manufacturing technologies of flexible sensors are considered to. Especially, this review highlights the multidisciplinary approaches such as e-skins, e-textiles, e-healthcare, and e-control of flexible touch sensors. Finally, we summarize the challenges and opportunities that use is key to widespread development and adoption for future research.
Collapse
Affiliation(s)
- Chi Cuong Vu
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Sang Jin Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jooyong Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Park B, Jung Y, Ko JS, Park J, Cho H. Self-Restoring Capacitive Pressure Sensor Based on Three-Dimensional Porous Structure and Shape Memory Polymer. Polymers (Basel) 2021; 13:polym13050824. [PMID: 33800342 PMCID: PMC7962847 DOI: 10.3390/polym13050824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/28/2023] Open
Abstract
Highly flexible and compressible porous polyurethane (PU) structures have effectively been applied in capacitive pressure sensors because of the good elastic properties of the PU structures. However, PU porous structure-based pressure sensors have been limited in practical applications owing to their low durability during pressure cycling. Herein, we report a flexible pressure sensor based on a three-dimensional porous structure with notable durability at a compressive pressure of 500 kPa facilitated by the use of a shape memory polymer (SMP). The SMP porous structure was fabricated using a sugar templating process and capillary effect. The use of the SMP resulted in the maintenance of the sensing performance for 100 cycles at 500 kPa; the SMP can restore its original shape within 30 s of heating at 80 °C. The pressure sensor based on the SMP exhibited a higher sensitivity of 0.0223 kPa−1 than a typical PU-based sensor and displayed excellent sensing performance in terms of stability, response time, and hysteresis. Additionally, the proposed sensor was used to detect shoe insole pressures in real time and exhibited remarkable durability and motion differentiation.
Collapse
Affiliation(s)
- Byunggeon Park
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology, 42-7, Baegyang-daero 804beon-gil, Sasang-gu, Busan 46938, Korea; (B.P.); (Y.J.)
- Graduate School of Mechanical Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Young Jung
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology, 42-7, Baegyang-daero 804beon-gil, Sasang-gu, Busan 46938, Korea; (B.P.); (Y.J.)
- Graduate School of Mechanical Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Jong Soo Ko
- Graduate School of Mechanical Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Jinhyoung Park
- School of Mechatronics Engineering, Korea University of Technology & Education, 600, Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Chungcheongnam-do, Cheonan-si 31253, Korea
- Correspondence: (J.P.); (H.C.)
| | - Hanchul Cho
- Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology, 42-7, Baegyang-daero 804beon-gil, Sasang-gu, Busan 46938, Korea; (B.P.); (Y.J.)
- Correspondence: (J.P.); (H.C.)
| |
Collapse
|
49
|
Wen H, Chen C, Li S, Shi Y, Wang H, Guo W, Liu X. Array Integration and Far-Field Detection of Biocompatible Wireless LC Pressure Sensors. SMALL METHODS 2021; 5:e2001055. [PMID: 34927837 DOI: 10.1002/smtd.202001055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/30/2020] [Indexed: 06/14/2023]
Abstract
In this paper, three configurations of LC (inductor-capacitor) pressure sensors are developed, namely series LC pressure sensors, compact LC pressure sensors, and far-field LC pressure sensor tags. The modified silk protein films have been chosen as substrates due to their good biocompatibility and air/water permeability, which is suitable for continuously pasting such substrates on skin. For series LC pressure sensors, conducting wire is used to connect the flexible capacitor and spiral inductor. It exhibits good cycling stability and high sensitivities, suitable for electronic skin. For compact LC pressure sensors, the spiral coil functions as inductor, antenna, and capacitor electrode simultaneously, minimizing the space cost and is suitable for array integration, while the sensitivities remain the same. By tailoring the turn of the spiral coil, the resonate frequency can be regulated continuously. An annular array of compact LC sensors with ten distinct resonate frequencies ranged from 400 to 1000 MHz is developed to remotely monitor the press of number 0-9. Finally, far-field LC pressure sensor tags with elongated detection distances are developed in which each compact LC sensor acts as a filter. A wireless in-shoe plantar to detect the sole pressure distribution using the far-field LC sensor configuration is developed.
Collapse
Affiliation(s)
- Hao Wen
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Caifeng Chen
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Shengyou Li
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Yating Shi
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Hao Wang
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Wenxi Guo
- Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Xiangyang Liu
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117542, Singapore
| |
Collapse
|
50
|
Peng Y, Zhou J, Song X, Pang K, Samy A, Hao Z, Wang J. A Flexible Pressure Sensor with Ink Printed Porous Graphene for Continuous Cardiovascular Status Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:E485. [PMID: 33445532 PMCID: PMC7828094 DOI: 10.3390/s21020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/01/2023]
Abstract
Flexible electronics with continuous monitoring ability a extensively preferred in various medical applications. In this work, a flexible pressure sensor based on porous graphene (PG) is proposed for continuous cardiovascular status monitoring. The whole sensor is fabricated in situ by ink printing technology, which grants it the potential for large-scale manufacture. Moreover, to enhance its long-term usage ability, a polyethylene terephthalate/polyethylene vinylacetate (PET/EVA)-laminated film is employed to protect the sensor from unexpected shear forces on the skin surface. The sensor exhibits great sensitivity (53.99/MPa), high resolution (less than 0.3 kPa), wide detecting range (0.3 kPa to 1 MPa), desirable robustness, and excellent repeatability (1000 cycles). With the assistance of the proposed pressure sensor, vital cardiovascular conditions can be accurately monitored, including heart rate, respiration rate, pulse wave velocity, and blood pressure. Compared to other sensors based on self-supporting 2D materials, this sensor can endure more complex environments and has enormous application potential for the medical community.
Collapse
Affiliation(s)
- Yuxin Peng
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Jingzhi Zhou
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Xian Song
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Kai Pang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Akram Samy
- Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
| | - Zengming Hao
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| |
Collapse
|