1
|
Ghorai S, Dasgupta S, Mukherjee A, Barui A, Roymahapatra G, Ganguly J. An Integrated Polysaccharide Hydrogel with Versatile Fluorescence Responses through Noncovalent Reformation of Gel Aggregation and for Bioimaging. ACS APPLIED BIO MATERIALS 2024; 7:5640-5650. [PMID: 39094036 DOI: 10.1021/acsabm.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Functionalized hydrogels, with their unique and adaptable structures, have attracted significant attention in materials and biomaterials research. Fluorescent hydrogels are particularly noteworthy for their sensing capabilities and ability to mimic cellular matrices, facilitating cell infiltration and tracking of drug delivery. Structural elucidation of hydrogels is crucial for understanding their responses to stimuli such as the pH, temperature, and solvents. This study developed a fluorescent hydrogel by functionalizing chitosan with p-cresol-based quinazolinone aldehyde. Confocal microscopy revealed the hydrogel's intriguing fluorogenic properties. The hydrogel exhibited enhanced fluorescence and a tunable network morphology, influenced by the THF-water ratio. The study investigated the control of gel network reformation in different media and analyzed the fluorescence responses and structural changes of the sugar backbone and fluorophore. Proper selection of mixed solvents is essential for optimizing the hydrogel as a fluorescence probe for bioimaging. This hydrogel demonstrated greater swelling properties, making it highly suitable for drug delivery applications.
Collapse
Affiliation(s)
- Shubhankar Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Animesh Mukherjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Gourisankar Roymahapatra
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, West Bengal 721657, India
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| |
Collapse
|
2
|
Otaka A, Hirota T, Iwasaki Y. Direct Fabrication of Glycoengineered Cells via Photoresponsive Thiol-ene Reaction. ACS Biomater Sci Eng 2024; 10:2068-2073. [PMID: 38477551 DOI: 10.1021/acsbiomaterials.3c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Three-dimensional printing of cell constructs with high-cell density, shape fidelity, and heterogeneous cell populations is an important tool for investigating cell sociology in living tissues but remains challenging. Herein, we propose an artificial intercellular adhesion method using a photoresponsive chemical cue between a thiol-bearing polymer and a methacrylate-bearing cell membrane. This process provided cell fabrication containing 108 cells/mL, embedded multiple cell populations in one structure, and enabled millimeter-sized scaleup. Our approach allows for the artificial cell construction of complex structures and is a promising bioprinting strategy for engineering tissues that are structurally and physiologically relevant.
Collapse
Affiliation(s)
- Akihisa Otaka
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Taisuke Hirota
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Yasuhiko Iwasaki
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
3
|
Li F, Wei H, Jin Y, Xue T, Xu Y, Wang H, Ju E, Tao Y, Li M. Microfluidic Fabrication of MicroRNA-Induced Hepatocyte-Like Cells/Human Umbilical Vein Endothelial Cells-Laden Microgels for Acute Liver Failure Treatment. ACS NANO 2023; 17:25243-25256. [PMID: 38063365 DOI: 10.1021/acsnano.3c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Acute liver failure (ALF) is a critical life-threatening disease that occurs due to a rapid loss in hepatocyte functions. Hepatocyte transplantation holds great potential for ALF treatment, as it rapidly supports liver biofunctions and enhances liver regeneration. However, hepatocyte transplantation is still limited by renewable and ongoing cell sources. In addition, intravenously injected hepatocytes are primarily trapped in the lungs and have limited efficacy because of the rapid clearance in vivo. Here, we designed a Y-shaped DNA nanostructure to deliver microRNA-122 (Y-miR122), which could induce the hepatic differentiation and maturation of human mesenchymal stem cells. mRNA sequencing analysis revealed that the Y-miR122 promoted important hepatic biofunctions of the induced hepatocyte-like cells including fat and lipid metabolism, drug metabolism, and liver development. To further improve hepatocyte transplantation efficiency and therapeutic effects in ALF treatment, we fabricated protective microgels for the delivery of Y-miR122-induced hepatocyte-like cells based on droplet microfluidic technology. When cocultured with human umbilical vein endothelial cells in microgels, the hepatocyte-like cells exhibited an increase in hepatocyte-associated functions, including albumin secretion and cytochrome P450 activity. Notably, upon transplantation into the ALF mouse model, the multiple cell-laden microgels effectively induced the restoration of liver function and enhanced liver regeneration. Overall, this study presents an efficient approach from the generation of hepatocyte-like cells to hepatocyte transplantation in ALF therapy.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
4
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
5
|
Song W, Zhao L, Gao Y, Han C, Gao S, Guo M, Bai J, Wang L, Yin W, Wu F, Zhang P. Dual growth factor-modified microspheres nesting human-derived umbilical cord mesenchymal stem cells for bone regeneration. J Biol Eng 2023; 17:43. [PMID: 37430290 DOI: 10.1186/s13036-023-00360-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Modular tissue engineering (MTE) is a novel "bottom-up" approach that aims to mimic complex tissue microstructural features. The constructed micromodules are assembled into engineered biological tissues with repetitive functional microunits and form cellular networks. This is emerging as a promising strategy for reconstruction of biological tissue. RESULTS Herein, we constructed a micromodule for MTE and developed engineered osteon-like microunits by inoculating human-derived umbilical cord mesenchymal stem cells (HUMSCs) onto nHA/PLGA microspheres with surface modification of dual growth factors (BMP2/bFGF). By evaluating the results of proliferation and osteogenic differentiation ability of HUMSCs in vitro, the optimal ratio of the dual growth factor (BMP2/bFGF) combination was derived as 5:5. In vivo assessments showed the great importance of HUMSCs for osteogneic differentiation. Ultimately, direct promotion of early osteo-differentiation manifested as upregulation of Runx-2 gene expression. The vascularization capability was evaluated by tube formation assays, demonstrating the importance of HUMSCs in the microunits for angiogenesis. CONCLUSIONS The modification of growth factors and HUMSCs showed ideal biocompatibility and osteogenesis combined with nHA/PLGA scaffolds. The micromodules constructed in the current study provide an efficient stem cell therapy strategy for bone defect repair.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Lanlan Zhao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Yuqi Gao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Chunyu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Shengrui Gao
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Jianfei Bai
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wanzhong Yin
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China.
| | - Feng Wu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
6
|
Kamperman T, Willemen NGA, Kelder C, Koerselman M, Becker M, Lins L, Johnbosco C, Karperien M, Leijten J. Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205487. [PMID: 36599686 PMCID: PMC10074101 DOI: 10.1002/advs.202205487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Indexed: 06/12/2023]
Abstract
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Cindy Kelder
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Malin Becker
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Luanda Lins
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Castro Johnbosco
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
7
|
Wang Y, Liu M, Zhang Y, Liu H, Han L. Recent methods of droplet microfluidics and their applications in spheroids and organoids. LAB ON A CHIP 2023; 23:1080-1096. [PMID: 36628972 DOI: 10.1039/d2lc00493c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Droplet microfluidic techniques have long been known as a high-throughput approach for cell manipulation. The capacity to compartmentalize cells into picolitre droplets in microfluidic devices has opened up a range of new ways to extract information from cells. Spheroids and organoids are crucial in vitro three-dimensional cell culture models that physiologically mimic natural tissues and organs. With the aid of developments in cell biology and materials science, droplet microfluidics has been applied to construct spheroids and organoids in numerous formats. In this article, we divide droplet microfluidic approaches for managing spheroids and organoids into three categories based on the droplet module format: liquid droplet, microparticle, and microcapsule. We discuss current advances in the use of droplet microfluidics for the generation of tumour spheroids, stem cell spheroids, and organoids, as well as the downstream applications of these methods in high-throughput screening and tissue engineering.
Collapse
Affiliation(s)
- Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P. R. China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100 P. R. China
| |
Collapse
|
8
|
Rosellini E, Cascone MG. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review. Biomimetics (Basel) 2023; 8:biomimetics8010074. [PMID: 36810405 PMCID: PMC9944883 DOI: 10.3390/biomimetics8010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Natural polymers, thanks to their intrinsic biocompatibility and biomimicry, have been largely investigated as scaffold materials for tissue engineering applications. Traditional scaffold fabrication methods present several limitations, such as the use of organic solvents, the obtainment of a non-homogeneous structure, the variability in pore size and the lack of pore interconnectivity. These drawbacks can be overcome using innovative and more advanced production techniques based on the use of microfluidic platforms. Droplet microfluidics and microfluidic spinning techniques have recently found applications in the field of tissue engineering to produce microparticles and microfibers that can be used as scaffolds or as building blocks for three-dimensional structures. Compared to standard fabrication technologies, microfluidics-based ones offer several advantages, such as the possibility of obtaining particles and fibers with uniform dimensions. Thus, scaffolds with extremely precise geometry, pore distribution, pore interconnectivity and a uniform pores size can be obtained. Microfluidics can also represent a cheaper manufacturing technique. In this review, the microfluidic fabrication of microparticles, microfibers and three-dimensional scaffolds based on natural polymers will be illustrated. An overview of their applications in different tissue engineering fields will also be provided.
Collapse
|
9
|
Liu Z, Nan H, Chiou YS, Zhan Z, Lobie PE, Hu C. Selective Formation of Osteogenic and Vasculogenic Tissues for Cartilage Regeneration. Adv Healthc Mater 2023; 12:e2202008. [PMID: 36353894 DOI: 10.1002/adhm.202202008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Tissue-engineered periosteum substitutes (TEPSs) incorporating hierarchical architecture with osteoprogenitor and vascular niches are drawing much attention as a promising tool to support functional cells in defined zones and nourish the cortical bone. Current TEPSs usually lack technologies to closely observe cell performance, especially at the cell contact interface between distinct compartments containing defined biological configurations and functions. Here, an electrodeposition strategy is reported, which enables the selective formation of TEPSs with osteoprogenitor and vascular niches in a multiphasic scaffold in combination with different human cell types for cartilage regeneration in an in vivo osteochondral defect model. Human umbilical vein endothelial cells (HUVECs), dermal fibroblasts (HDFs), and bone marrow mesenchymal stem cells (hMSCs) are used to mirror both the vascular and osteogenic niches, respectively. It is observed that the intrinsic viscoelastic nature of the porous solid matrix is essential to successfully induce angiogenesis. Coculture of hMSCs with functional cells (HUVECs/HDFs) in TEPSs also effectively promoted periosteal regeneration, including osteogenic and angiogenic processes. The osteoarthritis cartilage histopathology assessment and histologic/histochemical grading system data indicate that the TEPSs containing hMSCs/HUVECs/HDFs exhibit superior potential for cartilage regeneration.
Collapse
Affiliation(s)
- Zeyang Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haochen Nan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023; 11:1076179. [PMID: 36777246 PMCID: PMC9908582 DOI: 10.3389/fbioe.2023.1076179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering (TE) aims at restoring tissue defects by applying the three-dimensional (3D) biomimetic pre-formed scaffolds to restore, maintain, and enhance tissue growth. Broadly speaking, this approach has created a potential impact in anticipating organ-building, which could reduce the need for organ replacement therapy. However, the implantation of such cell-laden biomimetic constructs based on substantial open surgeries often results in severe inflammatory reactions at the incision site, leading to the generation of a harsh adverse environment where cell survival is low. To overcome such limitations, micro-sized injectable modularized units based on various biofabrication approaches as ideal delivery vehicles for cells and various growth factors have garnered compelling interest owing to their minimally-invasive nature, ease of packing cells, and improved cell retention efficacy. Several advancements have been made in fabricating various 3D biomimetic microscale carriers for cell delivery applications. In this review, we explicitly discuss the progress of the microscale cell carriers that potentially pushed the borders of TE, highlighting their design, ability to deliver cells and substantial tissue growth in situ and in vivo from different viewpoints of materials chemistry and biology. Finally, we summarize the perspectives highlighting current challenges and expanding opportunities of these innovative carriers.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Changji Hu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Hongying Xia
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| |
Collapse
|
11
|
Lu T, Xia B, Chen G. Advances in polymer-based cell encapsulation and its applications in tissue repair. Biotechnol Prog 2023; 39:e3325. [PMID: 36651921 DOI: 10.1002/btpr.3325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.
Collapse
Affiliation(s)
- Tangfang Lu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Trikalitis VD, Kroese NJJ, Kaya M, Cofiño-Fabres C, Ten Den S, Khalil ISM, Misra S, Koopman BFJM, Passier R, Schwach V, Rouwkema J. Embedded 3D printing of dilute particle suspensions into dense complex tissue fibers using shear thinning xanthan baths. Biofabrication 2022; 15. [PMID: 36347040 DOI: 10.1088/1758-5090/aca124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
In order to fabricate functional organoids and microtissues, a high cell density is generally required. As such, the placement of cell suspensions in molds or microwells to allow for cell concentration by sedimentation is the current standard for the production of organoids and microtissues. Even though molds offer some level of control over the shape of the resulting microtissue, this control is limited as microtissues tend to compact towards a sphere after sedimentation of the cells. 3D bioprinting on the other hand offers complete control over the shape of the resulting structure. Even though the printing of dense cell suspensions in the ink has been reported, extruding dense cellular suspensions is challenging and generally results in high shear stresses on the cells and a poor shape fidelity of the print. As such, additional materials such as hydrogels are added in the bioink to limit shear stresses, and to improve shape fidelity and resolution. The maximum cell concentration that can be incorporated in a hydrogel-based ink before the ink's rheological properties are compromised, is significantly lower than the concentration in a tissue equivalent. Additionally, the hydrogel components often interfere with cellular self-assembly processes. To circumvent these limitations, we report a simple and inexpensive xanthan bath based embedded printing method to 3D print dense functional linear tissues using dilute particle suspensions consisting of cells, spheroids, hydrogel beads, or combinations thereof. Using this method, we demonstrated the self-organization of functional cardiac tissue fibers with a layer of epicardial cells surrounding a body of cardiomyocytes.
Collapse
Affiliation(s)
- Vasileios D Trikalitis
- Department of Biomechanical Engineering, Vascularization Lab, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Niels J J Kroese
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, TechMed Center, MESA+ Institute, 7500AE Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Simone Ten Den
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Islam S M Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, TechMed Center, MESA+ Institute, 7500AE Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, TechMed Center, MESA+ Institute, 7500AE Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Bart F J M Koopman
- Department of Biomechanical Engineering, Vascularization Lab, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Vascularization Lab, University of Twente, Technical Medical Centre, 7500AE Enschede, The Netherlands
| |
Collapse
|
13
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Wang J, Soto F, Ma P, Ahmed R, Yang H, Chen S, Wang J, Liu C, Akin D, Fu K, Cao X, Chen P, Hsu EC, Soh HT, Stoyanova T, Wu JC, Demirci U. Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS NANO 2022; 16:10219-10230. [PMID: 35671037 DOI: 10.1021/acsnano.2c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Fernando Soto
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Peng Ma
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Rajib Ahmed
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Sihan Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Jibo Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Demir Akin
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Kaiyu Fu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Hyongsok Tom Soh
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Utkan Demirci
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| |
Collapse
|
15
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
16
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
17
|
Xie J, Hu X, Chen L, Piruska A, Zheng Z, Bao M, Huck WTS. The Effect of Geometry and TGF-β Signaling on Tumor Cell Migration from Free-Standing Microtissues. Adv Healthc Mater 2022; 11:e2102696. [PMID: 35182463 PMCID: PMC11468762 DOI: 10.1002/adhm.202102696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Indexed: 11/05/2022]
Abstract
Recapitulation of 3D multicellular tissues in vitro is of great interest to the field of tumor biology to study the integrated effect of local biochemical and biophysical signals on tumor cell migration and invasion. However, most microengineered tissues and spheroids are unable to recapitulate in vitro the complexities of 3D geometries found in vivo. Here, lithographically defined degradable alginate microniches are presented to produce free-standing tumor microtissues, with precisely controlled geometry, high viability, and allowing for high cell proliferation. The role of microtissue geometry and TGF-β signaling in tumor cell migration is further investigated. TGF-β is found to induce the expression of p-myosin II, vimentin, and YAP/TAZ nuclear localization at the periphery of the microtissue, where enhanced nuclear stiffness and orientation are also observed. Upon embedding in a collagen matrix, microtissues treated with TGF-β maintain their geometric integrity, possibly due to the higher cell tension observed around the periphery. In contrast, cells in microtissues not treated with TGF-β are highly mobile and invade the surrounding matrix rapidly, with the initial migration strongly dependent on the local geometry. The microtissues presented here are promising model systems for studying the influence of biophysical properties and soluble factors on tumor cell migration.
Collapse
Affiliation(s)
- Jing Xie
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525AJthe Netherlands
- Department of Cellular BiophysicsMax Planck Institute for Medical Research29 JahnstraßeHeidelberg69120Germany
| | - Xinyu Hu
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525AJthe Netherlands
| | - Lina Chen
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525AJthe Netherlands
- Laboratory for Advanced Interfacial Materials and DevicesInstitute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong Kong SAR, QT 807China
| | - Aigars Piruska
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525AJthe Netherlands
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and DevicesInstitute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong Kong SAR, QT 807China
| | - Min Bao
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525AJthe Netherlands
- Division of Biology and Biological EngineeringCalifornia Institute of Technology1200 E. California BoulevardPasadenaCA91125USA
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525AJthe Netherlands
| |
Collapse
|
18
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
19
|
Liu Z, Nan H, Jiang Y, Xu T, Gong X, Hu C. Programmable Electrodeposition of Janus Alginate/Poly-L-Lysine/Alginate (APA) Microcapsules for High-Resolution Cell Patterning and Compartmentalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106363. [PMID: 34921585 DOI: 10.1002/smll.202106363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Encapsulation of live cells in protective, semipermeable microcapsules is one of the kernel techniques for in vitro tissue regeneration, cell therapies, and pharmaceutical screening. Advanced fabrication techniques for cell encapsulation have been developed to meet different requirements. Existing cell encapsulation techniques place substantial constraints on the spatial patterning of live cells as well as on the compartmentalization of heterotypic cells. Alginate-Poly-L-lysine-alginate (APA) microcapsules that use sodium alginate as the polyanion and poly-L-lysine (PLL) as the polycation have been extensively employed for cell microencapsulation due to their excellent biocompatibility and biodegradability. This study proposes a novel method for developing programmable Janus APA microcapsules with variable shapes and sizes by using electrodeposition. By the versatile design of the microelectrode device, sequential electrodeposition is triggered to electro-address the cells at specific locations immobilized within a Janus APA microcapsule. The osteogenesis is evaluated by resembling cell compartmentalized and vascularized osteoblast-laden constructs. This technique allows precise spatial patterning of heterotypic cells inside the APA microcapsule, enabling the observation of cellular growth, interactions, and differentiation in a well-controlled chemical and mechanical microenvironment.
Collapse
Affiliation(s)
- Zeyang Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, China
| | - Haochen Nan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yike Jiang
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, China
| | - Tao Xu
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, 380 Minor Ln, Berkeley, San Francisco, CA, 94720, USA
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Feng Q, Li D, Li Q, Cao X, Dong H. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact Mater 2022; 9:105-119. [PMID: 34820559 PMCID: PMC8586262 DOI: 10.1016/j.bioactmat.2021.07.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 12/15/2022] Open
Abstract
Microgel assembly, a macroscopic aggregate formed by bottom-up assembly of microgels, is now emerging as prospective biomaterials for applications in tissue engineering and regenerative medicine (TERM). This mini-review first summarizes the fabrication strategies available for microgel assembly, including chemical reaction, physical reaction, cell-cell interaction and external driving force, then highlights its unique characteristics, such as microporosity, injectability and heterogeneity, and finally itemizes its applications in the fields of cell culture, tissue regeneration and biofabrication, especially 3D printing. The problems to be addressed for further applications of microgel assembly are also discussed.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| | - Dingguo Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules 2021; 23:1545-1556. [PMID: 34890507 DOI: 10.1021/acs.biomac.1c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 μm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Franciele F Vit
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| |
Collapse
|
22
|
Cummins KA, Bitterman PB, Tschumperlin DJ, Wood DK. A scalable 3D tissue culture pipeline to enable functional therapeutic screening for pulmonary fibrosis. APL Bioeng 2021; 5:046102. [PMID: 34805716 PMCID: PMC8598262 DOI: 10.1063/5.0054967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease targeting the alveolar gas exchange apparatus, leading to death by asphyxiation. IPF progresses on a tissue scale through aberrant matrix remodeling, enhanced cell contraction, and subsequent microenvironment densification. Although two pharmaceuticals modestly slow progression, IPF patient survival averages less than 5 years. A major impediment to therapeutic development is the lack of high-fidelity models that account for the fibrotic microenvironment. Our goal is to create a three-dimensional (3D) platform to enable lung fibrosis studies and recapitulate IPF tissue features. We demonstrate that normal lung fibroblasts encapsulated in collagen microspheres can be pushed toward an activated phenotype, treated with FDA-approved therapies, and their fibrotic function quantified using imaging assays (extracellular matrix deposition, contractile protein expression, and microenvironment compaction). Highlighting the system's utility, we further show that fibroblasts isolated from IPF patient lungs maintain fibrotic phenotypes and manifest reduced fibrotic function when treated with epigenetic modifiers. Our system enables enhanced screening due to improved predictability and fidelity compared to 2D systems combined with superior tractability and throughput compared to 3D systems.
Collapse
Affiliation(s)
- Katherine A. Cummins
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
23
|
Sakaguchi K, Tobe Y, Yang J, Tanaka RI, Yamanaka K, Ono J, Shimizu T. Bioengineering of a scaffold-less three-dimensional tissue using net mould. Biofabrication 2021; 13. [PMID: 34488209 DOI: 10.1088/1758-5090/ac23e3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Tissue engineering has attracted attention worldwide because of its application in regenerative medicine, drug screening, and cultured meat. Numerous biofabrication techniques for producing tissues have been developed, including various scaffold and printing methods. Here, we have proposed a novel tissue engineering method using a net metal mould without the use of a scaffold. Briefly, normal human dermal fibroblasts seeded on a dimple plate were subjected to static culture technique for several days to form spheroids. Spheroids of diameter ⩾200μm were poured into a net-shaped mould of gap ⩽100μm and subjected to shake-cultivation for several weeks, facilitating their fusion to form a three-dimensional (3D) tissue. Through this study, we successfully constructed a scaffold-free 3D tissue having strength that can be easily manipulated, which was difficult to construct using conventional tissue engineering methods. We also investigated the viability of the 3D tissue and found that the condition of the tissues was completely different depending on the culture media used. Collectively, this method allows scaffold-free culture of 3D tissues of unprecedented thickness, and may contribute largely to next-generation tissue engineering products.
Collapse
Affiliation(s)
- Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yusuke Tobe
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jiayue Yang
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ryu-Ichiro Tanaka
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kumiko Yamanaka
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Jiro Ono
- TissueByNet Corporation, 24-27-804 Iwafuchi-machi, Kita-ku, Tokyo 115-0041, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
24
|
Liu X, Yue T, Kojima M, Huang Q, Arai T. Bio-assembling and Bioprinting for Engineering Microvessels from the Bottom Up. Int J Bioprint 2021; 7:366. [PMID: 34286151 PMCID: PMC8287491 DOI: 10.18063/ijb.v7i3.366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Blood vessels are essential in transporting nutrients, oxygen, metabolic wastes, and maintaining the homeostasis of the whole human body. Mass of engineered microvessels is required to deliver nutrients to the cells included in the constructed large three-dimensional (3D) functional tissues by diffusion. It is a formidable challenge to regenerate microvessels and build a microvascular network, mimicking the cellular viabilities and activities in the engineered organs with traditional or existing manufacturing techniques. Modular tissue engineering adopting the "bottom-up" approach builds one-dimensional (1D) or two-dimensional (2D) modular tissues in micro scale first and then uses these modules as building blocks to generate large tissues and organs with complex but indispensable microstructural features. Building the microvascular network utilizing this approach could be appropriate and adequate. In this review, we introduced existing methods using the "bottom-up" concept developed to fabricate microvessels including bio-assembling powered by different micromanipulation techniques and bioprinting utilizing varied solidification mechanisms. We compared and discussed the features of the artificial microvessels engineered by these two strategies from multiple aspects. Regarding the future development of engineering the microvessels from the bottom up, potential directions were also concluded.
Collapse
Affiliation(s)
- Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Yue
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Masaru Kojima
- Department of Materials Engineering Science, Osaka University, Osaka 5608531, Japan
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering, the University of Electro-Communications, Tokyo 1828585, Japan
| |
Collapse
|
25
|
Lee D, Greer SE, Kuss MA, An Y, Dudley AT. 3D printed alginate bead generator for high-throughput cell culture. Biomed Microdevices 2021; 23:22. [PMID: 33821331 DOI: 10.1007/s10544-021-00561-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 01/02/2023]
Abstract
Alginate hydrogel beads are a common platform for generating 3D cell cultures in biomedical research. Simple methods for bead generation using a manual pipettor or syringe are low-throughput and produce beads showing high variability in size and shape. To address these challenges, we designed a 3D printed bead generator that uses an airflow to cleave beads from a stream of hydrogel solution. The performance of the proposed alginate bead generator was evaluated by changing the volume flow rates of alginate (QAlg) and air (QA), the diameter of device nozzle (d) and the concentration of alginate gel solution (C). We identified that the diameter of beads (D = 0.9 -2.8 mm) can be precisely controlled by changing QA and d. Also the bead generation frequency (f) can be tuned by changing QAlg. Finally, we demonstrated that viability and biological function (pericellular matrix deposition) of chondrocytes were not adversely affected by high f using this bead generator. Because 3D printing is becoming a more accessible technique, our unique design will allow greater access to average biomedical research laboratories, STEM education and industries in cost- and time-effective manner.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sydney E Greer
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell A Kuss
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yang An
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Andrew T Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
26
|
Rubí-Sans G, Cano-Torres I, Pérez-Amodio S, Blanco-Fernandez B, Mateos-Timoneda MA, Engel E. Development and Angiogenic Potential of Cell-Derived Microtissues Using Microcarrier-Template. Biomedicines 2021; 9:232. [PMID: 33669131 PMCID: PMC8025087 DOI: 10.3390/biomedicines9030232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher® S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Irene Cano-Torres
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
- IMEM-BRT Group, Department of Material Science, Escola d'Enginyeria de Barcelona Est (EEBE), Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Barbara Blanco-Fernandez
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Miguel A Mateos-Timoneda
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Bioengineering Institute of Technology, Department of Basic Science, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
- IMEM-BRT Group, Department of Material Science, Escola d'Enginyeria de Barcelona Est (EEBE), Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| |
Collapse
|
27
|
Raja N, Park H, Choi YJ, Yun HS. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:1123-1133. [PMID: 33541070 DOI: 10.1021/acsbiomaterials.0c01341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we fabricated unique coiled-structured bioceramics contained in hydrogel beads for simultaneous drug and cell delivery using a combination of bone cement chemistry and bioprinting and characterized them. The core of the calcium-deficient hydroxyl apatite (CDHA) contains quercetin, which is a representative phytoestrogen isolated from onions and apples, to control the metabolism of bone tissue regeneration through sustained release over a long period of time. The shell consists of an alginate hydrogel that includes preosteoblast MC3T3-E1 cells. Ceramic paste and hydrogel were simultaneously extruded to fabricate core-shell beads through the inner and outer nozzles, respectively, of a concentric nozzle system based on a material-extruding-based three-dimensional (3D) printing system. The formation of beads and the coiled ceramic core is related to both alginate concentration and printing conditions. The size of the microbeads and the thickness of the coiled structure could be controlled by adjusting the nozzle conditions. The whole process was carried out at physiological conditions (37 °C) to be gentle on the cells. The alginate shell undergoes solidification by cross-linking in CaCl2 or monocalcium phosphate monohydrate (MCPM) solution, while the hardening and cementation of the α-tricalcium phosphate (α-TCP) core to CDHA are subsequently initiated by immersion in phosphate-buffered saline solution. This process replaces the typical sintering of ceramic processing to prevent damage to the hydrogel, cells, and drugs in the beads. The cell-loaded beads were then cultured in cell culture media where the cells could maintain good viability during the entire testing period, which was over 50 days. Cell growth and elongation were observed even in the alginate along the CDHA coiled structure over time. Sustained release of quercetin without any initial burst was also confirmed during a test period of 120 days. These novel structured microbeads with multibiofunctionality can be used as new bone substitutes for hard tissue regeneration in indeterminate defect sites.
Collapse
Affiliation(s)
- Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.,Korea University of Science and Technology (UST), 217 Gajeong-ro, Yeseong-gu, Daejeon 305-350, Republic of Korea
| |
Collapse
|
28
|
Ma S, Zhao H, Galan EA, Balabani S. Modulating Flow Topology in Microdroplets to Control Reaction Kinetics. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering (iBHE) Shenzhen International Graduate School (SIGS) Tsinghua University Shenzhen 518055 China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI) Tsinghua University Shenzhen 518055 China
| | - Haoran Zhao
- Institute of Biopharmaceutical and Health Engineering (iBHE) Shenzhen International Graduate School (SIGS) Tsinghua University Shenzhen 518055 China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI) Tsinghua University Shenzhen 518055 China
| | - Edgar A. Galan
- Institute of Biopharmaceutical and Health Engineering (iBHE) Shenzhen International Graduate School (SIGS) Tsinghua University Shenzhen 518055 China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI) Tsinghua University Shenzhen 518055 China
| | - Stavroula Balabani
- Department of Mechanical Engineering University College London London WC1E 6BT UK
| |
Collapse
|
29
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
30
|
Wang Y, Kankala RK, Zhang J, Hao L, Zhu K, Wang S, Zhang YS, Chen A. Modeling Endothelialized Hepatic Tumor Microtissues for Drug Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002002. [PMID: 33173735 PMCID: PMC7610277 DOI: 10.1002/advs.202002002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Indexed: 05/03/2023]
Abstract
Compared to various traditional 2D approaches, the scaffold-based 3D tumor models have emerged as an effective strategy to investigate the complex mechanisms behind cancer progression and responses to drug treatments, by providing biomimetic extracellular matrix and stromal-like microenvironments including the vascular elements. Herein, the development of a 3D endothelialized hepatic tumor microtissue model based on the fusion of multicellular aggregates of human hepatocellular carcinoma cells and human umbilical vein endothelial cells cocultured in poly(lactic-co-glycolic acid)-based porous microspheres (PLGA PMs) is reported. In contrast to the conventional 2D culture, the cells within the PLGA PMs exhibit significantly higher half-maximal inhibitory concentration values against anticancer drugs, including doxorubicin and cisplatin. Furthermore, the feasibility of coculturing other cell types, such as fibroblasts (L929) and HepG2 cells, is investigated. Together, the findings emphasize the significance of engineered 3D hepatic tumor microtissue models using PLGA PM-based multicellular aggregates for drug screening applications.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| | - Jianting Zhang
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| | - Liuzhi Hao
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
| | - Kai Zhu
- Department of Cardiac SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineBrigham and Women's HospitalDepartment of MedicineHarvard Medical SchoolCambridgeMA02139USA
| | - Aizheng Chen
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| |
Collapse
|
31
|
Caldwell AS, Aguado BA, Anseth KS. Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907670. [PMID: 33841061 PMCID: PMC8026140 DOI: 10.1002/adfm.201907670] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| |
Collapse
|
32
|
Cui J, Wang H, Shi Q, Ferraro P, Sun T, Dario P, Huang Q, Fukuda T. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules. Acta Biomater 2020; 113:328-338. [PMID: 32534164 DOI: 10.1016/j.actbio.2020.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Engineered three-dimensional (3D) microtissues that recapitulate in vivo tissue morphology and microvessel lumens have shown significant potential in drug screening and regenerative medicine. Although microfluidic-based techniques have been developed for bottom-up assembly of 3D tissue models, the spatial organization of heterogeneous micromodules into tissue-specific 3D constructs with embedded microvessels remains challenging. Inspired by a hydrodynamic-based classic game which stacks rings in water through the flow, a facile strategy is proposed for effective assembly of heterogeneous hierarchical micromodules with a central hole, into permeable hollow 3D tissue-like constructs through hydrodynamic interaction in a versatile microfluidic chip. The micromodules are fabricated by in situ multi-step photo-crosslinking of cell-laden hydrogels with different mechanical properties to give the high fidelity. With the hydrodynamic interaction derived from the discontinuous circulating flow, the micromodules are spatially organized layer-by-layer to form a 3D construct with a microvessel-like lumen. As an example, a ten-layered liver lobule-like construct containing inner radial-like poly(ethylene glycol) diacrylate (PEGDA) structure with hepatocytes and outer hexagonal gelatin methacrylate (GelMA) structure with endothelial cells are assembled in 2 min. During 10 days of co-culture, cells maintain high viability and proliferated along with the composite lobule-like morphology. The 3D construct owns a central lumen, which allows perfusion culture to promote albumin secretion. We anticipate that this microassembly strategy can be used to fabricate vascularized 3D tissues with various physiological morphologies as alternatives for biomedical research applications. STATEMENT OF SIGNIFICANCE: Microfluidic-based assembly is an attractive approach for the fabrication of 3D tissue models using cell-laden hydrogel microstructures with single mechanical stability. However, native tissues are complex 3D structures with indispensable vessels and multiple mechanical properties, which is still challenging to recreate. This study proposed a novel strategy to fabricate tissue-like 3D constructs with embedded lumen through hydrodynamic interaction using multicellular micromodules with hierarchical mechanical properties. The resultant hollow 3D constructs allow perfusion co-culture to enhance cell activity. This strategy relies on a simple and facile microfluidic chip to fabricate various 3D tissue-like constructs with hierarchical mechanical properties and permeable lumen, which can potentially be used as in vitro perfusion models for biomedical research.
Collapse
|
33
|
Hydrogel-based sealed microchamber arrays for rapid medium exchange and drug testing of cell spheroids. Biomed Microdevices 2020; 22:49. [PMID: 32719998 DOI: 10.1007/s10544-020-00505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Culturing cell spheroids in microchamber arrays is a widely used method in regenerative medicine and drug discovery while it requires laborious procedures during medium exchange and drug administration. Here, we report a simple method for the medium exchange and drug testing using a hydrogel-based sealed microchamber arrays. Owing to the high molecular permeability of poly(vinyl alcohol) hydrogel, the sealed microchamber allows nutrients and drugs in outer medium to pass through. Thus, automatic medium exchange and drug testing for all the cell spheroids inside the microchamber arrays are achieved by simply transferring the microchamber from old medium to fresh medium. Cell spheroids of human induced pluripotent stem cell-derived cardiomyocytes were cultured inside the sealed microchambers, and it was confirmed that the spheroids were stably positioned inside the microchamber even after transferring 10 times. The cell spheroids showed high viability after culturing for 7 days in the sealed microchamber with the transfer-based medium exchange, which allowed cardiac maturation by simultaneous electrical stimulation. Isoproterenol, a model cardiac drug, was administrated from outside the sealed microchamber to demonstrate the feasibility of drug testing by the rapid transfer method.
Collapse
|
34
|
Azimi-Boulali J, Madadelahi M, Madou MJ, Martinez-Chapa SO. Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review. MICROMACHINES 2020; 11:mi11060603. [PMID: 32580516 PMCID: PMC7344714 DOI: 10.3390/mi11060603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
The use of multiphase flows in microfluidics to carry dispersed phase material (droplets, particles, bubbles, or fibers) has many applications. In this review paper, we focus on such flows on centrifugal microfluidic platforms and present different methods of dispersed phase material generation. These methods are classified into three specific categories, i.e., step emulsification, crossflow, and dispenser nozzle. Previous works on these topics are discussed and related parameters and specifications, including the size, material, production rate, and rotational speed are explicitly mentioned. In addition, the associated theories and important dimensionless numbers are presented. Finally, we discuss the commercialization of these devices and show a comparison to unveil the pros and cons of the different methods so that researchers can select the centrifugal droplet/particle generation method which better suits their needs.
Collapse
Affiliation(s)
- Javid Azimi-Boulali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
| | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| | - Marc J. Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| |
Collapse
|
35
|
Ramadhan W, Kagawa G, Moriyama K, Wakabayashi R, Minamihata K, Goto M, Kamiya N. Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel. Sci Rep 2020; 10:6710. [PMID: 32317652 PMCID: PMC7174313 DOI: 10.1038/s41598-020-63362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In this report, a strategy for constructing three-dimensional (3D) cellular architectures comprising viable cells is presented. The strategy uses a redox-responsive hydrogel that degrades under mild reductive conditions, and a confluent monolayer of cells (i.e., cell sheet) cultured on the hydrogel surface peels off and self-folds to wrap other cells. As a proof-of-concept, the self-folding of fibroblast cell sheet was triggered by immersion in aqueous cysteine, and this folding process was controlled by the cysteine concentration. Such folding enabled the wrapping of human hepatocellular carcinoma (HepG2) spheroids, human umbilical vein endothelial cells and collagen beads, and this process improved cell viability, the secretion of metabolites and the proliferation rate of the HepG2 cells when compared with a two-dimensional culture under the same conditions. A key concept of this study is the ability to interact with other neighbouring cells, providing a new, simple and fast method to generate higher-order cellular aggregates wherein different types of cellular components are added. We designated the method of using a cell sheet to wrap another cellular aggregate the 'cellular Furoshiki'. The simple self-wrapping Furoshiki technique provides an alternative approach to co-culture cells by microplate-based systems, especially for constructing heterogeneous 3D cellular microstructures.
Collapse
Affiliation(s)
- Wahyu Ramadhan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Genki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Kousuke Moriyama
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo College, Okishin-cho, Sasebo, Nagasaki, 857-1193, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
36
|
Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. ACTA ACUST UNITED AC 2020; 4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely explored and applied in many areas, especially in the field of tissue engineering. The interface of biomaterials and cells has been deeply investigated. However, it has been demonstrated that conventional 2D biomaterials fail to maintain the 3D structures and phenotypes of cells, which is the result of their limited ability to mimic the latter's complex extracellular matrix. To overcome this challenge, cell cultivation dependent on 3D biomaterials has emerged as an alternative strategy to make the recovery of 3D structures and functions of cells possible. Thus, with the thriving development of 3D cell culture in tissue engineering, a holistic review of the construction and application of 3D biomaterials is desired. Here, recent developments in 3D biomaterials for tissue engineering are reviewed. An overview of various approaches to construct 3D biomaterials, such as electro-jetting/-spinning, micro-molding, microfluidics, and 3D bio-printing, is first presented. Their typical applications in constructing cell sheets, vascular structures, cell spheroids, and macroscopic cellular constructs are described as well. Following these two sections, the current status and challenges are analyzed, as well as the future outlook of 3D biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
37
|
He Q, Liao Y, Zhang J, Yao X, Zhou W, Hong Y, Ouyang H. "All-in-One" Gel System for Whole Procedure of Stem-Cell Amplification and Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906539. [PMID: 32141227 DOI: 10.1002/smll.201906539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Microsphere (MS)-based systems provides great advantages for cell expansion and transplantation due to their high surface-to-volume ratio and biomimetic environment. However, a MS-based system that includes cell attachment, proliferation, passage, harvest, cryopreservation, and tissue engineering together has not been realized yet. An "all-in-one" gel MS-based system is established for human adipose-derived mesenchymal stem cells (hADSCs), realizing real 3D culture with enhanced expansion efficiency and simplified serial cell culture operations, and construction of macrotissues with uniform cell distribution and specific function. A 3D digital light-processing technology is developed to fabricate gel MSs in an effective way. The printed MSs present a suitable environment with rough surface architecture and the mechanical properties of soft tissues, leading to high cell viability, attachment, proliferation, activity, and differentiation potential. Further, convenient standard operation procedures, including cell passage, detachment, and cryopreservation, are established for cell culture on the gel MSs. Finally, hADSCs-loaded gel MSs form macrotissues through a "bottom-up" approach, which demonstrates the potential applications for tissue engineering. These findings exhibit the feasibility and beauty of "all-in-one" stem cell culture and tissue engineering system.
Collapse
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
| | - Jingwei Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xudong Yao
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenyan Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Hong
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
38
|
Roberts S, Miao V, Costa S, Simon J, Kelly G, Shah T, Zauscher S, Chilkoti A. Complex microparticle architectures from stimuli-responsive intrinsically disordered proteins. Nat Commun 2020; 11:1342. [PMID: 32165622 PMCID: PMC7067844 DOI: 10.1038/s41467-020-15128-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 11/27/2022] Open
Abstract
The controllable production of microparticles with complex geometries is useful for a variety of applications in materials science and bioengineering. The formation of intricate microarchitectures typically requires sophisticated fabrication techniques such as flow lithography or multiple-emulsion microfluidics. By harnessing the molecular interactions of a set of artificial intrinsically disordered proteins (IDPs), we have created complex microparticle geometries, including porous particles, core-shell and hollow shell structures, and a unique ‘fruits-on-a-vine’ arrangement, by exploiting the metastable region of the phase diagram of thermally responsive IDPs within microdroplets. Through multi-site unnatural amino acid (UAA) incorporation, these protein microparticles can also be photo-crosslinked and stably extracted to an all-aqueous environment. This work expands the functional utility of artificial IDPs as well as the available microarchitectures of this class of biocompatible IDPs, with potential applications in drug delivery and tissue engineering. The production of microparticles with complex geometries for biotechnological use historically requires sophisticated fabrication techniques. Here, the authors create complex particle geometries by exploiting the metastable region of the phase diagram of thermally responsive intrinsically disordered proteins within microdroplets.
Collapse
Affiliation(s)
- Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Vincent Miao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Simone Costa
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joseph Simon
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tejank Shah
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
39
|
Huang L, Abdalla AM, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int J Mol Sci 2020; 21:E1895. [PMID: 32164316 PMCID: PMC7084715 DOI: 10.3390/ijms21051895] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of three-dimensional (3D) cell culture has been proposed to maintain cellular morphology and function as in vivo. Among different approaches for 3D cell culture, microcarrier technology provides a promising tool for cell adhesion, proliferation, and cellular interactions in 3D space mimicking the in vivo microenvironment. In particular, microcarriers based on biopolymers have been widely investigated because of their superior biocompatibility and biodegradability. Moreover, through bottom-up assembly, microcarriers have opened a bright door for fabricating engineered tissues, which is one of the cutting-edge topics in tissue engineering and regeneration medicine. This review takes an in-depth look into the recent advancements of microcarriers based on biopolymers-especially polysaccharides such as chitosan, chitin, cellulose, hyaluronic acid, alginate, and laminarin-for 3D cell culture and the fabrication of engineered tissues based on them. The current limitations and potential strategies were also discussed to shed some light on future directions.
Collapse
Affiliation(s)
- Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China;
| | - Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| |
Collapse
|
40
|
van Loo B, Salehi S, Henke S, Shamloo A, Kamperman T, Karperien M, Leijten J. Enzymatic outside-in cross-linking enables single-step microcapsule production for high-throughput three-dimensional cell microaggregate formation. Mater Today Bio 2020; 6:100047. [PMID: 32300754 PMCID: PMC7152680 DOI: 10.1016/j.mtbio.2020.100047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-laden hydrogel microcapsules enable the high-throughput production of cell aggregates, which are relevant for three-dimensional tissue engineering and drug screening applications. However, current microcapsule production strategies are limited by their throughput, multistep protocols, and limited amount of compatible biomaterials. We here present a single-step process for the controlled microfluidic production of single-core microcapsules using enzymatic outside-in cross-linking of tyramine-conjugated polymers. It was hypothesized that a physically, instead of the conventionally explored biochemically, controlled enzymatic cross-linking process would improve the reproducibility, operational window, and throughput of shell formation. Droplets were flown through a silicone delay line, which allowed for highly controlled diffusion of the enzymatic cross-linking initiator. The microcapsules' cross-linking density and shell thickness is strictly depended on the droplet's retention time in the delay line, which is predictably controlled by flow rate. The here presented hydrogel cross-linking method allows for facile and cytocompatible production of cell-laden microcapsules compatible with the formation and biorthogonal isolation of long-term viable cellular spheroids for tissue engineering and drug screening applications.
Collapse
Affiliation(s)
- B. van Loo
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - S.S. Salehi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S. Henke
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - A. Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Corresponding author.
| | - T. Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - M. Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - J. Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
- Corresponding author.
| |
Collapse
|
41
|
Zhao Q, Cui H, Wang Y, Du X. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903798. [PMID: 31650698 DOI: 10.1002/smll.201903798] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Indexed: 05/16/2023]
Abstract
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine-related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic-based materials in the fields of diagnostics, drug delivery, organs-on-chips, tissue engineering, and stimuli-responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on-demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| |
Collapse
|
42
|
Mohamed MGA, Ambhorkar P, Samanipour R, Yang A, Ghafoor A, Kim K. Microfluidics-based fabrication of cell-laden microgels. BIOMICROFLUIDICS 2020; 14:021501. [PMID: 32161630 PMCID: PMC7058428 DOI: 10.1063/1.5134060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/16/2020] [Indexed: 05/02/2023]
Abstract
Microfluidic principles have been extensively utilized as powerful tools to fabricate controlled monodisperse cell-laden hydrogel microdroplets for various biological applications, especially tissue engineering. In this review, we report recent advances in microfluidic-based droplet fabrication and provide our rationale to justify the superiority of microfluidics-based techniques over other microtechnology methods in achieving the encapsulation of cells within hydrogels. The three main components of such a system-hydrogels, cells, and device configurations-are examined thoroughly. First, the characteristics of various types of hydrogels including natural and synthetic types, especially concerning cell encapsulation, are examined. This is followed by the elucidation of the reasoning behind choosing specific cells for encapsulation. Next, in addition to a detailed discussion of their respective droplet formation mechanisms, various device configurations including T-junctions, flow-focusing, and co-flowing that aid in achieving cell encapsulation are critically reviewed. We then present an outlook on the current applications of cell-laden hydrogel droplets in tissue engineering such as 3D cell culturing, rapid generation and repair of tissues, and their usage as platforms for studying cell-cell and cell-microenvironment interactions. Finally, we shed some light upon the prospects of microfluidics-based production of cell-laden microgels and propose some directions for forthcoming research that can aid in overcoming challenges currently impeding the translation of the technology into clinical success.
Collapse
Affiliation(s)
- Mohamed G. A. Mohamed
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Pranav Ambhorkar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Roya Samanipour
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Annie Yang
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Ali Ghafoor
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | |
Collapse
|
43
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
44
|
Ren T, Chen P, Gu L, Ogut MG, Demirci U. Soft Ring-Shaped Cellu-Robots with Simultaneous Locomotion in Batches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905713. [PMID: 31773837 DOI: 10.1002/adma.201905713] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Untethered mini-robots can move single cells or aggregates to build complex constructs in confined spaces and may enable various biomedical applications such as regenerative repair in medicine and biosensing in bioengineering. However, a significant challenge is the ability to control multiple microrobots simultaneously in the same space to operate toward a common goal in a distributed operation. A locomotion strategy that can simultaneously guide the formation and operation of multiple robots in response to a common acoustic stimulus is developed. The scaffold-free cellu-robots comprise only highly packed cells and eliminate the influence of supportive materials, making them less cumbersome during locomotion. The ring shape of the cellu-robot contributes to anisotropic cellular interactions which induce radial cellular orientation. Under a single stimulus, several cellu-robots form predetermined complex structures such as bracelet-like ring-chains which transform into a single new living entity through cell-cell interactions, migration or cellular extensions between cellu-robots.
Collapse
Affiliation(s)
- Tanchen Ren
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430050, China
| | - Longjun Gu
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Mehmet Giray Ogut
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
45
|
Masaeli E, Marquette C. Direct-Write Bioprinting Approach to Construct Multilayer Cellular Tissues. Front Bioeng Biotechnol 2020; 7:478. [PMID: 32039181 PMCID: PMC6985038 DOI: 10.3389/fbioe.2019.00478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
As a cellular-assembly technique, bioprinting has been extensively used in tissue engineering and regenerative medicine to construct hydrogel-based three-dimensional (3D) tissue-like models with prescribed geometry. Here, we introduced a unique direct-write bioprinting strategy to fabricate a bilayer flat tissue in a hydrogel-free approach. A printed retina pigmented epithelium layer (RPE) was applied as living biopaper for positioning a fibroblast layer without using any hydrogel in bioink. We adjusted the number of cells in the inkjet droplets in order to obtain a uniform printed cell layer and demonstrated the formation of a bilayer construct through confocal imaging. Since our printing system introduced low levels of shear stress to the cells, it did not have a negative effect on cell survival, although cell viability was generally lower than that of control group over 1 week post-printing. In conclusion, our novel direct-write bioprinting approach to spatiotemporally position different cellular layers may represent an efficient tool to develop living constructs especially for regeneration of complex flat tissues.
Collapse
Affiliation(s)
- Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bat. Lederer, Villeurbanne, France
| | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bat. Lederer, Villeurbanne, France
| |
Collapse
|
46
|
Hagiwara M, Koh I. Engineering approaches to control and design the in vitro environment towards the reconstruction of organs. Dev Growth Differ 2020; 62:158-166. [PMID: 31925787 DOI: 10.1111/dgd.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 02/02/2023]
Abstract
In vitro experimental models pertaining to human cells are considered essential for most biological experiments, such as drug development and analysis of disease mechanisms, because of their genetic consistency and ease for detailed and long-term analysis. Recent development of organoid cultures, such as intestine, liver, and kidney cultures, greatly promotes the potential of in vitro experiments. However, conventional culture methods that use manual pipetting have limitations in regenerating complex biosystems. Our body autonomously organizes cells to form a specific tissue shape, and the self-organization process occurs in an extremely systematic manner. In order to emulate this sophisticated process in vitro; first, methodologies for cell culture and organization of in vitro systems need to be updated; second, understanding the self-organizing system is a crucial issue. In this review, recent advancements in engineering technologies to control the microenvironment during cell culture are introduced. Both static and dynamic control have been developed for decades in engineering fields, and the means by which such technologies can help to elucidate and design a biosystem is discussed.
Collapse
Affiliation(s)
- Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.,Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Isabel Koh
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
| |
Collapse
|
47
|
Nishimoto T, Matsukawa K, Nagase K, Kanazawa H, Akimoto AM, Yoshida R. Design of two complementary copolymers that work as a glue for cell-laden collagen gels. Chem Commun (Camb) 2020; 56:10545-10548. [DOI: 10.1039/d0cc03689g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study realised cytocompatible “in situ” surface functionalization of collagen gel for adding the property of gel-to-gel adhesion.
Collapse
Affiliation(s)
- Taihei Nishimoto
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Ko Matsukawa
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | | | | | - Aya Mizutani Akimoto
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Ryo Yoshida
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
48
|
Luetchford KA, Chaudhuri JB, De Bank PA. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110116. [PMID: 31753329 PMCID: PMC6891254 DOI: 10.1016/j.msec.2019.110116] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/06/2019] [Accepted: 08/22/2019] [Indexed: 01/26/2023]
Abstract
Microcarrier cell scaffolds have potential as injectable cell delivery vehicles or as building blocks for tissue engineering. The use of small cell carriers allows for a 'bottom up' approach to tissue assembly when moulding microparticles into larger structures, which can facilitate the introduction of hierarchy by layering different matrices and cell types, while evenly distributing cells through the structure. In this work, silk fibroin (SF), purified from Bombyx mori cocoons, was blended with gelatin (G) to produce materials composed of varying ratios of the two components (SF: G 25:75, 50:50, and 75:25). Cell compatibility to these materials was first confirmed in two-dimensional culture and found to be equivalent to standard tissue culture plastic, and better than SF or G alone. The mechanical properties of the blends were investigated and the blended materials were found to have increased Young's moduli over SF alone. Microcarriers of SF/G blends with defined diameters were generated in a reproducible manner through the use of an axisymmetric flow focussing device, constructed from off-the-shelf parts and fittings. These SF/G microcarriers supported adhesion of rat mesenchymal stem cells with high degrees of efficiency under dynamic culture conditions and, after culturing in osteogenic differentiation medium, cells were shown to have characteristics typical of osteoblasts. This work illustrates that microcarriers composed of SF/G blends are promising building blocks for osteogenic tissue engineering.
Collapse
Affiliation(s)
- Kim A Luetchford
- Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Julian B Chaudhuri
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Paul A De Bank
- Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
49
|
Urciuolo F, Casale C, Imparato G, Netti PA. Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. J Clin Med 2019; 8:E2083. [PMID: 31805652 PMCID: PMC6947552 DOI: 10.3390/jcm8122083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
The formation of severe scars still represents the result of the closure process of extended and deep skin wounds. To address this issue, different bioengineered skin substitutes have been developed but a general consensus regarding their effectiveness has not been achieved yet. It will be shown that bioengineered skin substitutes, although representing a valid alternative to autografting, induce skin cells in repairing the wound rather than guiding a regeneration process. Repaired skin differs from regenerated skin, showing high contracture, loss of sensitivity, impaired pigmentation and absence of cutaneous adnexa (i.e., hair follicles and sweat glands). This leads to significant mobility and aesthetic concerns, making the development of more effective bioengineered skin models a current need. The objective of this review is to determine the limitations of either commercially available or investigational bioengineered skin substitutes and how advanced skin tissue engineering strategies can be improved in order to completely restore skin functions after severe wounds.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II P.le Tecchio 80, 80125 Naples, Italy
| | - Costantino Casale
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Paolo A. Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II P.le Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
50
|
He Q, Zhang J, Liao Y, Alakpa EV, Bunpetch V, Zhang J, Ouyang H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol Adv 2019; 39:107459. [PMID: 31682922 DOI: 10.1016/j.biotechadv.2019.107459] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Enateri Verissarah Alakpa
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; China Orthopedic Regenerative Medicine Group (CORMed), China..
| |
Collapse
|