1
|
Murugan U, Gusain D, Balasubramani B, Srivastava S, Ganesh S, Ambattu Raghavannambiar S, Ramaraj K. A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces. BIOFOULING 2024:1-23. [PMID: 39422280 DOI: 10.1080/08927014.2024.2414922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.
Collapse
Affiliation(s)
- Udhayakumar Murugan
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Dakshesh Gusain
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Baskar Balasubramani
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sagar Srivastava
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sai Ganesh
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | | | - Kannan Ramaraj
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
2
|
Anklam T, Tannert R. Hydrophobic Aerogels and Xerogels based on Trimethoxybenzene-Formaldehyde. Macromol Rapid Commun 2024:e2400691. [PMID: 39348160 DOI: 10.1002/marc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Phenolic aerogels based on resorcinol-formaldehyde (RF) are among the best thermally insulating materials. However, the hydrophilicity inherent to the free phenolic moiety of RF gels generally limits their actual range of applications. Prior efforts to render phenolic gels hydrophobic are restricted to post-synthetic functionalizations of hydrophilic gels, processes that are often limited in efficiency, scope, and/or longevity. Here, an acid-mediated conversion of 1,3,5-trimethoxybenzene with formaldehyde is reported, yielding monolithic trimethoxybenzene-formaldehyde (TMBF) aerogels and xerogels with low density (0.11-0.30 g cm-3), high porosity (74-92 %), inner surface areas (SBET) of up to 284 m2 g-1, and thermal conductivity of 34.5-43.9 mW m-1 K-1. For a monolithic xerogel based on TMBF xerogels an unprecedently low thermal conductivity of 34.5 mW m-1 K-1 could be achieved. In addition, all TMBF gels are thermally stable (degradation >280-310 °C) and highly hydrophobic (water contact angles 130°-156°). As such, TMBF serves as a new class of inherently hydrophobic aerogels and xerogels and useful complement to RF materials.
Collapse
Affiliation(s)
- Thomas Anklam
- Institute for Materials Research, German Aerospace Center (DLR), Linder Höhe, 51147, Cologne, Germany
- Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 4-6, 50939, Cologne, Germany
| | - René Tannert
- Institute for Materials Research, German Aerospace Center (DLR), Linder Höhe, 51147, Cologne, Germany
| |
Collapse
|
3
|
Wang H, Li J, Chen G, Zhong Y, Cheng Z, Zhang C, Zhao P, Yang J, Xiao N. Hydrophobic polyethylene film prepared by film blowing process for preservation of fried shrimp rolls. Food Chem 2024; 453:139680. [PMID: 38788648 DOI: 10.1016/j.foodchem.2024.139680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Hydrophobic coatings have wide applications, but face challenges in food flexible packaging in terms of poor adhesion and inadequate wear resistance. Health hazards and poor adhesion drive the search for novel hydrophobic coatings substitutes. Here, we introduced rationally synthesized carnauba wax-SiO2 microspheres as a component to composite polyethylene (PE) film construction, and created a wear-resistant hydrophobic composite PE film via the blown film technique. The resultant hydrophobic composite film demonstrated an enhanced water contact angle from 86° to above 100°, coupled with favorable mechanical properties such as wear resistance, tensile strength and effective barrier performance against water vapor and oxygen. Upon implementation in the preservation of a Cantonese delicacy, Chaoshan fried shrimp rolls, it was observed that at 25 °C, the carnauba wax-SiO2-PE composite packaging film extended the shelf life of the product by 3 days compared to pure PE film.
Collapse
Affiliation(s)
- Honglei Wang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.; Guangdong Central Kitchen Lingnan Special Food Green Manufacturing Engineering Technology Development Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Juanhua Li
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.; Guangdong Central Kitchen Lingnan Special Food Green Manufacturing Engineering Technology Development Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guojian Chen
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.; Guangdong Central Kitchen Lingnan Special Food Green Manufacturing Engineering Technology Development Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunyun Zhong
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.; Guangdong Central Kitchen Lingnan Special Food Green Manufacturing Engineering Technology Development Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Cheng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.; Guangdong Central Kitchen Lingnan Special Food Green Manufacturing Engineering Technology Development Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Pei Zhao
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Hunan 410081, China
| | - Naiyu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China..
| |
Collapse
|
4
|
Dhar M, Das A, Manna U. Deriving Superhydrophobicity Directly and Solely from Molecules: A Facile and Emerging Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19287-19303. [PMID: 39235959 DOI: 10.1021/acs.langmuir.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Nature-inspired superhydrophobic surfaces have gained significant attention due to their various potential applications. Artificial superhydrophobic surfaces were fabricated through co-optimization of topography and low-surface-energy chemistry. In the conventional approach, artificial superhydrophobic surfaces are developed through associating mostly polymer, metal, alloys, nanoparticles, microparticles, etc. and commonly encounter several challenges related to scalability, durability, and complex fabrication processes. In response to these challenges, molecule-based approaches have emerged as a promising alternative, providing several advantages such as prolonged shelf life of depositing solution, higher solvent compatibility, and a simple fabrication process. In this Perspective, we have provided a concise overview of traditional and molecule-based approaches to fabricating superhydrophobic surfaces, highlighting recent advancements and challenges. We have discussed various molecule-based strategies for tailoring water wettability, customizing mechanical properties, developing substrate-independent coatings, prolonging the shelf life of deposition solutions, and so on. Here, we have illustrated the potential of molecule-based approaches in overcoming existing limitations and its importance to diverse and prospective practical applications.
Collapse
Affiliation(s)
- Manideepa Dhar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| |
Collapse
|
5
|
Wu W, Miao S, Gong X. Stable and Durable Superhydrophobic Cotton Fabrics Prepared via a Simple 1,4-Conjugate Addition Reaction for Ultrahigh Efficient Oil-Water Separation. Macromol Rapid Commun 2024; 45:e2400292. [PMID: 38837517 DOI: 10.1002/marc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.
Collapse
Affiliation(s)
- Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shiwei Miao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
- Hepu Research Center for Silicate Materials Industry Technology, 27 Huanzhu Avenue, Hepu county, Beihai, 536100, China
| |
Collapse
|
6
|
Su Y, He J. Rational Design of Highly Comprehensive Liquid-Like Coatings with Enhanced Transparency, Concerted Multi-Function, and Excellent Durability: A Ternary Cooperative Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405767. [PMID: 39003607 DOI: 10.1002/adma.202405767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Durable repellent surfaces of high transparency find key applications in daily life and industry. Nevertheless, developing anti-reflective coatings with omni-repellency, concerted multi-function, and desirable durability remains a daunting challenge. Here, a highly comprehensive coating is designed based on the combination of structural design and molecular design. The resulting silica hybrid coating not only manifests enhanced transparency and exceptional omniphobicity, but also achieves integration of multi-function (e.g., anti-smudge, anti-icing, and anti-corrosion). The unprecedented durability of the coating is evidenced by maintaining slipperiness after rigorous treatments, such as 2.5 × 105-cycle mechanical abrasion with a high loading pressure of 100 kPa, 1000-cycle adhesion/peeling and soaking in extreme pH solutions, etc. This work provides a design blueprint for manufacturing versatile and durable coatings for wide-ranging applications.
Collapse
Affiliation(s)
- Yang Su
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Fan Y, Wang S, Huang Y, Tan Y, Gui L, Huang S, Tian X. Unconventional Dually-Mobile Superrepellent Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402893. [PMID: 38848582 DOI: 10.1002/adma.202402893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Indexed: 06/09/2024]
Abstract
The ability of water droplets to move freely on superrepellent surfaces is a crucial feature that enables effective liquid repellency. Common superrepellent surfaces allow free motion of droplets in the Cassie state, with the liquid resting on the surface textures. However, liquid impalement into the textures generally leads to a wetting transition to the Wenzel state and droplet immobilization on the surface, thereby destroying the liquid repellency. This study reports the creation of a novel type of superrepellent surface through rational structural control combined with liquid-like surface chemistry, which allows for the free movement of water droplets and effective repellency in both the Cassie and Wenzel states. Theoretical guidelines for designing such surfaces are provided, and experimental results are consistent with theoretical analysis. Furthermore, this work demonstrates the enhanced ice resistance of the dually-mobile superrepellent surfaces, along with their distinctive self-cleaning capability to eliminate internal contaminants. This study expands the understanding of superrepellency and offers new possibilities for the development of repellent surfaces with exceptional anti-wetting properties.
Collapse
Affiliation(s)
- Yue Fan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuai Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yusheng Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yao Tan
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lishuang Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shilin Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuelin Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Chen J, Chen X, Hao Z, Wu Z, Selim MS, Yu J, Huang Y. Robust and Superhydrophobic Polydimethylsiloxane/Ni@Ti 3C 2T x Nanocomposite Coatings with Assembled Eyelash-Like Microstructure Array: A New Approach for Effective Passive Anti-Icing and Active Photothermal Deicing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26713-26732. [PMID: 38723291 DOI: 10.1021/acsami.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
To solve the problem of ice condensation and adhesion, it is urgent to develop new anti-icing and deicing technologies. This study presented the development of a highly efficient photothermal-enhanced superhydrophobic PDMS/Ni@Ti3C2Tx composite film (m-NMPA) fabricated cost-effectively and straightforwardly. This film was fabricated utilizing PDMS as a hydrophobic agent, adhesive, and surface protector, while Ni@Ti3C2Tx as a magnetic photothermal filler innovatively. Through a simple spraying method, the filler is guided by a strong magnetic field to self-assemble into an eyelash-like microstructure array. The unique structure not only imparts superhydrophobic properties to the surface but also constructs an efficient "light-capturing" architecture. Remarkably, the m-NMPA film demonstrates outstanding superhydrophobic passive anti-icing and efficient photothermal active deicing performance without the use of fluorinated chemicals. The micro-/nanostructure of the film forms a gas layer, significantly delaying the freezing time of water. Particularly under extreme cold conditions (-30 °C), the freezing time is extended by a factor of 7.3 compared to the bare substrate. Furthermore, under sunlight exposure, surface droplets do not freeze. The excellent photothermal performance is attributed to the firm anchoring of nickel particles on the MXene surface, facilitating effective "point-to-face" photothermal synergy. The eyelash-like microarray structure enhances light-capturing capability, resulting in a high light absorption rate of 98%. Furthermore, the microstructure aids in maintaining heat at the uppermost layer of the surface, maximizing the utilization of thermal energy for ice melting and frost thawing. Under solar irradiation, the m-NMPA film can rapidly melt approximately a 4 mm thick ice layer within 558 s and expel the melted water promptly, reducing the risk of secondary icing. Additionally, the ice adhesion force on the surface of the m-NMPA film is remarkably low, with an adhesion strength of approximately 4.7 kPa for a 1 × 1 cm2 ice column. After undergoing rigorous durability tests, including xenon lamp weathering test, pressure resistance test, repeated adhesive tape testing, xenon lamp irradiation, water drop impact testing, and repeated brushing with hydrochloric acid and particles, the film's surface structure and superhydrophobic performance have remained exceptional. The photothermal superhydrophobic passive anti-icing and active deicing technology in this work rely on sustainable solar energy for efficient heat generation. It presents broad prospects for practical applications with advantages such as simple processing method, environmental friendliness, outstanding anti-icing effects, and exceptional durability.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhifeng Hao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhuorui Wu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mohamed S Selim
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
- Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo, Egypt
| | - Jian Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingming Huang
- Guangzhou Panyu Cable Group Co., Ltd, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Andrade del Olmo J, Mikeš P, Asatiani N, Alonso JM, Sáez Martínez V, Pérez González R. Alternating Current Electrospinning of Polycaprolactone/Chitosan Nanofibers for Wound Healing Applications. Polymers (Basel) 2024; 16:1333. [PMID: 38794525 PMCID: PMC11125242 DOI: 10.3390/polym16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Traditional wound dressings have not been able to satisfy the needs of the regenerative medicine biomedical area. With the aim of improving tissue regeneration, nanofiber-based wound dressings fabricated by electrospinning (ES) processes have emerged as a powerful approach. Nowadays, nanofiber-based bioactive dressings are mainly developed with a combination of natural and synthetic polymers, such as polycaprolactone (PCL) and chitosan (CHI). Accordingly, herein, PCL/CHI nanofibers have been developed with varying PCL:CHI weight ratios (9:1, 8:2 and 7:3) or CHI viscosities (20, 100 and 600 mPa·s) using a novel alternating current ES (ACES) process. Such nanofibers were thoroughly characterized by determining physicochemical and nanomechanical properties, along with wettability, absorption capacity and hydrolytic plus enzymatic stability. Furthermore, PCL/CHI nanofiber biological safety was validated in terms of cytocompatibility and hemocompatibility (hemolysis < 2%), in addition to a notable antibacterial performance (bacterial reductions of 99.90% for S. aureus and 99.91% for P. aeruginosa). Lastly, the enhanced wound healing activity of PCL/CHI nanofibers was confirmed thanks to their ability to remarkably promote cell proliferation, which make them ideal candidates for long-term applications such as wound dressings.
Collapse
Affiliation(s)
- Jon Andrade del Olmo
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Nikifor Asatiani
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - José María Alonso
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| | - Virginia Sáez Martínez
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| | - Raúl Pérez González
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| |
Collapse
|
10
|
Dai Z, Lei M, Ding S, Zhou Q, Ji B, Wang M, Zhou B. Durable superhydrophobic surface in wearable sensors: From nature to application. EXPLORATION (BEIJING, CHINA) 2024; 4:20230046. [PMID: 38855620 PMCID: PMC11022629 DOI: 10.1002/exp.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 06/11/2024]
Abstract
The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference, which contributes to the long-term stability of the device in complex environments. Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.
Collapse
Affiliation(s)
- Ziyi Dai
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
- State Key Laboratory of Crystal MaterialsInstitute of Novel SemiconductorsSchool of MicroelectronicsShandong UniversityJinanChina
| | - Ming Lei
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Sen Ding
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Qian Zhou
- School of Physics and ElectronicsCentral South UniversityChangshaChina
| | - Bing Ji
- School of Physics and ElectronicsHunan Normal UniversityChangshaChina
| | - Mingrui Wang
- Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| |
Collapse
|
11
|
Pecha S, Reuter L, Ohdah S, Petersen J, Pahrmann C, Aytar Çelik P, Çabuk A, Reichenspurner H, Yildirim Y. Bionic Nanocoating of Prosthetic Grafts Significantly Reduces Bacterial Growth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13534-13542. [PMID: 38447594 PMCID: PMC10958452 DOI: 10.1021/acsami.3c18634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Prosthetic materials are a source of bacterial infections, with significant morbidity and mortality. Utilizing the bionic "Lotus effect," we generated superhydrophobic vascular prostheses by nanocoating and investigated their resistance to bacterial colonization. Nanoparticles were generated from silicon dioxide (SiO2), and coated vascular prostheses developed a nanoscale roughness with superhydrophobic characteristics. Coated grafts and untreated controls were incubated with different bacterial solutions including heparinized blood under mechanical stress and during artificial perfusion and were analyzed. Bioviability- and toxicity analyses of SiO2 nanoparticles were performed. Diameters of SiO2 nanoparticles ranged between 20 and 180 nm. Coated prostheses showed a water contact angle of > 150° (mean 154 ± 3°) and a mean water roll-off angle of 9° ± 2°. Toxicity and viability experiments demonstrated no toxic effects of SiO2 nanoparticles on human induced pluripotent stem cell-derived cardiomyocytes endothelial cells, fibroblasts, and HEK239T cells. After artificial perfusion with a bacterial solution (Luciferase+ Escherichia coli), bioluminescence imaging measurements showed a significant reduction of bacterial colonization of superhydrophobic material-coated prostheses compared to that of untreated controls. At the final measurement (t = 60 min), a 97% reduction of bacterial colonization was observed with superhydrophobic material-coated prostheses. Superhydrophobic vascular prostheses tremendously reduced bacterial growth. During artificial perfusion, the protective superhydrophobic effects of the vascular grafts could be confirmed using bioluminescence imaging.
Collapse
Affiliation(s)
- Simon Pecha
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lukas Reuter
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Shahabuddin Ohdah
- Department
of Radiology, University Medical Center
Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Johannes Petersen
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christiane Pahrmann
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
| | - Pinar Aytar Çelik
- Department
of Biotechnology and Biosafety, Graduate School of Natural and Applied
Science, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Ahmet Çabuk
- Department
of Biology, Faculty of Science and Letter, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Hermann Reichenspurner
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Yalin Yildirim
- Department
of Cardiovascular Surgery, University Heart
and Vascular Center, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Yang P, Yin K, Song X, Wang L, Deng Q, Pei J, He Y, Arnusch CJ. Airflow Triggered Water Film Self-Sculpturing on Femtosecond Laser-Induced Heterogeneously Wetted Micro/Nanostructured Surfaces. NANO LETTERS 2024; 24:3133-3141. [PMID: 38477056 DOI: 10.1021/acs.nanolett.3c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Liquid manipulation is essential for daily life and modern industry, and it is widely used in various fields, including seawater desalination, microfluidic robots, and biomedical engineering. Nevertheless, the current research focuses on the manipulation of individual droplets. There are a few projects for water film management. Here, we proposed a facile method of wind-triggered water film self-sculpturing based on a heterogeneous wettability surface, which is achieved by the femtosecond laser direct writing technology and femtosecond laser deposition. Under the conditions of various airflow velocities and water film thicknesses, three distinct behaviors of the water film were analyzed. As a result, when the water film thickness is lower than 4.9 mm, the self-sculpture process will occur until the whole superhydrophobic surface dewetting. Four potential applications are demonstrated, including encryption, oil containers, reconfigurable patterning, and self-splitting devices. This work provides a new approach for manipulating a water film of fluid control engineering.
Collapse
Affiliation(s)
- Pengyu Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xinghao Song
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
| | - Jiaqing Pei
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
| | - Yuchun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
13
|
Jebali S, Vayer M, Belal K, Sinturel C. Engineered Nanocomposite Coatings: From Water-Soluble Polymer to Advanced Hydrophobic Performances. MATERIALS (BASEL, SWITZERLAND) 2024; 17:574. [PMID: 38591391 PMCID: PMC10856293 DOI: 10.3390/ma17030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
In this work, a water-soluble (hydrophilic) polymer was used to form a hydrophobic coating on silicon substrates (Si) in a two-step process comprising (i) the transformation of the polymer into an insoluble material and (ii) the structuring of this coating at nanometric and micrometric scales to achieve the desired hydrophobic behavior. Polyvinylpyrrolidone (PVP), a water-soluble commodity polymer, was crosslinked using benzophenone and UV irradiation to produce a water-insoluble PVP coating. The nanometric scale roughness of the coating was achieved by the addition of silica nanoparticles (NPs) in the coating. The micrometric scale roughness was achieved by forming vertical pillars of PVP/NP coating. To prepare these pillars, a perforated polystyrene (PS) template was filled with a PVP/NP suspension. Micrometer scale vertical pillars of PVP/silica NPs were produced by this method, which allowed us to tune the wettability of the surface, by combining the micrometric scale roughness of the pillars to the nanometric scale roughness provided by the nanoparticles at the surface. By adjusting the various experimental parameters, a hydrophobic PVP coating was prepared with a water contact angle of 110°, resulting in an improvement of more than 80% compared to the bare flat film with an equal amount of nanoparticles. This study paves the way for the development of a more simplified experimental approach, relying on a blend of polymers containing PVP and NPs, to form the micro/nano-structured PVP pillars directly after the deposition step and the selective etching of the sacrificial major phase.
Collapse
Affiliation(s)
- Syrine Jebali
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 45071 Orleans, France; (S.J.); (M.V.)
| | - Marylène Vayer
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 45071 Orleans, France; (S.J.); (M.V.)
| | - Khaled Belal
- Kemica Coatings, Za du Bois Gueslin, 28630 Mignieres, France;
| | - Christophe Sinturel
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 45071 Orleans, France; (S.J.); (M.V.)
| |
Collapse
|
14
|
Donati M, Regulagadda K, Lam CWE, Milionis A, Sharma CS, Poulikakos D. Metal Surface Engineering for Extreme Sustenance of Jumping Droplet Condensation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1257-1265. [PMID: 38156900 PMCID: PMC10795172 DOI: 10.1021/acs.langmuir.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Water vapor condensation on metallic surfaces is critical to a broad range of applications, ranging from power generation to the chemical and pharmaceutical industries. Enhancing simultaneously the heat transfer efficiency, scalability, and durability of a condenser surface remains a persistent challenge. Coalescence-induced condensing droplet jumping is a capillarity-driven mechanism of self-ejection of microscopic condensate droplets from a surface. This mechanism is highly desired due to the fact that it continuously frees up the surface for new condensate to form directly on the surface, enhancing heat transfer without requiring the presence of the gravitational field. However, this condensate ejection mechanism typically requires the fabrication of surface nanotextures coated by an ultrathin (<10 nm) conformal hydrophobic coating (hydrophobic self-assembled monolayers such as silanes), which results in poor durability. Here, we present a scalable approach for the fabrication of a hierarchically structured superhydrophobic surface on aluminum substrates, which is able to withstand adverse conditions characterized by condensation of superheated steam shear flow at pressure and temperature up to ≈1.42 bar and ≈111 °C, respectively, and velocities in the range ≈3-9 m/s. The synergetic function of micro- and nanotextures, combined with a chemically grafted, robust ultrathin (≈4.0 nm) poly-1H,1H,2H,2H-perfluorodecyl acrylate (pPFDA) coating, which is 1 order of magnitude thinner than the current state of the art, allows the sustenance of long-term coalescence-induced condensate jumping drop condensation for at least 72 h. This yields unprecedented, up to an order of magnitude higher heat transfer coefficients compared to filmwise condensation under the same conditions and significantly outperforms the current state of the art in terms of both durability and performance establishing a new milestone.
Collapse
Affiliation(s)
- Matteo Donati
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Kartik Regulagadda
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Cheuk Wing Edmond Lam
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Athanasios Milionis
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Chander Shekhar Sharma
- Thermofluidics
Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Dimos Poulikakos
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Zhou C, Zhang Z, Li W, Chen M. Organocatalyzed Photo-Controlled Synthesis of Ultrahigh-Molecular-Weight Fluorinated Alternating Copolymers. Angew Chem Int Ed Engl 2024; 63:e202314483. [PMID: 38014865 DOI: 10.1002/anie.202314483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Ultrahigh-molecular-weight (UHMW) polymers with tailored structures are highly desirable for the outstanding properties. In this work, we developed a novel photoorganocatalyzed controlled radical alternating copolymerizations of fluoroalkyl maleimide and diverse vinyl comonomers, enabling efficient preparation of fluorinated copolymers of predetermined UHMWs and well-defined structures at high conversions. Versatility of this method was demonstrated by expanding to controlled terpolymerization, which allows facial access toward fluorinated terpolymers of UHMWs and functional pendants. The obtained copolymers exhibited attractive physical properties and furnished thermoplastic, anticorrosive and (super)hydrophobic attributes as coatings on different substrates. Molecular simulations provided insights into the coating morphology, which unveiled a fluorous protective layer on the top surface with polar groups attached to the bottom substrate, resulting in good adhesion and hydrophobicity, simultaneously. This synthetic method and customized copolymers shed light on the design of high-performance coatings by macromolecular engineering.
Collapse
Affiliation(s)
- Chengda Zhou
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Weiping Li
- Division of Natural and Applied Sciences & Environmental Research Center, Duke Kunshan University, Suzhou, Kunshan, 215316, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Nistal A, Sierra-Martín B, Fernández-Barbero A. On the Durability of Icephobic Coatings: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:235. [PMID: 38204088 PMCID: PMC10780097 DOI: 10.3390/ma17010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ice formation and accumulation on surfaces has a negative impact in many different sectors and can even represent a potential danger. In this review, the latest advances and trends in icephobic coatings focusing on the importance of their durability are discussed, in an attempt to pave the roadmap from the lab to engineering applications. An icephobic material is expected to lower the ice adhesion strength, delay freezing time or temperature, promote the bouncing of a supercooled drop at subzero temperatures and/or reduce the ice accretion rate. To better understand what is more important for specific icing conditions, the different types of ice that can be formed in nature are summarized. Similarly, the alternative methods to evaluate the durability are reviewed, as this is key to properly selecting the method and parameters to ensure the coating is durable enough for a given application. Finally, the different types of icephobic surfaces available to date are considered, highlighting the strategies to enhance their durability, as this is the factor limiting the commercial applicability of icephobic coatings.
Collapse
Affiliation(s)
- Andrés Nistal
- Applied Physics, Department of Chemistry and Physics, University of Almeria, 04120 Almeria, Spain; (B.S.-M.); (A.F.-B.)
| | | | | |
Collapse
|
17
|
Kan L, Zhang L, Wang P, Liu Q, Wang J, Su B, Song B, Shi Y. Robust Superhydrophobicity through Surface Defects from Laser Powder Bed Fusion Additive Manufacturing. Biomimetics (Basel) 2023; 8:598. [PMID: 38132537 PMCID: PMC10741415 DOI: 10.3390/biomimetics8080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The robustness of superhydrophobic objects conflicts with both the inevitable introduction of fragile micro/nanoscale surfaces and three-dimensional (3D) complex structures. The popular metal 3D printing technology can manufacture robust metal 3D complex components, but the hydrophily and mass surface defects restrict its diverse application. Herein, we proposed a strategy that takes the inherent ridges and grooves' surface defects from laser powder bed fusion additive manufacturing (LPBF-AM), a metal 3D printing process, as storage spaces for hydrophobic silica (HS) nanoparticles to obtain superhydrophobic capacity and superior robustness. The HS nanoparticles stored in the grooves among the laser-melted tracks serve as the hydrophobic guests, while the ridges' metal network provides the mechanical strength, leading to robust superhydrophobic objects with desired 3D structures. Moreover, HS nanoparticles coated on the LPBF-AM-printed surface can inhibit corrosion behavior caused by surface defects. It was found that LPBF-AM-printed objects with HS nanoparticles retained superior hydrophobicity after 150 abrasion cycles (~12.5 KPa) or 50 cycles (~37.5 KPa). Furthermore, LPBF-AM-printed ships with superhydrophobic coating maintained great water repellency even after 10,000 cycles of seawater swashing, preventing dynamic corrosion upon surfaces. Our proposed strategy, therefore, provides a low-cost, highly efficient, and robust superhydrophobic coating, which is applicable to metal 3D architectures toward corrosion-resistant requirements.
Collapse
Affiliation(s)
- Longxin Kan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
- Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Lei Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pengfei Wang
- Advanced Materials and Energy Center, China Academy of Aerospace Science and Innovation, Beijing 100176, China;
| | - Qi Liu
- Science and Technology on Power Beam Processes Laboratory, Beijing Key Laboratory of High Power Beam Additive Manufacturing Technology and Equipment, Aeronautical Key Laboratory for Additive Manufacturing Technologies, AVIC Manufacturing Technology Institute, Beijing 100024, China; (Q.L.); (J.W.)
| | - Jihao Wang
- Science and Technology on Power Beam Processes Laboratory, Beijing Key Laboratory of High Power Beam Additive Manufacturing Technology and Equipment, Aeronautical Key Laboratory for Additive Manufacturing Technologies, AVIC Manufacturing Technology Institute, Beijing 100024, China; (Q.L.); (J.W.)
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
| | - Bo Song
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
| |
Collapse
|
18
|
MacLachlan R, Kanji F, Sakib S, Khan S, Pattyn C, M Imani S, Didar TF, Soleymani L. Superomniphobic and Photoactive Surface Presents Antimicrobial Properties by Repelling and Killing Pathogens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55287-55296. [PMID: 37976404 DOI: 10.1021/acsami.3c11074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Healthcare-acquired infections place a significant burden on the cost and quality of patient care in hospitals. Reducing contamination on surfaces within healthcare environments is critical for halting the spread of these infections. Herein, we report a bifunctional─repel and kill─surface developed using photoactive TiO2 nanoparticles integrated into a hierarchical scaffold (OmniKill). To quantify the repellency of OmniKill, we developed a touch-based assay, capable of simulating the transfer of individual pathogens, multiple pathogens, or pathogen-latent fecal matter from hands to surfaces. OmniKill repels bacterial pathogens by at least 2.77-log (99.8%). The photoactive material within OmniKill further reduces the viability of transferred pathogens on the surface by an additional 2.43-log (99.6%) after 1 h of light exposure. The antipathogenic effects─repel and kill─remain robust under complex biological contaminates such as feces. These findings show the potential use of OmniKill in reducing the physical transmission of bacterial pathogens in healthcare settings.
Collapse
Affiliation(s)
- Roderick MacLachlan
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Farhaan Kanji
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Sadman Sakib
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Cedric Pattyn
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Sara M Imani
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Ontario, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Ontario, Canada
| |
Collapse
|
19
|
Gu W, Xia Y, Li L, Zhang Y, Wu X, Gu L, Ji Y, Wang W, Deng W, Lv X, Wang X, Yu X, Zhang Y. Damage Tolerance of Superhydrophobic Coatings with Binary Cooperative Cells for Water Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307561. [PMID: 37967348 DOI: 10.1002/smll.202307561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Multifunction superhydrophobic coatings that facilitate water harvesting are attractive for addressing the daunting water crisis, yet, they are caught in a double bind when their durability is considered, as durable coatings will require both tough micro-textures to survive concentrated stress and high-surface-energy chemistry to form chemical bonds within the matrix. To date, a universal bulk-phase coating that combines multifunctionality, ultra-durability, and fabrication feasibility remains challenging. Here, a binary cooperative cell design is reported that can solve the contradiction between the multifunctionality and durability requirements of superhydrophobic coatings. In this strategy, mechanochemically tailored cells with releasable nanoseeds are infused in the common matrix, which serves both as a versatile chemical bridge to achieve strong bonds within the coating building blocks, and as an instantaneous self-repairing generator to improve durability. Such a strategy significantly boosted the wear resistance and outdoor stability of the coatings by over 30-100 and 18 folds, respectively, compared with conventional coatings. The coating is applied to the sustainable application, i.e., enhancing the water collection efficiency by at least 1000% even after harsh abrasion. The strategy will broaden the vision in handling the dilemma properties among functional coatings and promote the application of superhydrophobic coatings in extreme environments.
Collapse
Affiliation(s)
- Wancheng Gu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Yage Xia
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Long Li
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Yu Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xuequn Wu
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Linwei Gu
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Yanzheng Ji
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Weilin Deng
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinyu Lv
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xikui Wang
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, P. R. China
| | - Xinquan Yu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Youfa Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
20
|
Ding W, Wei J, Zhang J. Stable food grade wax/attapulgite superhydrophobic coatings for anti-adhesion of liquid foods. J Colloid Interface Sci 2023; 650:865-874. [PMID: 37450975 DOI: 10.1016/j.jcis.2023.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Adhesion of liquid foods on their packaging materials has caused significant food wastes and environment pollution, which has attracted great attention. Food grade superhydrophobic coatings are very promising to solve the issue but suffer from low mechanical stability and complex preparation methods. Herein, a food grade superhydrophobic coating for anti-adhesion of liquid foods was prepared by combining edible paraffin wax, polydimethylsiloxane-modified attapulgite natural nanorods and a food grade silicone adhesive. The concentration of polydimethylsiloxane-modified attapulgite, ultrasonication time and the volume ratio of the paraffin wax/attapulgite suspension to the silicone adhesive solution have great influences on wettability and morphology of the coatings. The coatings exhibit good static and dynamic superhydrophobicity due to their hierarchical micro-/nanostructure and low surface energy of the polydimethylsiloxane-modified attapulgite and paraffin wax. Moreover, the coatings exhibit good mechanical and chemical stability. The coatings are also highly repellent towards various liquid foods including the hot ones. Furthermore, the coatings are applicable onto various frequently used flexible and hard food packing materials including polypropylene, polyethylene terephthalate, aluminium alloy and paper, etc. Thus, the superhydrophobic coatings have great application potential in the food packing industry for anti-adhesion of liquid foods.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jinfei Wei
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Junping Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
21
|
Zhan D, Guo Z. Overview of the design of bionic fine hierarchical structures for fog collection. MATERIALS HORIZONS 2023; 10:4827-4856. [PMID: 37743773 DOI: 10.1039/d3mh01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nature always uses its special wisdom to construct elegant and suitable schemes. Consequently, organisms in the flora and fauna are endowed with fine hierarchical structures (HS) to adapt to the harsh environment due to many years of evolution. Water is one of the most important resources; however, easy access to it is one the biggest challenges faced by human beings. In this case, fog collection (FC) is considered an efficient method to collect water, where bionic HS can be the bridge to efficiently facilitate the process of the FC. In this review, firstly, we discuss the basic principles of FC. Secondly, the role of HS in FC is analyzed in terms of the microstructure of typical examples of plants and animals. Simultaneously, the water-harvesting function of HS in a relatively new organism, fungal filament, is also presented. Thirdly, the HS design in each representative work is analyzed from a biomimetic perspective (single to multiple biomimetic approaches). The role of HS in FC, and then the FC performance of each work are analyzed in order of spatial dimension from a bionic perspective. Finally, the challenges at this stage and the outlook for the future are presented.
Collapse
Affiliation(s)
- Danyan Zhan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
22
|
Sun J, Zhu L, Liu Z. Preparation of a Wear-Resistant, Superhydrophobic SiO 2/Polymethyl Methacrylate Composite Coating on Aluminum Surface Processed with Nanosecond Laser. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6485. [PMID: 37834622 PMCID: PMC10573194 DOI: 10.3390/ma16196485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Superhydrophobic coatings are limited by complex preparation processes and poor mechanical durability in practical applications. In this study, a mechanically robust superhydrophobic composite coating was applied to an aluminum surface that underwent processing with a nanosecond laser (referred to as a superhydrophobic aluminum surface). It exhibits a high water contact angle (WCA) of 158.81°, a low sliding angle (SA) of less than 5°, and excellent self-cleaning ability. The wear test shows its durability, and the corrosion test shows its excellent corrosion resistance. This study provides a framework for the preparation of robust superhydrophobic surfaces that may have potential applications in many fields.
Collapse
Affiliation(s)
| | - Lin Zhu
- College of Light Industry, Harbin University of Commerce, Harbin 150028, China;
| | - Zhuang Liu
- College of Light Industry, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
23
|
Song X, Li N, Wang Z, Li S, Hou Y. Vapor-etching honeycomb-like zinc plating layer for constructing anti-corrosion lubricant-infused surfaces. Front Chem 2023; 11:1273674. [PMID: 37841209 PMCID: PMC10568014 DOI: 10.3389/fchem.2023.1273674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Biomimetic lubricant-infused porous surfaces are developed and applied for omniphobicity and corrosion protection, which exhibit great advantages compared to superhydrophobic surfaces. Methods: Herein, superhydrophobic Fe@E-Zn@PFOA was prepared via the electrodeposition of laminated Zinc coating, further vapor etching, and post-modification with perfluoro caprylic acid. The facile, inexpensive, and environment-friendly water vapor etching process can form a porous honeycomb-like structure. Moreover, the perfluoropolyether lubricant was wicked into the porous and superhydrophobic surfaces, obtaining lubricant-infused surfaces of Fe@E-Zn@PFOA@PFPE. Results and discussion: The influences of the textured roughness and chemical composition on the surface wettability were systematically investigated. The Fe@E-Zn@PFOA@PFPE performs omniphobicity with small sliding angles and superior corrosion resistance compared with the superhydrophobic surface, owing to their multiple barriers, including infused lubricant, hydrophobic monolayers, and compact Zn electroplating coating. Thus, the proposed lubricant-infused surface may provide insights into constructing protective coatings for the potential applications of engineering metal materials.
Collapse
Affiliation(s)
- Xiaorui Song
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, China
| | - Na Li
- Department of Stomatology, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Zhongshan Wang
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, China
| | - Shuangjian Li
- Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory of Modern Materials Surface Engineering Technology, Guangdong, China
| | - Yuanyuan Hou
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, China
| |
Collapse
|
24
|
Gu W, Li W, Zhang Y, Xia Y, Wang Q, Wang W, Liu P, Yu X, He H, Liang C, Ban Y, Mi C, Yang S, Liu W, Cui M, Deng X, Wang Z, Zhang Y. Ultra-durable superhydrophobic cellular coatings. Nat Commun 2023; 14:5953. [PMID: 37741844 PMCID: PMC10517967 DOI: 10.1038/s41467-023-41675-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Developing versatile, scalable, and durable coatings that resist the accretion of matters (liquid, vapor, and solid phases) in various operating environments is important to industrial applications, yet has proven challenging. Here, we report a cellular coating that imparts liquid-repellence, vapor-imperviousness, and solid-shedding capabilities without the need for complicated structures and fabrication processes. The key lies in designing basic cells consisting of rigid microshells and releasable nanoseeds, which together serve as a rigid shield and a bridge that chemically bonds with matrix and substrate. The durability and strong resistance to accretion of different matters of our cellular coating are evidenced by strong anti-abrasion, enhanced anti-corrosion against saltwater over 1000 h, and maintaining dry in complicated phase change conditions. The cells can be impregnated into diverse matrixes for facile mass production through scalable spraying. Our strategy provides a generic design blueprint for engineering ultra-durable coatings for a wide range of applications.
Collapse
Affiliation(s)
- Wancheng Gu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wanbo Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Yu Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yage Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Qiaoling Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hui He
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Caihua Liang
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Youxue Ban
- School of Civil Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Changwen Mi
- School of Civil Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Miaomiao Cui
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Deng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China.
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China.
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
25
|
Ou H, Dai Z, Gao Y, Zhou B. Breathable Fabrics with Robust Superhydrophobicity via In Situ Formation of Hierarchical Surface Morphologies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39989-40000. [PMID: 37613999 DOI: 10.1021/acsami.3c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Superhydrophobic fabrics have recently attracted extensive interest not only in the fields of water-repellent clothing but also for the emerging functional fabrics due to their intrinsic flexibility and excellent stability. In this work, we proposed a simple, cost-effective, and environmentally friendly method to fabricate superhydrophobic fabrics with a broad application scope for textiles of different apertures. The flexible, breathable, and superhydrophobic fabric was realized via a three-step process, including polydimethylsiloxane (PDMS) encapsulation, in situ microcilia array formation, and silica nanoparticle decoration. With an adhesive PDMS layer and additive NdFeB particles, the hierarchical structures can tightly attach to the fabric substrate to provide robustness and durability. Specifically, the optimization of microcilia architecture was achieved via tuning the composite mass ratios so that suitable morphologies can be produced for robust nonwetting behavior. The superhydrophobic fabrics possess a contact angle and sliding angle of ∼155 and ∼3°, respectively, with excellent durability against 650 cycles' periodic mechanical abrasion, 130 cycles' tape-peeling test, washing evaluation, and chemical corrosions. Furthermore, the superhydrophobic fabric shows outstanding breathability and flexibility to be adaptive to surfaces with curvature or irregular shapes. The presented superhydrophobic strategy was considered to be feasible for multiple fabric substrates, revealing the broad application potential for fields of healthcare production, outdoor goods, catering industry, etc.
Collapse
Affiliation(s)
- Huifang Ou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen 518000, Guangdong, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
26
|
Wang Z, Ren Y, Wu F, Qu G, Chen X, Yang Y, Wang J, Lu P. Advances in the research of carbon-, silicon-, and polymer-based superhydrophobic nanomaterials: Synthesis and potential application. Adv Colloid Interface Sci 2023; 318:102932. [PMID: 37311274 DOI: 10.1016/j.cis.2023.102932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
With the rapid development of science and technology, superhydrophobic nanomaterials have become one of the hot topics from various subjects. Due to their distinct properties, such as superhydrophobicity, anti-icing and corrosion resistance, superhydrophobic nanomaterials are widely used in industry, agriculture, defense, medicine and other fields. Hence, the development of superhydrophobic materials with superior performance, economical, practical features, and environment-friendly properties are extremely important for industrial development and environmental protection. Aimed to provide a scientific and theoretical basis for the subsequent study on the preparation of composite superhydrophobic nanomaterials, this paper reviewed the latest progress in the research of superhydrophobic surface wettability and the theory of superhydrophobicity, summarized and analyzed the latest development of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials in terms of their synthesis, modification, properties and structure sizes (diameters), discussed the problems and unique application prospects of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Yuanchuan Ren
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China.
| | - Xiuping Chen
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Yuyi Yang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Jun Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Ping Lu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| |
Collapse
|
27
|
Wei J, Liang W, Zhang J. Preparation of Mechanically Stable Superamphiphobic Coatings via Combining Phase Separation of Adhesive and Fluorinated SiO 2 for Anti-Icing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1872. [PMID: 37368302 DOI: 10.3390/nano13121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Superamphiphobic coatings have widespread application potential in various fields, e.g., anti-icing, anti-corrosion and self-cleaning, but are seriously limited by poor mechanical stability. Here, mechanically stable superamphiphobic coatings were fabricated by spraying the suspension composed of phase-separated silicone-modified polyester (SPET) adhesive microspheres with fluorinated silica (FD-POS@SiO2) on them. The effects of non-solvent and SPET adhesive contents on the superamphiphobicity and mechanical stability of the coatings were studied. Due to the phase separation of SPET and the FD-POS@SiO2 nanoparticles, the coatings present a multi-scale micro-/nanostructure. Combined with the FD-POS@SiO2 nanoparticles of low surface energy, the coatings present outstanding static and dynamic superamphiphobicity. Meanwhile, the coatings present outstanding mechanical stability due to the adhesion effect of SPET. In addition, the coatings present outstanding chemical and thermal stability. Moreover, the coatings can obviously delay the water freezing time and decrease the icing adhesion strength. We trust that the superamphiphobic coatings have widespread application potential in the anti-icing field.
Collapse
Affiliation(s)
- Jinfei Wei
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
28
|
Li Y, Ma X, Chen Y, Kang X, Yang B. Superhydrophobicity Mechanism and Nanoscale Profiling of PDMS-Modified Kaolinite Nanolayers via Ab Initio-MD Simulation and Atomic Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289639 DOI: 10.1021/acs.langmuir.3c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the superhydrophobic mechanism of kaolinite particles modified with poly(dimethylsiloxane) (PDMS), which has potential as a superior hydrophobic coating. The study employed a combination of density functional theory (DFT) simulation modeling, characterization of the chemical properties and microstructure, contact angle measurements, and chemical force spectroscopy of atomic force microscopy. The results showed successful PDMS grafting onto the kaolinite surface, resulting in micro- and nanoscale roughness and a contact angle of 165°, indicating a successful superhydrophobic effect. The study also identified the mechanism of the hydrophobic interaction through two-dimensional micro- and nanoscale hydrophobicity images, highlighting the potential of this approach for developing new hydrophobic coatings.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha 410082, China
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Xiongying Ma
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha 410082, China
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yongqing Chen
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha 410082, China
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Xin Kang
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha 410082, China
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Bin Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Yanagishita T, Kurita M. Preparation of Polymer Nanopillar Arrays with Controlled Tip Shapes and Their Application to Hydrophobic and Oleophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37267583 DOI: 10.1021/acs.langmuir.3c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ordered arrays of nanopillars with controlled tip shapes were fabricated by a template formation process using anodic porous alumina with controlled pore shapes. Although various studies have been reported on the preparation of nanopillar arrays using anodic porous alumina as a template, there have been no reports on the formation of nanopillar arrays with precisely controlled tip shapes. Re-anodization of anodized samples in a neutral electrolyte can flatten the bottom of pores. The use of the resulting anodic porous alumina as a template enabled the fabrication of ordered nanopillar arrays with a flattened tip. The formation of overhanging nanopillar arrays was also possible by using anodic porous alumina with a controlled pore shape as a template, which was fabricated by a combination of anodization, TiO2 coating by atomic layer deposition, and pore-widening treatment. The contact angles of water and oil droplets were measured using the obtained polymer nanopillar arrays with controlled tip shapes. The contact angle of water droplets did not change regardless of the tip shape of the nanopillars, whereas the contact angle of oil droplets changed depending on the tip shape of the nanopillars. This indicates that liquids with high surface tension are not affected by the nanopillar tip shape, whereas liquids with low surface tension are greatly affected by the nanopillar tip shape. Among the nanopillar arrays fabricated in this study, it was confirmed that the overhanging nanopillar array with many edge structures that have the pinning effect of suppressing the wetting spread of the solution exhibited the highest oil repellency. The method reported here can be used to fabricate nanopillar arrays with a precisely controlled tip geometry, and it is expected that optimization of the geometry will further improve the water- and oil-repellent properties.
Collapse
Affiliation(s)
- Takashi Yanagishita
- Department of Applied Chemistry, Tokyo Metropolitan University, Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| | - Moana Kurita
- Department of Applied Chemistry, Tokyo Metropolitan University, Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
30
|
Jiang X, Lin Y, Xuan X, Zhuo Y, Wu J, He J, Du X, Zhang Z, Li T. Stiffening surface lowers ice adhesion strength by stress concentration sites. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
31
|
Parbat D, Jana N, Dhar M, Manna U. Reactive Multilayer Coating As Versatile Nanoarchitectonics for Customizing Various Bioinspired Liquid Wettabilities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25232-25247. [PMID: 35730600 DOI: 10.1021/acsami.2c04759] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In last few decades, multilayer coatings have achieved enormous attention owing to their unique ability to tune thickness, topography, and chemical composition for developing various functional materials. Such multilayer coatings were mostly and conventionally derived by following a simple layer-by-layer (LbL) deposition process through the strategic use of electrostatic interactions, hydrogen bonding, host-guest interactions, covalent bonding, etc. In the conventional design of multilayer coatings, the chemical composition and morphology of coatings are modulated during the process of multilayer constructions. In such an approach, the postmodulations of the porous multilayers with different and desired chemistries are challenging to achieve due to the lack of availability of readily and selectively reactive moieties. Recently, the design of readily and selectively reactive multilayer coatings (RMLCs) provided a facile basis for postmodulating the prepared coating with various desired chemistries. In fact, by taking advantage of the inherent ability of co-optimizing the topography and various chemistries in porous RMLCs, different durable bioinspired liquid wettabilities (i.e., superhydrophobicity, underwater superoleophobicity, underwater superoleophilicity, slippery property, etc.) were successfully derived. Such interfaces have enormous potential in various prospective applications. In this review, we intend to give an overview of the evolution of LbL multilayer coatings and their synthetic strategies and discuss the key advantages of porous RMLCs in terms of achieving and controlling wettability properties. Recent attempts toward various applications of such multilayer coatings that are strategically embedded with different desired liquid wettabilities will be emphasized.
Collapse
Affiliation(s)
- Dibyangana Parbat
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| | - Nirban Jana
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
- School of Health Science and Technology, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
32
|
Wei J, Zhang J, Cao X, Huo J, Huang X, Zhang J. Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes. Nat Commun 2023; 14:2862. [PMID: 37208369 DOI: 10.1038/s41467-023-38678-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
Superhydrophobic coatings are expected to solve the rain attenuation issue of 5G radomes. However, it is very challenging to design and construct such superhydrophobic coatings with good impalement resistance, mechanical robustness, and weather resistance, which remains as one of the main bottlenecks hindering their practical applications. Here, we report the design of superhydrophobic coatings with all these merits mentioned above by spray-coating a suspension of adhesive/fluorinated silica core/shell microspheres onto substrates. The core/shell microspheres are formed by phase separation of the adhesive and adhesion between the adhesive and fluorinated silica nanoparticles. The coatings have an approximately isotropic three-tier hierarchical micro-/micro-/nanostructure, a dense but rough surface at the nanoscale, and chemically inert composition with low surface energy. Consequently, the coatings show excellent impalement resistance, mechanical robustness and weather resistance compared with previous studies, and the mechanisms are revealed. Furthermore, we realize large-scale preparation, extension, and practical application of the coatings for efficiently preventing rain attenuation of 5G/weather radomes. By taking these advantages, we believe that the superhydrophobic coatings have great application potential and market prospect. The findings here will boost preparation and real-world applications of superhydrophobic coatings.
Collapse
Affiliation(s)
- Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, PR China
| | - Jiaojiao Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, PR China
| | - Xiaojun Cao
- Shandong Xinna Superhydrophobic New Materials Co. Ltd., 265402, Yantai, PR China
| | - Jinhui Huo
- Shandong Xinna Superhydrophobic New Materials Co. Ltd., 265402, Yantai, PR China
| | - Xiaopeng Huang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, PR China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, PR China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
33
|
Tian S, Li R, Liu X, Wang J, Yu J, Xu S, Tian Y, Yang J, Zhang L. Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings. RESEARCH (WASHINGTON, D.C.) 2023; 6:0140. [PMID: 37214197 PMCID: PMC10194051 DOI: 10.34133/research.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Anti-icing coatings on outdoor infrastructures inevitably suffer from mechanical injuries in numerous icing scenarios such as hailstorms, sandstorms, impacts of foreign objects, and icing-deicing cycles. Herein, the mechanisms of surface-defect-induced icing are clarified. At the defects, water molecules exhibit stronger adsorption and the heat transfer rate increases, accelerating the condensation of water vapor as well as ice nucleation and propagation. Moreover, the ice-defect interlocking structure increases the ice adhesion strength. Thus, a self-healing (at -20 °C) antifreeze-protein (AFP)-inspired anti-icing coating is developed. The coating is based on a design that mimics the ice-binding and non-ice-binding sites in AFPs. It enables the coating to markedly inhibit ice nucleation (nucleation temperature < -29.4 °C), prevent ice propagation (propagation rate < 0.00048 cm2/s), and reduce ice adhesion on the surface (adhesion strength < 38.9 kPa). More importantly, the coating can also autonomously self-heal at -20 °C, as a result of multiple dynamic bonds in its structure, to inhibit defect-induced icing processes. The healed coating sustains high anti-icing and deicing performance even under various extreme conditions. This work reveals the in-depth mechanism of defect-induced ice formation as well as adhesion, and proposes a self-healing anti-icing coating for outdoor infrastructures.
Collapse
Affiliation(s)
- Shu Tian
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Ruiqi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, China
| | - Junyu Yu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Sijia Xu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Yunqing Tian
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| |
Collapse
|
34
|
Samanta S, Sarkar S, Singha NK. Multifunctional Layer-by-Layer Coating Based on a New Amphiphilic Block Copolymer via RAFT-Mediated Polymerization-Induced Self-Assembly Process. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24812-24826. [PMID: 37161275 DOI: 10.1021/acsami.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this hi-tech world, the "smart coatings" have sparked significant attention among materials scientists because of their versatile applications. Various strategies have been developed to generate smart coatings in the past 2 decades. The layer-by-layer (LbL) technique is the most commonly employed strategy to produce a smart coating for suitable applications. Here, we present a smart coating with healing, antifogging, and fluorescence properties fabricated by the LbL assembly of an anionic amphiphilic block copolymer latex and cationic inorganic POSS (polyhedral-oligomeric-silsesquioxane) nanoparticles. In this case, a new anionic block copolymer (BCP), {poly(sodium styrene sulfonate)-block-poly[2-(acetoacetoxy)ethyl methacrylate]}, (PSS-b-PAAEMA) was synthesized via surfactant-free RAFT-mediated emulsion polymerization using the PISA technique. The PSS-b-PAAEMA was characterized by 1H NMR, dynamic light scattering, scanning electron microscopy, and transmission electron microscopy analyses as well as by UV-vis and photoluminescence spectroscopy. For LbL coating fabrication, an amine-modified glass was successively dipped in the anionic latex and cationic POSS solution. The transparent coating exhibited good fluorescence properties under UV light (blue color). The antifogging performance of the coating was also investigated using both cold-warm and hot-vapor techniques. Additionally, the coating surface showed a significant healing activity with a healing efficiency of >75% through ionic interaction. Thus, this finding provides a simple low volatile organic compound (VOC) water-based LbL coating with multifunctional properties that can be a potential material for versatile applications.
Collapse
Affiliation(s)
- Sarthik Samanta
- Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Shrabana Sarkar
- Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nikhil K Singha
- Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
35
|
Zhao S, Xu C, Zeng Q, Zhang J, Liu C, Liang Y, Guo Z, Huang J, Liu W. Robust Janus Superwetting Textile with Large Pore Sizes for Oil-in-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6249-6257. [PMID: 37073894 DOI: 10.1021/acs.langmuir.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Developing advanced oil-water separation technology is significant for environmental conservation. According to the synergetic effects of the size-sieving mechanism, superwetting materials with small pore sizes have been designed to realize high-efficiency separation for oil-water emulsions. However, the separation flux limited by the pore size and the weakness of the superwetting material impede its practical application severely. Herein, we construct a robust Janus superwetting textile with large pore sizes for oil-in-water emulsion separation. The pristine textile is coated by the as-prepared CuO nanoparticles as the bottom layer with superhydrophilicity and then grafted by 1-octadecanethiol as the top layer with superhydrophobicity to construct the Janus textile. When used as a filter, the superhydrophobic layer acts as the nucleation site to coalesce the small oil droplets facilely. Then, the coalesced oil fills the pores of the superhydrophobic layer and selectively permeates it but is blocked by the superhydrophilic layer with large pore sizes. Utilizing the unique separation mechanism, the Janus textile realizes efficient and rapid separation. Even after multicycle separation, hot liquid immersion for 24 h, tribological test for 60 min, and sandpaper abrasion for 500 cycles, the Janus textile still retains the superwettability and excellent separation performance, manifesting outstanding stability to resist severe damage. This separation strategy provides a novel guideline for high-efficiency and high-flux emulsion separation and practical application.
Collapse
Affiliation(s)
- Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinghong Zeng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Jiaxu Zhang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, P. R. China
| | - Cong Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Yongmin Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
36
|
Zhou K, Yan X, Oh SJ, Padilla-Rivera G, Kim HA, Cropek DM, Miljkovic N, Cai L. Hierarchically Patterned Self-Cleaning Polymer Composites for Daytime Radiative Cooling. NANO LETTERS 2023; 23:3669-3677. [PMID: 37079783 DOI: 10.1021/acs.nanolett.2c04069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Passive daytime radiative cooling (PDRC) has the potential to reduce energy demand and mitigate global warming. However, surface contamination from dust and bacterial buildup limits practical PDRC applications. Here, we develop a hierarchically patterned nanoporous composite (HPNC) using a facile template-molding fabrication method to integrate PDRC materials with self-cleaning and antibacterial functions. The HPNC design decouples multifunctional control into different characteristic length scales that can be optimized simultaneously. The nanoporous polymer matrix embedded with tunable fillers enables 7.8 and 4.4 °C temperature reduction for outdoor personal and building cooling, respectively, under intense solar irradiance. Meanwhile, a microscale pillar array pattern integrated into the HPNC enables superhydrophobicity with self-cleaning and antisoiling functions to mitigate surface contamination. Moreover, the surface coating of photocatalytic agents can generate photoinduced antibacterial effects. The scalable fabrication and multifunctional capabilities of our HPNC design offer a promising solution for practical PDRC applications with minimal maintenance needs.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Seung J Oh
- U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Gabriela Padilla-Rivera
- U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Hyunjung A Kim
- U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Donald M Cropek
- U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lili Cai
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Seo D, Cho YH, Kim G, Shin H, Lee SK, Kim JE, Chun H, Jung JS, Choi Y. Permanent Anticoagulation Blood-Vessel by Mezzo-Sized Double Re-Entrant Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300564. [PMID: 37010002 DOI: 10.1002/smll.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Having a permanent omniphobicity on the inner surface of the tube can bring enormous advantages, such as reducing resistance and avoiding precipitation during mass transfer. For example, such a tube can prevent blood clotting when delivering blood composed of complex hydrophilic and lipophilic compounds. However, it is very challenging to fabricate micro and nanostructures inside a tube. To overcome these, a wearability and deformation-free structural omniphobic surface is fabricated. The omniphobic surface can repel liquids by its "air-spring" under the structure, regardless of surface tension. Furthermore, it is not lost an omniphobicity under physical deformation like curved or twisted. By using these properties, omniphobic structures on the inner wall of the tube by the "roll-up" method are fabricated. Fabricated omniphobic tubes still repels liquids, even complex liquids like blood. According to the ex vivo blood tests for medical usage, the tube can reduce thrombus formation by 99%, like the heparin-coated tube. So, it is believed the tube can be soon replaced typical coating-based medical surfaces or anticoagulation blood vessel.
Collapse
Affiliation(s)
- Dongkwon Seo
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Yang Hyun Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Gijung Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunku Shin
- Exopert Corporation, Seoul, 02841, Republic of Korea
| | - Su Kyoung Lee
- Korea Artificial Organ Center, Seoul, 02841, Republic of Korea
| | - Ji Eon Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Honggu Chun
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Seung Jung
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Exopert Corporation, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
38
|
Välisalmi T, Roas-Escalona N, Meinander K, Mohammadi P, Linder MB. Highly Hydrophobic Films of Engineered Silk Proteins by a Simple Deposition Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4370-4381. [PMID: 36926896 PMCID: PMC10061925 DOI: 10.1021/acs.langmuir.2c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Molecular engineering of protein structures offers a uniquely versatile route for novel functionalities in materials. Here, we describe a method to form highly hydrophobic thin films using genetically engineered spider silk proteins. We used structurally engineered protein variants containing ADF3 and AQ12 spider silk sequences. Wetting properties were studied using static and dynamic contact angle measurements. Solution conditions and the surrounding humidity during film preparation were key parameters to obtain high hydrophobicity, as shown by contact angles in excess of 120°. Although the surface layer was highly hydrophobic, its structure was disrupted by the added water droplets. Crystal-like structures were found at the spots where water droplets had been placed. To understand the mechanism of film formation, different variants of the proteins, the topography of the films, and secondary structures of the protein components were studied. The high contact angle in the films demonstrates that the conformations that silk proteins take in the protein layer very efficiently expose their hydrophobic segments. This work reveals a highly amphiphilic nature of silk proteins and contributes to an understanding of their assembly mechanisms. It will also help in designing diverse technical uses for recombinant silk.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Nelmary Roas-Escalona
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Kristoffer Meinander
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland, Limited (VTT), FI-02044 Espoo, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| |
Collapse
|
39
|
Li W, Chan CW, Li Z, Siu SY, Chen S, Sun H, Liu Z, Wang Y, Hu C, Pugno NM, Zare RN, Wu H, Ren K. All-perfluoropolymer, nonlinear stability-assisted monolithic surface combines topology-specific superwettability with ultradurability. Innovation (N Y) 2023; 4:100389. [PMID: 36895759 PMCID: PMC9988671 DOI: 10.1016/j.xinn.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Developing versatile and robust surfaces that mimic the skins of living beings to regulate air/liquid/solid matter is critical for many bioinspired applications. Despite notable achievements, such as in the case of developing robust superhydrophobic surfaces, it remains elusive to realize simultaneously topology-specific superwettability and multipronged durability owing to their inherent tradeoff and the lack of a scalable fabrication method. Here, we present a largely unexplored strategy of preparing an all-perfluoropolymer (Teflon), nonlinear stability-assisted monolithic surface for efficient regulating matters. The key to achieving topology-specific superwettability and multilevel durability is the geometric-material mechanics design coupling superwettability stability and mechanical strength. The versatility of the surface is evidenced by its manufacturing feasibility, multiple-use modes (coating, membrane, and adhesive tape), long-term air trapping in 9-m-deep water, low-fouling droplet transportation, and self-cleaning of nanodirt. We also demonstrate its multilevel durability, including strong substrate adhesion, mechanical robustness, and chemical stability, all of which are needed for real-world applications.
Collapse
Affiliation(s)
- Wanbo Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeyu Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Siyu Chen
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Han Sun
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeyu Liu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chong Hu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nicola Maria Pugno
- Department of Civil, Environmental and Mechanical Engineering, Laboratory of Bio-Inspired, Bionic, Nano, Meta Materials and Mechanics, Università di Trento, 38100 Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Kangning Ren
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.,HKBU Institute of Research and Continuing Education, Shenzhen 518057, China
| |
Collapse
|
40
|
Celik N, Sahin F, Ozel SS, Sezer G, Gunaltay N, Ruzi M, Onses MS. Self-Healing of Biocompatible Superhydrophobic Coatings: The Interplay of the Size and Loading of Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3194-3203. [PMID: 36812456 PMCID: PMC9996814 DOI: 10.1021/acs.langmuir.2c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The broad application potential of superhydrophobic coatings is limited by the usage of environment-threatening materials and poor durability. The nature-inspired design and fabrication of self-healing coatings is a promising approach for addressing these issues. In this study, we report a fluorine-free and biocompatible superhydrophobic coating that can be thermally healed after abrasion. The coating is composed of silica nanoparticles and carnauba wax, and the self-healing is based on surface enrichment of wax in analogy to the wax secretion in plant leaves. The coating not only exhibits fast self-healing, just in 1 min under moderate heating, but also displays increased water repellency and thermal stability after healing. The rapid self-healing ability of the coating is attributed to the relatively low melting point of carnauba wax and its migration to the surface of the hydrophilic silica nanoparticles. The dependence of self-healing on the size and loading of particles provides insights into the process. Furthermore, the coating exhibits high levels of biocompatibility where the viability of fibroblast L929 cells was ∼90%. The presented approach and insights provide valuable guidelines in the design and fabrication of self-healing superhydrophobic coatings.
Collapse
Affiliation(s)
- Nusret Celik
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
| | - Furkan Sahin
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - Sultan Suleyman Ozel
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
| | - Gulay Sezer
- Department
of Pharmacology, Faculty of Medicine, Erciyes
University, 38039 Kayseri, Turkey
| | - Nail Gunaltay
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - Mahmut Ruzi
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - M. Serdar Onses
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
- UNAM
− National Nanotechnology Research Center, Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
41
|
Yang G, Zhang B, Zheng C, Xu W, Hou B. Waterborne superhydrophobic coating with abrasion and corrosion resistant capabilities. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
42
|
Haechler I, Ferru N, Schnoering G, Mitridis E, Schutzius TM, Poulikakos D. Transparent sunlight-activated antifogging metamaterials. NATURE NANOTECHNOLOGY 2023; 18:137-144. [PMID: 36509921 DOI: 10.1038/s41565-022-01267-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Counteracting surface fogging to maintain surface transparency is important for a variety of applications including eyewear, windows and displays. Energy-neutral, passive approaches predominantly rely on engineering the surface wettability, but suffer from non-uniformity, contaminant deposition and lack of robustness, all of which substantially degrade durability and performance. Here, guided by nucleation thermodynamics, we design a transparent, sunlight-activated, photothermal coating to inhibit fogging. The metamaterial coating contains a nanoscopically thin percolating gold layer and is most absorptive in the near-infrared range, where half of the sunlight energy resides, thus maintaining visible transparency. The photoinduced heating effect enables sustained and superior fog prevention (4-fold improvement) and removal (3-fold improvement) compared with uncoated samples, and overall impressive performance, indoors and outdoors, even under cloudy conditions. The extreme thinness (~10 nm) of the coating-which can be produced by standard, readily scalable fabrication processes-enables integration beneath other coatings, rendering it durable even on highly compliant substrates.
Collapse
Affiliation(s)
- Iwan Haechler
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Nicole Ferru
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gabriel Schnoering
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| | - Efstratios Mitridis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Thomas M Schutzius
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Chen C, Fan P, Zhu D, Tian Z, Zhao H, Wang L, Peng R, Zhong M. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6025-6034. [PMID: 36688663 DOI: 10.1021/acsami.2c15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reducing unfavorable ice accretion on surfaces exposed in cold environment requires effective passive anti-icing/deicing techniques. Icephobic surfaces are widely applied on various infrastructures due to their low ice adhesion strength and flexibility, whereas their poor mechanical durability, common liquid infusion, weak resistance to contamination, and low bonding strength to substrates are the major remaining challenges. According to the fracture mechanics of ice layer, initiating cracks at the ice-solid interfaces via the proper design of internal structures of icephobic materials is a promising way to icephobicity. Herein, a crack initiating icephobic surface with porous PDMS sponges sandwiched between a protective, dense PDMS layer and a textured metal microstructure was proposed and fabricated. The combination of high- and low- stiffness PDMS layers anchored by the structured metal surface give the sandwich-like structure excellent icephobicity with both high durability and low ice adhesion (5.3 kPa in the icing-deicing cycles). The porosity and the elastic modulus of the PDMS sponges and the periodicity of the metal surface structures can both be tailored to realize enhanced icephobicity. The sandwich-like icephobic surface remained insignificantly changed under solid particle impacting and the durability characterized via linear abrasion tests was elevated compared with PDMS coating on flat metal surfaces. Additionally, the trilayer icephobic surface possesses durability, low ice adhesion strength, and improved resistance to contamination and is applicable on various surfaces.
Collapse
Affiliation(s)
- Changhao Chen
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Peixun Fan
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Dongyu Zhu
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning110034, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Huanyu Zhao
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning110034, P. R. China
| | - Lizhong Wang
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
44
|
Guo XJ, Zhang D, Xue CH, Liu BY, Huang MC, Wang HD, Wang X, Deng FQ, Pu YP, An QF. Scalable and Mechanically Durable Superhydrophobic Coating of SiO 2/Polydimethylsiloxane/Epoxy Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4612-4622. [PMID: 36631727 DOI: 10.1021/acsami.2c21623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The mechanical durability of superhydrophobic surfaces is of significance for their practical applications. However, few reports about superhydrophobic coating on certain substrates took into consideration both the mechanical stability of the superhydrophobic coating and adhesion stability between the coating and the substrate. Herein, we put forward a facile and efficient strategy to construct robust superhydrophobic coatings by simply spray-coating a composite suspension of SiO2 nanoparticles, polydimethylsiloxane (PDMS), and epoxy resin (EP) on substrates pretreated with an EP base-coating. The as-obtained coating exhibited excellent superhydrophobicity with water contact angle of 163° and sliding angle of 3.5°, which could endure UV irradiation of 180 h, immersion in acidic or basic solutions for 168 h, and outdoor exposure for over 30 days. Notably, the coating surface retained superhydrophobicity after being successively impacted with faucet water for 1 h, impinged with 360 g sand grains, and abraded with sandpaper of 120 grid under a load of 500 g for 5 m distance. The outstanding mechanical stability was mainly attributed to the cross-linking of EP and the elastic nature of PDMS which ensured strong cohesion inside the whole coating and to the substrate. Additionally, the coating showed self-healing capacity against O2 plasma etching. The method is simple with the materials commercially available and is expected to be widely applied in outdoor applications.
Collapse
Affiliation(s)
- Xiao-Jing Guo
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Duo Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao-Hua Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bing-Ying Liu
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Meng-Chen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui-Di Wang
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xing Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fu-Quan Deng
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yong-Ping Pu
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiu-Feng An
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
45
|
Sustainable corrosion-resistant superhydrophobic composite coating with strengthened robustness. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Rius-Ayra O, Biserova-Tahchieva A, Llorca-Isern N. Removal of dyes, oils, alcohols, heavy metals and microplastics from water with superhydrophobic materials. CHEMOSPHERE 2023; 311:137148. [PMID: 36351466 DOI: 10.1016/j.chemosphere.2022.137148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A wide variety of pollutants can be currently found in water that are extremely difficult to remove due to their chemical composition and properties. A lot of effort has been made to tackle this issue that directly affects the environment. In this scenario, superhydrophobic surfaces, which have a water contact angle >150°, have emerged as an innovative technology that could be applied in different ways. Their environmental applications show promise in removing emerging pollutants from water. While the number of publications on superhydrophobic materials has remained largely unchanged since 2019, the number of articles on the environmental applications of superhydrophobic surfaces is still rising, corroborating the interest in this area. Herein, we briefly present the basis of superhydrophobicity and show the different materials that have been used to remove pollutants from water. We have identified five types of emerging pollutants that are efficiently removed by superhydrophobic materials: oils, microplastics, dyes, heavy metals, and ethanol. Finally, the future challenges of these applications are also discussed, considering the state of the art of the environmental applications of superhydrophobic materials.
Collapse
Affiliation(s)
- Oriol Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| | - Alisiya Biserova-Tahchieva
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Nuria Llorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
47
|
Ge Y, Cheng J, Xue L, Zhang B, Zhang P, Cui X, Hong S, Wu Y, Zhang X, Liang X. Durability and corrosion behaviors of superhydrophobic amorphous coatings: a contrastive investigation. RSC Adv 2022; 12:32813-32824. [PMID: 36425175 PMCID: PMC9670684 DOI: 10.1039/d2ra06073f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2024] Open
Abstract
Superhydrophobic surfaces can be derived from roughening hydrophobic materials. However, the superhydrophobic surfaces with various micro/nano morphologies present variations of chemical and mechanical durability, which limits their practical applications. Very little actually is known about comparing durability and corrosion resistance of concave and convex superhydrophobic surface structures systematically. In this paper, two kinds of superhydrophobic AlNiTi amorphous coatings with concave and convex surfaces were obtained by chemical etching and hydrothermal methods, respectively. Benefiting from nanoscale sheet structure, the convex superhydrophobic coating displays higher water-repellence (contact angle = 157.6°), better self-cleaning performance and corrosion resistance. The corrosion current density of the convex superhydrophobic surface is approximately one order of magnitude smaller than the concave superhydrophobic surface. Besides, the long-term chemical stability and mechanical durability of both superhydrophobic surfaces were also investigated. The formation and damage mechanisms of these two kinds of superhydrophobic surfaces were proposed. It is hoped that these investigations could provide clear guidance for the real-world applications of superhydrophobic amorphous coatings.
Collapse
Affiliation(s)
- Yunyun Ge
- College of Mechanics and Materials, Hohai University Nanjing 211100 P. R. China
| | - Jiangbo Cheng
- College of Mechanics and Materials, Hohai University Nanjing 211100 P. R. China
| | - Lin Xue
- College of Mechanics and Materials, Hohai University Nanjing 211100 P. R. China
| | - Baosen Zhang
- School of Materials Engineering, Nanjing Institute of Technology Nanjing 211167 P. R. China
| | - Peipei Zhang
- National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China Beijing 100010 P. R. China
| | - Xin Cui
- National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China Beijing 100010 P. R. China
| | - Sheng Hong
- College of Mechanics and Materials, Hohai University Nanjing 211100 P. R. China
| | - Yuping Wu
- College of Mechanics and Materials, Hohai University Nanjing 211100 P. R. China
| | - Xiancheng Zhang
- Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiubing Liang
- National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China Beijing 100010 P. R. China
| |
Collapse
|
48
|
Xiao H, Wang Y, Hao B, Cao Y, Cui Y, Huang X, Shi B. Collagen Fiber-Based Advanced Separation Materials: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107891. [PMID: 34894376 DOI: 10.1002/adma.202107891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.
Collapse
Affiliation(s)
- Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiran Cao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
49
|
Preparing Hydrophobic Cellulose Nanofibers-SiO2 Films and Coating by One-Step Mechanochemical Method. Polymers (Basel) 2022; 14:polym14204413. [DOI: 10.3390/polym14204413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Green and sustainable cellulose-based hydrophobic coatings are increasingly the subject of scientific and industrial research. However, few researchers pay attention to preparing it by a one-step method. Therefore, a superhydrophobic coating composed of hydrophobic SiO2 and cellulose nanofiber modified by 3,4-dichlorophenyl isocyanate was manufactured through one-step ball milling. It was found that the ball milling can promote SiO2 dispersion and achieve the preparation of modified nanocellulose, which further disperse SiO2 nanoparticles to form film or coating. Compared with the ultrasonic dispersion method, the composite coating prepared by ball milling method can obtain higher water contact angle and more stable hydrophobic properties. The hydrophobic cellulose nanofiber can load 1.5 equivalents of SiO2 nanoparticles to form a uniform film with the water contact angle of 158.0° and low moisture absorption. When this nanocomposite is used as a coating material, it can impart super-hydrophobicity to paper surface with water contact angle of 155.8°. This work provides a facile way to prepare superhydrophobic nanocellulose/nanoparticles composite coatings and films, thereby broadening the ways of dispersing nanoparticles and constructing superhydrophobic coatings.
Collapse
|
50
|
Wu C, Fan Y, Wang H, Li J, Chen Y, Wang Y, Liu L, Zhou L, Huang S, Tian X. Whether and When Superhydrophobic/Superoleophobic Surfaces Are Fingerprint Repellent. Research (Wash D C) 2022; 2022:9850316. [PMID: 36258844 PMCID: PMC9534580 DOI: 10.34133/2022/9850316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Driven by the ever-increasing demand for fingerprint-resistant techniques in modern society, numerous researches have proposed to develop innovative antifingerprint coatings based on superhydrophobic/superoleophobic surface design. However, whether superhydrophobic/superoleophobic surfaces have favorable repellency to the microscopic fingerprint is in fact an open question. Here, we establish a reliable method that enables evaluating the antifingerprint capability of various surfaces in a quantitative way. We show that superhydrophobicity is irrelevant with fingerprint repellency. Regarding superoleophobic surfaces, two distinct wetting states of microscopic fingerprint residues, i.e., the “repellent” and the “collapsed” states, are revealed. Only in the “repellent” state, in which the fingerprint residues remain atop surface textures upon being pressed, superoleophobic surfaces can bring about favorable antifingerprint repellency, which correlates positively with their receding contact angles. A finger-deformation-dependent intrusion mechanism is proposed to account for the formation of different fingerprint wetting states. Our findings offer important insights into the mechanism of fingerprint repellency and will help the design of high-performance antifingerprint surfaces for diverse applications.
Collapse
Affiliation(s)
- Chengjiao Wu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Fan
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongxin Wang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Juan Li
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
- School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxi Chen
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingke Wang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Lidan Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuelin Tian
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|