1
|
Papadopoulos K, Tselekidou D, Zachariadis A, Laskarakis A, Logothetidis S, Gioti M. The Influence of Thickness and Spectral Properties of Green Color-Emitting Polymer Thin Films on Their Implementation in Wearable PLED Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1608. [PMID: 39404335 PMCID: PMC11478667 DOI: 10.3390/nano14191608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
A systematic investigation of optical, electrochemical, photophysical, and electrooptical properties of printable green color-emitting polymer (poly(9,9-dioctylfluorene-alt-bithiophene)) (F8T2) and spiro-copolymer (SPG-01T) was conducted to explore their potentiality as an emissive layer for wearable polymer light-emitting diode (PLED) applications. We compared the two photoactive polymers in terms of their spectral characteristics and color purity, as these are the most critical factors for wearable lighting sources and optical sensors. Low-cost, solution-based methods and facile architecture were applied to produce rigid and flexible light-emitting devices with high luminance efficiencies. Emission bandwidths, color coordinates, operational characteristics, and luminance were also derived to evaluate the device's stability. The tuning of emission's spectral features by layer thickness variation was realized and was correlated with the interplay between H-aggregates and J-aggregates formations for both conjugated polymers. Finally, we applied the functional green light-emitting PLED devices based on the two studied materials for the detection of Rhodamine 6G. It was determined that the optical detection of the R6G photoluminescence is heavily influenced by the emission spectrum characteristics of the PLED and changes in the thickness of the active layer.
Collapse
Affiliation(s)
- Kyparisis Papadopoulos
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Despoina Tselekidou
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Alexandros Zachariadis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Argiris Laskarakis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| | - Stergios Logothetidis
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
- Organic Electronic Technologies P.C. (OET), 20th km Thessaloniki—Tagarades, 57001 Thermi, Greece
| | - Maria Gioti
- Nanotechnology Laboratory LTFN, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.T.); (A.Z.); (A.L.); (S.L.)
| |
Collapse
|
2
|
Zhang RB, Grunwald MA, Zeng XB, Laschat S, Cammidge AN, Ungar G. Orientational transitions of discotic columnar liquid crystals in cylindrical pores. SOFT MATTER 2024; 20:6193-6203. [PMID: 39045629 DOI: 10.1039/d4sm00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Confined in a cylindrical pore with homeotropic anchoring condition, the hexagonal columnar phase of discotic liquid crystals can form a "log-pile" configuration, in which the columns are perpendicular to the long axis of the pore. However, the {100} planes of the hexagonal lattice can orient either parallel (termed (100)‖ orientation) or perpendicular ((100)⊥) to pore axis. Here we experimentally show that the (100)‖ orientation is found in narrower cylindrical pores, and the (100)‖-(100)⊥ transition can be controlled by engineering the structure of the molecules. The (100)‖ orientation is destroyed in asymmetric discotics hepta(heptenyloxy)triphenylene (SATO7); replacing the oxygen linkage in hexa(hexyloxy)triphenylene (HATO6) by sulphur (HATS6) improves the (100)‖ orientation in small pores; adding a perfluorooctyl end to each alkyl chain of HATO6 (HATO6F8) moves the (100)‖-(100)⊥ transition to larger pores. We have provided a semi-quantitative explanation of the experimental observations, and discussed them in the context of previous findings on related materials in a wider pore size range from 60 nm to 100 μm. This allows us to produce a comprehensive picture of confined columnar liquid crystals whose applications critically depend on our ability to align them.
Collapse
Affiliation(s)
- Rui-Bin Zhang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3Jd, UK.
| | - Marco A Grunwald
- Institut für Organische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Xiang-Bing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3Jd, UK.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany
| | | | - Goran Ungar
- Shaanxi International Research Center for Soft Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Casaroto M, Chiccoli C, Evangelista LR, Pasini P, de Souza RT, Zannoni C, Zola RS. Point and line defects in checkerboard patterned hybrid nematic films: A computer simulation investigation. Phys Rev E 2024; 110:014704. [PMID: 39160928 DOI: 10.1103/physreve.110.014704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024]
Abstract
We consider a nematic liquid crystal film confined to a flat cell with homeotropic and planar patterned hybrid anchoring and show, using Monte Carlo simulations, the possibility of the system to stabilize line and point defects. The planar anchoring surface is patterned with a chessboardlike grid of squares with alternating random or parallel homogeneous planar anchoring. The simulations show only line defects when the individual domains are small enough, but also point defects when the domain size is significantly larger than the sample thickness. In the latter case, defect lines are not observed in domains with random surface anchoring, although lines and points are connected by a thick line which separates two regions with different director tilts. Increasing the anchoring strength, the defect lines appear a few layers above the surface, with the two ends just above the randomly oriented domains.
Collapse
Affiliation(s)
| | | | - Luiz Roberto Evangelista
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790-87020-900 Maringá, Paraná, Brazil
- Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Campus Apucarana, Rua Marcílio Dias, 635 CEP 86812-460-Apucarana, Paraná, Brazil
| | | | - Rodolfo Teixeira de Souza
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790-87020-900 Maringá, Paraná, Brazil
- Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Campus Apucarana, Rua Marcílio Dias, 635 CEP 86812-460-Apucarana, Paraná, Brazil
| | | | - Rafael Soares Zola
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790-87020-900 Maringá, Paraná, Brazil
- Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Campus Apucarana, Rua Marcílio Dias, 635 CEP 86812-460-Apucarana, Paraná, Brazil
| |
Collapse
|
4
|
Zeng CY, Deng WJ, Zhao KQ, Redshaw C, Donnio B. Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties. Chemistry 2024; 30:e202400296. [PMID: 38427538 DOI: 10.1002/chem.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.
Collapse
Affiliation(s)
- Chong-Yang Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, School of Natural Sciences, Hull, HU6 7RX, UK
| | - Bertrand Donnio
- Institut de Chimie et Physique des Matériaux de Strasbourg, UMR 7504, CNRS-University of Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
5
|
Nasrollahi A, Rella AK, Kumar V, Kang SW. Stepwise Progression of Dye-Induced In Situ Photoalignment and Subsequent Stabilization for Noncontact Alignment of Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38656150 DOI: 10.1021/acsami.4c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Noncontact alignment of liquid crystals (LCs) is crucial for large-area and ultrahigh definition (UHD) display manufacturing. This research presents an innovative approach to the photoalignment of LCs, aiming to overcome challenges associated with uniformity and assembly in large-sized and UHD displays. Using homogeneously dissolved, nonionic azobenzene chromophores sensitive to both visible and UV light, we demonstrate an in situ stepwise progression of dye-induced LC alignment and subsequent stabilization using reactive mesogen (RM). Both dual-wavelength and single-wavelength approaches enable stepwise interfacial modifications for LC alignment and stabilization. The dye-induced LC alignment is rewritable, allowing for the creation of various patterns and gray-level alignments. The stability of the alignment is ensured through cross-linked RM layers, providing a robust and permanent solution for LC alignment without the need for delicate mechanical treatments. Importantly, this method addresses the challenges associated with conventional photoalignments, including various dye-induced approaches and high-energy photoalignment. The proposed method exhibits high-quality electro-optical switching, azimuthal anchoring strength, and stability against thermal, radiation, and ac-field stresses, making it a promising candidate for commercial mass production, especially in the fabrication of large-sized and UHD LC displays.
Collapse
Affiliation(s)
- Aboozar Nasrollahi
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| | - Avinash Kumar Rella
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| | - Vineet Kumar
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| | - Shin-Woong Kang
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Zadehnazari A, Khosropour A, Altaf AA, Rosen AS, Abbaspourrad A. Tetrazine-Linked Covalent Organic Frameworks With Acid Sensing and Photocatalytic Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311042. [PMID: 38140890 DOI: 10.1002/adma.202311042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Andrew S Rosen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
van den Bersselaar BWL, van de Ven APA, de Waal BFM, Meskers SCJ, Eisenreich F, Vantomme G. Stimuli-Responsive Nanostructured Viologen-Siloxane Materials for Controllable Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312791. [PMID: 38413048 DOI: 10.1002/adma.202312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Spontaneous phase separation is a promising strategy for the development of novel electronic materials, as the resulting well-defined morphologies generally exhibit enhanced conductivity. Making these structures adaptive to external stimuli is challenging, yet crucial as multistate reconfigurable switching is essential for neuromorphic materials. Here, a modular and scalable approach is presented to obtain switchable phase-separated viologen-siloxane nanostructures with sub-5 nm features. The domain spacing, morphology, and conductivity of these materials can be tuned by ion exchange, repeated pulsed photoirradiation and electric stimulation. Counterion exchange triggers a postsynthetic modification in domain spacing of up to 10%. Additionally, in some cases, 2D to 1D order-order transitions are observed with the latter exhibiting a sevenfold decrease in conductivity with respect to their 2D lamellar counterparts. Moreover, the combination of the viologen core with tetraphenylborate counterions enables reversible and in situ reduction upon light irradiation. This light-driven reduction provides access to a continuum of conducting states, reminiscent of long-term potentiation. The repeated voltage sweeps improve the nanostructures alignment, leading to increased conductivity in a learning effect. Overall, these results highlight the adaptivity of phase-separated nanostructures for the next generation of organic electronics, with exciting applications in smart sensors and neuromorphic devices.
Collapse
Affiliation(s)
- Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alex P A van de Ven
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - F Eisenreich
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - G Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
8
|
Zhang KL, Yu WH, Zhao KQ, Hu P, Wang BQ, Donnio B. Mesomorphism Modulation of Perfluorinated Janus Triphenylenes by Inhomogeneous Chain Substitution Patterns. Chem Asian J 2024:e202301080. [PMID: 38214422 DOI: 10.1002/asia.202301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Two isomeric series of compounds with "inverted" chains' substitution patterns, 7,10-dialkoxy-1,2,3,4-tetrafluoro-6,11-dimethoxytriphenylene and 6,11-dialkoxy-1,2,3,4-tetrafluoro-7,10-dimethoxytriphenylene, labelled respectively p-TPFn and m-TPFn, and two non-fluorinated homologous isomers, 3,6-dibutoxy-2,7-dimethoxytriphenylene and 2,7-dibutoxy-3,6-dimethoxytriphenylene, p-TP4 and m-TP4, respectively, were synthesized in three steps and obtained in good yields by the efficient transition-metal-free, fluoroarene nucleophilic substitution via the reaction of appropriate 2,2'-dilithium biphenylenes with either perfluorobenzene, C6 F6 , to yield p-TPFn and m-TPFn, or o-difluorobenzene, C6 H4 F2 , for p-TP4 and m-TP4, respectively. The single-crystal structures of p-TPF4, m-TPF4 and p-TP4, unequivocally confirmed that the cyclization reactions occurred at the expected positions, and that the fluorinated molecules stack up into columns with short separation, a propitious situation for the emergence of columnar mesophases. The mesomorphous properties were found to be greatly affected by both chains' length and positional isomerism: a Colhex phase is found for p-TPF4 and m-TPF4, but mesomorphism vanishes in p-TPF6, and changes for the isomeric homologs m-TPFn, with the induction for n≥6 of a lamello-columnar phase, LamColrec . As expected, both non-fluorinated compounds are deprived of mesomorphism. These compounds emit blue-violet colour in solution, independently of the chains' substitution pattern, and the absolute fluorescence quantum yields can reach up to 46 %. In thin films, fluorescence is slightly redshifted.
Collapse
Affiliation(s)
- Kai-Li Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034, cedex 2 Strasbourg, France
| |
Collapse
|
9
|
Veeraprakash B, Kesava Reddy M, Das BB, Lobo NP, Ramanathan KV, Narasimhaswamy T. Effortless Extraction of Structural and Orientational Information from 13C- 1H Dipolar Couplings for Thiophene Mesogens. J Phys Chem B 2023; 127:10912-10922. [PMID: 38063349 DOI: 10.1021/acs.jpcb.3c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Five molecular mesogens containing phenyl rings and thiophene are subjected to a detailed 13C NMR investigation. The first mesogen contains only phenyl rings, while the other four have thiophene with substitution at position 2 or 3. Two of these also have a spacer inserted between the thiophene and the rest of the core unit. The mesophase properties evaluated by complementary techniques reveal an enantiotropic nematic phase for all the cases and smectic C as well as Crystal J for a few mesogens. In addition to solution 13C NMR, the samples were studied using 1D and 2D solid-state 13C NMR experiments in the liquid crystalline phase. The chemical shifts and 13C-1H dipolar couplings obtained in the mesophase provided cutting-edge information about the molecular structure and orientation of the thiophene mesogens. Accordingly, dramatic differences in these parameters are noted for the mesogens, and consequently, the identification of 2- and 3-substituted thiophene mesogens is accomplished by a simple visual examination of the 2D spectra. Furthermore, for mesogens with a spacer between thiophene and the rest of the core, 13C chemical shifts and 13C-1H dipolar couplings showed remarkable variation, which was directly reflected in the order parameters. For instance, the order parameter (Szz) of thiophene in 2- and 3-substituted mesogens in which the spacer is absent is ∼0.63 whereas for those with spacer, it is reduced to ∼0.14-0.18. In comparison, the mesogen in which the core unit is made up of phenyl rings alone that is used to benchmark the characteristics of thiophene ordering showed an order parameter of ∼0.85. The study unambiguously demonstrates the supremacy of 13C NMR in extracting the structural and orientational information on mesogens in which thiophene is a constituent of the core unit.
Collapse
Affiliation(s)
- Bathini Veeraprakash
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | | | - Bibhuti B Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Nitin P Lobo
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Tanneru Narasimhaswamy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Alves AL, Bernardino SV, Stadtlober CH, Girotto E, Farias G, do Nascimento RM, Curcio SF, Cazati T, Dotto MER, Eccher J, Furini LN, Gallardo H, Bock H, Bechtold IH. Charge carrier transport in perylene-based and pyrene-based columnar liquid crystals. Beilstein J Org Chem 2023; 19:1755-1765. [PMID: 38025088 PMCID: PMC10667716 DOI: 10.3762/bjoc.19.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.
Collapse
Affiliation(s)
- Alessandro L Alves
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Simone V Bernardino
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Carlos H Stadtlober
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Edivandro Girotto
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Giliandro Farias
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Rodney M do Nascimento
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio F Curcio
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Thiago Cazati
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Marta E R Dotto
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Juliana Eccher
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Leonardo N Furini
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Hugo Gallardo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600 Pessac, France
| | - Ivan H Bechtold
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
11
|
Chen Z, Nie H, Benmore CJ, Smith PA, Du Y, Byrn S, Templeton AC, Su Y. Probing Molecular Packing of Amorphous Pharmaceutical Solids Using X-ray Atomic Pair Distribution Function and Solid-State NMR. Mol Pharm 2023; 20:5763-5777. [PMID: 37800667 DOI: 10.1021/acs.molpharmaceut.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural investigation of amorphous pharmaceuticals is of paramount importance in comprehending their physicochemical stability. However, it has remained a relatively underexplored realm primarily due to the limited availability of high-resolution analytical tools. In this study, we utilized the combined power of X-ray pair distribution functions (PDFs) and solid-state nuclear magnetic resonance (ssNMR) techniques to probe the molecular packing of amorphous posaconazole and its amorphous solid dispersion at the molecular level. Leveraging synchrotron X-ray PDF data and employing the empirical potential structure refinement (EPSR) methodology, we unraveled the existence of a rigid conformation and discerned short-range intermolecular C-F contacts within amorphous posaconazole. Encouragingly, our ssNMR 19F-13C distance measurements offered corroborative evidence supporting these findings. Furthermore, employing principal component analysis on the X-ray PDF and ssNMR data sets enabled us to gain invaluable insights into the chemical nature of the intermolecular interactions governing the drug-polymer interplay. These outcomes not only furnish crucial structural insights facilitating the comprehension of the underlying mechanisms governing the physicochemical stability but also underscore the efficacy of synergistically harnessing X-ray PDF and ssNMR techniques, complemented by robust modeling strategies, to achieve a high-resolution exploration of amorphous structures.
Collapse
Affiliation(s)
- Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chris J Benmore
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pamela A Smith
- Improved Pharma, West Lafayette, Indiana 47906, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen Byrn
- Improved Pharma, West Lafayette, Indiana 47906, United States
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
12
|
Zhou MM, He J, Pan HM, Zeng Q, Lin H, Zhao KQ, Hu P, Wang BQ, Donnio B. Induction and Stabilization of Columnar Mesophases in Fluorinated Polycyclic Aromatic Hydrocarbons by Arene-Perfluoroarene Interactions. Chemistry 2023; 29:e202301829. [PMID: 37452614 DOI: 10.1002/chem.202301829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The straightforward synthesis of several Fluorinated Polycyclic Aromatic Hydrocarbons by the efficient, transition-metal-free, arene fluorine nucleophilic substitution reaction is described, and the full investigation of their liquid crystalline and optical properties reported. The key precursors for this study, i. e. 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl derivatives, were obtained in two steps from the highly selective Scholl oxidative homo-coupling of 3,4-dialkoxy-1-bromobenzene, followed by quantitative double-lithiation. In situ room temperature nucleophilic annulation with either perfluorobenzene or perfluoronaphthalene leads to 1,2,3,4-tetrafluoro-6,7,10,11-tetraalkxoytriphenylenes and 9,10,11,12,13,14-hexafluoro-2,3,6,7-tetraalkoxybenzo[f]tetraphenes, respectively, in good yields. Exploiting the same strategy, subsequent double annulations resulted in the formation of 9,18-difluoro-2,3,6,7,11,12,15,16-octa(alkoxy)tribenzo[f,k,m]tetraphenes and 9,10,19,20-tetrafluoro-2,3,6,7,12,13,16,17-octakis(hexyloxy)tetrabenzo[a,c,j,l]tetracenes, respectively. Despite the presence of only four alkoxy chains, the polar "Janus" mesogens display a columnar hexagonal mesophase over broad temperature ranges, with higher mesophase stability than the archetypical 2,3,6,7,10,11-hexa(alkoxy)triphenylenes and their hydrogenated counterparts. The improvement or induction of mesomorphism is attributed to efficient antiparallel face-to-face π-stacking driven by the establishment of non-covalent perfluoroarene-arene intermolecular interactions. The larger lipophilic discotic π-extended compounds also exhibit columnar mesomorphism, over similar temperature ranges and stability than their hydrogenated homologs. Finally, these fluorinated molecules form stringy gels in various solvents, and show interesting solvatochromic emission properties in solution as well as strong emission in thin films and gels.
Collapse
Affiliation(s)
- Ming-Mei Zhou
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Jiao He
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Hui-Min Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Qing Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Hang Lin
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Bertrand Donnio
- Institut de Physique et Chimie de Strasbourg, CNRS-Université de Strasbourg (UMR7504), 67000, Strasbourg, France
| |
Collapse
|
13
|
Wang M, Yang B, Yu T, Yu X, Rizwan M, Yuan X, Nie X, Zhou X. Research progress in the preparation of mesophase pitch from fluid catalytic cracking slurry. RSC Adv 2023; 13:18676-18689. [PMID: 37346963 PMCID: PMC10281006 DOI: 10.1039/d3ra01726e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
For the preparation of high-performance pitch-based carbon fibers and other carbon materials, mesophase pitch serves as a high-quality precursor. Since FCC (Fluid Catalytic Cracking) oil slurry is abundant in aromatic hydrocarbons and saturated hydrocarbons (about 95% in total), it has become an ideal choice for developing new carbon material products. This paper details the research progress of preparing mesophase asphalt with FCC oil slurry as a raw material from perspectives including the preparation method of synthesizing mesophase asphalt from FCC oil slurry, the impact factors of the formation process of mesophase asphalt and the industrial application of mesophase asphalt.
Collapse
Affiliation(s)
- Mingzhi Wang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Bei Yang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Tao Yu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Xiaoyan Yu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Muhammad Rizwan
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Xulu Yuan
- Baowu Carbon Technology Co., Ltd. China
| | - Xinyao Nie
- Liaoning Qingyang Chemical Industry Corporation China
| | - Xiaolong Zhou
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| |
Collapse
|
14
|
Liu D, Zhu F, Yan D. Crystalline organic thin films for crystalline OLEDs (II): weak epitaxy growth of phenanthroimidazole derivatives. RSC Adv 2023; 13:15586-15593. [PMID: 37228674 PMCID: PMC10203860 DOI: 10.1039/d3ra03095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The ordered molecular arrangement of crystalline organic semiconductors facilitates high carrier mobility and light emission in organic light-emitting diode (OLED) devices. It has been demonstrated that the weak epitaxy growth (WEG) process is a valuable crystallization route for fabricating crystalline thin-film OLEDs (C-OLEDs). Recently, C-OLEDs based on crystalline thin films of phenanthroimidazole derivatives have exhibited excellent luminescent properties such as high photon output at low driving voltage and high power efficiency. Achieving effective control of organic crystalline thin film growth is crucial for the development of new C-OLEDs. Herein, we report the studies on morphology structure and growth behavior of the phenanthroimidazole derivative WEG thin films. The oriented growth of WEG crystalline thin films is determined by channeling and lattice matching between the inducing layer and active layer. Large-size and continuous WEG crystalline thin films can be obtained by controlling the growth conditions.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Feng Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Donghang Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
15
|
Shoji Y, Komiyama R, Kobayashi M, Kosaka A, Kajitani T, Haruki R, Kumai R, Adachi SI, Tada T, Karasawa N, Nakano H, Nakamura H, Sakurai H, Fukushima T. Collective bending motion of a two-dimensionally correlated bowl-stacked columnar liquid crystalline assembly under a shear force. SCIENCE ADVANCES 2023; 9:eadg8202. [PMID: 37172082 PMCID: PMC10181172 DOI: 10.1126/sciadv.adg8202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stacked teacups inspired the idea that columnar assemblies of stacked bowl-shaped molecules may exhibit a unique dynamic behavior, unlike usual assemblies of planar disc- and rod-shaped molecules. On the basis of the molecular design concept for creating higher-order discotic liquid crystals, found in our group, we synthesized a sumanene derivative with octyloxycarbonyl side chains. This molecule forms an ordered hexagonal columnar mesophase, but unexpectedly, the columnar assembly is very soft, similar to sugar syrup. It displays, upon application of a shear force on solid substrates, a flexible bending motion with continuous angle variations of bowl-stacked columns while preserving the two-dimensional hexagonal order. In general, alignment control of higher-order liquid crystals is difficult to achieve due to their high viscosity. The present system that brings together higher structural order and mechanical softness will spark interest in bowl-shaped molecules as a component for developing higher-order liquid crystals with unique mechanical and stimuli-responsive properties.
Collapse
Affiliation(s)
- Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ryo Komiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Miki Kobayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Tomofumi Tada
- Kyushu University Platform of Inter/Transdisciplinary Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoyuki Karasawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiroshi Nakano
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hisao Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
16
|
Chen D, Tenopala‐Carmona F, Knöller JA, Mischok A, Hall D, Madayanad Suresh S, Matulaitis T, Olivier Y, Nacke P, Gießelmann F, Laschat S, Gather MC, Zysman‐Colman E. Mesogenic Groups Control the Emitter Orientation in Multi-Resonance TADF Emitter Films. Angew Chem Int Ed Engl 2023; 62:e202218911. [PMID: 36760211 PMCID: PMC10947294 DOI: 10.1002/anie.202218911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
The use of thermally activated delayed fluorescence (TADF) emitters and emitters that show preferential horizontal orientation of their transition dipole moment (TDM) are two emerging strategies to enhance the efficiency of OLEDs. We present the first example of a liquid crystalline multi-resonance TADF (MR-TADF) emitter, DiKTa-LC. The compound possesses a nematic liquid crystalline phase between 80 °C and 110 °C. Importantly, the TDM of the spin-coated film shows preferential horizontal orientation, with an anisotropy factor, a, of 0.28, which is preserved in doped poly(vinylcarbazole) films. Green-emitting (λEL =492 nm) solution-processed OLEDs based on DiKTa-LC showed an EQEmax of 13.6 %. We thus demonstrate for the first time how self-assembly of a liquid crystalline TADF emitter can lead to the so-far elusive control of the orientation of the transition dipole in solution-processed films, which will be of relevance for high-performance solution-processed OLEDs.
Collapse
Affiliation(s)
- Dongyang Chen
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Francisco Tenopala‐Carmona
- Humboldt Centre for Nano- and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4-650939KölnGermany
| | - Julius A. Knöller
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Andreas Mischok
- Humboldt Centre for Nano- and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4-650939KölnGermany
| | - David Hall
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsMonsBelgium
| | - Subeesh Madayanad Suresh
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Tomas Matulaitis
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional MaterialsNamur Institute of Structured MatterUniversité de NamurRue de Bruxelles 615000NamurBelgium
| | - Pierre Nacke
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Frank Gießelmann
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Laschat
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Malte C. Gather
- Humboldt Centre for Nano- and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4-650939KölnGermany
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
17
|
Feringán B, Martínez-Bueno A, Sierra T, Giménez R. Triphenylamine-Containing Benzoic Acids: Synthesis, Liquid Crystalline and Redox Properties. Molecules 2023; 28:molecules28072887. [PMID: 37049649 PMCID: PMC10096164 DOI: 10.3390/molecules28072887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
The synthesis, characterization and liquid crystalline and electrochemical properties of novel triarylamines, in which the triphenylamine platform is non-symmetrically modified with a 4-(6-oxyhexyloxy)benzoic acid group, are reported. Compounds show columnar liquid crystalline behavior, as confirmed through the use of polarized optical microscopy, differential scanning calorimetry and X-ray diffraction. Electrochemical properties were measured using cyclic voltammperometry, obtaining low oxidation potentials and HOMO values that were optimum for consideration as organic semiconductors in hole transport layers. In addition, the photoredox activity of one of these derivatives in dichloromethane was studied under light irradiation. A photooxidation/assembly process under white light irradiation occurs without the assistance of hydrogen bonding amide functional groups.
Collapse
Affiliation(s)
- Beatriz Feringán
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Alejandro Martínez-Bueno
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Raquel Giménez
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
18
|
Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat Chem 2023; 15:405-412. [PMID: 36550231 DOI: 10.1038/s41557-022-01103-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022]
Abstract
The regioselective functionalization of C60 remains challenging, while the enantioselective functionalization of C60 is difficult to explore due to the need for complex chiral tethers or arduous chromatography. Metal-organic cages have served as masks to effect the regioselective functionalization of C60. However, it is difficult to control the stereochemistry of the resulting fullerene adducts through this method. Here we report a means of defining up to six stereocentres on C60, achieving enantioselective fullerene functionalization. This method involves the use of a metal-organic cage built from a chiral formylpyridine. Fullerenes hosted within the cavity of the cage can be converted into a series of C60 adducts through chemo-, regio- and stereo-selective Diels-Alder reactions with the edges of the cage. The chiral formylpyridine ultimately dictates the stereochemistry of these chiral fullerene adducts without being incorporated into them. Such chiral fullerene adducts may become useful in devices requiring circularly polarized light manipulation.
Collapse
|
19
|
Zeng Q, Liu S, Lin H, Zhao KX, Bai XY, Zhao KQ, Hu P, Wang BQ, Donnio B. Pyrene-Fused Poly-Aromatic Regioisomers: Synthesis, Columnar Mesomorphism, and Optical Properties. Molecules 2023; 28:molecules28041721. [PMID: 36838709 PMCID: PMC9959431 DOI: 10.3390/molecules28041721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
π-Extended pyrene compounds possess remarkable luminescent and semiconducting properties and are being intensively investigated as electroluminescent materials for potential uses in organic light-emitting diodes, transistors, and solar cells. Here, the synthesis of two sets of pyrene-containing π-conjugated polyaromatic regioisomers, namely 2,3,10,11,14,15,20,21-octaalkyloxypentabenzo[a,c,m,o,rst]pentaphene (BBPn) and 2,3,6,7,13,14,17,18-octaalkyloxydibenzo[j,tuv]phenanthro [9,10-b]picene (DBPn), is reported. They were obtained using the Suzuki-Miyaura cross-coupling in tandem with Scholl oxidative cyclodehydrogenation reactions from the easily accessible precursors 1,8- and 1,6-dibromopyrene, respectively. Both sets of compounds, equipped with eight peripheral aliphatic chains, self-assemble into a single hexagonal columnar mesophase, with one short-chain BBPn homolog also exhibiting another columnar mesophase at a lower temperature, with a rectangular symmetry; BBPn isomers also possess wider mesophase ranges and higher mesophases' stability than their DBPn homologs. These polycyclic aromatic hydrocarbons all show a strong tendency of face-on orientation on the substrate and could be controlled to edge-on alignment through mechanical shearing of interest for their implementation in photoelectronic devices. In addition, both series BBPn and DBPn display green-yellow luminescence, with high fluorescence quantum yields, around 30%. In particular, BBPn exhibit a blue shift phenomenon in both absorption and emission with respect to their DBPn isomers. DFT results were in good agreement with the optical properties and with the stability ranges of the mesophases by confirming the higher divergence from the flatness of DBPn compared with BBPn. Based on these interesting properties, these isomers could be potentially applied not only in the field of fluorescent dyes but also in the field of organic photoelectric semiconductor materials as electron transport materials.
Collapse
Affiliation(s)
- Qing Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Hang Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ke-Xiao Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xiao-Yan Bai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
- Correspondence: (K.-Q.Z.); (B.D.)
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), 67034 Strasbourg, France
- Correspondence: (K.-Q.Z.); (B.D.)
| |
Collapse
|
20
|
Chen S, Ma T, Du X, Mo M, Wang Z, Cheng X. D-A-D hexacatenar LCs containing bulky N-trialkoxylbenzyl carbazole caps with RGB emissions for full color palette and white LED applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Sakaino H, Meskers SCJ, Meijer EW, Vantomme G. Charge transport in liquid crystal network of terthiophene-siloxane block molecules. Chem Commun (Camb) 2022; 58:12819-12822. [PMID: 36317540 PMCID: PMC9670865 DOI: 10.1039/d2cc04911b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024]
Abstract
In their thermotropic liquid-crystalline state, molecular semiconductors can show charge transport with high carrier mobility. Polymerization of the corresponding mesogens into a cross-linked network often deteriorates the charge transport. Here, we report that mesogens consisting of a terthiophene core and discrete oligodimethylsiloxane side-chains terminated by acrylate units can be photopolymerized in the columnar phase with retention of nanoscale order and charge transport capabilities. We argue that the strong tendency for microphase segregation protects the semiconducting block from reacting with free radicals during polymerization. This work provides new insights into the design of electroactive materials with charge transport properties.
Collapse
Affiliation(s)
- Hirotoshi Sakaino
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Electronic & Imaging Materials Research Laboratories, Toray Industries, Inc., 3-1-2 Sonoyama, Otsu, Shiga 520-0842, Japan
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
22
|
An approach to the construction of 3-aryl- and 3-hydroxy-substituted benzo[b]selenopheno[2,3-d]thiophenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Katariya KD, Nakum KJ, Hagar M. New thiophene chalcones with ester and Schiff base mesogenic Cores: Synthesis, mesomorphic behaviour and DFT investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
25
|
Qiao X, Xiao S, Yuan P, Yang D, Ma D. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility. FRONTIERS OF OPTOELECTRONICS 2022; 15:11. [PMID: 36637599 PMCID: PMC9756201 DOI: 10.1007/s12200-022-00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 06/17/2023]
Abstract
The transient electroluminescence (EL) technique is widely used to evaluate the carrier mobility in the field of organic light emitting diodes. The traditional analog detection strategy using oscilloscopes is generally limited since the background noise causes an underestimation of the mobility value. In this paper, we utilize time-correlated single-photon counting (TCSPC) to probe the transient EL for mobility calculation. The measurements on tris(8-hydroxyquinoline) aluminum (Alq3) show that the electron mobilities obtained using the TCSPC technique are slightly higher than those obtained from the analog method at all the investigated voltages. Moreover, the TCSPC mobilities demonstrate weaker dependence on the root of electrical field compared to the oscilloscope mobilities. These improvements are attributed to the unique principle of TCSPC, which quantifies the EL intensity by counting the number of single-photon pulses, improving its single-photon sensitivity and eliminating the negative impacts of electrical noise. These advantages make TCSPC a powerful technique in the characterization of time-resolved electroluminescence.
Collapse
Affiliation(s)
- Xianfeng Qiao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shu Xiao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Peisen Yuan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
26
|
Yu Z, Bisoyi HK, Chen XM, Nie ZZ, Wang M, Yang H, Li Q. An Artificial Light-Harvesting System with Controllable Efficiency Enabled by an Annulene-Based Anisotropic Fluid. Angew Chem Int Ed Engl 2022; 61:e202200466. [PMID: 35100478 DOI: 10.1002/anie.202200466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhen-Zhou Nie
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.,Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
27
|
Du X, Ma T, Ge T, Chang Q, Liu X, Cheng X. Molecular design directs self-assembly of DPP polycatenars into 2D and 3D complex nanostructures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Nada S, Hagar M, Farahat O, Hasanein AA, Emwas AH, Sharfalddin AA, Jaremko M, Zakaria MA. Three Rings Schiff Base Ester Liquid Crystals: Experimental and Computational Approaches of Mesogenic Core Orientation Effect, Heterocycle Impact. Molecules 2022; 27:2304. [PMID: 35408703 PMCID: PMC9000867 DOI: 10.3390/molecules27072304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
Three rings 2-hydroxypyridine liquid crystalline compounds have been prepared and fully characterized. The mesomorphic behavior of the prepared compounds has been investigated in terms of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Moreover, a comparative study between the prepared compounds and previously reported analogs has been discussed in terms of the orientation and position of the mesogenic core, in addition to the direction of the terminal alkyl chains. Furthermore, a detailed computational approach has been studied to illustrate the effect of geometrical and dimensional parameters on the type of the enhanced texture and the mesomorphic range and stability. The results of the DFT study revealed that the orientation of the mesogen could affect the mesomorphic behavior and this has been attributed in terms of the degree of the polarizability of the linking groups. This result has been confirmed by calculation of the net dipole moment and the molecular electrostatic potential that show how the mesogen orientation and position could impact the molecular charge separation. Finally, the effect of the pyridyl group has been also investigated in terms of the calculated aromaticity index and the π-π stacking.
Collapse
Affiliation(s)
- Shady Nada
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.N.); (O.F.); (A.A.H.); (M.A.Z.)
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.N.); (O.F.); (A.A.H.); (M.A.Z.)
| | - Omaima Farahat
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.N.); (O.F.); (A.A.H.); (M.A.Z.)
| | - Ahmed A. Hasanein
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.N.); (O.F.); (A.A.H.); (M.A.Z.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia;
| | - Abeer Ali Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia;
| | - Mohamed A. Zakaria
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.N.); (O.F.); (A.A.H.); (M.A.Z.)
| |
Collapse
|
29
|
Doganci E, Kayabasi F, Davarcı D, Demir A, Gürek AG. Synthesis of liquid crystal polymers containing cholesterol side groups and investigation of their usability potential as an insulator in organic field effect transistor (OFET) applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02895-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Yu Z, Bisoyi HK, Chen X, Nie Z, Wang M, Yang H, Li Q. An Artificial Light‐Harvesting System with Controllable Efficiency Enabled by an Annulene‐Based Anisotropic Fluid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Zhen‐Zhou Nie
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
31
|
Cembellín S, Maisuls I, Daniliuc CG, Osthues H, Doltsinis NL, Strassert CA, Glorius F. One-step synthesis of indolizino[3,4,5- ab]isoindoles by manganese(I)-catalyzed C-H activation: structural studies and photophysical properties. Org Biomol Chem 2022; 20:796-800. [PMID: 35006235 DOI: 10.1039/d1ob02246f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, a regioselective synthesis of indolizino[3,4,5-ab]isoindoles, a valuable class of heterocycles with interesting luminescence properties, is described using manganese(I)-catalyzed C-H activation. The reported transformation proceeds in one-step and employs readily available 2-phenylpyridines as starting materials. Furthermore, the obtained single products exhibit blue-greenish fluorescence with high quantum yields.
Collapse
Affiliation(s)
- Sara Cembellín
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.,Organic Chemistry Department, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Iván Maisuls
- Institute for Inorganic and Analytical Chemistry, Center for Nanotechnology, Center for Soft Nanoscience, Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Helena Osthues
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Cristian A Strassert
- Institute for Inorganic and Analytical Chemistry, Center for Nanotechnology, Center for Soft Nanoscience, Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
32
|
Shoji Y, Kobayashi M, Kosaka A, Haruki R, Kumai R, Adachi SI, Kajitani T, Fukushima T. Design of discotic liquid crystal enabling complete switching between and memory of two alignment states over a large area. Chem Sci 2022; 13:9891-9901. [PMID: 36128239 PMCID: PMC9430577 DOI: 10.1039/d2sc03677k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
The alignment control of discotic columnar liquid crystals (LCs), featuring a low motility of the constituent molecules and thus having a large viscosity, is a challenging task. Here we show that triphenylene hexacarboxylic ester, when functionalized with hybrid side chains consisting of alkyl and perfluoroalkyl groups in an appropriate ratio, gives a hexagonal columnar (Colh) LC capable of selectively forming large-area uniform homeotropic or homogeneous alignments, upon cooling from its isotropic melt or upon application of a shear force at its LC temperature, respectively. In addition to the alignment switching ability, each alignment state remains persistent unless the LC is heated to its melting temperature. In situ X-ray diffraction analysis under the application of a shear force, together with polarized optical microscopy observations, revealed how the columnar assembly is changed during the alignment-switching process. The remarkable behavior of the discotic LC is discussed in terms of its rheological properties. A columnar liquid crystal consisting of a triphenylene hexacarboxylic ester mesogen and semifluoroalkyl side chains shows complete switching between homeotropic and homogeneous alignments, each of which remains persistent up to its melting point.![]()
Collapse
Affiliation(s)
- Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Miki Kobayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
33
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
34
|
Kato SI, Naito Y, Moriguchi R, Kitamura C, Matsumoto T, Yoshihara T, Ishi-I T, Nagata Y, Takeshita H, Yoshizawa K, Shiota Y, Suzuki K. Augmented Self-Association by Electrostatic Forces in Thienopyrrole-Fused Thiadiazoles that Contain an Ester instead of an Ether Linker. Chem Asian J 2021; 17:e202101341. [PMID: 34939334 DOI: 10.1002/asia.202101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Indexed: 11/11/2022]
Abstract
During the self-assembly of π-conjugated molecules, linkers and substituents can potentially add supportive noncovalent intermolecular interactions to π-stacking interactions. Here, we report the self-assembly behavior of thienopyrrole-fused thiadiazole (TPT) fluorescent dyes that possess ester or ether linkers and dodecyloxy side chains in solution and the condensed phase. A comparison of the self-association behavior of the ester- and ether-bridged compounds in solution using detailed UV-vis, fluorescence, and NMR spectroscopic studies revealed that the subtle replacement of the ether linkers by ester linkers leads to a distinct increase in the association constant (ca. 3-4 fold) and the enthalpic contribution (ca. 3 kcal mol-1). Theoretical calculations suggest that the ester linkers, which are in close proximity to one another due to the π-stacking interactions, induce attractive electrostatic forces and augment self-association. The self-assembly of TPT dyes into well-defined 1D clusters with high aspect ratios was observed, and their morphologies and crystallinity were investigated using SEM and X-ray diffraction analyses. TPTs with ester linkers exhibit a columnar liquid crystalline mesophase in the condensed phase.
Collapse
Affiliation(s)
- Shin-Ichiro Kato
- The University of Shiga Prefecture, Department of Materials Science, 2500 Hassaka-cho, 522-8533, Hikone, JAPAN
| | - Yukako Naito
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Ryo Moriguchi
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Chitoshi Kitamura
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Taisuke Matsumoto
- Kyushu University: Kyushu Daigaku, Institute for Materials Chemistry and Engineering, JAPAN
| | - Toshitada Yoshihara
- Gunma University Faculty of Engineering Graduate School of Engineering: Gunma Daigaku Rikogakubu Daigakuin Riko Gakufu, Molecular Science, JAPAN
| | - Tsutomu Ishi-I
- National Institute of Technology Kurume College, Biochemistry and Applied Chemistry, JAPAN
| | - Yuka Nagata
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Hiroki Takeshita
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Kazunari Yoshizawa
- Kyushu University: Kyushu Daigaku, Institute of Materials Chemistry and Engineering, JAPAN
| | - Yoshihito Shiota
- Kyushu University: Kyushu Daigaku, Institute of Materials Chemistry and Engineering, JAPAN
| | - Kazumasa Suzuki
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| |
Collapse
|
35
|
Goren N, Das TK, Brown N, Gilead S, Yochelis S, Gazit E, Naaman R, Paltiel Y. Metal Organic Spin Transistor. NANO LETTERS 2021; 21:8657-8663. [PMID: 34662128 PMCID: PMC8859851 DOI: 10.1021/acs.nanolett.1c01865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Indexed: 06/07/2023]
Abstract
Organic molecules and specifically bio-organic systems are attractive for applications due to their low cost, variability, environmental friendliness, and facile manufacturing in a bottom-up fashion. However, due to their relatively low conductivity, their actual application is very limited. Chiral metallo-bio-organic crystals, on the other hand, have improved conduction and in addition interesting magnetic properties. We developed a spin transistor using these crystals and based on the chiral-induced spin selectivity effect. This device features a memristor type behavior, which depend on trapping both charges and spins. The spin properties are monitored by Hall signal and by an external magnetic field. The spin transistor exhibits nonlinear drain-source currents, with multilevel controlled states generated by the magnetization of the source. Varying the source magnetization enables a six-level readout for the two-terminal device. The simplicity of the device paves the way for its technological application in organic electronics and bioelectronics.
Collapse
Affiliation(s)
- Naama Goren
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tapan Kumar Das
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Noam Brown
- Department
of Molecular Microbiology and Biotechnology, The Shmunis School of
Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sharon Gilead
- Department
of Molecular Microbiology and Biotechnology, The Shmunis School of
Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shira Yochelis
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ehud Gazit
- Department
of Molecular Microbiology and Biotechnology, The Shmunis School of
Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Yossi Paltiel
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
36
|
Alaasar M, Darweesh AF, Cai X, Liu F, Tschierske C. Mirror Symmetry Breaking and Network Formation in Achiral Polycatenars with Thioether Tail. Chemistry 2021; 27:14921-14930. [PMID: 34542201 PMCID: PMC8596804 DOI: 10.1002/chem.202102226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Mirror symmetry breaking in systems composed of achiral molecules is of importance for the design of functional materials for technological applications as well as for the understanding of the mechanisms of spontaneous emergence of chirality. Herein, we report the design and molecular self-assembly of two series of rod-like achiral polycatenar molecules derived from a π-conjugated 5,5'-diphenyl-2,2'-bithiophene core with a fork-like triple alkoxylated end and a variable single alkylthio chain at the other end. In both series of liquid crystalline materials, differing in the chain length at the trialkoxylated end, helical self-assembly of the π-conjugated rods in networks occurs, leading to wide temperature ranges (>200 K) of bicontinuous cubic network phases, in some cases being stable even around ambient temperatures. The achiral bicontinuous cubic Ia 3 ‾ d phase (gyroid) is replaced upon alkylthio chain elongation by a spontaneous mirror symmetry broken bicontinuous cubic phase (I23) and a chiral isotropic liquid phase (Iso1 [ *] ). Further chain elongation results in removing the I23 phase and the re-appearance of the Ia 3 ‾ d phase with different pitch lengths. In the second series an additional tetragonal phase separates the two cubic phase types.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
- Department of Chemistry Faculty of ScienceCairo UniversityGizaEgypt
| | | | - Xiaoqian Cai
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft MatterXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft MatterXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| |
Collapse
|
37
|
Mahbub S, Saha S, Ramakrishna G, Furgal JC. Beads on a Chain Fluorescent Oligomeric Materials: Interactions of Conjugated Organic Cross-Linkers with Silsesquioxane Cages. J Phys Chem B 2021; 125:11457-11472. [PMID: 34641684 DOI: 10.1021/acs.jpcb.1c05282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic electronic materials have advantages over inorganics in terms of versatility, cost, and processability. Recent advancements in organic materials for light-emitting diodes (OLED), field effect transistors (OFET), and photovoltaics have engendered extensive innovation potential on this field. In this research, we focus on synthesizing SQ (silsesquioxane) based oligomers cross-linked by dibromo-aromatic linkers and explore how the cross-linker influences their photophysical properties. Bis-trialkoxy silyl (linker) model compounds were synthesized to compare noncage photophysical properties with the oligomers. Several techniques such as UV/vis, fluorescence, FTIR, and thermal gravimetric analysis (TGA) have been used to characterize the systems. Time-resolved fluorescence and femtosecond transient absorption spectroscopy were used to understand the excited state dynamics of these materials. Studies were carried out to understand the differences between monomers and oligomers and potential energy transfer and charge transfer between the cages and cross-linking chromophores. Transient absorption showed lower energy absorption from the excited states, suggesting short-range communication between moieties. Single photon counting studies have shown distinct lifetime differences between most linkers and cages display possible excitation energy transfer through these materials. Transient absorption anisotropy measurements have shown signatures for excitation energy transfer between linker chromophores for oligomeric compounds. The silsesquioxane (SQ) backbone of the oligomers gives substantial thermal stability as well as solution processability, giving better flexibility for achieving energy transfer between linking chromophores.
Collapse
Affiliation(s)
- Shahrea Mahbub
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Sukanya Saha
- Department of Chemistry and Biochemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Guda Ramakrishna
- Department of Chemistry and Biochemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Joseph C Furgal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
38
|
Bujosa S, Greciano EE, Martínez MA, Sánchez L, Soberats B. Unveiling the Role of Hydrogen Bonds in Luminescent N-Annulated Perylene Liquid Crystals. Chemistry 2021; 27:14282-14286. [PMID: 34323342 PMCID: PMC8596826 DOI: 10.1002/chem.202102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/26/2022]
Abstract
We report the liquid-crystalline (LC) and luminescent properties of a series of N-annulated perylenes (1-4) in whose molecular structures amide and ester groups alternate. We found that the LC properties of these compounds not only depend on the number of hydrogen-bonding units, but also on the relative position of the amide linkers in the molecule. The absence of amide groups in compound 1 leads to no LC properties, whereas four amide groups induce the formation of a wide temperature range columnar hexagonal phase in compound 4. Remarkably, compound 3, with two amide groups in the inner part of the structure, stabilizes the columnar LC phases better than its structural isomer 2, with the amide groups in the outer part of the molecule. Similarly, we found that only compounds 1 and 2, which have no hydrogen bonding units in the inner part of the molecule, exhibit luminescence vapochromism upon exposure to organic solvent vapors.
Collapse
Affiliation(s)
- Sergi Bujosa
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Elisa E. Greciano
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Manuel A. Martínez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Luis Sánchez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Bartolome Soberats
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| |
Collapse
|
39
|
Sasidharan AK, Mathew J, Achalkumar AS, Mathews M. Synthesis and Liquid Crystalline Properties of Low Molecular Weight Bis-Chalcone Compounds. Curr Org Synth 2021; 19:463-475. [PMID: 34620065 DOI: 10.2174/1570179418666211006144308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
AIMS In this paper, we report on the synthesis and liquid crystalline properties of some low molecular weight bis-chalcone compounds derived from acetone, cyclopentanone and cyclohexanone mesogenic cores. BACKGROUND Structurally bis-chalcones belong to a broader family of chalcone compounds. Chalcone is a compound that consists of two aromatic rings linked by an unsaturated α, β-ketone. OBJECTIVE Liquid crystalline chalcones are prepared by aliphatic chain substituents on two aromatic rings. Chalcones are well studied for their mesomorphic properties. Compared to a large number of chalcone based LCs reported, only a few articles have been published on the mesomorphic properties of bis-chalcone compounds. The target compounds of the present study varied not only in their central core but also in number and position of terminal aliphatic chain substitution-a key structural unit in deciding the liquid crystalline properties of a compound. METHOD All target compounds were synthesized in good yield by base catalyzed Claisen-Schmidt condensation reaction. Molecular structures were confirmed by FT-IR, 1H NMR, 13C NMR, and mass spectroscopic methods. Liquid crystalline property of these compounds was evaluated using polarizing optical microscopy and differential scanning calorimetry. RESULTS Although none of the acetone based compounds exhibited mesomorphism, cyclopentanone and cyclohexanone based compounds with octyloxy chain at para position on either side of the dibenzylidine ring stabilized liquid crystalline smectic (SmA and SmC) and nematic (N) phases. The observed structure-liquid crystalline property relationship was explained by structural analysis of molecules using DFT calculations. Considering the inherent photoluminescence nature of the chalcone moiety, a preliminary study was carried out on a selected compound to reveal its fluorescence property. CONCLUSION Our study brings about an important structure-liquid crystalline property relationship in a relatively unexplored class of bis-chalcone liquid crystals.
Collapse
Affiliation(s)
- Anju K Sasidharan
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode-673008, Affiliated to University of Calicut, Kerala. India
| | - Jomon Mathew
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode-673008, Affiliated to University of Calicut, Kerala. India
| | - Ammathnadu S Achalkumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam. India
| | - Manoj Mathews
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode-673008, Affiliated to University of Calicut, Kerala. India
| |
Collapse
|
40
|
Kanakala MB, Yelamaggad CV. Exceptional dual fluorescent, excited-state intramolecular proton-transfer (ESIPT) columnar liquid crystals characterized by J-stacking and large Stokes shifts. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Ma T, Zhong YJ, Wang HF, Zhao KQ, Wang BQ, Hu P, Monobe H, Donnio B. Butterfly-like Shape Liquid Crystals Based Fused-Thiophene as Unidimensional Ambipolar Organic Semiconductors with High Mobility. Chem Asian J 2021; 16:1106-1117. [PMID: 33704900 DOI: 10.1002/asia.202100173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Mesomorphous butterfly-like shape molecules based on benzodithiophene, benzodithiophene-4,8-dione and cyclopentadithiophen-4-one core moieties were efficiently synthesized by the Suzuki-Miyaura coupling and Scholl oxidative cyclo-dehydrogenation reactions' tandem. Most of the butterfly molecules spontaneously self-organize into columnar hexagonal mesophase. The electron-deficient systems possess strong solvent-gelling ability but are not luminescent, whereas the electron-rich terms do not form gels but strongly emit light between 400 and 600 nm. The charge carrier mobility was also measured by time-of-flight transient photocurrent technique in the mesophases for some of the compounds. They display hole-transport performances with positive charge mobility in the 10-3 cm-2 V-1 s-1 range, consistent with the high degree of ordering and stability of the columnar superstructures. In particular, the mesogen with a benzodithiophen-4,8-dione core shows ambipolar charge carrier transport with both high electron (μe =6.6×10-3 cm-2 V-1 s-1 ) and hole (μh =4.5×10-3 cm-2 V-1 s-1 ) mobility values.
Collapse
Affiliation(s)
- Tao Ma
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Yu-Jie Zhong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Hai-Feng Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Hirosato Monobe
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 563-8577, Japan
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), 67034, Strasbourg, France
| |
Collapse
|
42
|
Abstract
Liquid crystals bearing extended π-conjugated units function as organic semiconductors and liquid crystalline semiconductors have been studied for their applications in light-emitting diodes, field-effect transistors, and solar cells. However, studies on electronic functionalities in chiral liquid crystal phases have been limited so far. Electronic charge carrier transport has been confirmed in chiral nematic and chiral smectic C phases. In the chiral nematic phase, consisting of molecules bearing extended π-conjugated units, circularly polarized photoluminescence has been observed within the wavelength range of reflection band. Recently, circularly polarized electroluminescence has been confirmed from devices based on active layers of chiral conjugated polymers with twisted structures induced by the molecular chirality. The chiral smectic C phase of oligothiophene derivatives is ferroelectric and indicates a bulk photovoltaic effect, which is driven by spontaneous polarization. This bulk photovoltaic effect has also been observed in achiral polar liquid crystal phases in which extended π-conjugated units are properly assembled. In this manuscript, optical and electronic functions of these chiral π-conjugated liquid crystalline semiconductors are reviewed.
Collapse
|
43
|
Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat Commun 2021; 12:1943. [PMID: 33782386 PMCID: PMC8007814 DOI: 10.1038/s41467-021-22158-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Orientation of nanoscale objects can be measured by examining the polarized emission of optical probes. To retrieve a three-dimensional (3D) orientation, it has been essential to observe the probe (a dipole) along multiple viewing angles and scan with a rotating analyzer. However, this method requires a sophisticated optical setup and is subject to various external sources of error. Here, we present a fundamentally different approach employing coupled multiple emission dipoles that are inherent in lanthanide-doped phosphors. Simultaneous observation of different dipoles and comparison of their relative intensities allow to determine the 3D orientation from a single viewing angle. Moreover, the distinct natures of electric and magnetic dipoles originating in lanthanide luminescence enable an instant orientation analysis with a single-shot emission spectrum. We demonstrate a straightforward orientation analysis of Eu3+-doped NaYF4 nanocrystals using a conventional fluorescence microscope. Direct imaging of the rod-shaped nanocrystals proved the high accuracy of the measurement. This methodology would provide insights into the mechanical behaviors of various nano- and biomolecular systems. Determining the orientation of nanoscale objects in three-dimensional space has typically required complicated optical setups. Here, the authors develop a simple method to retrieve the 3D orientation of luminescent, lanthanide-doped nanorods from a single-shot emission spectrum.
Collapse
|
44
|
Bishop C, Chen Z, Toney MF, Bock H, Yu L, Ediger MD. Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. J Phys Chem B 2021; 125:2761-2770. [PMID: 33683124 DOI: 10.1021/acs.jpcb.0c11564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate vapor-deposited glasses of a phenanthroperylene ester, known to form an equilibrium hexagonal columnar phase, and show that liquid crystal-like order can be manipulated by the choice of deposition rate and substrate temperature during deposition. We find that rate-temperature superposition (RTS)-the equivalence of lowering the deposition rate and increasing the substrate temperature-can be used to predict and control the molecular orientation in vapor-deposited glasses over a wide range of substrate temperatures (0.75-1.0 Tg). This work extends RTS to a new structural motif, hexagonal columnar liquid crystal order, which is being explored for organic electronic applications. By several metrics, including the apparent average face-to-face nearest-neighbor distance, physical vapor deposition (PVD) glasses of the phenanthroperylene ester are as ordered as the glass prepared by cooling the equilibrium liquid crystal. By other measures, the PVD glasses are less ordered than the cooled liquid crystal. We explain the difference in the maximum attainable order with the existence of a gradient in molecular mobility at the free surface of a liquid crystal and its impact upon different mechanisms of structural rearrangement. This free surface equilibration mechanism explains the success of the RTS principle and provides guidance regarding the types of order most readily enhanced by vapor deposition. This work extends the applicability of RTS to include molecular systems with a diverse range of higher-order liquid-crystalline morphologies that could be useful for new organic electronic applications.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - Michael F Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
45
|
Krumland J, Valencia AM, Cocchi C. Exploring organic semiconductors in solution: the effects of solvation, alkylization, and doping. Phys Chem Chem Phys 2021; 23:4841-4855. [PMID: 33605967 DOI: 10.1039/d0cp06085b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first-principles simulation of the electronic structure of organic semiconductors in solution poses a number of challenges that are not trivial to address simultaneously. In this work, we investigate the effects and the mutual interplay of solvation, alkylization, and doping on the structural, electronic, and optical properties of sexithiophene, a representative organic semiconductor molecule. To this end, we employ (time-dependent) density functional theory in conjunction with the polarizable-continuum model. We find that the torsion between adjacent monomer units plays a key role, as it strongly influences the electronic structure of the molecule, including energy gap, ionization potential, and band widths. Alkylization promotes delocalization of the molecular orbitals up to the first methyl unit, regardless of the chain length, leading to an overall shift of the energy levels. The alterations in the electronic structure are reflected in the optical absorption, which is additionally affected by dynamical solute-solvent interactions. Taking all these effects into account, solvents decrease the optical gap by an amount that depends on its polarity, and concomitantly increase the oscillator strength of the first excitation. The interaction with a dopant molecule promotes planarization. In such scenario, solvation and alkylization enhance charge transfer both in the ground state and in the excited state.
Collapse
Affiliation(s)
- Jannis Krumland
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany.
| | | | | |
Collapse
|
46
|
Yu Z, Chen XM, Liu ZY, Wang M, Huang S, Yang H. A phase-dependent photoluminescent discotic liquid crystal bearing a graphdiyne substructure. Chem Commun (Camb) 2021; 57:911-914. [PMID: 33393549 DOI: 10.1039/d0cc05959e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, graphdiyne and its derivatives with fascinating electro-optic properties have attracted tremendous scientific attention. Here we design and synthesize a graphdiyne-derived discotic liquid crystal material by decorating six wedge-shaped 3,4,5-tris(dodecyloxy)benzoate groups on the fundamental structural unit of graphdiyne, the dehydrotribenzo[18]annulene core. This graphdiyne-derived liquid crystal material exhibits a cubic phase and a hexagonal columnar phase at varied temperatures. Most interestingly, this molecule displays a tunable phase-dependent photoluminescence behavior. Under the irradiation of 365 nm wavelength ultraviolet light, the luminescent material emits pale blue, green and azure light in the cubic, hexagonal columnar and isotropic phases respectively. This graphdiyne-derived discotic liquid crystal with excellent optical characteristics might have application potentials in organic optoelectronic functional materials and devices.
Collapse
Affiliation(s)
- Zhen Yu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Xu-Man Chen
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Zhi-Yang Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Meng Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Shuai Huang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Hong Yang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| |
Collapse
|
47
|
Kato T, Gupta M, Yamaguchi D, Gan KP, Nakayama M. Supramolecular Association and Nanostructure Formation of Liquid Crystals and Polymers for New Functional Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200304] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Yamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kian Ping Gan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masanari Nakayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
48
|
Rajendiran K, Yoganandham ST, Arumugam S, Arumugam D, Thananjeyan K. An overview of liquid crystalline mesophase transition and photophysical properties of “f block,” “d block,” and (SCO) spin-crossover metallomesogens in the optoelectronics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
van Son MHC, Berghuis AM, Eisenreich F, de Waal B, Vantomme G, Gómez Rivas J, Meijer EW. Highly Ordered 2D-Assemblies of Phase-Segregated Block Molecules for Upconverted Linearly Polarized Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004775. [PMID: 33118197 DOI: 10.1002/adma.202004775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/17/2020] [Indexed: 05/24/2023]
Abstract
Materials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil-rod-coil block molecules for triplet-triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained. Transparent films of this material doped with small amounts of triplet sensitizer PtII octaethylporphyrin show air-stable TTA-UC under non-coherent excitation. Upon annealing, an increase in TTA-UC up to two orders of magnitude is observed originating from both an improved molecular ordering of DPA and an increased dispersion of the sensitizer. The molecular alignment in millimeter-sized domains leads to upconverted linearly polarized emission without alignment layers. By using a novel technique, upconversion imaging microscopy, the TTA-UC intensity is spatially resolved on a micrometer scale to visually demonstrate the importance of molecular dispersion of sensitizer molecules for efficient TTA-UC. The reported results are promising for anti-counterfeiting and 3D night-vision applications, but also exemplify the potential of discrete oligodimethylsiloxane functionalized chromophores for highly aligned and densely packed molecular materials.
Collapse
Affiliation(s)
- Martin H C van Son
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Anton M Berghuis
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Fabian Eisenreich
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Bas de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jaime Gómez Rivas
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
50
|
Jagarapu R, Maddala S, Mahto I, Venkatakrishnan P. Behaviour of Regioisomeric Bithiophenes in the Oxidative Synthesis of Tetrathieno‐Fused π‐Expanded Fluorenes and Their Characterization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramakrishna Jagarapu
- Department of Chemistry Indian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | - Sudhakar Maddala
- Department of Chemistry Indian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | - Indrajit Mahto
- Department of Chemistry Indian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | | |
Collapse
|