1
|
Luo X, Wong YC, Chen X, Tan H, Wen W. In-vitro blood purification using tiny pinch holographic optical tweezers based on deep learning. Biosens Bioelectron 2025; 267:116781. [PMID: 39293268 DOI: 10.1016/j.bios.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
In-vitro blood purification is essential to a wide range of medical treatments, requiring fine-grained analysis and precise separation of blood components. Despite existing methods that can extract specific components from blood by size or by magnetism, there is not yet a general approach to efficiently filter blood components on demand. In this work, we introduce the first programmable non-contact blood purification system for accurate blood component detection and extraction. To accurately identify different cells and artificial particles in the blood, we collected and annotated a new blood component object detection dataset and trained a collection of deep-learning-based object detectors upon it. To precisely capture and extract desired blood components, we fabricated a microfluidic chip and set up a customized holographic optical tweezer to trap and move cells/particles in the blood. Empirically, we demonstrate that our proposed system can perform real-time blood fractionation with high precision reaching up to 96.89%, as well as high efficiency. Its scalability and flexibility open new research directions in blood treatment.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, China
| | - Yu Ching Wong
- Department of Physics, The Hong Kong University of Science and Technology, China
| | - Xiangyu Chen
- Department of Computer Science, Cornell University, Ithaca, 14850, New York, United States
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, China
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, China; Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511400, China.
| |
Collapse
|
2
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
3
|
Ahani E, Montazer M, Mianehro A, Samadi N, Toliyat T, Rad MM. Encapsulation of the PHMB with nanoliposome and attachment to wound dressing for long-term antibacterial activity and biocompatibility. World J Microbiol Biotechnol 2024; 40:361. [PMID: 39441496 DOI: 10.1007/s11274-024-04170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Concentration control of some drug are used commonly however their uncontrolled concentration renders severe side effects. Therefore, it is substantial to come up with innovation release control methods. There is a strong affinity between the phospholipid of nanoliposomes and wool cells which facilitate the diffusion of liposomes into the wool structure. On the other hand, polyhexamethylene biguanide (PHMB) has gained popularity as an antibacterial agent; however, the compound's cytotoxicity has limited its usefulness. By compounding these facts, this work introduces a novel method for sustained drug release via internalization. In this method, PHMB was detained into nanoliposomes infiltrated the wool to generate an extremely regulated release, which was established using various techniques. SEM pictures demonstrated effective absorption of nanoliposome-encapsulated PHMB within the wool fabric. The developed wound dressing showed a sustained drug release, and consequently, perfect biocompatibility and enduring antibacterial activity.
Collapse
Affiliation(s)
- Elnaz Ahani
- Azad University, Science and Research Unit, Tehran, Iran
| | - Majid Montazer
- Functional Fibrous Structures & Environmental Enhancement (FFSEE), Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
- Textile Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran.
| | - Ali Mianehro
- Textile Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Toliyat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mahmoudi Rad
- Phytochemistry Research Center, Shahid Beheshti Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ashkarran AA, Gharibi H, Sadeghi SA, Modaresi SM, Wang Q, Lin TJ, Yerima G, Tamadon A, Sayadi M, Jafari M, Lin Z, Ritz D, Kakhniashvili D, Guha A, Mofrad MR, Sun L, Landry MP, Saei AA, Mahmoudi M. Deep Plasma Proteome Profiling by Modulating Single Nanoparticle Protein Corona with Small Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.582595. [PMID: 38496642 PMCID: PMC10942461 DOI: 10.1101/2024.03.06.582595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The protein corona, a dynamic biomolecular layer that forms on nanoparticle (NP) surfaces upon exposure to biological fluids is emerging as a valuable diagnostic tool for improving plasma proteome coverage analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients (namely, glucose, triglyceride, diglycerol, phosphatidylcholine, phosphatidylethanolamine, L-α-phosphatidylinositol, inosine 5'-monophosphate, and B complex), into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules (n=10) allowed for detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 μg/ml phosphatidylcholine could singularly enable the detection of 897 proteins. At this specific concentration, phosphatidylcholine selectively depleted the four most abundant plasma proteins, including albumin, thus reducing the dynamic range of plasma proteome and enabling the detection of proteins with lower abundance. By employing an optimized data-independent acquisition (DIA) approach, the inclusion of phosphatidylcholine led to the detection of 1436 proteins in a single plasma sample. Our molecular dynamic results revealed that phosphatidylcholine interacts with albumin via hydrophobic interactions, h-bonds, and water-bridges. Addition of phosphatidylcholine also enabled the detection of 337 additional proteoforms compared to untreated protein corona using a top-down proteomics approach. These significant achievements are made utilizing only a single NP type and one small molecule to analyze a single plasma sample, setting a new standard in plasma proteome profiling. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate widespread adoption of this methodology for identification and clinical translation of proteomic biomarkers into FDA approved diagnostics.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed Amirhossein Sadeghi
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, United States
| | | | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, United States
| | - Teng-Jui Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ali Tamadon
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Maryam Sayadi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - David Kakhniashvili
- Proteomics and Metabolomics Core Facility, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Avirup Guha
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mohammad R.K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, United States
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94063, USA
| | - Amir Ata Saei
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17165, Sweden
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Ismail EA, Omolo CA, Gafar MA, Khan R, Nyandoro VO, Yakubu ES, Mackraj I, Tageldin A, Govender T. Novel peptide and hyaluronic acid coated biomimetic liposomes for targeting bacterial infections and sepsis. Int J Pharm 2024; 662:124493. [PMID: 39048042 DOI: 10.1016/j.ijpharm.2024.124493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from an imbalanced immune response to severe infections. Despite advances in nanomedicines, effective treatments for sepsis are still lacking. Herein, vancomycin free base (VCM)-loaded dual functionalized biomimetic liposomes based on a novel TLR4-targeting peptide (P3) and hyaluronic acid (HA) (HA-P3-Lipo) were developed to enhance sepsis therapy. The nanocarrier revealed appropriate physicochemical parameters, good stability, and biocompatibility. The release of VCM from HA-P3-Lipo was found to be sustained with 76 % VCM released in 48 h. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, HA-P3-Lipo revealed 2-fold enhanced antibacterial activity against S. aureus, sustained antibacterial activity against MRSA over 72 h and 5-fold better MRSA biofilm inhibition compared to bare VCM. Bacterial-killing kinetics and flow cytometry confirmed the superiority of HA-P3-Lipo in eliminating MRSA faster than VCM. The in vivo potential of the nanocarrier was elucidated in an MRSA-induced sepsis mice model, and the results confirmed the superiority of HA-P3-Lipo compared to free VCM in eliminating bacteria and down-regulating the proinflammatory markers. Therefore, HA-P3-Lipo exhibits potential as a promising novel multi-functional nanosystem against sepsis and could significantly contribute to the transformation of sepsis therapy.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; School of Pharmacy, Kabarak University, P.O BOX Private bag 20157, Nakuru, Kenya
| | - Elliasu S Yakubu
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
6
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Liu F, Zhang K, Lu B, Wang X, Dong Q, Xue T, Tan Y, Wang X, Du J. Oxygen-Vacancy-Rich Monolayer BiO 2- X Nanosheets for Bacterial Sepsis Management via Dual Physically Antibacterial and Chemically Anti-inflammatory Functions. Adv Healthc Mater 2024; 13:e2304002. [PMID: 38427842 DOI: 10.1002/adhm.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Effective treatment of bacterial sepsis remains challenging due to the rapid progression of infection and the systemic inflammatory response. In this study, monolayer BiO2- X nanosheets (BiO2- X NSs) with oxygen-rich vacancies through sonication-assisted liquid-phase exfoliation are successfully synthesized. Herein, the BiO2- X NSs exhibit a novel nanozyme-enabled intervention strategy for the management of bacterial sepsis, based on its pH dependent dual antibacterial and anti-inflammatory functions. BiO2- X NSs exhibit effective antibacterial by utilizing oxidase (OXD)-like activity. Additionally, BiO2- X NSs can scavenge multiple reactive oxygen species (ROS) and mitigate systemic hyperinflammation by mimicking superoxide dismutase (SOD) and catalase (CAT). These dual capabilities of BiO2- X NSs allow them to address bacterial infection, proinflammatory cytokines secretion and ROS burst collaboratively, effectively reversing the progression of bacterial sepsis. In vivo experiments have demonstrated that BiO2- X NSs significantly reduce bacterial burden, attenuate systemic hyperinflammation, and rapidly rescued organ damage. Importantly, no obvious adverse effects are observed at the administered dose of BiO2- X NSs. This study presents a novel defect engineering strategy for the rational design of high-performance nanozymes and development of new nanomedicines for managing bacterial sepsis.
Collapse
Affiliation(s)
- Fang Liu
- College of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Kun Zhang
- College of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Bin Lu
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xiaochun Wang
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qingrong Dong
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Tingyu Xue
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yan Tan
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xing Wang
- College and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jiangfeng Du
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, 030001, China
| |
Collapse
|
8
|
Liu Y, Sun Q, Long H, Qiu Z, Zhang D, Zhang H, Chen J. The value of IL-6, PCT, qSOFA, NEWS, and SIRS to predict septic shock after Percutaneous nephrolithotomy. BMC Urol 2024; 24:116. [PMID: 38849783 PMCID: PMC11157773 DOI: 10.1186/s12894-024-01502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND There are numerous methods available for predicting sepsis following Percutaneous Nephrolithotomy. This study aims to compare the predictive value of Quick Sequential Organ Failure Assessment (qSOFA), Systemic Inflammatory Response Syndrome (SISR), National Early Warning Score (NEWS), interleukin-6 (IL-6), and procalcitonin (PCT) for septicemia. METHODS Patients who underwent percutaneous nephrolithotomy were included in the study and divided into a control group and a septic shock group. The effectiveness of qSOFA, SIRS, NEWS, Interleukin-6, and Procalcitonin was assessed, with Receiver Operating Characteristic curves and Area Under the Curve used to compare the predictive accuracy of these four indicators. RESULTS Among the 401 patients, 16 cases (3.99%) developed septic shock. Females, elderly individuals, and patients with positive urine culture and positive nitrite in urine were found to be more susceptible to septic shock. PCT, IL-6, SIRS, NEWS, qSOFA, and surgical time were identified as independent risk factors for septic shock. The cutoff values are as follows: qSOFA score > 0.50, SIRS score > 2.50, NEWS score > 2.50, and IL-6 > 264.00 pg/ml. Among the 29 patients identified by IL-6 as having sepsis, 16 were confirmed to have developed sepsis. The qSOFA identified 63 septicemia cases, with 16 confirmed to have developed septicemia; NEWS identified 122 septicemia cases, of which 14 cases actually developed septicemia; SIRS identified 128 septicemia patients, with 16 confirmed to have developed septicemia. In terms of predictive ability, IL-6 (AUC 0.993, 95% CI 0.985 ~ 1) demonstrated a higher predictive accuracy compared to qSOFA (AUC 0.952, 95% CI 0.928 ~ 0.977), NEWS (AUC 0.824, 95% CI 0.720 ~ 0.929) and SIRS (AUC 0.928, 95% CI 0.888 ~ 0.969). CONCLUSIONS IL-6 has higher accuracy in predicting septic shock after PCNL compared to qSOFA, SIRS, and NEWS.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China
| | - Qihao Sun
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China
| | - Houtao Long
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing5 Wei7 Road, Jinan, 250021, Shandong, China
| | - Zhijian Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing5 Wei7 Road, Jinan, 250021, Shandong, China
| | - Daofeng Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing5 Wei7 Road, Jinan, 250021, Shandong, China
| | - Haiyang Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing5 Wei7 Road, Jinan, 250021, Shandong, China
| | - Ji Chen
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing5 Wei7 Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Gupta LK, Molla J, Prabhu AA. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Mol Biotechnol 2024; 66:1327-1356. [PMID: 37294530 DOI: 10.1007/s12033-023-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Animal venoms are a complex mixture of highly specialized toxic molecules. Among them, pore-forming proteins (PFPs) or toxins (PFTs) are one of the major disease-causing toxic elements. The ability of the PFPs in defense and toxicity through pore formation on the host cell surface makes them unique among the toxin proteins. These features made them attractive for academic and research purposes for years in the areas of microbiology as well as structural biology. All the PFPs share a common mechanism of action for the attack of host cells and pore formation in which the selected pore-forming motifs of the host cell membrane-bound protein molecules drive to the lipid bilayer of the cell membrane and eventually produces water-filled pores. But surprisingly their sequence similarity is very poor. Their existence can be seen both in a soluble state and also in transmembrane complexes in the cell membrane. PFPs are prevalent toxic factors that are predominately produced by all kingdoms of life such as virulence bacteria, nematodes, fungi, protozoan parasites, frogs, plants, and also from higher organisms. Nowadays, multiple approaches to applications of PFPs have been conducted by researchers both in basic as well as applied biological research. Although PFPs are very devastating for human health nowadays researchers have been successful in making these toxic proteins into therapeutics through the preparation of immunotoxins. We have discussed the structural, and functional mechanism of action, evolutionary significance through dendrogram, domain organization, and practical applications for various approaches. This review aims to emphasize the PFTs to summarize toxic proteins together for basic knowledge as well as to highlight the current challenges, and literature gap along with the perspective of promising biotechnological applications for their future research.
Collapse
Affiliation(s)
- Laxmi Kumari Gupta
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Johiruddin Molla
- Ghatal Rabindra Satabarsiki Mahavidyalaya Ghatal, Paschim Medinipur, Ghatal, West Bengal, 721212, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
10
|
Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci 2024; 31:40. [PMID: 38637839 PMCID: PMC11027418 DOI: 10.1186/s12929-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, P.O. Box 1996, Khartoum, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
11
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
12
|
Kaur M, Bhat SH, Tiwari R, Kale P, Tripathi DM, Sarin SK, Kaur S, Singh N. Rapid Electrochemical Detection of Bacterial Sepsis in Cirrhotic Patients: A Microscaffold-Based Approach for Early Intervention. Anal Chem 2024; 96:4925-4932. [PMID: 38471137 DOI: 10.1021/acs.analchem.3c05754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Sepsis is a dysregulated inflammatory response leading to multiple organ failure. Current methods of sepsis detection are time-consuming, involving nonspecific clinical signs, biomarkers, and blood cultures. Hence, efficient and rapid sepsis detection platforms are of utmost need for immediate antibiotic treatment. In the current study, a noninvasive rapid monitoring electrochemical sensing (ECS) platform was developed for the detection and classification of plasma samples of patients with liver cirrhosis by measuring the current peak shifts using the cyclic voltammetry (CV) technique. A total of 61 hospitalized cirrhotic patients with confirmed (culture-positive) or suspected (culture-negative) sepsis were enrolled. The presence of bacteria in the plasma was observed by growth kinetics, and for rapidness, the samples were co-encapsulated in microscaffolds with carbon nanodots that were sensitive enough to detect redox changes occurring due to the change in the pH of the surrounding medium, causing shifts in current peaks in the voltammograms within 2 h. The percentage area under the curve for confirmed infections was 94 and that with suspected cases was 87 in comparison to 69 and 71 with PCT, respectively. Furthermore, the charge was measured for class identification. The charge for LPS-absent bacteria ranged from -400 to -600 μC, whereas the charge for LPS-containing bacteria class ranged from -290 to -300 μC. Thus, the developed cost-effective system was sensitive enough to detect and identify bacterial sepsis.
Collapse
Affiliation(s)
- Manleen Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Sadam H Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Rajnish Tiwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
13
|
Cao H, Zhang J, Yang L, Li H, Tian R, Wu H, Li Y, Gu Z. Robust and Multifunctional Therapeutic Nanoparticles against Peritonitis-Induced Sepsis. Biomacromolecules 2024; 25:1133-1143. [PMID: 38226558 DOI: 10.1021/acs.biomac.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Apart from bacterial growth and endotoxin generation, the excessive production of reactive radicals linked with sepsis also has a substantial impact on triggering an inflammatory response and further treatment failure. Hence, the rational design and fabrication of robust and multifunctional nanoparticles (NPs) present a viable means of overcoming this dilemma. In this study, we used antibiotic polymyxin B (PMB) and antioxidant natural polyphenolic protocatechualdehyde (PCA) to construct robust and multifunctional NPs for sepsis treatment, leveraging the rich chemistries of PCA. The PMB release profile from the NPs demonstrated pH-responsive behavior, which allowed the NPs to exhibit effective bacterial killing and radical scavenging properties. Data from in vitro cells stimulated with H2O2 and lipopolysaccharide (LPS) showed the multifunctionalities of NPs, including intracellular reactive oxygen species (ROS) scavenging, elimination of the bacterial toxin LPS, inhibiting macrophage M1 polarization, and anti-inflammation capabilities. Additionally, in vivo studies further demonstrated that NPs could increase the effectiveness of sepsis treatment by lowering the bacterial survival ratio, the expression of the oxidative marker malondialdehyde (MDA), and the expression of inflammatory cytokine TNF-α. Overall, this work provides ideas of using those robust and multifunctional therapeutic NPs toward enhanced sepsis therapy efficiency.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Rong Tian
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Xu Y, An X, Liu L, Cao X, Wu Z, Jia W, Sun J, Wang H, Huo J, Sun Z, Zhen M, Wang C, Bai C. Self-Cascade Redox Modulator Trilogically Renovates Intestinal Microenvironment for Mitigating Endotoxemia. ACS NANO 2024; 18:2131-2148. [PMID: 38198697 DOI: 10.1021/acsnano.3c09397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Endotoxemia is a life-threatening multiple organ failure disease caused by bacterial endotoxin infection. Unfortunately, current single-target therapy strategies have failed to prevent the progression of endotoxemia. Here, we reported that alanine fullerene redox modulator (AFRM) remodeled the intestinal microenvironment for multiple targets endotoxemia mitigation by suppressing inflammatory macrophages, inhibiting macrophage pyroptosis, and repairing epithelial cell barrier integrity. Specifically, AFRM exhibited broad-spectrum and self-cascade redox regulation properties with superoxide dismutase (SOD)-like enzyme, peroxidase (POD)-like enzyme activity, and hydroxyl radical (•OH) scavenging ability. Guided by proteomics, we demonstrated that AFRM regulated macrophage redox homeostasis and down-regulated LPS/TLR4/NF-κB and MAPK/ERK signaling pathways to suppress inflammatory hyperactivation. Of note, AFRM could attenuate inflammation-induced macrophage pyroptosis via inhibiting the activation of gasdermin D (GSDMD). In addition, our results revealed that AFRM could restore extracellular matrix and cell-tight junction proteins and protect the epithelial cell barrier integrity by regulating extracellular redox homeostasis. Consequently, AFRM inhibited systemic inflammation and potentiated intestinal epithelial barrier damage repair during endotoxemia in mice. Together, our work suggested that fullerene based self-cascade redox modulator has the potential in the management of endotoxemia through synergistically remodeling the inflammation and epithelial barriers in the intestinal microenvironment.
Collapse
Affiliation(s)
- Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin An
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Chang YT, Lin CY, Chen CJ, Hwang E, Alshetaili A, Yu HP, Fang JY. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates. Acta Biomater 2024; 174:331-344. [PMID: 38061677 DOI: 10.1016/j.actbio.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/02/2024]
Abstract
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY) 2023; 15:15676-15700. [PMID: 38112620 PMCID: PMC10781468 DOI: 10.18632/aging.205312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
17
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Nyandoro VO, Omolo CA, Ismail EA, Yong L, Govender T. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis. Int J Pharm 2023; 644:123346. [PMID: 37633537 DOI: 10.1016/j.ijpharm.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Chemistry and Pharmaceutics, School of Pharmacy, Kabarak University, Nakuru, Kenya
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liu Yong
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), China
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
19
|
Li Q, Li W, Chen M, Chai Y, Guan L, Chen Y. Association of vitamin D receptor gene polymorphism with the risk of sepsis: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35130. [PMID: 37746941 PMCID: PMC10519506 DOI: 10.1097/md.0000000000035130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND To investigate the association between sepsis and the vitamin D receptor (VDR) gene polymorphisms. METHODS Databases including PubMed, Cochrane Library, EMbase, CNKI, Wanfang Data, and VIP Data were systematically searched. The association was assessed using odds ratios (ORs), and 95% confidence intervals (CIs). The statistical tests were performed using Review Manager 5.4. RESULTS We identified a total of 5 studies. The relationship between VDR gene polymorphisms (Apa I, Bsm I, Taq I, and Fok I), and incidence of sepsis was investigated. The results of this meta-analysis showed that the allelic contrast model (F vs f, P = .03, OR = 0.65, 95% CI = 0.44-0.95), dominant genetic model (FF vs Ff + ff, P = .02, OR = 0.53, 95% CI = 0.30-0.91), and codominance genetic model (FF vs ff, P = .03, OR = 0.39, 95% CI = 0.16-0.91) of VDR Fok I locus increased the risk of sepsis, and the lack of association between the VDR Fok I gene polymorphism and the risk assessment of sepsis, based on the ethnic subgroup analysis, might be attributable to the small sample size. The risk of sepsis with Apa I, Bsm I, and Taq I did not appear to be correlated. CONCLUSION SUBSECTIONS This meta-analysis revealed that the VDR Fok I polymorphism is closely associated with the susceptibility to sepsis, and patients with sepsis have lower 25-hydroxyvitamin D levels. VDR Fok I gene mutations may change the risk of sepsis.
Collapse
Affiliation(s)
- Qian Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Wen Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Liancheng Guan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| |
Collapse
|
20
|
Hajipour MJ, Safavi-Sohi R, Sharifi S, Mahmoud N, Ashkarran AA, Voke E, Serpooshan V, Ramezankhani M, Milani AS, Landry MP, Mahmoudi M. An Overview of Nanoparticle Protein Corona Literature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301838. [PMID: 37119440 PMCID: PMC10552659 DOI: 10.1002/smll.202301838] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The protein corona forms spontaneously on nanoparticle surfaces when nanomaterials are introduced into any biological system/fluid. Reliable characterization of the protein corona is, therefore, a vital step in the development of safe and efficient diagnostic and therapeutic nanomedicine products. 2134 published manuscripts on the protein corona are reviewed and a down-selection of 470 papers spanning 2000-2021, comprising 1702 nanoparticle (NP) systems is analyzed. This analysis reveals: i) most corona studies have been conducted on metal and metal oxide nanoparticles; ii) despite their overwhelming presence in clinical practice, lipid-based NPs are underrepresented in protein corona research, iii) studies use new methods to improve reliability and reproducibility in protein corona research; iv) studies use more specific protein sources toward personalized medicine; and v) careful characterization of nanoparticles after corona formation is imperative to minimize the role of aggregation and protein contamination on corona outcomes. As nanoparticles used in biomedicine become increasingly prevalent and biochemically complex, the field of protein corona research will need to focus on developing analytical approaches and characterization techniques appropriate for each unique nanoparticle formulation. Achieving such characterization of the nano-bio interface of nanobiotechnologies will enable more seamless development and safe implementation of nanoparticles in medicine.
Collapse
Affiliation(s)
- Mohammad J Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, Stanford University, Stanford, CA, 94304, USA
| | - Reihaneh Safavi-Sohi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Nouf Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport Rd., 11733, Amman, Jordan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
| | - Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth Voke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Milad Ramezankhani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
21
|
Wang Y, Guan M, Mi F, Geng P, Chen G. Combining multisite functionalized magnetic nanomaterials with interference-free SERS nanotags for multi-target sepsis biomarker detection. Anal Chim Acta 2023; 1272:341523. [PMID: 37355316 DOI: 10.1016/j.aca.2023.341523] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/19/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultra-sensitive vibration spectroscopy technology, with the advantages of multi-index and non-destructive quantitative detection, has attracted much attention in the joint detection of biomarkers. A novel SERS biosensor with multisite capture and interference-free quantification was designed for the joint detection of the sepsis biomarker interleukin-6 (IL-6) and procalcitonin (PCT). This biosensor had two interference-free core-shell SERS probes with highly efficient electromagnetic enhancement and a multisite functionalized magnetic nanomaterial with high adsorption capacity. They formed sandwich structure with the targets through boronic affinity and immunoreaction, and the multi-target quantitative analysis of biomarkers in serum was performed using a portable Raman spectrometer in the Raman-silent region. The SERS biosensor was exhibited highly sensitive with detection limits of 0.584 and 2.99 pg/mL for IL-6 and PCT, respectively. In addition, it exhibited excellent selectivity and specificity even with the interference of other proteins. As this SERS method showed excellent performance in the detection of sepsis, it has great potential for multi-index detection in clinical diagnosis of major diseases.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guotong Chen
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
22
|
Guo X, Shen P, Shao R, Hong T, Liu W, Shen Y, Su F, Wang Q, He B. Efferocytosis-inspired nanodrug treats sepsis by alleviating inflammation and secondary immunosuppression. Biomed Mater 2023; 18:055020. [PMID: 37567216 DOI: 10.1088/1748-605x/acef9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Uncontrolled inflammation storm induced by sepsis may lead to severe organ dysfunction and secondary immunosuppression, which is one of the main reasons for high mortality and prolonged hospitalization of septic patients. However, there is a lack of effective treatments for it at present. Here, we report an efferocytosis-inspired nanodrug (BCN@M) to treat sepsis and secondary immunosuppression via regulating the macrophage function. Bioactive molecular curcumin was loaded with bovine serum albumin and then coated with the damaged erythrocyte membrane derived from septic mice. It was found that the septic erythrocytes promoted the efferocytosis signal and BCN@M uptake efficiency by macrophages. The well-constructed BCN@M nanodrug reduced the hyperinflammation in sepsis and restored the bacterial clearance ability of macrophage in the secondary immunosuppression state. This study highlights BCN@M as an efferocytosis-inspired nanodrug to alleviate hyperinflammation and secondary immunosuppression of sepsis.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Anesthesiology, Huadong Hospital affiliated to Fudan University, Shanghai, People's Republic of China
| | - Peiming Shen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rongjiao Shao
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ting Hong
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Anesthesiology, Huadong Hospital affiliated to Fudan University, Shanghai, People's Republic of China
| | - Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Shen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fan Su
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qinlan Wang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Chen H, Guo L, Ding J, Zhou W, Qi Y. A General and Efficient Strategy for Gene Delivery Based on Tea Polyphenols Intercalation and Self-Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302620. [PMID: 37349886 PMCID: PMC10460882 DOI: 10.1002/advs.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Gene therapy that employs therapeutic nucleic acids to modulate gene expression has shown great promise for diseases therapy, and its clinical application relies on the development of effective gene vector. Herein a novel gene delivery strategy by just using natural polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) as raw material is reported. EGCG first intercalates into nucleic acids to yield a complex, which then oxidizes and self-polymerizes to form tea polyphenols nanoparticles (TPNs) for effective nucleic acids encapsulation. This is a general method to load any types of nucleic acids with single or double strands and short or long sequences. Such TPNs-based vector achieves comparable gene loading capacity to commonly used cationic materials, but showing lower cytotoxicity. TPNs can effectively penetrate inside cells, escape from endo/lysosomes, and release nucleic acids in response to intracellular glutathione to exert biological functions. To demonstrate the in vivo application, an anti-caspase-3 small interfering ribonucleic acid is loaded into TPNs to treat concanavalin A-induced acute hepatitis, and excellent therapeutic efficacy is obtained in combination with the intrinsic activities of TPNs vector. This work provides a simple, versatile, and cost-effective gene delivery strategy. Given the biocompatibility and intrinsic biofunctions, this TPNs-based gene vector holds great potential to treat various diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of PathologyZhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524000China
- Department of PathologyShihezi University School of MedicineShiheziXinjiang832002China
| | - Lina Guo
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Jinsong Ding
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Wenhu Zhou
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Yan Qi
- Department of PathologyZhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524000China
- Department of PathologyShihezi University School of MedicineShiheziXinjiang832002China
| |
Collapse
|
24
|
Qiu X, Lei YP, Zhou RX. SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2023; 21:891-900. [PMID: 37450490 DOI: 10.1080/14787210.2023.2237192] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND We compared Systemic Inflammatory Response Syndrome (SIRS), Sequential Organ Failure Assessment (SOFA), Quick Sepsis-related Organ Failure Assessment (qSOFA), and National Early Warning Score (NEWS) for sepsis diagnosis and adverse outcomes prediction. METHODS Clinical studies that used SIRS, SOFA, qSOFA, and NEWS for sepsis diagnosis and prognosis assessment were included. Data were extracted, and meta-analysis was performed for outcome measures, including sepsis diagnosis, in-hospital mortality, 7/10/14-day mortality, 28/30-day mortality, and ICU admission. RESULTS Fifty-seven included studies showed good overall quality. Regarding sepsis prediction, SIRS demonstrated high sensitivity (0.85) but low specificity (0.41), qSOFA showed low sensitivity (0.42) but high specificity (0.98), and NEWS exhibited high sensitivity (0.71) and specificity (0.85). For predicting in-hospital mortality, SOFA demonstrated the highest sensitivity (0.89) and specificity (0.69). In terms of predicting 7/10/14-day mortality, SIRS exhibited high sensitivity (0.87), while qSOFA had high specificity (0.75). For predicting 28/30-day mortality, SOFA showed high sensitivity (0.97) but low specificity (0.14), whereas qSOFA displayed low sensitivity (0.41) but high specificity (0.88). CONCLUSIONS NEWS independently demonstrates good diagnostic capability for sepsis, especially in high-income countries. SOFA emerges as the optimal choice for predicting in-hospital mortality and can be employed as a screening tool for 28/30-day mortality in low-income countries.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Peng Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui-Xi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Teng L, Zhang Y, Chen L, Shi G. Fabrication of a curcumin encapsulated bioengineered nano-cocktail formulation for stimuli-responsive targeted therapeutic delivery to enhance anti-inflammatory, anti-oxidant, and anti-bacterial properties in sepsis management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-25. [PMID: 37163302 DOI: 10.1080/09205063.2023.2181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study aimed to fabricate an eco-friendly functionalized chitosan (CS) nanocarrier to establish a pH-responsive drug delivery system for the treatment of sepsis. Curcumin (Cur) and cerium oxide (CeO2) were loaded onto an octenylsuccinic anhydride (OSA)-functionalized CS nanoformulation (Cur@Ce/OCS) to achieve an effective nanocarrier (NC) for sepsis treatment. The physicochemical characteristics of the developed nanocarriers were determined using various characterization techniques. The developed CeO2-OCS nanoformulation has been showed effective anti-bacterial activity (∼97%) against G+ and G- bacterial pathogens, and also have improved drug loading (94% ± 2), and encapsulation efficiency (89.8% ± 1.5), with uniform spherical particles having an average diameter of between 100 and 150 nm. The in vivo experimental results establish that Cur-loaded Ce/OCS NPs could have enhanced therapeutic potential against lung infection model by reducing bacterial burden and extensively decreasing inflammatory responses in sepsis model. Additionally, we determined the in vivo biosafety of the nanoformulations by histological observation of different mouse organs (heart, liver, spleen, and kidney), and observed no signs of toxicity in the treatment groups. The findings of this study clearly demonstrate the therapeutic potential of pH-sensitive nanoplatforms in the management of infectious sepsis.
Collapse
Affiliation(s)
- Li Teng
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Yiliang Zhang
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Li Chen
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| | - Ge Shi
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| |
Collapse
|
26
|
Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. NATURE REVIEWS. MATERIALS 2023; 8:1-17. [PMID: 37361608 PMCID: PMC10037407 DOI: 10.1038/s41578-023-00552-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
The protein corona spontaneously develops and evolves on the surface of nanoscale materials when they are exposed to biological environments, altering their physiochemical properties and affecting their subsequent interactions with biosystems. In this Review, we provide an overview of the current state of protein corona research in nanomedicine. We next discuss remaining challenges in the research methodology and characterization of the protein corona that slow the development of nanoparticle therapeutics and diagnostics, and we address how artificial intelligence can advance protein corona research as a complement to experimental research efforts. We then review emerging opportunities provided by the protein corona to address major issues in healthcare and environmental sciences. This Review details how mechanistic insights into nanoparticle protein corona formation can broadly address unmet clinical and environmental needs, as well as enhance the safety and efficacy of nanobiotechnology products.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Innovative Genomics Institute, Berkeley, CA USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
- Chan Zuckerberg Biohub, San Francisco, CA USA
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
| |
Collapse
|
27
|
Wang Y, Liu L, Zheng X, Liu X. Membrane-camouflaged biomimetic nanoparticles as potential immunomodulatory solutions for sepsis: An overview. Front Bioeng Biotechnol 2023; 11:1111963. [PMID: 36970623 PMCID: PMC10036601 DOI: 10.3389/fbioe.2023.1111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction due to dysregulated host responses induced by infection. The presence of immune disturbance is key to the onset and development of sepsis but has remarkably limited therapeutic options. Advances in biomedical nanotechnology have provided innovative approaches to rebalancing the host immunity. In particular, the technique of membrane-coating has demonstrated remarkable improvements to therapeutic nanoparticles (NPs) in terms of tolerance and stability while also improving their biomimetic performance for immunomodulatory purposes. This development has led to the emergence of using cell-membrane-based biomimetic NPs in treating sepsis-associated immunologic derangements. In this minireview, we present an overview of the recent advances in membrane-camouflaged biomimetic NPs, highlighting their multifaceted immunomodulatory effects in sepsis such as anti-infection, vaccination, inflammation control, reversing of immunosuppression, and targeted delivery of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanbei Wang
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Liping Liu
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| |
Collapse
|
28
|
Ke L, Lu Y, Gao H, Hu C, Zhang J, Zhao Q, Sun Z, Peng Z. Identification of potential diagnostic and prognostic biomarkers for sepsis based on machine learning. Comput Struct Biotechnol J 2023; 21:2316-2331. [PMID: 37035547 PMCID: PMC10073883 DOI: 10.1016/j.csbj.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background To identify potential diagnostic and prognostic biomarkers of the early stage of sepsis. Methods The differentially expressed genes (DEGs) between sepsis and control transcriptomes were screened from GSE65682 and GSE134347 datasets. The candidate biomarkers were identified by the least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analyses. The diagnostic and prognostic abilities of the markers were evaluated by plotting receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed to further elucidate the molecular mechanisms and immune-related processes. Finally, the potential biomarkers were validated in a septic mouse model by qRT-PCR and western blotting. Results Eleven DEGs were identified between the sepsis and control samples, including YOD1, GADD45A, BCL11B, IL1R2, UGCG, TLR5, S100A12, ITK, HP, CCR7 and C19orf59 (all AUC>0.9). Furthermore, the survival analysis identified YOD1, GADD45A, BCL11B and IL1R2 as the prognostic biomarkers of sepsis. According to GSEA, four DEGs were significantly associated with immune-related processes. In addition, ssGSEA demonstrated a significant difference in the enriched immune cell populations between the sepsis and control groups (all P < 0.05). Moreover, YOD1, GADD45A and IL1R2 were upregulated, and BCL11B was downregulated in the heart, liver, lungs, and kidneys of the septic mice model. Conclusions We identified four potential immune-releated diagnostic and prognostic gene markers for sepsis that offer new insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Yasu Lu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
- Correspondence to: Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
- Correspondence to: Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
29
|
Wang Y, Tang B, Li H, Zheng J, Zhang C, Yang Z, Tan X, Luo P, Ma L, Wang Y, Long L, Chen Z, Xiao Z, Ma L, Zhou J, Wang Y, Shi C. A small-molecule inhibitor of Keap1-Nrf2 interaction attenuates sepsis by selectively augmenting the antibacterial defence of macrophages at infection sites. EBioMedicine 2023; 90:104480. [PMID: 36863256 PMCID: PMC9996215 DOI: 10.1016/j.ebiom.2023.104480] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Macrophages at infection sites are considered as the promising therapeutic targets to prevent sepsis development. The Nrf2/Keap1 system acts as a critical modulator of the antibacterial activity of macrophages. Recently, Keap1-Nrf2 protein-protein interaction (PPI) inhibitors have emerged as safer and stronger Nrf2 activators; however, their therapeutic potential in sepsis remains unclear. Herein, we report a unique heptamethine dye, IR-61, as a Keap1-Nrf2 PPI inhibitor that preferentially accumulates in macrophages at infection sites. METHODS A mouse model of acute lung bacterial infection was used to investigate the biodistribution of IR-61. SPR study and CESTA were used to detect the Keap1 binding behaviour of IR-61 in vitro and in cells. Established models of sepsis in mice were used to determine the therapeutic effect of IR-61. The relationship between Nrf2 levels and sepsis outcomes was preliminarily investigated using monocytes from human patients. FINDINGS Our data showed that IR-61 preferentially accumulated in macrophages at infection sites, enhanced bacterial clearance, and improved outcomes in mice with sepsis. Mechanistic studies indicated that IR-61 potentiated the antibacterial function of macrophages by activating Nrf2 via direct inhibition of the Keap1-Nrf2 interaction. Moreover, we observed that IR-61 enhanced the phagocytic ability of human macrophages, and the expression levels of Nrf2 in monocytes might be associated with the outcomes of sepsis patients. INTERPRETATIONS Our study demonstrates that the specific activation of Nrf2 in macrophages at infection sites is valuable for sepsis management. IR-61 may prove to be a Keap1-Nrf2 PPI inhibitor for the precise treatment of sepsis. FUNDING This work was supported by the National Natural Science Foundation of China (Major program 82192884), the Intramural Research Project (Grants: 2018-JCJQ-ZQ-001 and 20QNPY018), and the Chongqing National Science Foundation (CSTB2022NSCQ-MSX1222).
Collapse
Affiliation(s)
- Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Binlin Tang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Oncology Department, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zhenliang Xiao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Lijie Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
30
|
Lu Y, Shi Y, Wu Q, Sun X, Zhang WZ, Xu XL, Chen W. An Overview of Drug Delivery Nanosystems for Sepsis-Related Liver Injury Treatment. Int J Nanomedicine 2023; 18:765-779. [PMID: 36820059 PMCID: PMC9938667 DOI: 10.2147/ijn.s394802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Sepsis, which is a systemic inflammatory response syndrome caused by infection, has high morbidity and mortality. Sepsis-related liver injury is one of the manifestations of sepsis-induced multiple organ syndrome. To date, an increasing number of studies have shown that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play extremely vital roles in the occurrence and development of sepsis-related liver injury. In the clinic, sepsis-related liver injury is mainly treated by routine empirical methods on the basis of the primary disease. However, these therapies have some shortcomings, such as serious side effects, short duration of drug effects and lack of specificity. The emergence of drug delivery nanosystems can significantly improve drug bioavailability and reduce toxic side effects. In this paper, we reviewed drug delivery nanosystems designed for the treatment of sepsis-related liver injury according to their mechanisms (hepatic inflammation response, oxidative stress, coagulation dysfunction in the microcirculation, and bacterial translocation). Although much promising progress has been achieved, translation into clinical practice is still difficult. To this end, we also discussed the key issues currently facing this field, including immune system rejection and single treatment modalities. Finally, with the rigorous optimization of nanotechnology and the deepening of research, drug delivery nanosystems have great potential for the treatment of sepsis-related liver injury.
Collapse
Affiliation(s)
- Yi Lu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Sun
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wei-Zhen Zhang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China,Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Wei Chen, ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, People’s Republic of China, Tel +86-21-64385700-3522, Email
| |
Collapse
|
31
|
Chougale A, Vedante S, Kulkarni G, Patnawar S. Recent Progress on Biosensors for the Early Detection of Neurological Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202203155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Amit Chougale
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Shruti Vedante
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Guruprasad Kulkarni
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India 416234
| | - Sneha Patnawar
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India. 416234
| |
Collapse
|
32
|
Florensa M, Llenas M, Medina-Gutiérrez E, Sandoval S, Tobías-Rossell G. Key Parameters for the Rational Design, Synthesis, and Functionalization of Biocompatible Mesoporous Silica Nanoparticles. Pharmaceutics 2022; 14:2703. [PMID: 36559195 PMCID: PMC9788600 DOI: 10.3390/pharmaceutics14122703] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last few years, research on silica nanoparticles has rapidly increased. Particularly on mesoporous silica nanoparticles (MSNs), as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Researchers have explored several routes to conjugate both imaging and therapeutic agents onto MSNs, thus expanding their potential as theranostic platforms, in order to allow for the early diagnosis and treatment of diseases. This review introduces a general overview of recent advances in the field of silica nanoparticles. In particular, the review tackles the fundamental aspects of silicate materials, including a historical presentation to new silicates and then focusing on the key parameters that govern the tailored synthesis of functional MSNs. Finally, the biomedical applications of MSNs are briefly revised, along with their biocompatibility, biodistribution and degradation. This review aims to provide the reader with the tools for a rational design of biocompatible MSNs for their application in the biomedical field. Particular attention is paid to the role that the synthesis conditions have on the physicochemical properties of the resulting MSNs, which, in turn, will determine their pharmacological behavior. Several recent examples are highlighted to stress the potential that MSNs hold as drug delivery systems, for biomedical imaging, as vaccine adjuvants and as theragnostic agents.
Collapse
Affiliation(s)
| | | | | | - Stefania Sandoval
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain
| |
Collapse
|
33
|
Soni M, Handa M, Singh KK, Shukla R. Recent nanoengineered diagnostic and therapeutic advancements in management of Sepsis. J Control Release 2022; 352:931-945. [PMID: 36273527 PMCID: PMC9665001 DOI: 10.1016/j.jconrel.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
COVID-19 acquired symptoms have affected the worldwide population and increased the load of Intensive care unit (ICU) patient admissions. A large number of patients admitted to ICU end with a deadly fate of mortality. A high mortality rate of patients was reported with hospital-acquired septic shock that leads to multiple organ failures and ultimately ends with death. The patients who overcome this septic shock suffer from morbidity that also affects their caretakers. To overcome these situations, scientists are exploring progressive theragnostic techniques with advanced techniques based on biosensors, biomarkers, biozymes, vesicles, and others. These advanced techniques pave the novel way for early detection of sepsis-associated symptoms and timely treatment with appropriate antibiotics and immunomodulators and prevent the undue effect on other parts of the body. There are other techniques like externally modulated electric-based devices working on the principle of piezoelectric mechanism that not only sense the endotoxin levels but also target them with a loaded antibiotic to neutralize the onset of inflammatory response. Recently researchers have developed a lipopolysaccharide (LPS) neutralizing cartridge that not only senses the LPS but also appropriately neutralizes with dual mechanistic insights of antibiotic and anti-inflammatory effects. This review will highlight recent developments in the new nanotechnology-based approaches for the diagnosis and therapeutics of sepsis that is responsible for the high number of deaths of patients suffering from this critical disease.
Collapse
Affiliation(s)
- Mukesh Soni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Kamalinder K. Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK,Correspondence to: Prof. Kamalinder K. Singh, School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India,School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK,Correspondence to: Dr. Rahul Shukla (M. Pharm. PhD), National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226002, UP, India
| |
Collapse
|
34
|
Ismail EA, Devnarain N, Govender T, Omolo CA. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. J Control Release 2022; 352:1048-1070. [PMID: 36372385 DOI: 10.1016/j.jconrel.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Sepsis, a consequence of an imbalanced immune response to infection, is currently one of the leading causes of death globally. Despite advances in the discoveries of potential targets and nanotechnology, sepsis still lacks effective drug delivery systems for optimal treatment. Stimuli-responsive and biomimetic nano delivery systems, specifically, are emerging as advanced bio-inspired nanocarriers for enhancing the treatment of sepsis. Herein, we present a critical review of different stimuli-responsive systems, including pH-; enzyme-; ROS- and toxin-responsive nanocarriers, reported in the delivery of therapeutics for sepsis. Biomimetic nanocarriers, utilizing natural pathways in the inflammatory cascade to optimize sepsis therapy, are also reviewed, in addition to smart, multifunctional vehicles. The review highlights the nanomaterials designed for constructing these systems; their physicochemical properties; the mechanisms of drug release; and their potential for enhancing the therapeutic efficacy of their cargo. Current challenges are identified and future avenues for research into the optimization of bio-inspired nano delivery systems for sepsis are also proposed. This review confirms the potential of stimuli-responsive and biomimetic nanocarriers for enhanced therapy against sepsis and related complications.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| |
Collapse
|
35
|
Michel LV, Gaborski T. Outer membrane vesicles as molecular biomarkers for Gram-negative sepsis: Taking advantage of nature's perfect packages. J Biol Chem 2022; 298:102483. [PMID: 36108741 PMCID: PMC9576880 DOI: 10.1016/j.jbc.2022.102483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.1%) of sepsis cases, likely due to aggressive antibiotics or localized infections. The timing of a patient's sepsis diagnosis is often predictive of their clinical outcome, underlining the need for a more definitive molecular diagnostic test. Here, we outline the advantages and challenges to using bacterial outer membrane vesicles (OMVs), nanoscale spherical buds derived from the outer membrane of Gram-negative bacteria, as a diagnostic biomarker for Gram-negative sepsis. Advantages include OMV abundance, their robustness in the presence of antibiotics, and their unique features derived from their parent cell that could allow for differentiation between bacterial species. Challenges include the rigorous purification methods required to isolate OMVs from complex biofluids and the additional need to separate OMVs from similarly sized extracellular vesicles, which can share physical properties with OMVs.
Collapse
Affiliation(s)
- Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA.
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
36
|
Zhang W, Wang W, Hou W, Jiang C, Hu J, Sun L, Hu L, Wu J, Shang A. The diagnostic utility of IL-10, IL-17, and PCT in patients with sepsis infection. Front Public Health 2022; 10:923457. [PMID: 35937269 PMCID: PMC9355284 DOI: 10.3389/fpubh.2022.923457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The purpose of this study is to determine the diagnostic value and net clinical benefit of interleukin-10 (IL-10), interleukin-17 (IL-17), procalcitonin (PCT), and combination tests in patients with sepsis, which will serve as a standard for sepsis early detection. Patients and methods An investigation of 84 sepsis patients and 81 patients with local inflammatory diseases admitted to the ICU of Tongji University Hospital in 2021. In addition to comparing inter-group variability, indicators relevant to sepsis diagnosis and therapy were screened. Results LASSO regression was used to examine PCT, WBC, CRP, IL-10, IFN-, IL-12, and IL-17. Multivariate logistic regression linked IL-10, IL-17, and PCT to sepsis risk. The AUC values of IL-10, IL-17, PCT, and the combination of the three tests were much higher than those of standard laboratory infection indicators. The combined AUC was greater than the sum of IL-10, IL-17, and PCT (P < 0.05). A clinical decision curve analysis of IL-10, IL-17, PCT, and the three combined tests found that the three combined tests outperformed the individual tests in terms of total clinical benefit rate. To predict the risk of sepsis using IL-10, IL-17, and PCT had an AUC of 0.951, and the model's predicted probability was well matched. An examination of the nomogram model's clinical value demonstrated a considerable net therapeutic benefit between 3 and 87%. Conclusion The IL-10, IL-17, and PCT tests all have a high diagnostic value for patients with sepsis, and the combination of the three tests outperforms the individual tests in terms of diagnostic performance, while the combined tests have a higher overall clinical benefit rate.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Jiaozuo Fifth People's Hospital, Jiaozuo, China
| | - Weiwei Wang
- Department of Laboratory Medicine, Tinghu People's Hospital of Yancheng City, Yancheng, China
| | - Weiwei Hou
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenfei Jiang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jingwen Hu
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Sun
- Department of Medical Laboratory Technology, School of Medicine, Xiangyang Polytechnic, Xiangyang, China
| | - Liqing Hu
- Department of Laboratory Medicine, Ningbo First Hospital and Ningbo Hospital, Ningbo, China
- Liqing Hu
| | - Jian Wu
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Jian Wu
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Anquan Shang
| |
Collapse
|
37
|
Ding X, Tong R, Song H, Sun G, Wang D, Liang H, Sun J, Cui Y, Zhang X, Liu S, Cheng M, Sun T. Identification of metabolomics-based prognostic prediction models for ICU septic patients. Int Immunopharmacol 2022; 108:108841. [DOI: 10.1016/j.intimp.2022.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
38
|
Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022; 621:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), bacterial infections are one of the greatest threats to global health, food production, and life expectancy. In this sense, the development of innovative formulations aiming at greater therapeutic efficacy, safety, and shorter treatment duration compared to conventional products is urgently needed. Lipid-based nanocarriers (LBNs) have demonstrated the potential to enhance the effectiveness of available antibiotics. Among them, liposome, nanoemulsion, solid lipid nanoparticle (SLN), and nanostructured lipid carrier (NLC) are the most promising due to their solid technical background for laboratory and industrial production. This review describes recent advances in developing antibiotic-loaded LBNs against susceptible and resistant bacterial strains and biofilm. LBNs revealed to be a promising alternative to deliver antibiotics due to their superior characteristics compared to conventional preparations, including their modified drug release, improved bioavailability, drug protection against chemical or enzymatic degradation, greater drug loading capacity, and biocompatibility. Antibiotic-loaded LBNs can improve current clinical drug therapy, bring innovative products and rescue discarded antibiotics. Thus, antibiotic-loaded LBNs have potential to open a window of opportunities to continue saving millions of lives and prevent the devastating impact of bacterial infection.
Collapse
|
39
|
Zhu K, Chen J, Hu J, Xiong S, Zeng L, Huang X, Xiong Y. Low-sample-consumption and ultrasensitive detection of procalcitonin by boronate affinity recognition-enhanced dynamic light scattering biosensor. Biosens Bioelectron 2022; 200:113914. [PMID: 34973568 DOI: 10.1016/j.bios.2021.113914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Accurate determination of procalcitonin (PCT) is highly crucial in bacterial infection diagnosis. Many biosensors previously developed suffer from large sample consumption or lengthy waiting time, which raise difficulties for more vulnerable patients, such as infants, old people, and other critically ill patients. To address this dilemma, we present an innovative boronate affinity recognition (BAR)-enhanced dynamic light scattering (DLS) biosensor to achieve ultrasensitive PCT detection. In this biosensing system, monoclonal antibody-modified magnetic nanoparticles (MNP@mAb) are designed as probes to capture PCT from serum samples and generate DLS signal transduction. Polyvalent phenylboronic acid-labeled bovine serum albumin (BSA@PBA) is used as scaffold to aggregate MNP@mAb and PCT (MNP@mAb-PCT) complex because of the specific interaction of cis-diol-containing PCT with boronic acid ligands on the surface of BSA@PBA. The BAR-enhanced DLS biosensor shows ultrahigh sensitivity to PCT determination due to high binding affinity, with the limit of detection of 0.03 pg/mL. The total detection time of PCT in whole blood or serum is less than 15 min with small sample consumption (about 1 μL) due to the rapid magnetic separation and aggregation of MNP@mAb-PCT triggered by BSA@PBA. In addition, the proposed DLS biosensor exhibits a high specificity for PCT quantitative detection. Therefore, this work provides a promising and versatile strategy for extending DLS biosensor to rapid and ultrasensitive detection of trace PCT for broader patients and more urgent cases.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Lifeng Zeng
- The People's Hospital in Jiangxi Province, Nanchang, Jiangxi, 330006, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
40
|
Li F, Zhang Y, Yu B, Zhang Z, Fan Y, Wang L, Cheng M, Yan P, Zhao W. Evaluation of the diagnostic and prognostic values of serum HSP90α in sepsis patients: a retrospective study. PeerJ 2022; 10:e12997. [PMID: 35291488 PMCID: PMC8918145 DOI: 10.7717/peerj.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Background Sepsis is a serious syndrome that is caused by immune responses dysfunction and leads to high mortality. The abilities of heat shock protein 90α (HSP90α) in assessing the diagnosis and prognosis in patients with sepsis remain ill-defined to date. We conducted a study to reveal the possible clinical applications of HSP90α as biomarker for the diagnosis and prognosis in patients with sepsis. Methods In total, 150 patients of sepsis, 110 patients without sepsis admitted to ICU and 110 healthy subjects were involved in this study. The serum HSP90α contents, sequential organ failure assessment (SOFA) scores, procalcitonin (PCT), and short-term survival status of the participants were measured and compared. Logistic and linear regression models adjusting for potential confounders were used to examine the association of HSP90α with sepsis survival. Moreover, serum IL-1β, IL-18, MIP-3α, and ENA-78 were also determined. Finally, Spearman correlation analysis was employed to reveal a possible mechanism that HSP90α contributed to the short-term deaths. Results Serum HSP90α levels in sepsis patients were higher than those in ICU controls and healthy controls (P < 0.001), and even increased in patients who died within 28 days (P < 0.001). Logistic and linear regression models identified HSP90α was an independent risk factors for sepsis mortality. Receiver operating characteristic (ROC) analysis displayed that HSP90α had a considerable predictive performance for sepsis outcome, with an area under curve (AUC) value up to 0.79. Survival analysis demonstrated that the mortality of sepsis individuals at 28 days was positively associated with HSP90α levels, especially the levels of HSP90α were greater than 120 ng/mL (P < 0.001). Moreover, among sepsis patients, those who died had notably elevated cytokines, IL-1β, IL-18, and chemokines, MIP-3α, ENA-78, relative to survivors. Further correlation analysis demonstrated that there was a nominally positive correlation between HSP90α and IL-1β, IL-18, and MIP-3α. Conclusion HSP90α is of favorable clinical significance in sepsis diagnosis and prognosis, laying a foundation for future clinical applications.
Collapse
Affiliation(s)
- Fuxing Li
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yulin Zhang
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Bocheng Yu
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Zihua Zhang
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yujuan Fan
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Li Wang
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Mingjing Cheng
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ping Yan
- Department of Gastroenterology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China,Institute of Translational Medicine for Metabolic Diseases, Dali University, Dali, Yunnan, China
| |
Collapse
|
41
|
Liang P, Yu F. Value of CRP, PCT, and NLR in Prediction of Severity and Prognosis of Patients With Bloodstream Infections and Sepsis. Front Surg 2022; 9:857218. [PMID: 35345421 PMCID: PMC8957078 DOI: 10.3389/fsurg.2022.857218] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate the value of C-reactive protein (CRP), procalcitonin (PCT), and neutrophil to lymphocyte ratio (NLR) in assessing the severity of disease in patients with bloodstream infection and sepsis, and to analyze the relationship between the levels of three inflammatory factors and the prognosis of patients. Methods The clinical data of 146 patients with bloodstream infection and sepsis admitted to our intensive care unit (ICU) from October 2016 to May 2020 were retrospectively analyzed. The differences in the levels of inflammatory indicators such as CRP, PCT, and NLR within 24 h in patients with bloodstream infection sepsis with different conditions (critical group, non-critical group) and the correlation between these factors and the condition (acute physiology and chronic health evaluation II, APACHE II score) were analyzed. In addition, the prognosis of all patients within 28 days was counted, and the patients were divided into death and survival groups according to their mortality, and the risk factors affecting their death were analyzed by logistic regression, and the receiver operating characteristic (ROC) curve was used to analyze the value of the relevant indicators in assessing the prognosis of patients. Results The levels of NLR, CRP, PCT, total bilirubin (TBIL), glutamic oxaloacetic transaminase (AST), and serum creatinine (Scr) were significantly higher in the critically ill group than in the non-critically ill group, where correlation analysis revealed a positive correlation between CRP, PCT, and NLR and APACHE II scores (P < 0.05). Univariate logistic regression analysis revealed that CRP, PCT, NLR, and APACHE II scores were associated with patient prognosis (P < 0.05). Multi-factor logistic regression analysis found that PCT, NLR, and APACHE II scores were independent risk factors for patient mortality within 28 days (P < 0.05). ROC curve analysis found that PCT and NLR both had an AUC area > 0.7 in predicting patient death within 28 days (P < 0.05). Conclusion Inflammatory factors such as NLR, CRP, and PCT have important clinical applications in the assessment of the extent of disease and prognosis of patients with bloodstream infection and sepsis.
Collapse
|
42
|
Cao Z, Qin H, Huang Y, Zhao Y, Chen Z, Hu J, Gao Q. Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered 2022; 13:4810-4820. [PMID: 35188436 PMCID: PMC8973599 DOI: 10.1080/21655979.2022.2033381] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury (ALI) is a common complication of sepsis. Mitochondrial aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in aldehyde metabolism, exerts a protective effect against sepsis. This study investigated the possible mechanisms underlying the roles of ALDH2, pyroptosis, and ferroptosis in sepsis-induced lung injury. A mouse model of sepsis-induced lung injury was established by cecal ligation and puncture (CLP); lung morphology was evaluated by calculation of lung coefficient, hematoxylin–eosin staining, and electron microscopy. Malondialdehyde (MDA), reactive oxygen species (ROS), and 4-hydroxy-2-nonenal (4-HNE) protein expression levels were used to detect the level of lipid oxidative stress. In addition, total iron was detected using an iron detection kit, and the expression of ferroptosis-related proteins (PTGS2, GPX4), pyroptosis-related proteins, and ALDH2 was examined using western blotting. To further examine the likely mechanisms, the ferroptosis inhibitor ferrostatin 1 (Fer-1), NLRP3 inflammasome inhibitor MCC950, and ALDH2 activator Alda-1 were added. CLP-treated mice exhibited destruction of lung tissue morphology, lipid peroxidation injury, iron content, and increased lung PTGS2 protein expression, accompanied by a decrease in GPX4 protein expression. CLP also downregulated ALDH2 expression and increased the expression of the NLRP3 inflammasome and pyroptosis-related proteins. These adverse effects of CLP were relieved by Alda-1, Fer-1, and MCC950 treatment. In conclusion, both pyroptosis and ferroptosis participate in CLP-induced ALI, and ALDH2 plays a protective role by reducing pyroptosis and ferroptosis. This study provides a scientific basis for the treatment of lung injury in sepsis.
Collapse
Affiliation(s)
- Zhenzhen Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Hongqian Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Yuhui Huang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, P.R. China.,Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, P.R. China
| | - Yingxue Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Zhipeng Chen
- Clinical Medical College, Bengbu Medical College, Anhui, P. R. China
| | - Junfeng Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, P.R. China.,Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, P.R. China
| |
Collapse
|
43
|
Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022; 11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Indexed: 02/06/2023]
Abstract
With an exponential rise in antimicrobial resistance and stagnant antibiotic development pipeline, there is, more than ever, a crucial need to optimize current infection therapy approaches. One of the most important stages in this process requires rapid and effective identification of pathogenic bacteria responsible for diseases. Current gold standard techniques of bacterial detection include culture methods, polymerase chain reactions, and immunoassays. However, their use is fraught with downsides with high turnaround time and low accuracy being the most prominent. This imposes great limitations on their eventual application as point-of-care devices. Over time, innovative detection techniques have been proposed and developed to curb these drawbacks. In this review, a systematic summary of a range of biosensing platforms is provided with a strong focus on technologies conferring high detection sensitivity and specificity. A thorough analysis is performed and the benefits and drawbacks of each type of biosensor are highlighted, the factors influencing their potential as point-of-care devices are discussed, and the authors' insights for their translation from proof-of-concept systems into commercial medical devices are provided.
Collapse
Affiliation(s)
- Ashna Gopal
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Saima Kashif
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Tasnim Munshi
- School of Chemistry University of Lincoln, Brayford Pool Lincoln Lincolnshire LN6 7TS UK
| | | | - Nicolas H. Voelcker
- Drug Delivery Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria 3168 Australia
| | - Xianfeng Chen
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| |
Collapse
|
44
|
lncRNA IGF2-AS Regulates Nucleotide Metabolism by Mediating HMGA1 to Promote Pyroptosis of Endothelial Progenitor Cells in Sepsis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9369035. [PMID: 35082972 PMCID: PMC8786475 DOI: 10.1155/2022/9369035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Background Sepsis is one of the major causes of death worldwide, and its high mortality and pathological complexity hinder early accurate diagnosis. We aimed to investigate lncRNA IGF2-AS and HMGA1 effects on pyroptosis of endothelial progenitor cells (EPCs) in sepsis patients and the mechanisms involved. Methods Blood samples from sepsis patients and healthy subjects were collected, and EPCs were isolated and identified. We constructed cell lines that knocked down lncRNA IGF2-AS, HMGA1, and TYMS. Furthermore, lncRNA IGF2-AS was overexpressed. Subsequently, dNTP treatment with different concentrations was performed to investigate lncRNA IGF2-AS and HMGA1 effects on pyroptosis of EPCs in sepsis patients. Finally, exosomes were isolated from bone marrow mesenchymal stem cells (MSCs) to detect lncRNA IGF2-AS expression, and the influence of MSC-derived exosomal lncRNA IGF2-AS on sepsis was preliminarily discussed. Results Compared with Healthy group, lncRNA IGF2-AS, HMGA1, and TYMS were highly expressed in Sepsis group. Compared with si-NC group, si-lncRNA IGF2-AS group had increased proliferation ability, decreased pyroptosis, decreased HMGA1, RRM2, TK1, and TYMS expressions. lncRNA IGF2-AS played a regulatory role by binding HMGA1. Compared with si-NC group, the proliferation ability of si-HMGA1 group increased, pyroptosis decreased, and RRM2, TK1, and TYMS expressions also decreased. Compared with si-NC group, pyroptosis in si-TYMS group was reduced. In addition, HMGA1 was related and bound to TYMS. After overexpressing lncRNA IGF2-AS, dNTP level decreased, while the proliferation increased and pyroptosis decreased with higher concentration of dNTP. In addition, we found that EPCs took up MSC-exosomes. Compared with supernatant group, lncRNA IGF2-AS was expressed in exosomes group. Compared with EPCs group, EPCs+exosomes group had increased lncRNA IGF2-AS expression and increased pyroptosis. Conclusions lncRNA IGF2-AS regulated nucleotide metabolism by mediating HMGA1 to promote pyroptosis of EPCs in sepsis patients. This study provided important clues for finding new therapeutic targets for sepsis.
Collapse
|
45
|
The need for improved methodology in protein corona analysis. Nat Commun 2022; 13:49. [PMID: 35013179 PMCID: PMC8748711 DOI: 10.1038/s41467-021-27643-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
|
46
|
Shi Y, Zhu ML, Wu Q, Huang Y, Xu XL, Chen W. The Potential of Drug Delivery Nanosystems for Sepsis Treatment. J Inflamm Res 2021; 14:7065-7077. [PMID: 34984019 PMCID: PMC8702780 DOI: 10.2147/jir.s339113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a major immune response disorder caused by infection, with very high incidence and mortality rates. In the clinic, sepsis and its complications are mainly controlled and treated with antibiotics, anti-inflammatory, and antioxidant drugs. However, these treatments have some shortcomings, such as rapid metabolism and severe side effects. The emergence of drug delivery nanosystems can significantly improve tissue permeability, prolong drugs' circulation time, and reduce side effects. In this paper, we reviewed recent drug delivery nanosystems designed for sepsis treatment based on their mechanisms (anti-bacterial, anti-inflammatory, and antioxidant). Although great progress has been made recently, clinical practice transformation is still very difficult. Therefore, we also discussed key obstacles, including tissue distribution, overcoming bacterial resistance, and single treatment modes. Finally, a rigorous optimization of drug delivery nanosystems is expected to present great potential for sepsis therapy.
Collapse
Affiliation(s)
- Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Meng-Lu Zhu
- Department of Pharmacy, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 310006, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Yi Huang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310004, People’s Republic of China
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
47
|
Ahani E, Montazer M, Mianehro A, Samadi N, Toliyat T, Mahmoudi Rad M. Preparation of long-lasting antibacterial wound dressing through diffusion of cationic-liposome-encapsulated polyhexamethylene biguanide. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Duan Z, Sun S, Qu C, Wang K, Chen F, Wang X, Chu C, Liu B, Li J, Ding W. Neutrophil extracellular trap formation index predicts occurrences of deep surgical site infection after laparotomy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1373. [PMID: 34733925 PMCID: PMC8506538 DOI: 10.21037/atm-21-1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Background Deep surgical site infections (DSSIs) are serious complications after laparotomy. Neutrophil extracellular traps (NETs) play a vital role in the development of DSSI. Here, we focused on a new approach to predicting the occurrence of DSSI through the detection of the NET formation index (NFI), and compared its prediction ability with other clinical infection indicators. Methods Patients who received laparotomy were prospectively enrolled in this study. General information, APACHE II score, SOFA score, and serum infection indicators were recorded. The postoperative abdominal drainage fluid was collected within 3 days after the operation for quantification of the NFI. Results A total of 92 consecutive patients were included, with 22 patients were diagnosed with DSSI. The NFI in the DSSI group was 32.70%±19.33% while the corresponding index was 10.70%±8.25% in the non-DSSI group (P<0.01). The mean APACHE II and SOFA score had significant differences between the two groups. The NFI was positively correlated with the APACHE II score (P<0.01, r=0.269) and SOFA score (P=0.013, r=0.258). Patients with a high NFI (NFI >13.86%) had a higher risk of developing DSSI. According to the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC) of the NFI, C-reactive protein (CRP) and procalcitonin (PCT) were 0.912, 0.748 and 0.731, respectively. Conclusions In this cohort of surgical patients, the quantification of the NFI had a considerable predictive value for early identification of DSSI. The NFI in drainage fluid turned out to be a more sensitive and specific predictor of DSSI than serum infection indicators including CRP and PCT.
Collapse
Affiliation(s)
- Zehua Duan
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shilong Sun
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cheng Qu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chengnan Chu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baochen Liu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, the First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Sudagidan M, Yildiz G, Onen S, Al R, Temiz ŞN, Yurt MNZ, Tasbasi BB, Acar EE, Coban A, Aydin A, Dursun AD, Ozalp VC. Targeted mesoporous silica nanoparticles for improved inhibition of disinfectant resistant Listeria monocytogenes and lower environmental pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126364. [PMID: 34329020 DOI: 10.1016/j.jhazmat.2021.126364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Benzalkonium chloride (BAC) is a common ingredient of disinfectants used for industrial, medical, food safety and domestic applications. It is a common pollutant detected in surface and wastewaters to induce adverse effects on Human health as well as aquatic and terrestrial life forms. Since disinfectant use is essential in combatting against microorganisms, the best approach to reduce ecotoxicity level is to restrict BAC use. We report here that encapsulation of BAC in mesoporous silica nanoparticles can provide an efficient strategy for inhibition of microbial activity with lower than usual concentrations of disinfectants. As a proof-of-concept, Listeria monocytogenes was evaluated for minimum inhibitory concentration (MIC) of nanomaterial encapsulated BAC. Aptamer molecular gate structures provided a specific targeting of the disinfectant to Listeria cells, leading to high BAC concentrations around bacterial cells, but significantly reduced amounts in total. This strategy allowed to inhibition of BAC resistant Listeria strains with 8 times less the usual disinfectant dose. BAC encapsulated and aptamer functionalized silica nanoparticles (AptBACNP) effectively killed only target bacteria L. monocytogenes, but not the non-target cells, Staphylococcus aureus or Escherichia coli. AptBACNP was not cytotoxic to Human cells as determined by in vitro viability assays.
Collapse
Affiliation(s)
- Mert Sudagidan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Gulsah Yildiz
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Selin Onen
- Department of Biology, Medical School, Atilim University, 06830 Ankara, Turkey; Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara 06100, Turkey.
| | - Rabia Al
- Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey.
| | | | | | - Behiye Busra Tasbasi
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Elif Esma Acar
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Aysen Coban
- Department of Gastronomy and Culinary Arts, Istanbul Gedik University, Kartal, 34876 Istanbul, Turkey.
| | - Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey.
| | - Ali D Dursun
- Department of Physiology, Medical School, Atilim University, 06830 Ankara, Turkey.
| | - Veli C Ozalp
- Department of Biology, Medical School, Atilim University, 06830 Ankara, Turkey.
| |
Collapse
|
50
|
Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria due to the improper and overuse of antibiotics and the ineffective performance of antibiotics against the difficult-to-treat biofilm-related infections (BRIs) have urgently called for alternative antimicrobial agents and strategies in combating bacterial infections. Antimicrobial peptides (AMPs), owing to their compelling antimicrobial activity against MDR bacteria and BRIs without causing bacteria resistance, have attracted extensive attention in the research field. With the development of nanomaterial-based drug delivery strategies, AMPs-based nano-formulations have significantly improved the therapeutic effects of AMPs by ameliorating their hydrolytic stability, half-life in vivo, and solubility as well as reducing the cytotoxicity and hemolysis, etc. This review has comprehensively summarized the application AMPs-based nano-formulation in various bacterial infections models, including bloodstream infections (specifically sepsis), pulmonary infections, chronic wound infections, gastrointestinal infections, among others. The design of the nanomaterial-based drug delivery systems and the therapeutic effects of the AMPs-based nano-formulations in literature have been categorized and in details discussed. Overall, this review provides insights into the advantages and disadvantages of the current developed AMPs-based nano-formulations in literature for the treatment of bacterial infections, bringing inspirations and suggestions for their future design in the way towards clinical translation.
Collapse
Affiliation(s)
- Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|