1
|
Chen S, Bao Q, Xu W, Zhai X. Extracellular particles: emerging insights into central nervous system diseases. J Nanobiotechnology 2025; 23:263. [PMID: 40170148 PMCID: PMC11960037 DOI: 10.1186/s12951-025-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Extracellular particles (EPs), including extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs), are multimolecular biomaterials released by cells that play a crucial role in intercellular communication. Recently, new subtypes of EPs associated with central nervous system (CNS), such as exophers and supermeres have been identified. These EPs provide new perspectives for understanding the pathological progression of CNS disorders and confer potential diagnostic value for liquid biopsies in neurodegenerative diseases (NDs). Moreover, EPs have emerged as promising drug delivery vehicles and targeted platforms for CNS-specific therapies. In this review, we delineate the landscape of EP subtypes and their roles in the pathophysiology of CNS diseases. We also review the recent advances of EP-based diagnosis in NDs and highlight the importance of analytical platforms with single-particle resolution in the exploitation of potential biomarkers. Furthermore, we summarize the application of engineered EVs in the treatment of CNS diseases and outline the underexplored potential of NVEPs as novel therapeutic agents.
Collapse
Affiliation(s)
- Shenyuan Chen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Qinghua Bao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Zhu L, Du J, Cheng X, Hu R, Li X, Chen X, Xu S. Microfluidic Innovations for Enhanced Extracellular Vesicle Isolation and Analysis: A Comprehensive Review. Anal Chem 2025; 97:4695-4705. [PMID: 40019112 DOI: 10.1021/acs.analchem.4c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Affiliation(s)
- Lin Zhu
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jingjing Du
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Xiaohui Cheng
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Renqiong Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Xingrui Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, P. R. China
| | - Xiaofeng Chen
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
3
|
Zhang G, Ma C, Ma L, Wei D, Wu Y, Li Y, Xu Z, Liu Y, Cai Y, Yu EY, Zhu Y, Zhang H. High-Efficiency Capture and Proteomic Analysis of Plasma-Derived Extracellular Vesicles through Affinity Purification. Anal Chem 2025; 97:4889-4897. [PMID: 39908429 DOI: 10.1021/acs.analchem.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Plasma-derived extracellular vesicles (EVs) are promising sources of biomarkers. It is still a challenge to isolate EVs from a small amount of human plasma for downstream proteomic analysis. The isolation process is hindered by contamination with high-abundance blood proteins and lipoprotein particles, which adversely impact proteomic analyses. Moreover, although EV immune-isolation via magnetic beads often integrates with flow sorting and Western blotting (WB), it lacks compatibility with nanoparticle tracking analysis (NTA) and proteomic analysis. To address these issues, we have developed a functional affinity magnetic bead, EVlent (Extracellular Vesicles isoLated Efficiently, Naturally, and Totally), enabling the rapid and efficient isolation of EVs from plasma. By optimizing the quantities of magnetic beads and plasma used, we characterized the isolated EVs through WB, NTA, and transmission electron microscopy (TEM), showing the successful isolation of EVs from plasma. Proteomic analysis of these EVs identified over 2000 proteins and 15,000 peptides from 100 μL of plasma and nearly 1000 proteins from trace samples as small as 5 μL. Additionally, this isolation method significantly reduced contaminants, including plasma proteins and lipoproteins, compared to ultracentrifugation. Finally, we applied this strategy to plasma samples of healthy individuals and those with Parkinson's disease, identifying four potential biomarkers that provide promising guidance for clinical diagnosis.
Collapse
Affiliation(s)
- Guiyuan Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- EVLiXiR Biotech, Nanjing 210032, China
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Chengxiao Ma
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Le Ma
- Shanghai JINCE Clinical Laboratories, Shanghai 201101, China
| | - Dong Wei
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Yanan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Ying Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhehui Xu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Yufeng Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Yuhan Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Evan Yiwen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Yefei Zhu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Laboratory Medicine, Jianhu People's Hospital, Yanchen 224700, China
| | - Hao Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- EVLiXiR Biotech, Nanjing 210032, China
| |
Collapse
|
4
|
Liu X, To KK, Zeng Q, Fu L. Effect of Extracellular Vesicles Derived From Tumor Cells on Immune Evasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417357. [PMID: 39899680 PMCID: PMC11948033 DOI: 10.1002/advs.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/05/2025]
Abstract
The crosstalk between immunity and cancer in the regulation of tumor growth is considered a hallmark of cancer. Antitumor immunity refers to the innate and adaptive immune responses that regulate cancer development and proliferation. Tumor immune evasion represents a major hindrance to effective anticancer treatment. Extracellular vesicles (EVs) are nano-sized and lipid-bilayer-enclosed particles that are secreted to the extracellular space by all cell types. They are critically involved in numerous biological functions including intercellular communication. Tumor-derived extracellular vesicles (TEVs) can transport a variety of cargo to modulate immune cells in the tumor microenvironment (TME). This review provides the latest update about how tumor cells evade immune surveillance by exploiting TEVs. First, the biogenesis of EVs and the cargo-sorting machinery are discussed. Second, how tumor cells modulate immune cell differentiation, activation, and function via TEVs to evade immune surveillance is illustrated. Last but not least, the novel antitumor strategies that can reverse immune escape are summarized.
Collapse
Affiliation(s)
- Xuanfan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Kenneth K.W. To
- School of PharmacyThe Chinese University of Hong KongHong Kong999077P. R. China
| | - Qinsong Zeng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangxi Hospital Division of The First Affiliated HospitalSun Yat‐sen UniversityNanning530025P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
5
|
Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu CW, Zhang H, Cheng X. Optical sorting: past, present and future. LIGHT, SCIENCE & APPLICATIONS 2025; 14:103. [PMID: 40011460 DOI: 10.1038/s41377-024-01734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 02/28/2025]
Abstract
Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
Collapse
Affiliation(s)
- Meng Yang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Xiong Dun
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Hui Zhang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| |
Collapse
|
6
|
Liu W, Yang H, Liu X, Cai H, Bao Y, Jiang Y, Zhou W, Yuan J, Zhang Z, Fang X. Ultrasensitive Quantification of microRNA Copy Number in Individual Extracellular Vesicles Using DNA Tetrahedron-Based Single-Molecule Imaging. Anal Chem 2025; 97:4233-4240. [PMID: 39936597 DOI: 10.1021/acs.analchem.4c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The ultrasensitive detection of microRNAs (miRNAs) in extracellular vesicles (EVs) can accurately reflect the progress and metastasis of miRNA-mediated intercellular communication, providing an unprecedented opportunity for liquid biopsy. However, due to the low abundance and high heterogeneity of miRNAs in EVs, the ultrasensitive quantification and establishment of a distribution model for miRNA within native EVs remain challenging. Here, we have developed a DNA tetrahedron-based single-molecule fluorescence imaging strategy to overcome this challenge. The internalization efficiency of the probe was as high as 70% without disrupting the native structure of EVs, and combined with single-molecule fluorescence imaging, we achieved in situ imaging analysis of single-copy miRNA in individual EVs without amplification for the first time. A new distribution model for miRNAs has been revealed by statistical analysis of the copy number of miRNAs in EVs across multiple cell lines, characterized by low occupancy and a heterogeneous distribution. More importantly, we found that drug resistance cancer cells promote an increase in the number of drug resistance-related miRNAs within EVs without a corresponding increase in the number of EVs secreted, providing new insights into the EV miRNA sorting mechanisms. We anticipate that this technology will rapidly advance miRNA-mediated intercellular communication based on EVs.
Collapse
Affiliation(s)
- Weifeng Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heqi Cai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Bao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Zhang
- Huairou Research Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
7
|
Tang J, Li D, Wang R, Li S, Xing Y, Yu F. Engineered extracellular vesicles: an emerging nanomedicine therapeutic platform. Chem Commun (Camb) 2025. [PMID: 39969526 DOI: 10.1039/d4cc06501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The intercellular communication role of extracellular vesicles has been widely proved in various organisms. Compelling evidence has illustrated the involvement of these vesicles in both physiological and pathological processes. Various studies indicate that extracellular vesicles surpass conventional synthetic drug carriers, owing to their abundance in organisms, enhanced targeting ability and low immunogenicity. Therefore, extracellular vesicles have been deemed to be potential drug carriers for the treatment of various diseases, and related studies have increased rapidly. Here, we intend to provide a comprehensive and in-depth review of recent advances in the sources, delivery function, extraction and cargo-loading technologies of extracellular vesicles, as well as their clinical potential in constructing emerging nanomedicine therapeutic platforms. In particular, microfluidic-based isolation and drug-loading technologies, as well as the treatment of various diseases, are highlighted. We also make comparisons between extracellular vesicles and other conventional drug carriers and discuss the challenges in developing drug delivery platforms for clinical translation.
Collapse
Affiliation(s)
- Jingshi Tang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Dezhong Li
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shiwei Li
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
8
|
Du X, Li H, Shen S, Tian C, Cao X, Xu X, Xu N, Wang S, Tian Q. Labeling tumor-associated extracellular vesicles with antibody-DNA conjugates for quantitative analysis. Front Mol Biosci 2025; 12:1531108. [PMID: 39911266 PMCID: PMC11794122 DOI: 10.3389/fmolb.2025.1531108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) shed from tumor cells into peripheral circulation or other body fluids are promising biomarkers for cancer diagnosis with enormously long circulation. Consequently, precise methods for differentiating normal and tumor-associated EVs (TAEs) are required. Methods This study used quantifiable antibody-DNA conjugate-assisted quantitative methods combined with proximity ligation technology to detect TAEs. The antibody-DNA conjugate contained one antibody associated with three oligonucleotides for signal amplification. The antibody in the conjugate can recognize the surface tumor antigens of TAEs. Simultaneously, DNA in the conjugate is attached to the surfaces of TAEs and holds the signal amplification post, converting protein identities to DNA amplification for protein detection, even at the molecular level. Results These findings revealed that TAEs can be quantitatively detected using DNA-mediated quantitative polymerase chain reaction (qPCR). Antibody-DNA conjugates were used to recognize the epithelial cell adhesion molecule (EpCAM) antigen on the TAE surface and quantify the antigen using qPCR for cancer analysis. Discussion This method proposed a new quantitative detection approach for TAEs, which aim to identify specific EV-associated markers for diagnostic or therapeutic, this method could inspire a new idea for tumor diagnosis and detection of other diseases.
Collapse
Affiliation(s)
- Xiao Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongxiu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shiyi Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chao Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohuan Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingang Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Nan Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang J, Cui X, Wang W, Wang J, Zhang Q, Guo X, Liang Y, Lin S, Chu B, Cui D. Microfluidic-based electrically driven particle manipulation techniques for biomedical applications. RSC Adv 2025; 15:167-198. [PMID: 39758908 PMCID: PMC11697266 DOI: 10.1039/d4ra05571c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 01/07/2025] Open
Abstract
Microfluidic chips exhibit unique advantages in both economy and rapidity, particularly for the separation and detection of biomolecules. In this review, we first introduced the mechanisms of several electrically driven methods, such as electrophoresis, dielectrophoresis, electro-wetting and electro-rotation. We then discussed in detail the application of these methods in nucleic acid analysis, protein manipulation and cell treatment. In addition, we outlined the considerations for material selection, manufacturing processes and structural design of microfluidic chips based on electrically driven mechanisms.
Collapse
Affiliation(s)
- Jiulin Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Xinyuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025 PR China
| | - Wei Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Junhao Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Quili Zhang
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| | - Xiaonan Guo
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| | - Yanfeng Liang
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| | - Shujin Lin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Bingfeng Chu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital Beijing 100853 PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| |
Collapse
|
10
|
Toader C, Dumitru AV, Eva L, Serban M, Covache-Busuioc RA, Ciurea AV. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int J Mol Sci 2024; 25:13302. [PMID: 39769066 PMCID: PMC11676454 DOI: 10.3390/ijms252413302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to address the significant challenges of treating central nervous system (CNS) disorders such as neurodegenerative diseases, strokes, spinal cord injuries, and brain tumors. These disorders are difficult to manage due to the complexity of disease mechanisms and the protective blood-brain barrier (BBB), which restricts drug delivery. Recent advancements in nanoparticle (NP) technologies offer promising solutions, with potential applications in drug delivery, neuroprotection, and neuroregeneration. By examining current research, we explore how NPs can cross the BBB, deliver medications directly to targeted CNS regions, and enhance both diagnostics and treatment. Key NP strategies, such as passive targeting, receptor-mediated transport, and stimuli-responsive systems, demonstrate encouraging results. Studies show that NPs may improve drug delivery, minimize side effects, and increase therapeutic effectiveness in models of Alzheimer's, Parkinson's, stroke, and glioblastoma. NP technologies thus represent a promising approach for CNS disorder management, combining drug delivery and diagnostic capabilities to enable more precise and effective treatments that could significantly benefit patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section Within the Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
11
|
Tao X, Chen C, Liu M. The Role of Extracellular Vesicles in Liver Fibrosis: Friends or Foes? Biomedicines 2024; 12:2665. [PMID: 39767572 PMCID: PMC11726879 DOI: 10.3390/biomedicines12122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Liver fibrosis represents a common pathway in the progression of various chronic liver diseases towards cirrhosis and liver failure. Extracellular vesicles (EVs) are membrane-enclosed particles secreted by diverse cell types, including exosomes, microvesicles, apoptotic vesicles, and the recently identified migrasomes. These vesicles can be taken up by recipient cells, thereby modulating their function through the transport of cargo molecules. EVs facilitate intercellular communication and play a significant role in the development of liver fibrosis. Moreover, the detection of EVs in various body fluids offers sensitive diagnostic tools for assessing liver fibrosis. Additionally, EVs may serve as therapeutic targets, potential therapeutic agents, and drug delivery vehicles. This article reviews recent advances in the field of EVs concerning liver fibrosis and related diseases, with a particular focus on the potential role of the newly discovered migrasomes in intracellular crosstalk within the liver.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Yu ZL, Wu ZY, Liu XC, Ji CX, Wang X, Fu QY, Chen G, Wu M, Hong SL, Jia J. Predictive Analysis in Oral Cancer Immunotherapy: Profiling Dual PD-L1-Positive Extracellular Vesicle Subtypes with Step-Wedge Microfluidic Chips. Anal Chem 2024; 96:14980-14988. [PMID: 39235216 DOI: 10.1021/acs.analchem.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PD-L1-positive extracellular vesicles (PD-L1+ EVs) play a pivotal role as predictive biomarkers in cancer immunotherapy. These vesicles, originating from immune cells (I-PD-L1+ EVs) and tumor cells (T-PD-L1+ EVs), hold distinct clinical predictive values, emphasizing the importance of deeply differentiating the PD-L1+ EV subtypes for effective liquid biopsy analyses. However, current methods such as ELISA lack the ability to differentiate their cellular sources. In this study, a novel step-wedge microfluidic chip that combines magnetic microsphere separation with single-layer fluorescence counting is developed. This chip integrates magnetic microspheres modified with anti-PD-L1 antibodies and fluorescent nanoparticles targeting EpCAM (tumor cell marker) or CD45 (immunocyte marker), enabling simultaneous quantification and sensitive analysis of PD-L1+ EV subpopulations in oral squamous cell carcinoma (OSCC) patients' saliva without background interference. Analysis results indicate reduced levels of I-PD-L1+ EVs in OSCC patients compared to those in healthy individuals, with varying levels of heterogeneous PD-L1+ EVs observed among different patient groups. During immunotherapy, responders exhibit decreased levels of total PD-L1+ EVs and T-PD-L1+ EVs, accompanied by reduced levels of I-PD-L1+ EVs. Conversely, nonresponders show increased levels of I-PD-L1+ EVs. Utilizing the step-wedge microfluidic chip allows for simultaneous detection of PD-L1+ EV subtypes, facilitating the precise prediction of oral cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhou-Yang Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xing-Chi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chang-Xin Ji
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Min Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
13
|
Giuliani P, De Simone C, Febo G, Bellasame A, Tupone N, Di Virglio V, di Giuseppe F, Ciccarelli R, Di Iorio P, Angelucci S. Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand? Int J Mol Sci 2024; 25:9778. [PMID: 39337267 PMCID: PMC11431518 DOI: 10.3390/ijms25189778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by "bottom-up" mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other "omics" disciplines will lead to the discovery of druggable pathways for novel GBM therapies.
Collapse
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Giorgia Febo
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Alessia Bellasame
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Nicola Tupone
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Vimal Di Virglio
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Fabrizio di Giuseppe
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
14
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
15
|
Filipović L, Spasojević Savković M, Prodanović R, Matijašević Joković S, Stevanović S, de Marco A, Kosanović M, Brajušković G, Popović M. Urinary Extracellular Vesicles as a Readily Available Biomarker Source: A Simplified Stratification Method. Int J Mol Sci 2024; 25:8004. [PMID: 39125575 PMCID: PMC11311997 DOI: 10.3390/ijms25158004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Urine, a common source of biological markers in biomedical research and clinical diagnosis, has recently generated a new wave of interest. It has recently become a focus of study due to the presence of its content of extracellular vesicles (EVs). These uEVs have been found to reflect physiological and pathological conditions in kidney, urothelial, and prostate tissue and can illustrate further molecular processes, leading to a rapid expansion of research in this field In this work, we present the advantages of an immunoaffinity-based method for uEVs' isolation with respect to the gold standard purification approach performed by differential ultracentrifugation [in terms of purity and antigen presence. The immunoaffinity method was made feasible by combining specific antibodies with a functionalized polymethacrylate polymer. Flow cytometry indicated a significant fluorescence shift, validating the presence of the markers (CD9, CD63, CD81) and confirming the effectiveness of the isolation method. Microscopy evaluations have shown that the morphology of the vesicles remained intact and corresponded to the expected shapes and dimensions of uEVs. The described protocol is inexpensive, fast, easy to process, has good reproducibility, and can be applied to further biological samples.
Collapse
Affiliation(s)
- Lidija Filipović
- Innovative Centre of the Faculty of Chemistry, 11158 Belgrade, Serbia; (L.F.); (M.S.S.)
| | | | | | | | - Sanja Stevanović
- Center for Chemistry, Institute for Chemistry, Technology, and Metallurgy, National Institute of Republic of Serbia, 11000 Belgrade, Serbia;
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, 5000 Nova Gorica, Slovenia;
| | - Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Goran Brajušković
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (S.M.J.); (G.B.)
| | - Milica Popović
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
16
|
Chen J, Zheng M, Xiao Q, Wang H, Chi C, Lin T, Wang Y, Yi X, Zhu L. Recent Advances in Microfluidic-Based Extracellular Vesicle Analysis. MICROMACHINES 2024; 15:630. [PMID: 38793203 PMCID: PMC11122811 DOI: 10.3390/mi15050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Extracellular vesicles (EVs) serve as vital messengers, facilitating communication between cells, and exhibit tremendous potential in the diagnosis and treatment of diseases. However, conventional EV isolation methods are labor-intensive, and they harvest EVs with low purity and compromised recovery. In addition, the drawbacks, such as the limited sensitivity and specificity of traditional EV analysis methods, hinder the application of EVs in clinical use. Therefore, it is urgent to develop effective and standardized methods for isolating and detecting EVs. Microfluidics technology is a powerful and rapidly developing technology that has been introduced as a potential solution for the above bottlenecks. It holds the advantages of high integration, short analysis time, and low consumption of samples and reagents. In this review, we summarize the traditional techniques alongside microfluidic-based methodologies for the isolation and detection of EVs. We emphasize the distinct advantages of microfluidic technology in enhancing the capture efficiency and precise targeting of extracellular vesicles (EVs). We also explore its analytical role in targeted detection. Furthermore, this review highlights the transformative impact of microfluidic technology on EV analysis, with the potential to achieve automated and high-throughput EV detection in clinical samples.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Meiyu Zheng
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Qiaoling Xiao
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Hui Wang
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Caixing Chi
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Tahui Lin
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Yulin Wang
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Xue Yi
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Lin Zhu
- Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China; (J.C.); (M.Z.); (Q.X.); (H.W.); (C.C.); (T.L.); (Y.W.)
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
17
|
Tong Z, Yang D, Shen C, Li C, Xu X, Li Q, Wu Z, Ma H, Chen F, Mao H. Rapid automated extracellular vesicle isolation and miRNA preparation on a cost-effective digital microfluidic platform. Anal Chim Acta 2024; 1296:342337. [PMID: 38401929 DOI: 10.1016/j.aca.2024.342337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 μL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
19
|
Lei Y, Cai S, Zhang CD, Li YS. The biological role of extracellular vesicles in gastric cancer metastasis. Front Cell Dev Biol 2024; 12:1323348. [PMID: 38333593 PMCID: PMC10850573 DOI: 10.3389/fcell.2024.1323348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Gastric cancer (GC) is a tumor characterized by high incidence and mortality, with metastasis being the primary cause of poor prognosis. Extracellular vesicles (EVs) are an important intercellular communication medium. They contain bioactive substances such as proteins, nucleic acids, and lipids. EVs play a crucial biological role in the process of GC metastasis. Through mechanisms such as remodeling the tumor microenvironment (TME), immune suppression, promoting angiogenesis, and facilitating epithelial-mesenchymal transition (EMT) and mesothelial-mesenchymal transition (MMT), EVs promote invasion and metastasis in GC. Further exploration of the biological roles of EVs will contribute to our understanding of the mechanisms underlying GC metastasis and may provide novel targets and strategies for the diagnosis and treatment of GC. In this review, we summarize the mechanisms by which EVs influence GC metastasis from four aspects: remodeling the TME, modulating the immune system, influencing angiogenesis, and modulating the processes of EMT and MMT. Finally, we briefly summarized the organotropism of GC metastasis as well as the potential and limitations of EVs in GC.
Collapse
Affiliation(s)
- Yun Lei
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Cai
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Shuang Li
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Shao M, Jin X, Chen S, Yang N, Feng G. Plant-derived extracellular vesicles -a novel clinical anti-inflammatory drug carrier worthy of investigation. Biomed Pharmacother 2023; 169:115904. [PMID: 37984307 DOI: 10.1016/j.biopha.2023.115904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Plant-derived extracellular vesicles (PDEVs) have shown remarkable potential as sustainable, green, and efficient drug delivery nanocarriers. As natural nanoparticles containing lipids, protein, nucleic acids and secondary metabolites, they have received widespread attention as a replacement for mammalian exosomes in recent years. In this review, the advances in isolation, identification, composition, therapeutic effect, and clinical application prospect were comprehensively reviewed, respectively. In addition, the specific modification strategies have been listed focusing on the inherent drawbacks of the raw PDEVs like low targeting efficiency and poor homogeneity. With emphasis on their biology mechanism in terms of immune regulation, regulating oxidative stress and promoting regeneration in the anti-inflammatory field and application value demonstrated by citing some typical examples, this review about PDEVs would provide a broad and fundamental vision for the in-depth exploration and development of plant-derived extracellular vesicles in the in-vivo anti-inflammation and even other biomedical applications.
Collapse
Affiliation(s)
- Mingyue Shao
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiao Jin
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Sixi Chen
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ning Yang
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| |
Collapse
|
21
|
Rodríguez CF, Guzmán-Sastoque P, Gantiva-Diaz M, Gómez SC, Quezada V, Muñoz-Camargo C, Osma JF, Reyes LH, Cruz JC. Low-cost inertial microfluidic device for microparticle separation: A laser-Ablated PMMA lab-on-a-chip approach without a cleanroom. HARDWAREX 2023; 16:e00493. [PMID: 38045919 PMCID: PMC10689937 DOI: 10.1016/j.ohx.2023.e00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Although microparticles are frequently used in chemistry and biology, their effectiveness largely depends on the homogeneity of their particle size distribution. Microfluidic devices to separate and purify particles based on their size have been developed, but many require expensive cleanroom manufacturing processes. A cost-effective, passive microfluidic separator is presented, capable of efficiently sorting and purifying particles spanning the size range of 15 µm to 40 µm. Fabricated from Polymethyl Methacrylate (PMMA) substrates using laser ablation, this device circumvents the need for cleanroom facilities. Prior to fabrication, rigorous optimization of the device's design was carried out through computational simulations conducted in COMSOL Multiphysics. To gauge its performance, chitosan microparticles were employed as a test case. The results were notably promising, achieving a precision of 96.14 %. This quantitative metric underscores the device's precision and effectiveness in size-based particle separation. This low-cost and accessible microfluidic separator offers a pragmatic solution for laboratories and researchers seeking precise control over particle sizes, without the constraints of expensive manufacturing environments. This innovation not only mitigates the limitations tied to traditional cleanroom-based fabrication but also widens the horizons for various applications within the realms of chemistry and biology.
Collapse
Affiliation(s)
- Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Paula Guzmán-Sastoque
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Mónica Gantiva-Diaz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| |
Collapse
|
22
|
Lai H, Li J, Kou X, Mao X, Zhao W, Ma L. Extracellular Vesicles for Dental Pulp and Periodontal Regeneration. Pharmaceutics 2023; 15:282. [PMID: 36678909 PMCID: PMC9862817 DOI: 10.3390/pharmaceutics15010282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bound particles derived from their original cells, which play critical roles in intercellular communication through their cargoes, including protein, lipids, and nucleic acids. According to their biogenesis and release pathway, EVs can be divided into three categories: apoptotic vesicles (ApoVs), microvesicles (MVs), and small EVs (sEVs). Recently, the role of EVs in oral disease has received close attention. In this review, the main characteristics of EVs are described, including their classification, biogenesis, biomarkers, and components. Moreover, the therapeutic mechanism of EVs in tissue regeneration is discussed. We further summarize the current status of EVs in pulp/periodontal tissue regeneration and discuss the potential mechanisms. The therapeutic potential of EVs in pulp and periodontal regeneration might involve the promotion of tissue regeneration and immunomodulatory capabilities. Furthermore, we highlight the current challenges in the translational use of EVs. This review would provide valuable insights into the potential therapeutic strategies of EVs in dental pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Hongbin Lai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiaqi Li
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lan Ma
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|