1
|
Haider A, Khan S, Iqbal DN, Khan SU, Haider S, Mohammad K, Mustfa G, Rizwan M, Haider A. Chitosan as a tool for tissue engineering and rehabilitation: Recent developments and future perspectives - A review. Int J Biol Macromol 2024; 278:134172. [PMID: 39111484 DOI: 10.1016/j.ijbiomac.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Collapse
Affiliation(s)
- Ammar Haider
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Shabana Khan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan.
| | - Salah Uddin Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Khaled Mohammad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ghulam Mustfa
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| |
Collapse
|
2
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Foley B, Nadaud F, Selmane M, Valentin L, Mezzetti A, Egles C, Jolivalt C, El Kirat K, Guibert C, Landoulsi J. Seriation of Enzyme-Functionalized Multilayers for the Design of Scalable Biomimetic Mineralized Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402128. [PMID: 39246187 DOI: 10.1002/smll.202402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Biomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly-controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel-like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate-substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.
Collapse
Affiliation(s)
- Brittany Foley
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Frédéric Nadaud
- Service Analyses Physico-Chimiques SAPC, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Mohamed Selmane
- Fédération de Chimie et Matériaux de Paris-Centre (FCMat) FR2482, Paris, F-75005, France
| | - Laetitia Valentin
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Christophe Egles
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères et Surfaces (PBS, UMR 6270), 55 Rue Saint-Germain, Évreux, 27 000, France
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Karim El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Clément Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| |
Collapse
|
4
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
5
|
Ren Q, Wang R, Cheng H, Zheng S, Zan X, Chen C. Hydroxyapatite Film with Distinctive Roughness for Simulating the Bone Microenvironment and Revealing the Behavior of Metastatic Mammary Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14476-14485. [PMID: 38967501 DOI: 10.1021/acs.langmuir.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Breast cancer is a common malignant tumor arising in normal mammary epithelial tissues. Nearly 75% of the patients with advanced mammary cancer develop bone metastases, resulting in secondary tumor growth, osteolytic bone degradation, and poor prognosis. The bone matrix comprises a highly hierarchical architecture and is composed of a nonmineral organic part, a predominantly type-I collagen, and a mineral inorganic part composed of hydroxyapatite (HA) nanocrystals (Ca10(PO4)6(OH)2). Although there has been extensive research indicating that the material properties of bone minerals affect metastatic breast cancer, it remains unclear how the microenvironment of the bone matrix, such as the roughness, which changes as a result of osteolytic bone remodeling, affects this disease. In this study, we created HA coatings in situ on polyelectrolyte multilayers (PEMs) by incubating PEMs in a mixture of phosphate and calcium ions. The HA films with distinctive roughness were successfully collected by controlling the incubation time, which served as the simulated microenvironment of the bone matrix. MDA-MB231 breast cancer cells were cultured on HA films, and an optimal roughness was observed in the adhesion, proliferation, and expression of two cytokines closely related to bone metastasis. This study contributed to the understanding of the effect of the microenvironment of the bone matrix, such as the roughness, on the metastasis behavior of breast cancer.
Collapse
Affiliation(s)
- Qinghuan Ren
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Ren Wang
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P. R. China
| | - Hongsen Cheng
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P. R. China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd., Wenzhou, Zhejiang 325000, P. R. China
| | - Xingjie Zan
- Joint Research Centre on Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Chensong Chen
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P. R. China
| |
Collapse
|
6
|
Borges J, Zeng J, Liu XQ, Chang H, Monge C, Garot C, Ren K, Machillot P, Vrana NE, Lavalle P, Akagi T, Matsusaki M, Ji J, Akashi M, Mano JF, Gribova V, Picart C. Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications. Adv Healthc Mater 2024; 13:e2302713. [PMID: 38116714 PMCID: PMC11469081 DOI: 10.1002/adhm.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.
Collapse
Grants
- GA259370 ERC "BIOMIM"
- GA692924 ERC "BioactiveCoatings"
- GA790435 ERC "Regenerbone"
- ANR-17-CE13-022 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-18-CE17-0016 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- 192974 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-20-CE19-022 BIOFISS Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR22-CE19-0024 SAFEST Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- DOS0062033/0 FUI-BPI France
- 883370 European Research Council "REBORN"
- 2020.00758.CEECIND Portuguese Foundation for Science and Technology
- UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020 FCT/MCTES (PIDDAC)
- 751061 European Union's Horizon 2020 "PolyVac"
- 11623 Sidaction
- 20H00665 JSPS Grant-in-Aid for Scientific Research
- 3981662 BPI France Aide Deep Tech programme
- ECTZ60600 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- 101079482 HORIZON EUROPE Framework Programme "SUPRALIFE"
- 101058554 Horizon Europe EIC Accelerator "SPARTHACUS"
- Sidaction
- Agence Nationale de Recherches sur le Sida et les Hépatites Virales
Collapse
Affiliation(s)
- João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Jinfeng Zeng
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Xi Qiu Liu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Chang
- Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiang310022China
| | - Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI)UMR5305 CNRS/Universite Claude Bernard Lyon 17 Passage du VercorsLyon69367France
| | - Charlotte Garot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Ke‐feng Ren
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Paul Machillot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Nihal E. Vrana
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
| | - Philippe Lavalle
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Takami Akagi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Jian Ji
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Mitsuru Akashi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Catherine Picart
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| |
Collapse
|
7
|
Hazra A, Samanta SK. Main-Chain Cationic Polyelectrolytes: Design, Synthesis, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2417-2438. [PMID: 38253020 DOI: 10.1021/acs.langmuir.3c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polyelectrolytes have attracted a lot of attention spanning across disciplines, including polymer chemistry, materials chemistry, chemical biology, chemical engineering, as well as device physics, as a result of their widespread applications in sensing, biomedicine, food industry, wastewater treatment, optoelectronic devices, and renewable energy. In this review, we focus on the crucial synthetic strategies of structurally different classes of main-chain cationic polyelectrolytes. As a result of the presence of charged moieties in the main polymeric backbone, their solubility and photophysical properties can be easily tuned. Main-chain cationic polyelectrolytes provide various unique characteristics, including solubility in aqueous and organic solvents, easy processability, ease of film formation, ionic interaction, main-chain-directed charge transport, high conductivity, and aggregation. These properties make the main-chain polyelectrolyte a potential candidate for numerous applications ranging from chemo- and biosensing, antibacterial activity, optoelectronics, electrocatalysis, water splitting, ion conduction, to dye-sensitized solar cells.
Collapse
Affiliation(s)
- Amrita Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Bagnol R, Siverino C, Barnier V, O'Mahony L, Grijpma DW, Eglin D, Moriarty TF. Physicochemical Characterization and Immunomodulatory Activity of Polyelectrolyte Multilayer Coatings Incorporating an Exopolysaccharide from Bifidobacterium longum. Biomacromolecules 2023; 24:5589-5604. [PMID: 37983925 DOI: 10.1021/acs.biomac.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Immunoregulatory polysaccharides from probiotic bacteria have potential in biomedical engineering. Here, a negatively charged exopolysaccharide from Bifidobacterium longum with confirmed immunoregulatory activity (EPS624) was applied in multilayered polyelectrolyte coatings with positively charged chitosan. EPS624 and coatings (1, 5, and 10 layers and alginate-substituted) were characterized by the zeta potential, dynamic light scattering, size exclusion chromatography, scanning electron microscopy, and atomic force microscopy. Peripheral blood mononuclear cells (hPBMCs) and fibroblasts were exposed for 1, 3, 7, and 10 days with cytokine secretion, viability, and morphology as observations. The coatings showed an increased rugosity and exponential growth mode with an increasing number of layers. A dose/layer-dependent IL-10 response was observed in hPBMCs, which was greater than EPS624 in solution and was stable over 7 days. Fibroblast culture revealed no toxicity or metabolic change after exposure to EPS624. The EPS624 polyelectrolyte coatings are cytocompatible, have immunoregulatory properties, and may be suitable for applications in biomedical engineering.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Davos Platz 7270, Switzerland
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | | | - Vincent Barnier
- UMR 5307 LGF, CNRS, Mines Saint-Etienne, Centre SMS, Saint-Etienne F-42023, France
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork TH12 HW58, Ireland
| | - Dirk W Grijpma
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - David Eglin
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
- Univ Jean Monnet, INSERM, Mines Saint-Étienne, U1059 Sainbiose, Saint-Étienne F-42023, France
| | | |
Collapse
|
9
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
10
|
Vimon S, Kertsomboon T, Chirachanchai S, Angkanaporn K, Nuengjamnong C. Matrices-charges of agar-alginate crosslinked microcapsules via o/w microemulsion: A non-spore forming probiotic bacteria encapsulation system for extensive viability. Carbohydr Polym 2023; 321:121302. [PMID: 37739506 DOI: 10.1016/j.carbpol.2023.121302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Non-spore forming probiotic bacteria tend to diminish their activity under adverse conditions. This leads to the difficulty of delivery in animal body system as well as the feed pelleting process. The present work proposes the microcapsule networks based on polymer matrices and charges under ionic crosslink to encapsulate probiotic for an extensive stability in adverse conditions. The combination of agar (AG) and alginate (AL) is a good model to combine agar matrices and alginate charges under ionic crosslink through o/w emulsion system for probiotic incorporation. By simply mixing Lactobacillus plantarum MB001(LPMB001) with AL and AG containing few drops of soybean oil, a stable o/w microemulsion can be obtained. The addition of calcium chloride favors the ionic crosslink among AG matrices resulting in LPMB001/AG-AL microcapsules. In vitro studies indicate the survival of LPMB001 and the slow release even after treatment in adverse conditions. This microencapsulation prolongs LPMB001 viability under the heat treatment and the storage conditions and this designates the potential feed processing. The present work for the first time shows how we can combine polymer matrices and charges to protect probiotic from the adverse conditions which is simple and practical for the process of dietary supplementation.
Collapse
Affiliation(s)
- Sasi Vimon
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanit Kertsomboon
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kris Angkanaporn
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chackrit Nuengjamnong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
11
|
Xu L, Hu Y, Zhao D, Zhang W, Wang H. A Versatile Assembly Approach toward Multifunctional Supramolecular Poly(Ionic Liquid) Nanoporous Membranes in Water. Macromol Rapid Commun 2023; 44:e2300189. [PMID: 37248809 DOI: 10.1002/marc.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Hydrogen (H)-bonding-integration of multiple ingredients into supramolecular polyelectrolyte nanoporous membranes in water, thereby achieving tailor-made porous architectures, properties, and functionalities, remains one of the foremost challenges in materials chemistry due to the significantly opposing action of water molecules against H-bonding. Herein, a strategy is described that allows direct fusing of the functional attributes of small additives into water-involved hydrogen bonding assembled supramolecular poly(ionic liquid) (PIL) nanoporous membranes (SPILMs) under ambient conditions. It discloses that the pore size distributions and mechanical properties of SPILMs are rationally controlled by tuning the H-bonding interactions between small additives and homo-PIL. It demonstrates that, benefiting from the synergy of multiple noncovalent interactions, small dye additives/homo-PIL solutions can be utilized as versatile inks for yielding colorful light emitting films with robust underwater adhesion strength, excellent stretchability, and flexibility on diverse substrates, including both hydrophilic and hydrophobic surfaces. This system provides a general platform for integrating the functional attributes of a diverse variety of additives into SPILMs to create multifunctional and programmable materials in water.
Collapse
Affiliation(s)
- Luyao Xu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingyi Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Sabbagh B, Zhang Z, Yossifon G. Logic gating of low-abundance molecules using polyelectrolyte-based diodes. Faraday Discuss 2023; 246:141-156. [PMID: 37528688 DOI: 10.1039/d3fd00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Bioinspired artificial ionic components are extensively utilized to mimic biological systems, as the vast majority of biological signaling is mediated by ions and molecules. Particular attention is given to nanoscale fluidic components where the ion transport can be regulated by the induced ion permselectivity. As a step from fundamentals toward ion-controlled devices, this study presents the use of ionic diodes made of oppositely charged polyelectrolytes, as a gate for low-abundance molecules. The use of ionic diodes that exhibited nonlinear current-voltage responses enabled realization of a basic Boolean operation of an ionic OR logic gate. Aside from the electrical response, the asymmetric ion transport through the diode was shown to affect the transport of low-abundance molecules across the diode, only allowing crossing when the diode was forward-biased. Integration of multiple diodes enabled implementation of an OR logic operation on both the voltage and the molecule transport, while obtaining electrical and optical output readouts that were associated with low and high logic levels. Similarly to electronics, implementation of logic gates opens up new functionalities of on-chip ionic computation via integrated circuits consisting of multiple basic logic gates.
Collapse
Affiliation(s)
- Barak Sabbagh
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Israel
| | - Zhenyu Zhang
- School of Mechanical Engineering, Southeast University, China
- School of Mechanical Engineering, Tel-Aviv University, Israel.
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Israel
- School of Mechanical Engineering, Tel-Aviv University, Israel.
| |
Collapse
|
13
|
Fan D, Miller Naranjo B, Mansi S, Mela P, Lieleg O. Dopamine-Mediated Biopolymer Multilayer Coatings for Modulating Cell Behavior, Lubrication, and Drug Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37986-37996. [PMID: 37491732 DOI: 10.1021/acsami.3c05298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biopolymer coatings on implants mediate the interactions between the synthetic material and its biological environment. Owing to its ease of preparation and the possibility to incorporate other bioactive molecules, layer-by-layer deposition is a method commonly used in the construction of biopolymer multilayers. However, this method typically requires at least two types of oppositely charged biopolymers, thus limiting the range of macromolecular options by excluding uncharged biopolymers. Here, we present a layer-by-layer approach that employs mussel-inspired polydopamine as the adhesive intermediate layer to build biopolymer multilayer coatings without requiring any additional chemical modifications. We select three biopolymers with different charge states─anionic alginate, neutral dextran, and cationic polylysine─and successfully assemble them into mono-, double-, or triple-layers. Our results demonstrate that both the layer number and the polymer type modulate the coating properties. Overall, increasing the number of layers in the coatings leads to reduced cell attachment, lower friction, and higher drug loading capacity but does not alter the surface potential. Moreover, varying the biopolymer type affects the surface potential, macrophage differentiation, lubrication performance, and drug release behavior. This proof-of-concept study offers a straightforward and universal coating method, which may broaden the use of multilayer coatings in biomedical applications.
Collapse
Affiliation(s)
- Di Fan
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Bernardo Miller Naranjo
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Salma Mansi
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Oliver Lieleg
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| |
Collapse
|
14
|
Chesneau C, Larue L, Belbekhouche S. Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly. Pharmaceutics 2023; 15:1718. [PMID: 37376165 DOI: 10.3390/pharmaceutics15061718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution and bioavailability. Among the reported core-shell nanoparticles, biopolymer-based capsules can be used as a versatile platform for drug delivery purposes. Among the known biopolymers, the present review focuses on polysaccharide-based capsules. We only report on biopolyelectrolyte capsules fabricated by combining porous particles as a template and using the layer-by-layer technique. The review focuses on the major steps of the capsule design, i.e., the fabrication and subsequent use of the sacrificial porous template, multilayer coating with polysaccharides, the removal of the porous template to obtain the capsules, capsule characterisation and the application of capsules in the biomedical field. In the last part, selected examples are presented to evidence the major benefits of using polysaccharide-based capsules for biological purposes.
Collapse
Affiliation(s)
- Cléa Chesneau
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laura Larue
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
15
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
16
|
Šušteršič T, Gribova V, Nikolic M, Lavalle P, Filipovic N, Vrana NE. The Effect of Machine Learning Algorithms on the Prediction of Layer-by-Layer Coating Properties. ACS OMEGA 2023; 8:4677-4686. [PMID: 36777619 PMCID: PMC9909801 DOI: 10.1021/acsomega.2c06471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Layer-by-layer film (LbL) coatings made of polyelectrolytes are a powerful tool for surface modification, including the applications in the biomedical field, for food packaging, and in many electrochemical systems. However, despite the number of publications related to LbL assembly, predicting LbL coating properties represents quite a challenge, can take a long time, and be very costly. Machine learning (ML) methodologies that are now emerging can accelerate and improve new coating development and potentially revolutionize the field. Recently, we have demonstrated a preliminary ML-based model for coating thickness prediction. In this paper, we compared several ML algorithms for optimizing a methodology for coating thickness prediction, namely, linear regression, Support Vector Regressor, Random Forest Regressor, and Extra Tree Regressor. The current research has shown that learning algorithms are effective in predicting the coating output value, with the Extra Tree Regressor algorithm demonstrating superior predictive performance, when used in combination with optimized hyperparameters and with missing data imputation. The best predictors of the coating thickness were determined, and they can be later used to accurately predict coating thickness, avoiding measurement of multiple parameters. The development of optimized methodologies will ensure different reliable predictive models for coating property/function relations. As a continuation, the methodology can be adapted and used for predicting the outputs connected to antimicrobial, anti-inflammatory, and antiviral properties in order to be able to respond to actual biomedical problems such as antibiotic resistance, implant rejection, or COVID-19 outbreak.
Collapse
Affiliation(s)
- Tijana Šušteršič
- Faculty
of Engineering, University of Kragujevac (FINK), Kragujevac34000, Serbia
- Steinbeis
Advanced Risk Technologies Institute doo Kragujevac (SARTIK), Kragujevac34000, Serbia
- Bioengineering
Research and Development Center (BioIRC), Kragujevac34000, Serbia
| | - Varvara Gribova
- Biomaterials
and Bioengineering laboratory, INSERM UMR
1121, Strasbourg67100, France
- Université
de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg67000, France
| | - Milica Nikolic
- Steinbeis
Advanced Risk Technologies Institute doo Kragujevac (SARTIK), Kragujevac34000, Serbia
- Institute
of Information Technologies, University of Kragujevac, Kragujevac34000, Serbia
- Eindhoven
University of Technology, Eindhoven5611 CB, The Netherlands
| | - Philippe Lavalle
- Biomaterials
and Bioengineering laboratory, INSERM UMR
1121, Strasbourg67100, France
- Université
de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg67000, France
- SPARTHA
Medical, Strasbourg67100, France
| | - Nenad Filipovic
- Faculty
of Engineering, University of Kragujevac (FINK), Kragujevac34000, Serbia
- Steinbeis
Advanced Risk Technologies Institute doo Kragujevac (SARTIK), Kragujevac34000, Serbia
- Bioengineering
Research and Development Center (BioIRC), Kragujevac34000, Serbia
| | | |
Collapse
|
17
|
Liu Z, Nan H, Chiou YS, Zhan Z, Lobie PE, Hu C. Selective Formation of Osteogenic and Vasculogenic Tissues for Cartilage Regeneration. Adv Healthc Mater 2023; 12:e2202008. [PMID: 36353894 DOI: 10.1002/adhm.202202008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Tissue-engineered periosteum substitutes (TEPSs) incorporating hierarchical architecture with osteoprogenitor and vascular niches are drawing much attention as a promising tool to support functional cells in defined zones and nourish the cortical bone. Current TEPSs usually lack technologies to closely observe cell performance, especially at the cell contact interface between distinct compartments containing defined biological configurations and functions. Here, an electrodeposition strategy is reported, which enables the selective formation of TEPSs with osteoprogenitor and vascular niches in a multiphasic scaffold in combination with different human cell types for cartilage regeneration in an in vivo osteochondral defect model. Human umbilical vein endothelial cells (HUVECs), dermal fibroblasts (HDFs), and bone marrow mesenchymal stem cells (hMSCs) are used to mirror both the vascular and osteogenic niches, respectively. It is observed that the intrinsic viscoelastic nature of the porous solid matrix is essential to successfully induce angiogenesis. Coculture of hMSCs with functional cells (HUVECs/HDFs) in TEPSs also effectively promoted periosteal regeneration, including osteogenic and angiogenic processes. The osteoarthritis cartilage histopathology assessment and histologic/histochemical grading system data indicate that the TEPSs containing hMSCs/HUVECs/HDFs exhibit superior potential for cartilage regeneration.
Collapse
Affiliation(s)
- Zeyang Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haochen Nan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Pédehontaa-Hiaa G, Gaudière F, Khelif R, Morin-Grognet S, Labat B, Lutzweiler G, Le Derf F, Atmani H, Morin C, Ladam G. Polyvalent incorporation of anionic β-cyclodextrin polymers into Layer-by-Layer coatings. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
19
|
Bioactive Synthetic Polymer-Based Polyelectrolyte LbL Coating Assembly on Surface Treated AZ31-Mg Alloys. J Funct Biomater 2023; 14:jfb14020075. [PMID: 36826874 PMCID: PMC9964909 DOI: 10.3390/jfb14020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Polyelectrolyte layer-by-layer (LbL) films on pretreated Mg containing 3 wt.% Al and 1 wt.% Zn (MgAZ31) alloy surfaces were prepared under physiological conditions offering improved bioresponse and corrosive protection. Pretreatments of the model MgAZ31 substrate surfaces were performed by alkaline and fluoride coating methods. The anti-corrosion and cytocompatibility behavior of pretreated substrates were evaluated. The LbL film assembly consisted of an initial layer of polyethyleneimine (PEI), followed by alternate layers of poly (lactic-co-glycolic acid) (PLGA) and poly (allylamine hydrochloride) (PAH), which self-arrange via electrostatic interactions on the pretreated MgAZ31 alloy substrate surface. The physicochemical characterization, surface morphologies, and microstructures of the LbL films were investigated using Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The in vitro stability studies related to the LbL coatings confirmed that the surface treatments are imperative to achieve the lasting stability of PLGA/PAH layers. Electrochemical impedance spectroscopy measurements demonstrated that pretreated and LbL multilayered coated substrates enhanced the corrosion resistance of the bare MgAZ31 alloy. Cytocompatibility studies using human mesenchymal stem cells seeded directly over the substrates showed that the pretreated and LbL-generated surfaces were more cytocompatible, displaying reduced cytotoxicity than the bare MgAZ31. The release of bovine serum albumin protein from the LbL films was also studied. The initial data presented cooperatively demonstrate the promise of creating LbL layers on Mg-related bioresorbable scaffolds to obtain improved surface bio-related activity.
Collapse
|
20
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
21
|
Kindi H, Willems C, Zhao M, Menzel M, Schmelzer CEH, Herzberg M, Fuhrmann B, Gallego-Ferrer G, Groth T. Metal Ion Doping of Alginate-Based Surface Coatings Induces Adipogenesis of Stem Cells. ACS Biomater Sci Eng 2022; 8:4327-4340. [PMID: 36174215 DOI: 10.1021/acsbiomaterials.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal ions are important effectors of protein and cell functions. Here, polyelectrolyte multilayers (PEMs) made of chitosan (Chi) and alginate (Alg) were doped with different metal ions (Ca2+, Co2+, Cu2+, and Fe3+), which can form bonds with their functional groups. Ca2+ and Fe3+ ions can be deposited in PEM at higher quantities resulting in more positive ζ potentials and also higher water contact angles in the case of Fe3+. An interesting finding was that the exposure of PEM to metal ions decreases the elastic modulus of PEM. Fourier transformed infrared (FTIR) spectroscopy of multilayers provides evidence of interaction of metal ions with the carboxylic groups of Alg but not for hydroxyl and amino groups. The observed changes in wetting and surface potential are partly related to the increased adhesion and proliferation of multipotent C3H10T1/2 fibroblasts in contrast to plain nonadhesive [Chi/Alg] multilayers. Specifically, PEMs doped with Cu2+ and Fe3+ ions greatly promote cell attachment and adipogenic differentiation, which indicates that changes in not only surface properties but also the bioactivity of metal ions play an important role. In conclusion, metal ion-doped multilayer coatings made of alginate and chitosan can promote the differentiation of multipotent cells on implants without the use of other morphogens like growth factors.
Collapse
Affiliation(s)
- Husnia Kindi
- Institute of Pharmacy, Department Biomedical Materials, Martin Luther University Halle-Wittenberg, Heinrich-Damerow Strasse 4, 06120 Halle (Saale), Germany
| | - Christian Willems
- Institute of Pharmacy, Department Biomedical Materials, Martin Luther University Halle-Wittenberg, Heinrich-Damerow Strasse 4, 06120 Halle (Saale), Germany
| | - Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Matthias Menzel
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany
| | - Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle- Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Bodo Fuhrmann
- Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Gloria Gallego-Ferrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Thomas Groth
- Institute of Pharmacy, Department Biomedical Materials, Martin Luther University Halle-Wittenberg, Heinrich-Damerow Strasse 4, 06120 Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Pacheco-Quito EM, Bedoya LM, Rubio J, Tamayo A, Ruiz-Caro R, Veiga MD. Layer-by-Layer Vaginal Films for Acyclovir Controlled Release to Prevent Genital Herpes. Int J Pharm 2022; 627:122239. [PMID: 36179927 DOI: 10.1016/j.ijpharm.2022.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
Genital herpes is one of the most common sexually transmitted infections worldwide. It mainly affects women, as the rate of sexual transmission from male-to-female is higher than from female-to-male. The application of vaginal antivirals drugs could reduce the prevalence of genital herpes and prevent future infections. Layer-by-layer vaginal films were prepared by the solvent evaporation method using iota-carrageenan, hydroxypropyl methylcellulose and the polymethacrylates Eudragit® RS PO and Eudragit® S100, for the controlled release of acyclovir. The films were characterized by texture analysis and Raman spectroscopy. Swelling, mucoadhesion, and drug release studies were conducted in simulated vaginal fluid. The results show that Layer-by-Layer films exhibited adequate mechanical properties. The structuring of the layer-by-layer films allowed the controlled release of acyclovir and produced a prolonged mucoadhesion residence time of up to 192h. The films formed in layer 2 by the combination of Eudragit® RS PO and S100 showed a controlled release of acyclovir for eight days, and adequate mechanical properties. These promising formulations for the prevention of genital herpes deserve further evaluation.
Collapse
Affiliation(s)
- Edisson-Mauricio Pacheco-Quito
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Luis-Miguel Bedoya
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juan Rubio
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain
| | - Aitana Tamayo
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María-Dolores Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
23
|
Appadoo V, Carter MCD, Jennings J, Guo X, Liu B, Hacker TA, Lynn DM. Stimuli-Responsive Polymer Coatings for the Rapid and Tunable Contact Transfer of Plasmid DNA to Soft Surfaces. ACS Biomater Sci Eng 2022; 8:4390-4401. [PMID: 36130280 DOI: 10.1021/acsbiomaterials.2c00706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the design and characterization of thin polymer-based coatings that promote the contact transfer of DNA to soft surfaces under mild and physiologically relevant conditions. Past studies reveal polymer multilayers fabricated using linear poly(ethylene imine) (LPEI), poly(acrylic acid) (PAA), and plasmid DNA promote contact transfer of DNA to vascular tissue. Here, we demonstrate that changes in the structure of the polyamine building blocks of these materials can have substantial impacts on rates and extents of contact transfer. We used two hydrogel-based substrate models that permit identification and manipulation of parameters that influence contact transfer. We used a planar gel model to characterize films having the structure (cationic polymer/PAA/cationic polymer/plasmid DNA)x fabricated using either LPEI or one of three poly(β-amino ester)s as polyamine building blocks. The structure of the polyamine influenced subsequent contact transfer of DNA significantly; in general, films fabricated using more hydrophilic polymers promoted transfer more effectively. This planar model also permitted characterization of the stabilities of films transferred onto secondary surfaces, revealing rates of DNA release to be slower than rates of release prior to transfer. We also used a three-dimensional hole-based hydrogel model to evaluate contact transfer of DNA from the surfaces of inflatable catheter balloons used in vascular interventions and selected a rapid-transfer coating for proof-of-concept studies to characterize balloon-mediated contact transfer of DNA to peripheral arterial tissue in swine. Our results reveal robust and largely circumferential transfer of DNA to the luminal walls of peripheral arteries using inflation times as short as 15 to 30 s. The materials and approaches reported here provide new and useful tools for promoting rapid, substrate-mediated contact transfer of plasmid DNA to soft surfaces in vitro and in vivo that could prove useful in a range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Visham Appadoo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Matthew C D Carter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - James Jennings
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Xuanrong Guo
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - David M Lynn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Li F, Klepzig LF, Keppler N, Behrens P, Bigall NC, Menzel H, Lauth J. Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11149-11159. [PMID: 36067458 DOI: 10.1021/acs.langmuir.2c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductor nanoplatelets (NPLs) are strongly photoluminescent materials with interesting properties for optoelectronics. Especially their narrow photoluminescence paired with a high quantum yield is promising for light emission applications with high color purity. However, retaining these features in solid-state thin films together with an efficient encapsulation of the NPLs is a challenge, especially when trying to achieve high-quality films with a defined optical density and low surface roughness. Here, we show photoluminescent polymer-encapsulated inorganic-organic nanocomposite coatings of 2D CdSe/CdS NPLs in poly(diallyldimethylammonium chloride) (PDDA) and poly(ethylenimine) (PEI), which are prepared by sequential layer-by-layer (LbL) deposition. The electrostatic interaction between the positively charged polyelectrolytes and aqueous phase-transferred NPLs with negatively charged surface ligands is used as a driving force to achieve self-assembled nanocomposite coatings with a well-controlled layer thickness and surface roughness. Increasing the repulsive forces between the NPLs by increasing the pH value of the dispersion leads to the formation of nanocomposites with all NPLs arranging flat on the substrate, while the surface roughness of the 165 nm (50 bilayers) thick coating decreases to Ra = 14 nm. The photoluminescence properties of the nanocomposites are determined by the atomic layer thickness of the NPLs and the 11-mercaptoundecanoic acid ligand used for their phase transfer. Both the full width at half-maximum (20.5 nm) and the position (548 nm) of the nanocomposite photoluminescence are retained in comparison to the colloidal CdSe/CdS NPLs in aqueous dispersion, while the measured photoluminescence quantum yield of 5% is competitive to state-of-the-art nanomaterial coatings. Our approach yields stable polymer-encapsulated CdSe/CdS NPLs in smooth coatings with controllable film thickness, rendering the LbL deposition technique a powerful tool for the fabrication of solid-state photoluminescent nanocomposites.
Collapse
Affiliation(s)
- Fuzhao Li
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute for Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lars F Klepzig
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Nils Keppler
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Peter Behrens
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Schneiderberg 39, 30167 Hannover, Germany
| | - Nadja C Bigall
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Schneiderberg 39, 30167 Hannover, Germany
| | - Henning Menzel
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute for Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jannika Lauth
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Schneiderberg 39, 30167 Hannover, Germany
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Yu Y, Appadoo V, Ren J, Hacker TA, Liu B, Lynn DM. pH-Responsive Polyelectrolyte Coatings that Enable Catheter-Mediated Transfer of DNA to the Arterial Wall in Short and Clinically Relevant Inflation Times. ACS Biomater Sci Eng 2022; 8:4377-4389. [PMID: 36121432 DOI: 10.1021/acsbiomaterials.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and characterization of pH-responsive polymer coatings that enable catheter balloon-mediated transfer of DNA to arterial tissue in short, clinically relevant inflation times. Our approach exploits the pH-dependent ionization of poly(acrylic acid) (PAA) to promote disassembly and release of plasmid DNA from polyelectrolyte multilayers. We characterized the contact transfer of multilayers composed of PAA, plasmid DNA, and linear poly(ethyleneimine) (LPEI) identified as promising in prior studies on the delivery of DNA to arterial tissue. In contrast to thinner films evaluated previously, we found thicker coatings composed of 32 repeating (LPEI/PAA/LPEI/DNA)x tetralayers to swell substantially in physiologically relevant media (in PBS; pH = 7.4). In some cases, these coatings also disintegrated or delaminated rapidly from their underlying substrates, suggesting the potential for enhanced balloon-mediated transfer. We developed a technically straightforward agarose gel-based hole-insertion model to characterize factors (inflation time, lumen size, etc.) that influence contact transfer of DNA when film-coated balloons are inflated into contact with soft surfaces. Those studies and the results of in vivo experiments using small animal (rat) and large animal (pig) models of peripheral arterial injury revealed catheters coated with these materials to promote robust contact transfer of DNA to soft hydrogel surfaces and the luminal surfaces of arterial tissue using inflation times as short as 30 s. These short inflation times are relevant in the context of clinical vascular interventions in peripheral arteries. Additional studies demonstrated that contact transfer of DNA using these short times can promote subsequent dissemination and transport of DNA to the medial tissue layer, suggesting the potential for use in therapeutically relevant applications of balloon-mediated gene transfer.
Collapse
Affiliation(s)
- Yan Yu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jun Ren
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
27
|
Li J, Krishna B A, van Ewijk G, van Dijken DJ, de Vos WM, van der Gucht J. A comparison of complexation induced brittleness in PEI/PSS and PEI/NaPSS single-step coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
de Avila ED, Nagay BE, Pereira MMA, Barão VAR, Pavarina AC, van den Beucken JJJP. Race for Applicable Antimicrobial Dental Implant Surfaces to Fight Biofilm-Related Disease: Advancing in Laboratorial Studies vs Stagnation in Clinical Application. ACS Biomater Sci Eng 2022; 8:3187-3198. [PMID: 35816289 DOI: 10.1021/acsbiomaterials.2c00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Across years, potential strategies to fight peri-implantitis have been notoriously explored through the antimicrobial coating implant surfaces capable of interfering with the bacterial adhesion process. However, although experimental studies have significantly advanced, no product has been marketed so far. For science to reach the society, the commercialization of research outcomes is necessary to provide real advancement in the biomedical field. Therefore, the aim of this study was to investigate the challenges involved in the development of antimicrobial dental implant surfaces to fight peri-implantitis, through a systematic search. Research articles reporting antimicrobial dental implant surfaces were identified by searching PubMed, Scopus, Web of Science, The Cochrane Library, Embase, and System of Information on Grey Literature in Europe, between 2008 and 2020. A total of 1778 studies were included for quality assessment and the review. An impressive number of 1655 articles (93,1%) comprised in vitro studies, whereas 123 articles refer to in vivo investigations. From those 123, 102 refer to animal studies and only 21 articles were published on the clinical performance of antibacterial dental implant surfaces. The purpose of animal studies is to test how safe and effective new treatments are before they are tested in people. Therefore, the discrepancy between the number of published studies clearly reveals that preclinical investigations still come up against several challenges to overcome before moving forward to a clinical setting. Additionally, researchers need to recognize that the complex journey from lab to market requires more than a great idea and resources to develop a commercial invention; research teams must possess the skills necessary to commercialize an invention.
Collapse
Affiliation(s)
- Erica D de Avila
- Dental Research Division, Guarulhos University (UNG), Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Marta M A Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | | |
Collapse
|
29
|
Vahid H, Scacchi A, Yang X, Ala-Nissila T, Sammalkorpi M. Modified Poisson–Boltzmann theory for polyelectrolytes in monovalent salt solutions with finite-size ions. J Chem Phys 2022; 156:214906. [DOI: 10.1063/5.0092273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a soft-potential-enhanced Poisson–Boltzmann (SPB) theory to efficiently capture ion distributions and electrostatic potential around rodlike charged macromolecules. The SPB model is calibrated with a coarse-grained particle-based model for polyelectrolytes (PEs) in monovalent salt solutions as well as compared to a full atomistic molecular dynamics simulation with the explicit solvent. We demonstrate that our modification enables the SPB theory to accurately predict monovalent ion distributions around a rodlike PE in a wide range of ion and charge distribution conditions in the weak-coupling regime. These include excess salt concentrations up to 1M and ion sizes ranging from small ions, such as Na+ or Cl−, to softer and larger ions with a size comparable to the PE diameter. The work provides a simple way to implement an enhancement that effectively captures the influence of ion size and species into the PB theory in the context of PEs in aqueous salt solutions.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
| | - Xiang Yang
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
30
|
Effect of ion species and ionic strength on the properties of underwater oleophobic (PDDA/PSS)4 polyelectrolyte multilayer film. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Boranna R, Vishwaraj NP, Pahal S, Nataraj CT, Jagannath RPK, Nanjunda SB, Prashanth GR. “Fast‐Dip Layer‐by‐Layer Self‐assembly of Polyelectrolytes as Low‐cost Biosensing Platform”. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rakshith Boranna
- Department of Electronics and Communication Engineering National Institute of Technology Goa Goa 403401 India
| | - Naik Parrikar Vishwaraj
- Department of Electronics and Communication Engineering National Institute of Technology Goa Goa 403401 India
| | - Suman Pahal
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
- Institute for Stem Cell Science and Regenerative Medicine (inStem) Bengaluru Karnataka 560065 India
| | - Chandrika Thondagere Nataraj
- Department of Electronics and Telecommunication Engineering Siddaganga Institute of Technology Tumkuru Karnataka 572103 India
| | | | - Shivananju Bannur Nanjunda
- Department of Electrical Engineering Centre of Excellence in Biochemical Sensing and Imaging Technologies (Cen‐Bio‐SIm) Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| | - Gurusiddappa R. Prashanth
- Department of Electronics and Communication Engineering National Institute of Technology Goa Goa 403401 India
| |
Collapse
|
32
|
Zeng J, Luan F, Hu J, Liu Y, Zhang X, Qin T, Zhang X, Liu R, Zeng N. Recent research advances in polysaccharides from Undaria pinnatifida: Isolation, structures, bioactivities, and applications. Int J Biol Macromol 2022; 206:325-354. [PMID: 35240211 DOI: 10.1016/j.ijbiomac.2022.02.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
Undaria pinnatifida, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for edema, phlegm elimination and diuresis, and detumescence for more than 2000 years. Numerous studies have found that polysaccharides of U. pinnatifida play an indispensable role in the nutritional and medicinal value. The water extraction and alcohol precipitation method are the most used method. More than 40 U. pinnatifida polysaccharides (UPPs) were successfully isolated and purified from U. pinnatifida, whereas only few of them were well characterized. Pharmacological studies have shown that UPPs have high-order structural features and multiple biological activities, including anti-tumor, antidiabetic, immunomodulatory, antiviral, anti-inflammatory, antioxidant, anticoagulating, antithrombosis, antihypertension, antibacterial, and renoprotection. In addition, the structural characteristics of UPPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, structure-activity relationships and industrial application of UPPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of UPPs were also outlined. Furthermore, the clinical settings and structure-activity functions of UPPs were highlighted. Some research perspectives and challenges in the study of UPPs were also proposed.
Collapse
Affiliation(s)
- Jiuseng Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Jingwen Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yao Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Xiumeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Tiantian Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xia Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Rong Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China.
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China.
| |
Collapse
|
33
|
Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022; 10:2734-2758. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The layer-by-layer (LbL) assembly technique has shown excellent potential in tissue engineering applications. The technique is mainly based on electrostatic attraction and involves the sequential adsorption of oppositely charged electrolyte complexes onto a substrate, resulting in uniform single layers that can be rapidly deposited to form nanolayer films. LbL has attracted significant attention as a coating technique due to it being a convenient and affordable fabrication method capable of achieving a wide range of biomaterial coatings while keeping the main biofunctionality of the substrate materials. One promising application is the use of nanolayer films fabricated by LbL assembly in the development of 3-dimensional (3D) bone scaffolds for bone repair and regeneration. Due to their versatility, nanoscale films offer an exciting opportunity for tailoring surface and bulk property modification of implants for osseous defect therapies. This review article discusses the state of the art of the LbL assembly technique, and the properties and functions of LbL-assembled films for engineered bone scaffold application, combination of multilayers for multifunctional coatings and recent advancements in the application of LbL assembly in bone tissue engineering. The recent decade has seen tremendous advances in the promising developments of LbL film systems and their impact on cell interaction and tissue repair. A deep understanding of the cell behaviour and biomaterial interaction for the further development of new generations of LbL films for tissue engineering are the most important targets for biomaterial research in the field. While there is still much to learn about the biological and physicochemical interactions at the interface of nano-surface coated scaffolds and biological systems, we provide a conceptual review to further progress in the LbL approach to 3D bone scaffold materials and inform the future of LbL development in bone tissue engineering.
Collapse
Affiliation(s)
- MohammadAli Sahebalzamani
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland.
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Andrew R Hamilton
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
34
|
Polymeric coating on β-TCP scaffolds provides immobilization of small extracellular vesicles with surface-functionalization and ZEB1-Loading for bone defect repair in diabetes mellitus. Biomaterials 2022; 283:121465. [DOI: 10.1016/j.biomaterials.2022.121465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022]
|
35
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
36
|
Potaś J, Winnicka K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. Int J Mol Sci 2022; 23:ijms23073496. [PMID: 35408857 PMCID: PMC8998809 DOI: 10.3390/ijms23073496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Polyelectrolyte multilayers (PEMs) represent a group of polyelectrolyte complex (PEC)–based materials widely investigated in the biomedical and pharmaceutical sciences. Despite the unflagging popularity of the aforementioned systems in tissue engineering, only a few updated scientific reports concerning PEM potential in drug administration can be found. In fact, PEM coatings are currently recognized as important tools for functionalizing implantable scaffolds; however, only a small amount of attention has been given to PEMs as drug delivery materials. Scientific reports on PEMs reveal two dominant reasons for the limited usability of multilayers in pharmaceutical technology: complex and expensive preparation techniques as well as high sensitivity of interacting polyelectrolytes to the varieties of internal and external factors. The aim of this work was to analyze the latest approaches, concerning the potential of PEMs in pharmacy, chemical technology, and (primarily) tissue engineering, with special attention given to possible polymer combinations, technological parameters, and physicochemical characteristics, such as hydrophilicity, adhesive and swelling properties, and internal/external structures of the systems formed. Careful recognition of the above factors is crucial in the development of PEM-based drug delivery materials.
Collapse
|
37
|
Rengaraj A, Bosc L, Machillot P, McGuckin C, Milet C, Forraz N, Paliard P, Barbier D, Picart C. Engineering of a Microscale Niche for Pancreatic Tumor Cells Using Bioactive Film Coatings Combined with 3D-Architectured Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13107-13121. [PMID: 35275488 PMCID: PMC7614000 DOI: 10.1021/acsami.2c01747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-photon polymerization has recently emerged as a promising technique to fabricate scaffolds for three-dimensional (3D) cell culture and tissue engineering. Here, we combined 3D-printed microscale scaffolds fabricated using two-photon polymerization with a bioactive layer-by-layer film coating. This bioactive coating consists of hyaluronic acid and poly(l-lysine) of controlled stiffness, loaded with fibronectin and bone morphogenic proteins 2 and 4 (BMP2 and BMP4) as matrix-bound proteins. Planar films were prepared using a liquid handling robot directly in 96-well plates to perform high-content studies of cellular processes, especially cell adhesion, proliferation, and BMP-induced signaling. The behaviors of two human pancreatic cell lines PANC1 (immortalized) and PAN092 (patient-derived cell line) were systematically compared and revealed important context-specific cell responses, notably in response to film stiffness and matrix-bound BMPs (bBMPs). Fibronectin significantly increased cell adhesion, spreading, and proliferation for both cell types on soft and stiff films; BMP2 increased cell adhesion and inhibited proliferation of PANC1 cells and PAN092 on soft films. BMP4 enhanced cell adhesion and proliferation of PANC1 and showed a bipolar effect on PAN092. Importantly, PANC1 exhibited a strong dose-dependent BMP response, notably for bBMP2, while PAN092 was insensitive to BMPs. Finally, we proved that it is possible to combine a microscale 3D Ormocomp scaffold fabricated using the two-photon polymerization technique with the bioactive film coating to form a microscale tumor tissue and mimic the early stages of metastatic cancer.
Collapse
Affiliation(s)
- Arunkumar Rengaraj
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Lauriane Bosc
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Colin McGuckin
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Clément Milet
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Nico Forraz
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Philippe Paliard
- Microlight 3D, 5 avenue du Grand Sablon, 38700 La Tronche, France
| | - Denis Barbier
- Microlight 3D, 5 avenue du Grand Sablon, 38700 La Tronche, France
| | - Catherine Picart
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l’Enseignement Supérieur, de la Recherche et de I’Industrie, 1 rue Descartes, 75 231 Paris Cedex 05, France
| |
Collapse
|
38
|
Morsy MK, Morsy OM, Abdelmonem MA, Elsabagh R. Anthocyanin-Colored Microencapsulation Effects on Survival Rate of Lactobacillus rhamnosus GG, Color Stability, and Sensory Parameters in Strawberry Nectar Model. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractProbiotic microencapsulation is a promising way to produce functional food, while their stability and sensory acceptability still a challenge. This study aims to enhance the functional properties of strawberry (Fragaria × ananassa, cultivar Camarosa) nectar and sensory acceptance using novel anthocyanin-colored microencapsulation of Lactobacillus rhamnosus. Four formulations (F1–F4) of coated materials (alginate, whey protein, and pullulan) integrated with anthocyanin pigment were used for encapsulation. The physical properties of microencapsulated probiotics (size, color, efficiency, stability, and survival rate) and quality parameters of nectar (pH, anthocyanin, and sensory acceptability) during 4 weeks of storage at 4 and 25 °C were evaluated. All formulations exhibited high encapsulation efficiency (> 89%), medium bead size (406–504 μm), and proper color (red color). The microencapsulated cells were stable in simulated gastrointestinal and processing conditions (up 7 log10 CFU mL−1) compared to free cells. F4 (alginate 2% + anthocyanin 0.1% + whey protein 2% + pullulan 2% + cocoa butter 1% + L. rhamnosus GG) showed the greatest viability in nectar during storage (6.72 log10 CFU mL−1/4 °C/4 weeks), while a significant decrease in pH (< 2) and anthocyanin (< 60 mg 100 g−1) was observed in nectar-containing free cells. The sensory scores with a difference-preference test as exploratory and preliminary responses revealed that colored probiotic microcapsules enhanced the sensory characters (up to 4 weeks) and commercially accepted (> 80% agreed) of strawberry nectar. Results demonstrated that anthocyanin-colored alginate-whey protein-pullulan matrix had the potential to enhance probiotic viability in functional nectar without negative impact.
Collapse
|
39
|
Cho SH, Lewis EA, Zacharia NS, Vogt BD. Non-destructive determination of functionalized polyelectrolyte placement in layer-by-layer films by IR ellipsometry. SOFT MATTER 2021; 17:10527-10535. [PMID: 34757358 DOI: 10.1039/d1sm01246k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layer-by-layer (LbL) assembly facilitates controlled coatings on a variety of surfaces with the ability to manipulate the composition through the thickness by selection of the complementary pairs. However, the characterization of these composition profiles tends to be destructive and requires significant compositional differences that can limit their utility. Here, we demonstrate the ability to non-destructively quantify the depth dependence of the allyl content associated with the selective incorporation of poly(sodium acrylate-co-allylacrylamide) (84 : 16 mol : mol) (allyl-PAA) in LbL films based on the assembly of poly(diallyldimethylammonium chloride) (PDAC)/poly(acrylic acid) (PAA) and PDAC/allyl-PAA. Although the atomic composition of the film is not dramatically influenced by the change between PAA and allyl-PAA, the absorption in the IR near 1645 cm-1 by the allyl group provides sufficient optical contrast to distinguish the LbL components with spectroscopic ellipsometry. The use of IR spectroscopic ellipsometry can determine the thickness of layers that contain allyl-PAA and also gradients that develop due to re-arrangements during the LbL process. With multiple films fabricated simultaneously, the location of the gradient between the 1st and 2nd series of multilayers (e.g., first PDAC/PAA bilayers and then PDAC/allyl-PAA bilayers) can be readily assessed. The results from a variety of different multilayer architectures indicate that the gradient is located within the thickness expected for the 1st deposited bilayer stack (PDAC/PAA or PDAC/allyl-PAA). These results are indicative of a dynamic dissolution-deposition process (in- and out- diffusion) during the fabrication of these LbL films. These results provide additional evidence into the mechanisms for exponential growth in LbL assemblies. The ability to quantify a gradient with the low contrast system examined indicates that spectroscopic IR ellipsometry should be able to non-destructively determine compositional gradients for most polymer films where such gradients exist.
Collapse
Affiliation(s)
- Szu-Hao Cho
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Elizabeth A Lewis
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
40
|
Pahal S, Boranna R, Prashanth GR, Varma MM. Simplifying Molecular Transport in Polyelectrolyte Multilayer Thin Films. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem) Bengaluru Karnataka 560065 India
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| | - Rakshith Boranna
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Gurusiddappa R. Prashanth
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Manoj M. Varma
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| |
Collapse
|
41
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
42
|
Webber JL, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Polyelectrolyte multilayer formation on protein layer supports. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Abbett RL, Chen Y, Schlenoff JB. Self-Exchange of Polyelectrolyte in Multilayers: Diffusion as a Function of Salt Concentration and Temperature. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rachel L. Abbett
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yuhui Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
44
|
Cao Z, Zhang Y, Luo Z, Li W, Fu T, Qiu W, Lai Z, Cheng J, Yang H, Ma W, Liu C, de Smet LCPM. Construction of a Self-Assembled Polyelectrolyte/Graphene Oxide Multilayer Film and Its Interaction with Metal Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12148-12162. [PMID: 34618452 DOI: 10.1021/acs.langmuir.1c02058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a composite multilayer film onto gold was constructed from two charged building blocks, i.e., negatively charged graphene oxide (GO) and a branched polycation (polyethylenimine, PEI) via layer-by-layer (LbL) self-assembly technology, and this process was monitored in situ with quartz crystal microbalance (QCM) under different experimental conditions. This included the differences in frequency (Δf) as well as the changes in dissipation to yield information on the absorbed mass and viscoelastic properties of the formed PEI/GO multilayer films. The experimental conditions were optimized to obtain a high amount of the adsorbed mass of the self-assembled multilayer film. The surface morphology of the PEI/GO multilayer film onto gold was studied with atomic force microscopy (AFM). It was found that the positively charged PEI chains were combined with the oppositely charged GO to form an assembled film on the QCM sensor surface, in a wrapped and curled fashion. Raman and UV-vis spectra also showed that the intensities of the GO-characteristic signals are almost linearly related to the layer number. To explore the films for their use in divalent ion detection, the frequency response of the PEI/GO multilayer-modified QCM sensor to the exposure of aqueous solutions solution of Cu2+, Ca2+, Zn2+, and Sn2+ was further studied using QCM. Based on the Sauerbrey equation and the weight of different ions, the number of metal ions adsorbed per unit area on the surface of QCM sensors was calculated. For metal ion concentrations of 40 ppm, the adsorption capacities per unit area of Cu2+, Zn2+, Sn2+, and Ca2+ were found to be 1.7, 3.2, 0.7, and 4.9 nmol/cm2, respectively. Thus, in terms of the number of adsorbed ions per unit area, the QCM sensor modified by PEI/GO multilayer film shows the largest adsorption capacity of Ca2+. This can be rationalized by the relative hydration energies.
Collapse
Affiliation(s)
- Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People's Republic of China
- College of Hua Loogeng, Changzhou University, Changzhou, 213164, People's Republic of China
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yang Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Zili Luo
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Wenjun Li
- College of Hua Loogeng, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Tao Fu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Wang Qiu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Zhirong Lai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People's Republic of China
| | - Louis C P M de Smet
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
45
|
Roupie C, Labat B, Morin-Grognet S, Thébault P, Ladam G. Nisin-based antibacterial and antiadhesive layer-by-layer coatings. Colloids Surf B Biointerfaces 2021; 208:112121. [PMID: 34600362 DOI: 10.1016/j.colsurfb.2021.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Some removable medical devices such as catheters and cardiovascular biomaterials require antiadhesive properties towards both prokaryotic and eukaryotic cells in order to prevent the tissues from infections upon implantation and, from alteration upon removal. In order to inhibit cell adhesion, we developed ultrathin hydrated Layer-by-Layer (LbL) coatings composed of biocompatible polyelectrolytes, namely chondroitin sulfate A (CSA) and poly-l-lysine (PLL). The coatings were crosslinked with genipin (GnP), a natural and biocompatible crosslinking agent, to increase their resistance against environmental changes. In order to confer antibacterial activity to the coatings, we proceeded to the electrostatically-driven immobilization of nisin Z, an antimicrobial peptide (AMP) active against gram-positive bacteria. The nisin-enriched coatings had a significantly increased anti-proliferative impact on fibroblasts, as well as a strong contact-killing activity against Staphylococcus aureus in the short and long term.
Collapse
Affiliation(s)
- Charlotte Roupie
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France; Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Béatrice Labat
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Sandrine Morin-Grognet
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Pascal Thébault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France
| | - Guy Ladam
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France.
| |
Collapse
|
46
|
Gribova V, Navalikhina A, Lysenko O, Calligaro C, Lebaudy E, Deiber L, Senger B, Lavalle P, Vrana NE. Prediction of coating thickness for polyelectrolyte multilayers via machine learning. Sci Rep 2021; 11:18702. [PMID: 34548560 PMCID: PMC8455527 DOI: 10.1038/s41598-021-98170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Layer-by-layer (LbL) deposition method of polyelectrolytes is a versatile way of developing functional nanoscale coatings. Even though the mechanisms of LbL film development are well-established, currently there are no predictive models that can link film components with their final properties. The current health crisis has shown the importance of accelerated development of biomedical solutions such as antiviral coatings, and the implementation of machine learning methodologies for coating development can enable achieving this. In this work, using literature data and newly generated experimental results, we first analyzed the relative impact of 23 coating parameters on the coating thickness. Next, a predictive model has been developed using aforementioned parameters and molecular descriptors of polymers from the DeepChem library. Model performance was limited because of insufficient number of data points in the training set, due to the scarce availability of data in the literature. Despite this limitation, we demonstrate, for the first time, utilization of machine learning for prediction of LbL coating properties. It can decrease the time necessary to obtain functional coating with desired properties, as well as decrease experimental costs and enable the fast first response to crisis situations (such as pandemics) where coatings can positively contribute. Besides coating thickness, which was selected as an output value in this study, machine learning approach can be potentially used to predict functional properties of multilayer coatings, e.g. biocompatibility, cell adhesive, antibacterial, antiviral or anti-inflammatory properties.
Collapse
Affiliation(s)
- Varvara Gribova
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France
| | | | | | | | - Eloïse Lebaudy
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France
| | | | - Bernard Senger
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France.,SPARTHA Medical, 67100, Strasbourg, France
| | | |
Collapse
|
47
|
Moreira J, Vale AC, Alves NM. Spin-coated freestanding films for biomedical applications. J Mater Chem B 2021; 9:3778-3799. [PMID: 33876170 DOI: 10.1039/d1tb00233c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spin-coating is a widely employed technique for the fabrication of thin-film coatings over large areas with smooth and homogeneous surfaces. In recent years, research has extended the scope of spin-coating by developing methods involving the interface of the substrate and the deposited solution to obtain self-supported films, also called freestanding films. Thereby, such structures have been developed for a wide range of areas. Biomedical applications of spin-coated freestanding films include wound dressings, drug delivery, and biosensing. This review will discuss the fundamental physical and chemical processes governing the conventional spin-coating as well as the techniques to obtain freestanding films. Furthermore, developments within this field with a primary focus on tissue engineering applications will be reviewed.
Collapse
Affiliation(s)
- Joana Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Catarina Vale
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
48
|
Naumenko E, Akhatova F, Rozhina E, Fakhrullin R. Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication. Pharmaceutics 2021; 13:pharmaceutics13081230. [PMID: 34452190 PMCID: PMC8400787 DOI: 10.3390/pharmaceutics13081230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Polycations are an essential part of layer-by-layer (LbL)-assembled drug delivery systems, especially for gene delivery. In addition, they are used for other related applications, such as cell surface engineering. As a result, an assessment of the cytotoxicity of polycations and elucidation of the mechanisms of polycation toxicity is of paramount importance. In this study, we examined in detail the effects of a variety of water-soluble, positively charged synthetic polyelectrolytes on in vitro cytotoxicity, cell and nucleus morphology, and monolayer expansion changes. We have ranked the most popular cationic polyelectrolytes from the safest to the most toxic in relation to cell cultures. 3D cellular cluster formation was disturbed by addition of polyelectrolytes in most cases in a dose-dependent manner. Atomic force microscopy allowed us to visualize in detail the structures of the polyelectrolyte–DNA complexes formed due to electrostatic interactions. Our results indicate a relationship between the structure of the polyelectrolytes and their toxicity, which is necessary for optimization of drug and gene delivery systems.
Collapse
|
49
|
Kulikouskaya V, Zhdanko T, Hileuskaya K, Kraskouski A, Zhura A, Skorohod H, Butkevich V, Pal K, Tratsyak S, Agabekov V. Physicochemical aspects of design of ultrathin films based on chitosan, pectin, and their silver nanocomposites with antiadhesive and bactericidal potential. J Biomed Mater Res A 2021; 110:217-228. [PMID: 34291871 DOI: 10.1002/jbm.a.37278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 11/11/2022]
Abstract
Implant-related infection is one of the serious problems in regenerative medicine. Promising approach to overcome the problems caused by bacterial growth on the medical implants is their modification by bioactive coatings. A versatile technique for designing multilayer films with tailored characteristics at the nanometer scale is layer-by-layer assembly. In this study, multilayer films based on biopolymers (pectin and chitosan) and their nanocomposites with silver nanoparticles have been prepared and evaluated. The buildup of multilayers was monitored using the quartz crystal microbalance with dissipation technique. The morphology of the obtained films was investigated by atomic force microscopy. We have demonstrated that pectin-Ag-containing films were characterized by the linear growth and smooth defect-free surface. When pectin-Ag was substituted for the pectin in the multilayer systems, the properties of the formed coatings were significantly changed: the film rigidity and surface roughness increased, as well as the film growth acquired the parabolic character. All prepared multilayer films have shown antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The significant decrease in the number of the adhered E. coli on the multilayer surface has been determined; moreover, many of the cells were misshapen with cytoplasm leaking. The prepared multilayer films showed a mild activity against S. aureus predominantly due to the antiadhesive effect. Our results indicate that antibacterial activity of biopolymer multilayers is determined by the film composition and physicochemical characteristics and can be associated with their antiadhesive and bactericidal behaviors.
Collapse
Affiliation(s)
- Viktoryia Kulikouskaya
- Laboratory of micro- and nanostructured systems, Institute of chemistry of new materials National academy of sciences of Belarus, 36 F. Skaryna str, Minsk, 220141, Belarus
| | - Tsimafei Zhdanko
- Laboratory of micro- and nanostructured systems, Institute of chemistry of new materials National academy of sciences of Belarus, 36 F. Skaryna str, Minsk, 220141, Belarus
| | - Kseniya Hileuskaya
- Laboratory of micro- and nanostructured systems, Institute of chemistry of new materials National academy of sciences of Belarus, 36 F. Skaryna str, Minsk, 220141, Belarus
| | - Aliaksandr Kraskouski
- Laboratory of micro- and nanostructured systems, Institute of chemistry of new materials National academy of sciences of Belarus, 36 F. Skaryna str, Minsk, 220141, Belarus
| | - Alexandr Zhura
- Department of Surgical Diseases, Belorussian State Medical University, 83 Dzerzhinski Ave, Minsk, 220116, Belarus
| | - Hennadiy Skorohod
- Department of Surgical Diseases, Belorussian State Medical University, 83 Dzerzhinski Ave, Minsk, 220116, Belarus
| | - Vasili Butkevich
- Department of Surgical Diseases, Belorussian State Medical University, 83 Dzerzhinski Ave, Minsk, 220116, Belarus
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Stanislau Tratsyak
- Department of Surgical Diseases, Belorussian State Medical University, 83 Dzerzhinski Ave, Minsk, 220116, Belarus
| | - Vladimir Agabekov
- Laboratory of micro- and nanostructured systems, Institute of chemistry of new materials National academy of sciences of Belarus, 36 F. Skaryna str, Minsk, 220141, Belarus
| |
Collapse
|
50
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|