1
|
Kim J. Recent progresses and challenges in colloidal quantum dot light-emitting diodes: a focus on electron transport layers with metal oxide nanoparticles and organic semiconductors. NANOSCALE HORIZONS 2024; 9:2167-2197. [PMID: 39318321 DOI: 10.1039/d4nh00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Colloidal quantum dots (QDs) are highly promising for display technologies due to their distinctive optical characteristics, such as tunable emission wavelengths, narrow emission spectra, and superb photoluminescence quantum yields. Over the last decade, both academic and industrial research have substantially advanced quantum dot light-emitting diode (QLED) technology, primarily through the development of higher-quality QDs and more refined device structures. A key element of these advancements includes progress in the electron transport layer (ETL) technology, with metal oxide (MO) nanoparticles (NPs) like ZnO and ZnMgO emerging as superior choices due to their robust performance. Nevertheless, scalability challenges, such as particle agglomeration and positive aging, have prompted research into organic semiconductors that match the performance of MO NPs. This review aims to provide a detailed examination and comprehensive understanding of recent advances and challenges in ETLs based on both MO NPs and organic semiconductors, guiding future commercialization efforts for QLEDs.
Collapse
Affiliation(s)
- Jaehoon Kim
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
2
|
Balamur R, Eren GO, Kaleli HN, Karatum O, Kaya L, Hasanreisoglu M, Nizamoglu S. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401753. [PMID: 38447181 PMCID: PMC11095222 DOI: 10.1002/advs.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Neuromorphic electronics, inspired by the functions of neurons, have the potential to enable biomimetic communication with cells. Such systems require operation in aqueous environments, generation of sufficient levels of ionic currents for neurostimulation, and plasticity. However, their implementation requires a combination of separate devices, such as sensors, organic synaptic transistors, and stimulation electrodes. Here, a compact neuromorphic synapse that combines photodetection, memory, and neurostimulation functionalities all-in-one is presented. The artificial photoreception is facilitated by a photovoltaic device based on cell-interfacing InP/ZnS quantum dots, which induces photo-faradaic charge-transfer mediated plasticity. The device sends excitatory post-synaptic currents exhibiting paired-pulse facilitation and post-tetanic potentiation to the hippocampal neurons via the biohybrid synapse. The electrophysiological recordings indicate modulation of the probability of action potential firing due to biomimetic temporal summation of excitatory post-synaptic currents. The results pave the way for the development of novel bioinspired neuroprosthetics and soft robotics and highlight the potential of quantum dots for achieving versatile neuromorphic functionality in aqueous environments.
Collapse
Affiliation(s)
- Ridvan Balamur
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| | - Guncem Ozgun Eren
- Department of Biomedical Science and EngineeringKoç UniversityIstanbul34450Türkiye
| | - Humeyra Nur Kaleli
- Research Center for Translational MedicineKoç UniversityIstanbul34450Türkiye
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| | - Lokman Kaya
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| | - Murat Hasanreisoglu
- Research Center for Translational MedicineKoç UniversityIstanbul34450Türkiye
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| |
Collapse
|
3
|
Balamur R, Eren GO, Kaleli HN, Karatum O, Kaya L, Hasanreisoglu M, Nizamoglu S. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306097. [PMID: 38514908 PMCID: PMC11132067 DOI: 10.1002/advs.202306097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Neuromorphic electronics, inspired by the functions of neurons, have the potential to enable biomimetic communication with cells. Such systems require operation in aqueous environments, generation of sufficient levels of ionic currents for neurostimulation, and plasticity. However, their implementation requires a combination of separate devices, such as sensors, organic synaptic transistors, and stimulation electrodes. Here, a compact neuromorphic synapse that combines photodetection, memory, and neurostimulation functionalities all-in-one is presented. The artificial photoreception is facilitated by a photovoltaic device based on cell-interfacing InP/ZnS quantum dots, which induces photo-faradaic charge-transfer mediated plasticity. The device sends excitatory post-synaptic currents exhibiting paired-pulse facilitation and post-tetanic potentiation to the hippocampal neurons via the biohybrid synapse. The electrophysiological recordings indicate modulation of the probability of action potential firing due to biomimetic temporal summation of excitatory post-synaptic currents. These results pave the way for the development of novel bioinspired neuroprosthetics and soft robotics, and highlight the potential of quantum dots for achieving versatile neuromorphic functionality in aqueous environments.
Collapse
Affiliation(s)
- Ridvan Balamur
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| | - Guncem Ozgun Eren
- Department of Biomedical Science and EngineeringKoç UniversityIstanbul34450Türkiye
| | - Humeyra Nur Kaleli
- Research Center for Translational MedicineKoç UniversityIstanbul34450Türkiye
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| | - Lokman Kaya
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| | - Murat Hasanreisoglu
- Research Center for Translational MedicineKoç UniversityIstanbul34450Türkiye
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoç UniversityIstanbul34450Türkiye
| |
Collapse
|
4
|
Chou KC, Li LC, Tsai KA, Zeitz DC, Pu YC, Zhang JZ. Effect of Lattice Disorder on Exciton Dynamics in Copper-Doped InP/ZnSe xS 1-x Core/Shell Quantum Dots. J Phys Chem Lett 2024; 15:4311-4318. [PMID: 38619190 DOI: 10.1021/acs.jpclett.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
InP/ZnSexS1-x core/shell quantum dots (QDs) with varying Cu concentrations were synthesized by a one-pot hot-injection method. X-ray diffraction and high-resolution transmission electron microscopy results indicate that Cu doping did not alter the crystal structure or particle size of the QDs. The optical shifts in UV-visible absorption and photoluminescence (PL) suggest changes in the electronic structure and induction of lattice disorder due to Cu doping. Ultrafast transient absorption spectroscopy (TAS) reveled that a higher Cu-doping level leads to faster charge carrier recombination, likely due to increased nonradiative decay from defect states. Time-resolved PL (TRPL) studies show longer average lifetimes of charge carriers with increased Cu doping. These findings informed the development of a kinetic model to better understand how Cu-induced disorder affects charge carrier dynamics in the QDs, which is important for emerging applications of Cu-doped InP/ZnSexS1-x QDs in optoelectronics.
Collapse
Affiliation(s)
- Kai-Chun Chou
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Le-Chun Li
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Kai-An Tsai
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - David C Zeitz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
5
|
Gordon CK, Nass L, Chan S, Davis NJLK. Micellular fluorescence resonance energy transfer based fluorescent ratiometric response to hydrocarbon analytes. LUMINESCENCE 2023. [PMID: 38114325 DOI: 10.1002/bio.4653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Fluorescence resonance energy transfer (FRET) has been utilised to develop numerous selective and sensitive fluorescent ratiometric sensors. Typically, FRET-based fluorescent ratiometric sensors rely on chemical interactions between the sensor and analyte to illicit a response, thus unreactive hydrocarbons are a neglected analyte and a source for new sensors. By containing an unbound donor-acceptor system within micelles, energy transfer is enabled by spatial confinement. This offers the potential of a ratiometric response as a hydrocarbon analyte is added. Introducing a hydrocarbon analyte to this system causes micelles to swell, increasing the donor-acceptor distance and thus reducing the amount of observed energy transfer. We present InP/ZnS quantum dot donors interacting with a Nile Red acceptor, confined by cetyltrimethylammonium bromide (CTAB)-based micelles. We alleviated spatial confinement of the pair within micelles using common laboratory solvents to represent hydrocarbons, (toluene, hexane and octadecene). We constructed calibration curves for each solvent and found effective sensing ranges of 0.009-0.21, 0.008-0.27 and 0.003-0.06 M for toluene, hexane and octadecene, respectively. This study contributes towards the development of new hydrocarbon sensors utilising this new mechanism.
Collapse
Affiliation(s)
- Calum K Gordon
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand
| | - Liselotte Nass
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sanutep Chan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand
| | - Nathaniel J L K Davis
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Wei X, Zhang Q, Cui Z, Yang D, Mei S, Zhang W, Xie H, Yu K, Guo R, Wei W. Mapping the Identity of Transition Metal Doping and Surface Passivation in Indium Phosphide with Theoretical Calculation. Inorg Chem 2023; 62:15258-15266. [PMID: 37671490 DOI: 10.1021/acs.inorgchem.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Understanding the electronic structure of doped InP quantum dots (QDs) is essential to optimize the material for specific optoelectronic applications. However, current synthesis approaches are often tedious and unfavorable for rational tunning. Herein, a combination of experimental and computational studies was conducted to address the doping mechanism and surface passivation of InP QDs. The successful dopant introduction requires low Cu doping concentration and heavy Mn doping, while the Ag doping amount is relatively moderate. This may correspond to the theoretical doping formation energy presented as Cu (-2.52 eV) < Ag (-1.76 eV) < Mn (-0.38 eV). As for surface passivation, inorganic ions and shell-like ZnS are unraveled through simulational investigation. Chloride ion promotes oriented growth toward tetrahedron morphology while nitrate-passivated InP QDs exhibit blurry transmission electron microscope (TEM) morphology. Correspondingly, the binding energy of chloride ion with (111) facet is -2.13 eV significantly lower than those of (110) and (100) facets. Further, the additional Zn 3d bands are more involved in the formation of conduction band, which optimized the Mn-doped InP with a 0.32 eV bandgap. These experimental and model results provide more microscopic details of doped InP, which can motivate theoretically exact control of guest ion stoichiometry with optimized characteristics for electrical devices.
Collapse
Affiliation(s)
- Xian Wei
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qi Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Dan Yang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Hangzhou 310003, China
| | - Kehan Yu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
- Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Wei Wei
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
7
|
Li SN, Pan JL, Yu YJ, Zhao F, Wang YK, Liao LS. Advances in Solution-Processed Blue Quantum Dot Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101695. [PMID: 37242111 DOI: 10.3390/nano13101695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Quantum dot light-emitting diodes (QLEDs) have been identified as a next-generation display technology owing to their low-cost manufacturing, wide color gamut, and electrically driven self-emission properties. However, the efficiency and stability of blue QLEDs still pose a significant challenge, limiting their production and potential application. This review aims to analyse the factors leading to the failure of blue QLEDs and presents a roadmap to accelerate their development based on the progress made in the synthesis of II-VI (CdSe, ZnSe) quantum dots (QDs), III-V (InP) QDs, carbon dots, and perovskite QDs. The proposed analysis will include discussions on material synthesis, core-shell structures, ligand interactions, and device fabrication, providing a comprehensive overview of these materials and their development.
Collapse
Affiliation(s)
- Sheng-Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jia-Lin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yan-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Feng Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
8
|
Lv Y, Fan J, Zhao M, Wu R, Li LS. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. NANOSCALE 2023; 15:5560-5578. [PMID: 36866747 DOI: 10.1039/d2nr07247e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.
Collapse
Affiliation(s)
- Yanbing Lv
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Jinjin Fan
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Man Zhao
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Ruili Wu
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
10
|
Abstract
Quantum dot light-emitting diodes (QD-LEDs) are one of the most promising self-emissive displays in terms of light-emitting efficiency, wavelength tunability, and cost. Future applications using QD-LEDs can cover a range from a wide color gamut and large panel displays to augmented/virtual reality displays, wearable/flexible displays, automotive displays, and transparent displays, which demand extreme performance in terms of contrast ratio, viewing angle, response time, and power consumption. The efficiency and lifetime have been improved by tailoring the QD structures and optimizing the charge balance in charge transport layers, resulting in theoretical efficiency for unit devices. Currently, longevity and inkjet-printing fabrication of QD-LEDs are being tested for future commercialization. In this Review, we summarize significant progress in the development of QD-LEDs and describe their potential compared to other displays. Furthermore, the critical elements to determine the performance of QD-LEDs, such as emitters, hole/electron transport layers, and device structures, are discussed comprehensively, and the degradation mechanisms of the devices and the issues of the inkjet-printing process were also investigated.
Collapse
Affiliation(s)
- Eunjoo Jang
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Hyosook Jang
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi-do 16678, Republic of Korea
| |
Collapse
|
11
|
Motomura G, Uematsu T, Kuwabata S, Kameyama T, Torimoto T, Tsuzuki T. Quantum-Dot Light-Emitting Diodes Exhibiting Narrow-Spectrum Green Electroluminescence by Using Ag-In-Ga-S/GaS x Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8336-8344. [PMID: 36732881 DOI: 10.1021/acsami.2c21232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum dots (QDs), which have high color purity, are expected to be applied as emitting materials to wide-color-gamut displays. To enable their use as an alternative to Cd-based QDs, it is necessary to improve the properties of QDs composed of low-toxicity materials. Although multielement QDs such as Ag-In-Ga-S are prone to spectrally broad emission from defect sites, a core/shell structure covered with a GaSx shell is expected to enable sharp emission from band-edge transitions. Here, QD light-emitting diodes (QD-LEDs) embedded with Ag-In-Ga-S/GaSx core/shell QDs (AIGS QDs) were fabricated, and their electroluminescence (EL) was observed. The EL spectra from the AIGS QD-LEDs were found to contain a large defect-related emission component not observed in the photoluminescence (PL) spectra of the AIGS QD films. This defect-related emission was caused by electrons injected into defect sites in the QDs. Therefore, the AIGS QDs and the electron injection layer (EIL) of ZnMgO were treated with Ga compounds such as gallium chloride (GaCl3) and gallium tris(N,N'-diethyldithiocarbamate) (Ga(DDTC)3) to improve the luminescence properties of the QD-LEDs. The added Ga compounds effectively compensated for defect sites on the surface of the QDs and suppressed direct electron injection from the EIL into defect sites. As a result, the defect-related emission components in the EL were successfully suppressed, and the EL exhibited a color purity comparable to the PL of the AIGS QD films. The QD-LEDs exhibited EL spectra with a full width at half-maximum of 33 nm, which is extremely sharp for a low-toxicity QD, and the chromaticity coordinates (0.260, 0.695) for green EL were achieved.
Collapse
Affiliation(s)
- Genichi Motomura
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK), Tokyo 157-8510, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taro Uematsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Susumu Kuwabata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuya Kameyama
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Tsukasa Torimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Toshimitsu Tsuzuki
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK), Tokyo 157-8510, Japan
| |
Collapse
|
12
|
Hu HL, Hao H, Ren X, Chen ZY, Liu M, Liu Y, Jiang FL. Bright InP Quantum Dots by Mid-Synthetic Modification with Zinc Halides. Inorg Chem 2023; 62:2877-2886. [PMID: 36723932 DOI: 10.1021/acs.inorgchem.2c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
InP quantum dots (QDs) attract growing interest in recent years, owing to their environmental advantages upon applications in display and lighting. However, compared to Cd-based QDs and Pb-based perovskites, the synthesis of InP QDs with high optical quality is relatively more difficult. Here, we established a mid-synthetic modification approach to improve the optical properties of InP-based QDs. Tris(dimethylamino)phosphine ((DMA)3P) and indium iodide were used to prepare InP QDs with a green emission (∼527 nm). By introducing zinc halides (ZnX2) during the mid-synthetic process, the photoluminescence quantum yield (PLQY) of the resulting InP/ZnSeS/ZnS core/shell/shell QDs was increased to >70%, and the full-width-at-half-maximum (FWHM) could be narrowed to ∼40 nm. Transmission electron microscopy clearly showed the improvement of the QDs particle size distribution after introducing ZnX2. It was speculated that ZnX2 was bound to the surface of QDs as a Z-type ligand, which not only passivated surface defects and suppressed the emission of defect states but also prevented Ostwald ripening. The InP cores were also activated by ZnX2, which made the growth of the ZnSeS shell more favorable. The photoluminescence properties started to be improved significantly only when the amount of ZnX2 exceeded 0.5 mmol. As the amount increased, more ZnX2 was distributed around the QDs to form a ligand layer, which prevented the shell precursor from crossing the ligand layer to the surface of the InP core, thus reducing the size of the InP/ZnSeS/ZnS QDs. This work revealed a new role of ZnX2 and found a method for InP QDs with high brightness and low FWHM by the mid-synthetic modification, which would inspire the synthesis of even better InP QDs.
Collapse
Affiliation(s)
- Hui-Ling Hu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Hao Hao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Xue Ren
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Zhe-Yong Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China.,College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| |
Collapse
|
13
|
Burkitt-Gray M, Casavola M, Clark PCJ, Fairclough SM, Flavell WR, Fleck RA, Haigh SJ, Ke JCR, Leontiadou M, Lewis EA, Osiecki J, Qazi-Chaudhry B, Vizcay-Barrena G, Wichiansee W, Green M. Structural investigations into colour-tuneable fluorescent InZnP-based quantum dots from zinc carboxylate and aminophosphine precursors. NANOSCALE 2023; 15:1763-1774. [PMID: 36601869 DOI: 10.1039/d2nr02803d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fluorescent InP-based quantum dots have emerged as valuable nanomaterials for display technologies, biological imaging, and optoelectronic applications. The inclusion of zinc can enhance both their emissive and structural properties and reduce interfacial defects with ZnS or CdS shells. However, the sub-particle distribution of zinc and the role this element plays often remains unclear, and it has previously proved challenging to synthesise Zn-alloyed InP-based nanoparticles using aminophosphine precursors. In this report, we describe the synthesis of alloyed InZnP using zinc carboxylates, achieving colour-tuneable fluorescence from the unshelled core materials, followed by a one-pot ZnS or CdS deposition using diethyldithiocarbamate precursors. Structural analysis revealed that the "core/shell" particles synthesised here were more accurately described as homogeneous extended alloys with the constituent shell elements diffusing through the entire core, including full-depth inclusion of zinc.
Collapse
Affiliation(s)
- Mary Burkitt-Gray
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Marianna Casavola
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| | - Pip C J Clark
- The Photon Science Institute, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
| | - Simon M Fairclough
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| | - Wendy R Flavell
- The Photon Science Institute, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jack Chun-Ren Ke
- The Photon Science Institute, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
| | - Marina Leontiadou
- The Photon Science Institute, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
| | - Edward A Lewis
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jacek Osiecki
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - Basma Qazi-Chaudhry
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Wijittra Wichiansee
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| | - Mark Green
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| |
Collapse
|
14
|
Walton RI. Solvothermal and hydrothermal methods for preparative solid-state chemistry. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:40-110. [DOI: 10.1016/b978-0-12-823144-9.00068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Zeng S, Li Z, Tan W, Si J, Li Y, Hou X. Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3817. [PMID: 36364592 PMCID: PMC9657385 DOI: 10.3390/nano12213817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The excellent performance of InP/ZnSe/ZnS core/shell/shell quantum dots (CSS-QDs) in light-emitting diodes benefits from the introduction of a ZnSe midshell. Understanding the changes of ultrafast carrier dynamics caused by the ZnSe midshell is important for their optoelectronic applications. Herein, we have compared the ultrafast carrier dynamics in CSS-QDs and InP/ZnS core/shell QDs (CS-QDs) using femtosecond transient absorption spectroscopy. The results show that the ZnSe midshell intensifies the electron delocalization and prolongs the in-band relaxation time of electrons from 238 fs to 350 fs, and that of holes from hundreds of femtoseconds to 1.6 ps. We also found that the trapping time caused by deep defects increased from 25.6 ps to 76 ps, and there were significantly reduced defect emissions in CSS-QDs. Moreover, the ZnSe midshell leads to a significantly increased density of higher-energy hole states above the valence band-edge, which may reduce the probability of Auger recombination caused by the positive trion. This work enhances our understanding of the excellent performance of the CSS-QDs applied to light-emitting diodes, and is likely to be helpful for the further optimization and design of optoelectronic devices based on the CSS-QDs.
Collapse
|
16
|
Psalti AE, Andriotou D, Diamantis SA, Chatz-Giachia A, Pournara A, Manos MJ, Hatzidimitriou A, Lazarides T. Mixed-Metal and Mixed-Ligand Lanthanide Metal-Organic Frameworks Based on 2,6-Naphthalenedicarboxylate: Thermally Activated Sensitization and White-Light Emission. Inorg Chem 2022; 61:11959-11972. [PMID: 35861587 DOI: 10.1021/acs.inorgchem.2c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trivalent lanthanide ions (Ln3+) hold an exceptional position in the field of optoelectronic materials due to their atomic-like emission spectra and long luminescence lifetimes. Metal-organic frameworks (MOFs) and coordination polymers are particularly suited as luminescent materials due to their structural diversity and ease of functionalization both at bridging ligands and/or metal centers. In this contribution, we present a series of mixed-metal Ln3+/Eu3+ (Ln = La, Gd) and mixed-ligand (2,6-naphthalenedicarboxylate (ndc2-) and 4-aminonaphthalene-2,6-dicarboxylate (andc2-)) MOFs belonging to three different structural types, with emissions spanning most of the visible region, thereby constituting favorable materials for color tuning and white-light emission. We investigate the thermal stability and photophysical properties of the synthesized materials with regard to their metal and ligand doping levels and structural type, where we discuss excimer and monomer emission. The photophysical study, involving both steady-state and time-resolved luminescence measurements, allows us to discuss the possible energy migration and Eu3+ sensitization pathways that take place within these materials following ligand excitation. Low-temperature luminescence studies led us to determine the energies of the ligand-based excited states and investigate their participation in thermally activated energy transfer mechanisms within the studied lattices. We observe emission quantum yields of up to 87% for the Eu3+-doped materials, while their ligand- and metal-doped counterparts show decreased quantum yields of up to 17%. Finally, we attempt fine color tuning by carefully adjusting the doping levels to achieve yellow and white-light emission.
Collapse
Affiliation(s)
- Athanasia E Psalti
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Andriotou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stavros A Diamantis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Amina Chatz-Giachia
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Manolis J Manos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina, 45110 Ioannina, Greece
| | | | - Theodore Lazarides
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
17
|
Yu P, Cao S, Shan Y, Bi Y, Hu Y, Zeng R, Zou B, Wang Y, Zhao J. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. LIGHT, SCIENCE & APPLICATIONS 2022; 11:162. [PMID: 35637219 PMCID: PMC9151710 DOI: 10.1038/s41377-022-00855-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/29/2023]
Abstract
InP-based quantum dot light-emitting diodes (QLEDs), as less toxic than Cd-free and Pb-free optoelectronic devices, have become the most promising benign alternatives for the next generation lighting and display. However, the development of green-emitting InP-based QLEDs still remains a great challenge to the environmental preparation of InP quantum dots (QDs) and superior device performance. Herein, we reported the highly efficient green-emitting InP-based QLEDs regulated by the inner alloyed shell components. Based on the environmental phosphorus tris(dimethylamino)phosphine ((DMA)3P), we obtained highly efficient InP-based QDs with the narrowest full width at half maximum (~35 nm) and highest quantum yield (~97%) by inserting the gradient inner shell layer ZnSexS1-x without further post-treatment. More importantly, we concretely discussed the effect and physical mechanism of ZnSexS1-x layer on the performance of QDs and QLEDs through the characterization of structure, luminescence, femtosecond transient absorption, and ultraviolet photoelectron spectroscopy. We demonstrated that the insert inner alloyed shell ZnSexS1-x provided bifunctionality, which diminished the interface defects upon balancing the lattice mismatch and tailored the energy levels of InP-based QDs which could promote the balanced carrier injection. The resulting QLEDs applying the InP/ZnSe0.7S0.3/ZnS QDs as an emitter layer exhibited a maximum external quantum efficiency of 15.2% with the electroluminescence peak of 532 nm, which was almost the highest record of InP-based pure green-emitting QLEDs. These results demonstrated the applicability and processability of inner shell component engineering in the preparation of high-quality InP-based QLEDs.
Collapse
Affiliation(s)
- Peng Yu
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China.
| | - Yuliang Shan
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, 215123, China
| | - Yuhe Bi
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Yaqi Hu
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Yunjun Wang
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, 215123, China.
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
18
|
Huang YM, James Singh K, Hsieh TH, Langpoklakpam C, Lee TY, Lin CC, Li Y, Chen FC, Chen SC, Kuo HC, He JH. Gateway towards recent developments in quantum dot-based light-emitting diodes. NANOSCALE 2022; 14:4042-4064. [PMID: 35246672 DOI: 10.1039/d1nr05288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantum dots (QDs), with their excellent photoluminescence, narrow emission linewidth, and wide color coverage, provide unrivaled advantages for advanced display technologies, enabling full-color micro-LED displays. It is indeed critical to have a fundamental understanding of how QD properties affect micro-LED display performance in order to develop the most energy-efficient display device in the near future. However, to take a more detailed look at the stability issues and passivation ways of QDs is essential for accelerating the commercialization of QD-based LED technologies. Knowing about the most recent breakthroughs in QD-based LEDs can give a good indication of how they might be used in shaping the future of displays. In this review, we discuss the characteristics of QD-based LEDs for the applications of display and lighting technologies. Various approaches for synthesis and the stability improvement of QDs are addressed in detail, along with recent advancements towards QD-based LED breakthroughs. Moreover, we summarize our latest research findings in QD-based LEDs, providing valuable information about the potential of QD-based LEDs for future display technologies.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
| | - Konthoujam James Singh
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Tsou-Hwa Hsieh
- Technology Development Center, InnoLux Corporation, Hsinchu 35053, Taiwan
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Catherine Langpoklakpam
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Tzu-Yi Lee
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Chien-Chung Lin
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yiming Li
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Fang-Chung Chen
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Shih-Chen Chen
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
| | - Hao-Chung Kuo
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
19
|
Pu YC, Fan HC, Chang JC, Chen YH, Tseng SW. Effects of Interfacial Oxidative Layer Removal on Charge Carrier Recombination Dynamics in InP/ZnSe xS 1-x Core/Shell Quantum Dots. J Phys Chem Lett 2021; 12:7194-7200. [PMID: 34309384 DOI: 10.1021/acs.jpclett.1c02125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Red-light-emitting InP/ZnSexS1-x core/shell quantum dots (QDs) were prepared by one-pot synthesis with optimal hydrogen fluoride (HF) treatment. Most of the surficial oxidative species could be removed, and the dangling bonds would be passivated by Zn ions for the InP cores during HF treatment, which would be beneficial to the subsequent ZnSexS1-x shell coating. Three-dimensional time-resolved photoluminescence spectra of the QD samples were analyzed by singular value decomposition global fitting to determine the radiative and nonradiative lifetimes of charge carriers. A proposed model illustrated that the charge carriers in the InP/ZnSexS1-x QDs with interfacial oxidative layer removal would evidently recombine through radiative pathways, mainly from the conduction band to the valence band (lifetime, 33 ns) and partially from the trap states (lifetime, 150 ns). This work offers the important physical insight into the charge carrier dynamics of low-toxicity QDs which have the desired optical properties for optoelectronic applications.
Collapse
Affiliation(s)
- Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Hsiao-Chuan Fan
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Jui-Cheng Chang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
| | - Yu-Hung Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shih-Wen Tseng
- Core Facility Center of National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
20
|
Lv P, An X, Guan Z, Wang L, Zheng Z, Li X, Yin Z, Lin J, Tang A. Construction of Robust Cadmium-Free Cu-In-Zn-S Nanocrystals and Polyfluorene Derivatives Hybrid Emissive Layer for Stable Electroluminescent White Light-Emitting Devices. J Phys Chem Lett 2021; 12:7113-7119. [PMID: 34296612 DOI: 10.1021/acs.jpclett.1c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combination of the merit of inorganic nanocrystals (NCs) and solution-processed conjugated polymer is a convenient strategy to obtain stable and efficient electroluminescent white-light-emitting diodes (el-WLEDs). In this work, an el-WLED was fabricated on the basis of Cd-free Cu-In-Zn-S (CIZS)/ZnS NCs blending with polyfluorene derivative poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), which exhibited a stable white light emission with a color rendering index value of 85. Meanwhile, it had a stable spectrum under high voltage due to the extremely weak energy transfer between PODPF and CIZS/ZnS NCs. To further improve the device performance, PC9O4 was used to replace PODPF, which presented better solubility and smoother film-forming properties. Thus, the maximum external quantum efficiency (EQE) of the optimized el-WLED was increased by 221% while maintaining a stable spectrum under high voltage. This work may provide a great foundation on color mixing cadmium-free el-WLEDs.
Collapse
Affiliation(s)
- Peiwen Lv
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing JiaoTong University, Beijing 100044, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhongyuan Guan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing JiaoTong University, Beijing 100044, China
| | - Lijin Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing JiaoTong University, Beijing 100044, China
| | - Zhiyong Zheng
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Zhe Yin
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing JiaoTong University, Beijing 100044, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing JiaoTong University, Beijing 100044, China
| |
Collapse
|
21
|
Karatum O, Aria MM, Eren GO, Yildiz E, Melikov R, Srivastava SB, Surme S, Dogru IB, Bahmani Jalali H, Ulgut B, Sahin A, Kavakli IH, Nizamoglu S. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Front Neurosci 2021; 15:652608. [PMID: 34248476 PMCID: PMC8260855 DOI: 10.3389/fnins.2021.652608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Guncem Ozgun Eren
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | - Erdost Yildiz
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Itir Bakis Dogru
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | | | - Burak Ulgut
- Department of Chemistry, Bilkent University, Ankara, Turkey
| | - Afsun Sahin
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
- Department of Ophthalmology, Medical School, Koc University, Istanbul, Turkey
| | | | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
22
|
Yang Z, Wu Q, Zhou X, Cao F, Yang X, Zhang J, Li W. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. NANOSCALE 2021; 13:4562-4568. [PMID: 33599633 DOI: 10.1039/d0nr05025c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environment-friendly high color purity blue zinc selenide (ZnSe) quantum dot-based light-emitting diodes (QLEDs) are promising candidates in next-generation display applications. However, due to the large bandgap of ZnSe (2.7 eV), the reported electroluminescence (EL) wavelengths of ZnSe QLEDs are mainly located within the range from purple to violet blue, and preparing blue emitting (>445 nm) ZnSe QLEDs remains challenging. Herein, we report a seed-mediated and double shell strategy to synthesize large-sized blue ZnSe/ZnS/ZnS core/shell/shell quantum dots (QDs). The as-prepared QDs possess excellent features including narrow full widths at half-maximum (11-19 nm), tunable emission wavelengths (410-451 nm), and high photoluminescence quantum yields (≥50%). Using ZnSe/ZnS/ZnS QDs as emitters in an inverted device, a color saturated blue QLED with an EL wavelength of 446 nm, a maximum luminance of 106 cd m-2, a current efficiency of 0.94 cd A-1, and an EQE of 2.62% is successfully fabricated. These results indicate that blue ZnSe QLEDs have great potential for future display technologies.
Collapse
Affiliation(s)
- Zhiwen Yang
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Parrish CH, Hebert D, Jackson A, Ramasamy K, McDaniel H, Giacomelli GA, Bergren MR. Optimizing spectral quality with quantum dots to enhance crop yield in controlled environments. Commun Biol 2021; 4:124. [PMID: 33504914 PMCID: PMC7840809 DOI: 10.1038/s42003-020-01646-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bioregenerative life-support systems (BLSS) involving plants will be required to realize self-sustaining human settlements beyond Earth. To improve plant productivity in BLSS, the quality of the solar spectrum can be modified by lightweight, luminescent films. CuInS2/ZnS quantum dot (QD) films were used to down-convert ultraviolet/blue photons to red emissions centered at 600 and 660 nm, resulting in increased biomass accumulation in red romaine lettuce. All plant growth parameters, except for spectral quality, were uniform across three production environments. Lettuce grown under the 600 and 660 nm-emitting QD films respectively increased edible dry mass (13 and 9%), edible fresh mass (11% each), and total leaf area (8 and 13%) compared with under a control film containing no QDs. Spectral modifications by the luminescent QD films improved photosynthetic efficiency in lettuce and could enhance productivity in greenhouses on Earth, or in space where, further conversion is expected from greater availability of ultraviolet photons.
Collapse
Affiliation(s)
- Charles H Parrish
- Controlled Environment Agriculture Center, The University of Arizona, Tucson, AZ, 85719, USA
| | | | | | | | | | - Gene A Giacomelli
- Controlled Environment Agriculture Center, The University of Arizona, Tucson, AZ, 85719, USA.
| | | |
Collapse
|
24
|
Kulakovich O, Gurinovich L, Li H, Ramanenka A, Trotsiuk L, Muravitskaya A, Wei J, Li H, Matveevskaya N, Guzatov DV, Gaponenko S. Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures. NANOTECHNOLOGY 2021; 32:035204. [PMID: 33007765 DOI: 10.1088/1361-6528/abbdde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of gold and silver plasmonic films on the photoluminescence and photostability of InP/ZnSe/ZnSeS/ZnS nanocrystals (quantum dots) is reported. Colloidal gold films promote the photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots (more durable emission properties in the presence of metal nanostructures) through reducing exciton lifetime. In contrast, silver decreases the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots without changing the photoluminescence intensity and kinetics. By adjusting the excitation wavelength closer to the extinction band of gold nanoparticles a 1.8-fold enhancement of luminescence intensity has been obtained using a polyelectrolyte spacer between the metal and InP/ZnSe/ZnSeS/ZnS nanoparticles. Thus, plasmonics offers essential practical improvement of light emitters in terms of their durable luminescent properties upon prolonged optical excitation without losses in luminescence efficiency or even along with increased efficiency.
Collapse
Affiliation(s)
- O Kulakovich
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - L Gurinovich
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Hui Li
- Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 10008,1 People's Republic of China
| | - A Ramanenka
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - L Trotsiuk
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - A Muravitskaya
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Jing Wei
- Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 10008,1 People's Republic of China
| | - Hongbo Li
- Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 10008,1 People's Republic of China
| | - N Matveevskaya
- Institute for Single Crystals, National Academy of Sciences of Ukraine, Nauky Ave., 60, Kharkiv 61178, Ukraine
| | - D V Guzatov
- Yanka Kupala State University of Grodno, Grodno 230023, Belarus
| | - S Gaponenko
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| |
Collapse
|
25
|
Lignos I, Mo Y, Carayannopoulos L, Ginterseder M, Bawendi MG, Jensen KF. A high-temperature continuous stirred-tank reactor cascade for the multistep synthesis of InP/ZnS quantum dots. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00454e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multistep and continuous production of core–shell InP/ZnS semiconductor nanocrystals in a high-temperature and miniature continuous stirred-tank reactor cascade.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | - Yiming Mo
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | | | | | - Moungi G. Bawendi
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| |
Collapse
|
26
|
Seo H, Park JH, Kwon OH, Kwon OP, Kwak SK, Kim SW. Highly qualified InP based QDs through a temperature controlled ZnSe shell coating process and their DFT calculations. NANOSCALE ADVANCES 2020; 2:5615-5622. [PMID: 36133859 PMCID: PMC9417730 DOI: 10.1039/d0na00451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/14/2020] [Indexed: 06/16/2023]
Abstract
For QDs used in displays, a narrow emission linewidth and emission peak tuning depending on the morphology of the QDs are the most important factors in order to maximize the range of colors to be represented. CdSe-based QDs are known as the most suitable QDs for displays, but cadmium is a highly toxic and regulated substance for use worldwide; InP-based QDs are the most noteworthy alternative. However, InP-based QDs have a wider linewidth of emission light in the entire visible region compared to CdSe-based QDs. In this work, we use the ZnSe inner shell as a lattice buffer layer between the InGaP core and the ZnS outer shell in the type-I structure, using a heating-up method in which ZnSe precursors were added to a low-temperature core solution and then rapidly raised to a temperature of 270-320 °C. Interestingly, when reacting at high temperatures, the shape of the QDs changes to a tetrahedron, and the FWHM becomes narrower than at low temperature. To understand this phenomenon, we proceeded with transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) analyses, and a reasonable explanation was provided with DFT calculations.
Collapse
Affiliation(s)
- Haewoon Seo
- Department of Molecular Science and Technology, Ajou University Suwon 443-749 Korea
| | - Ju Hyun Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - O-Hoon Kwon
- Department of Molecular Science and Technology, Ajou University Suwon 443-749 Korea
| | - O Pil Kwon
- Department of Molecular Science and Technology, Ajou University Suwon 443-749 Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology, Ajou University Suwon 443-749 Korea
| |
Collapse
|
27
|
Rodosthenous P, Gómez-Campos FM, Califano M. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. J Phys Chem Lett 2020; 11:10124-10130. [PMID: 33191752 DOI: 10.1021/acs.jpclett.0c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
InP nanocrystals exhibit a low photoluminescence quantum yield. As in the case of CdS, this is commonly attributed to their poor surface quality and difficult passivation, which give rise to trap states and negatively affect emission. Hence, the strategies adopted to improve their quantum yield have focused on the growth of shells, to improve passivation and get rid of the surface states. Here, we employ state-of-the-art atomistic semiempirical pseudopotential modeling to isolate the effect of surface stoichiometry from features due to the presence of surface trap states and show that, even with an atomistically perfect surface and an ideal passivation, InP nanostructures may still exhibit very long radiative lifetimes (on the order of tens of microseconds), broad and weak emission, and large Stokes' shifts. Furthermore, we find that all these quantities can be varied by orders of magnitude, by simply manipulating the surface composition, and, in particular, the number of surface P atoms. As a consequence it should be possible to substantially increase the quantum yield in these nanostructures by controlling their surface stoichiometry.
Collapse
Affiliation(s)
- Panagiotis Rodosthenous
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francisco M Gómez-Campos
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- CITIC-UGR, C/Periodista Rafael Gómez Montero, n 2, Granada E-18071, Spain
| | - Marco Califano
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
28
|
Chen B, Li D, Wang F. InP Quantum Dots: Synthesis and Lighting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002454. [PMID: 32613755 DOI: 10.1002/smll.202002454] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Indexed: 05/24/2023]
Abstract
InP quantum dots (QDs) are typical III-V group semiconductor nanocrystals that feature large excitonic Bohr radius and high carrier mobility. The merits of InP QDs include large absorption coefficient, broad color tunability, and low toxicity, which render them promising alternatives to classic Cd/Pb-based QDs for applications in practical settings. Over the past two decades, the advances in wet-chemistry methods have enabled the synthesis of small-sized colloidal InP QDs with the assistance of organic ligands. By proper selection of synthetic protocols and precursor materials coupled with surface passivation, the QYs of InP QDs are pushed to near unity with modest color purity. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications with the potential for commercialization. This work focuses on the recent development of wet-chemistry protocols and various precursor materials for the synthesis and surface modification of InP QDs. Current methods for constructing light-emitting diodes using novel InP-based QDs are also summarized.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Dongyu Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- Key Laboratory of Environmentally Friendly Functional Materials and Devices, Lingnan Normal University, Zhanjiang, 524048, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
29
|
Joo J, Choi Y, Suh YH, Lee CL, Bae J, Park J. Synthesis and characterization of In1−Ga P@ZnS alloy core-shell type colloidal quantum dots. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Shi K, Li J, Xiao Y, Guo L, Chu X, Zhai Y, Zhang B, Lu D, Rosei F. High-Response, Ultrafast-Speed, and Self-Powered Photodetection Achieved in InP@ZnS-MoS 2 Phototransistors with Interdigitated Pt Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31382-31391. [PMID: 32551487 DOI: 10.1021/acsami.0c05476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various hybrid zero-dimensional/two-dimensional (0D/2D) systems have been developed to fabricate phototransistors with better performance compared to two-dimensional (2D) layered materials as well as broaden potential applications. Herein, we integrated environment-friendly InP@ZnS core-shell QDs with high efficiency of light absorption and light-emitting properties with bilayer MoS2 for the realization of 0D/2D mixed-dimensional phototransistors. Interdigitated (IDT) electrodes with Pt-patterned arrays, acting as light collectors as well as plasmonic resonators, can further enhance light harvesting from the InP@ZnS-MoS2 hybrid phototransistors, contributing to achieving a photoresponsivity as high as 1374 A·W-1. Moreover, thanks to the asymmetric Pt/MoS2 Schottky junction at the source/drain contact, a self-powered characteristic with an ultrafast speed of 21.5 μs was achieved, which is among the best performances for 2D layered material-based phototransistors. In terms of these features, we demonstrated the artificial synapse network with short-time plasticity based on the self-powered photodetection device. Our work reveals the great potential of 0D/2D hybrid phototransistors for high-response, ultrafast-speed, and self-powered photodetectors coupled with artificial neuromorphic function.
Collapse
Affiliation(s)
- Kaixi Shi
- International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinhua Li
- International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Youcheng Xiao
- Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, Jilin Jianzhu University, Changchun 130118, China
| | - Liang Guo
- Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, Jilin Jianzhu University, Changchun 130118, China
| | - Xueying Chu
- International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Yingjiao Zhai
- International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Beilong Zhang
- International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Dongxiao Lu
- International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Federico Rosei
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| |
Collapse
|
31
|
Hu X, Xie Y, Geng C, Xu S, Bi W. Study on the Color Compensation Effect of Composite Orange-Red Quantum Dots in WLED Application. NANOSCALE RESEARCH LETTERS 2020; 15:118. [PMID: 32449132 PMCID: PMC7246285 DOI: 10.1186/s11671-020-03350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Abstract
Quantum dots (QDs) as emerging light-converting materials show the advantage of enhancing color quality of white light-emitting diode (WLED). However, WLEDs employing narrow-emitting monochromic QDs usually present unsatisfactory color rendering in the orange region. Herein, composite orange-red QDs (composite-QDs) are developed through mixing CdSe/ZnS-based orange QDs (O-QDs) and red QDs (R-QDs) to compensate the orange-red light for WLEDs. We investigated the effect of self-absorption and fluorescence resonance energy transfer (FRET) process in composite-QDs on the spectral controllability and fluorescent quenching in WLEDs. The concentration and donor/acceptor ratios were also taken into account to analyze the FRET efficiency and help identify suitable composite-QDs for color compensation in the orange-red light region. As the result, the optimized composite-QDs effectively improve the color rendering index of the WLED compared with monochromatic QDs.
Collapse
Affiliation(s)
- Xiaoyue Hu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, People's Republic of China
| | - Yangyang Xie
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, People's Republic of China
| | - Chong Geng
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, People's Republic of China
| | - Shu Xu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, People's Republic of China.
| | - Wengang Bi
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, People's Republic of China.
| |
Collapse
|
32
|
Zhang D, Huang T, Duan L. Emerging Self-Emissive Technologies for Flexible Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902391. [PMID: 31595613 DOI: 10.1002/adma.201902391] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Featuring a combination of ultrathin and lightweight properties, excellent mechanical flexibility, low power-consumption, and widely tunable saturated emission, flexible displays have opened up a new possibility for optoelectronics. The demands for flexible displays are growing on a continual basis due not only to their successful commercialization but, more importantly, their endless possibilities for wearable integrated systems. Up to now, self-emissive technologies for displays, flexible active-matrix organic light-emitting diodes (flex-AMOLED), flexible quantum dot light-emitting diodes (flex-QLEDs), and flexible perovskite light-emitting diodes (flex-PeLEDs) have been widely reported, but despite the significant progress made in these technologies, enormous obstacles and challenges remain for the vision of truly wearable applications, in particular with flex-QLEDs and flex-PeLEDs. Here, a review of the recent progress of all three self-emissive technologies for flexible displays is conducted, including the emissive active materials, device structures and approaches to manufacturing, the flexible substrates, and conductive electrodes, as well as the encapsulation techniques. The fast-paced improvement made to the efficiency of flexible devices in recent years is also summarized. The review concludes by making suggestions on the future development in this area, and is expected to help researchers in gaining a comprehensive understanding about the newly emerging technologies for flexible displays.
Collapse
Affiliation(s)
- Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Huang
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
33
|
Wang C, Niu R, Zhou Z, Wu W, Chai Z, Song Y, Kong D. Nonlinear optical properties of InP/ZnS core-shell quantum dots. NANOTECHNOLOGY 2020; 31:135001. [PMID: 31810071 DOI: 10.1088/1361-6528/ab5f94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nonlinear optical properties of an InP/ZnS core-shell quantum dot toluene solution were investigated using a Z-scan and transient absorption technique with femtosecond pulses and nanosecond pulses at 532 nm wavelengths, respectively. The research results showed that InP/ZnS core-shell quantum dots exhibited saturated absorption under the excitation of femtosecond pulses, and the switch from saturated absorption to reverse saturated absorption was observed under the excitation of nanosecond pulses. The mechanism of the switch was attributed to excited-state absorption. Moreover, the nonlinear refraction was shown as self-focusing and self-defocusing under the excitation of femtosecond and nanosecond pulses, respectively, which were attributed to the Kerr effect of electrons and the thermal effect of InP/ZnS quantum dots, respectively. The investigations show that InP/ZnS core-shell quantum dots are good materials, and have many potential applications in optical and electrical fields.
Collapse
Affiliation(s)
- Chaoyu Wang
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Islam HU, Roffey A, Hollingsworth N, Bras W, Sankar G, De Leeuw NH, Hogarth G. Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. NANOSCALE ADVANCES 2020; 2:798-807. [PMID: 36133240 PMCID: PMC9419409 DOI: 10.1039/c9na00665f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S2CNR2)2] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S2CNiBu2)2] in oleylamine gives high aspect ratio wurtzite nanowires, the average length of which was increased upon addition of thiuram disulfide to the decomposition mixture. To provide further insight into the decomposition process, X-ray absorption spectroscopy (XAS) of [Zn(S2CNMe2)2] was performed in the solid-state, in non-coordinating xylene and in oleylamine. In the solid-state, dimeric [Zn(S2CNMe2)2]2 was characterised in accord with the single crystal X-ray structure, while in xylene this breaks down into tetrahedral monomers. In situ XAS in oleylamine (RNH2) shows that the coordination sphere is further modified, amine binding to give five-coordinate [Zn(S2CNMe2)2(RNH2)]. This species is stable to ca. 70 °C, above which amine dissociates and at ca. 90 °C decomposition occurs to generate ZnS. The relatively low temperature onset of nanoparticle formation is associated with amine-exchange leading to the in situ formation of [Zn(S2CNMe2)(S2CNHR)] which has a low temperature decomposition pathway. Combining these observations with the previous work of others allows us to propose a detailed mechanistic scheme for the overall process.
Collapse
Affiliation(s)
- Husn-Ubayda Islam
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
- Netherlands Organisation for Scientific Research DUBBLE@ESRF 38043 Grenoble France
| | - Anna Roffey
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Nathan Hollingsworth
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Wim Bras
- Netherlands Organisation for Scientific Research DUBBLE@ESRF 38043 Grenoble France
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Gopinathan Sankar
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Nora H De Leeuw
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Graeme Hogarth
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
35
|
McVey BFP, Swain RA, Lagarde D, Tison Y, Martinez H, Chaudret B, Nayral C, Delpech F. Unraveling the role of zinc complexes on indium phosphide nanocrystal chemistry. J Chem Phys 2019; 151:191102. [PMID: 31757128 DOI: 10.1063/1.5128234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The addition of zinc complexes to the syntheses of indium phosphide nanocrystals (InP NCs) has become commonplace, due to their ability to alter and significantly improve observed optical properties. In this paper, the role of zinc complexes on the synthesis and observed properties of InP is carefully examined. Produced InP and InP:Zn2+ NCs are thoroughly characterized from both structural (core and surface) and optical perspectives over a wide range of Zn2+ compositions (0%-43% atomic content). We find no differences in the physical (NC size and polydispersity) and structural properties (crystallographic phase) of InP and InP:Zn2+ NCs. Optically, significant changes are observed when zinc is added to InP syntheses, including blueshifted absorption edges and maxima, increased quantum yields, and the near elimination of surface state emission. These improved optical properties result from surface passivation by zinc carboxylate moieties. Changes to the optical properties begin at zinc concentrations as low as 5%, demonstrating the high sensitivity of InP optical properties to exogenous species.
Collapse
Affiliation(s)
- B F P McVey
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - R A Swain
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - D Lagarde
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Y Tison
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM-ECP), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Ave. Président Angot, F-64053 Pau, France
| | - H Martinez
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM-ECP), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Ave. Président Angot, F-64053 Pau, France
| | - B Chaudret
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - C Nayral
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - F Delpech
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
36
|
Qu D, Yang D, Sun Y, Wang X, Sun Z. White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Förster Resonance Energy Transfer. J Phys Chem Lett 2019; 10:3849-3857. [PMID: 31246470 DOI: 10.1021/acs.jpclett.9b01575] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carbon dots (CDs) have been demonstrated to be fluorescent materials for the new phosphor-free white light-emitting diodes (WLEDs). Herein, we synthesized a novel white CDs (WCDs). The spectrum highly matches the solar light spectrum (AM 1.5), which is a potentially high-color-quality lighting source material. The CDs contain blue, green, and red emissive centers produced from catechol, o-phenylenediamine, and their complexes, respectively. In addition, the photoluminescence mechanism had been revealed; three emission centers could be excited by a single UV source actuated by the formation of H- and J-aggregates and FRET between the CDs. Then the phosphor-free WLEDs were fabricated with a UV chip encapsulated with silicon resin containing the as-obtained CDs, which exhibit CIE coordinates of (0.33,0.33), a color rendering index (CRI) of 93, and a correlated color temperature (CCT) of 5453 K. The WLEDs show super stability and a high solar spectrum matching degree of 85-114%, protecting the eyesight. This provides a new way to design healthy lighting materials.
Collapse
Affiliation(s)
- Dan Qu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory of Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, School of Environmental and Energy , Beijing University of Technology 100 Pingleyuan , Chaoyang District, Beijing 100124 , People's Republic of China
| | - Dongxue Yang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory of Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, School of Environmental and Energy , Beijing University of Technology 100 Pingleyuan , Chaoyang District, Beijing 100124 , People's Republic of China
| | - Yukun Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory of Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, School of Environmental and Energy , Beijing University of Technology 100 Pingleyuan , Chaoyang District, Beijing 100124 , People's Republic of China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory of Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, School of Environmental and Energy , Beijing University of Technology 100 Pingleyuan , Chaoyang District, Beijing 100124 , People's Republic of China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory of Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, School of Environmental and Energy , Beijing University of Technology 100 Pingleyuan , Chaoyang District, Beijing 100124 , People's Republic of China
| |
Collapse
|
37
|
Kim HJ, Jo JH, Yoon SY, Jo DY, Kim HS, Park B, Yang H. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme. MATERIALS 2019; 12:ma12142267. [PMID: 31311083 PMCID: PMC6678380 DOI: 10.3390/ma12142267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
The doping of transition metal ions, such as Cu+ and Mn2+ into a quantum dot (QD) host is one of the useful strategies in tuning its photoluminescence (PL). This study reports on a two-step synthesis of Cu-doped InP QDs double-shelled with ZnSe inner shell/ZnS outer shell. As a consequence of the double shelling-associated effective surface passivation along with optimal doping concentrations, Cu-doped InP/ZnSe/ZnS (InP:Cu/ZnSe/ZnS) QDs yield single Cu dopant-related emissions with high PL quantum yields of 57–58%. This study further attempted to tune PL of Cu-doped QDs through the variation of InP core size, which was implemented by adopting different types of Zn halide used in core synthesis. As the first application of doped InP QDs as electroluminescent (EL) emitters, two representative InP:Cu/ZnSe/ZnS QDs with different Cu concentrations were then employed as active emitting layers of all-solution-processed, multilayered QD-light-emitting diodes (QLEDs) with the state-of-the-art hybrid combination of organic hole transport layer plus inorganic electron transport layers. The EL performances, such as luminance and efficiencies of the resulting QLEDs with different Cu doping concentrations, were compared and discussed.
Collapse
Affiliation(s)
- Hwi-Jae Kim
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Jung-Ho Jo
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Suk-Young Yoon
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Dae-Yeon Jo
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Byoungnam Park
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea.
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea.
| |
Collapse
|
38
|
Mirhosseini HN, Karimipour M, Molaei M, Bagheri M. One pot and room temperature photochemical synthesis of high quantum yield NIR emissive Ag2S@Ag(In, Zn)S2 core-shells at the presence of air in water. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Frohleiks J, Wepfer S, Bacher G, Nannen E. Realization of Red Iridium-Based Ionic Transition Metal Complex Light-Emitting Electrochemical Cells (iTMC-LECs) by Interface-Induced Color Shift. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22612-22620. [PMID: 31244025 DOI: 10.1021/acsami.9b07019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Red ionic iridium-based transition metal complex light-emitting electrochemical cells (iTMC-LECs) with emission centered at ca. 650 nm, maximum efficiency of 0.3%, maximum brightness above 650 cd m-2, and device lifetime well above 200 and 33 h at brightness levels of 10 and 210 cd m-2, respectively, are realized by the introduction of a p-type polymer interface to the standard design of [Ir(ppy)2(pbpy)]+[PF6]- (Hppy = 2-phenylpyridine, pbpy = 6-phenyl-2,2'-bipyridine) iTMC-LEC. The unexpected color shift from yellow to red is studied in detail with respect to operation conditions and material combination. The experimental data suggest that either exciplex formation or subordinate, usually suppressed optical transitions of the iTMC might become activated by the introduced interface, causing the pronounced red shift of the peak emission wavelength.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Nannen
- Faculty of Electrical Engineering and Computer Science, Textile Innovatory , University of Applied Sciences Niederrhein , 47805 Krefeld , Germany
| |
Collapse
|
40
|
You Y, Tong X, Wang W, Sun J, Yu P, Ji H, Niu X, Wang ZM. Eco-Friendly Colloidal Quantum Dot-Based Luminescent Solar Concentrators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801967. [PMID: 31065522 PMCID: PMC6498128 DOI: 10.1002/advs.201801967] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/21/2019] [Indexed: 05/20/2023]
Abstract
Luminescent solar concentrators (LSCs) have attracted significant attention as promising solar energy conversion devices for building integrated photovoltaic (PV) systems due to their simple architecture and cost-effective fabrication. Conventional LSCs are generally comprised of an optical waveguide slab with embedded emissive species and coupled PV cells. Colloidal semiconductor quantum dots (QDs) have been demonstrated as efficient emissive species for high-performance LSCs because of their outstanding optical properties including tunable absorption and emission spectra covering the ultraviolet/visible to near-infrared region, high photoluminescence quantum yield, large absorption cross sections, and considerable photostability. However, current commonly used QDs for high-performance LSCs consist of highly toxic heavy metals (i.e., cadmium and lead), which are fatal to human health and the environment. In this regard, it is highly desired that heavy metal-free and environmentally friendly QD-based LSCs are comprehensively studied. Here, notable advances and developments of LSCs based on unary, binary, and ternary eco-friendly QDs are presented. The synthetic approaches, optical properties of these eco-friendly QDs, and consequent device performance of QD-based LSCs are discussed in detail. A brief outlook pointing out the existing challenges and prospective developments of eco-friendly QD-based LSCs is provided, offering guidelines for future device optimizations and commercialization.
Collapse
Affiliation(s)
- Yimin You
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Wenhao Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Jiachen Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Haining Ji
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- School of Materials and EnergyState Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xiaobin Niu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- School of Materials and EnergyState Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| |
Collapse
|
41
|
Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y, Peng X. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. J Am Chem Soc 2019; 141:6448-6452. [DOI: 10.1021/jacs.8b12908] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yang Li
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xiaoqi Hou
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xingliang Dai
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory
of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhenlei Yao
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory
of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Liulin Lv
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yizheng Jin
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- State Key Laboratory
of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xiaogang Peng
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
42
|
Berestennikov AS, Li Y, Iorsh IV, Zakhidov AA, Rogach AL, Makarov SV. Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances. NANOSCALE 2019; 11:6747-6754. [PMID: 30907397 DOI: 10.1039/c8nr09837a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Halide perovskite nanoparticles have demonstrated pronounced quantum confinement properties for nanometer-scale sizes and strong Mie resonances for 102 nm sizes. Here we studied the intermediate sizes where the nonlocal response of the exciton affects the spectral properties of Mie modes. The mechanism of this effect is associated with the fact that excitons in nanoparticles have an additional kinetic energy that is proportional to k2, where k is the wavenumber. Therefore, they possess higher energy than in the case of static excitons. The obtained experimental and theoretical results for MAPbBr3 nanoparticles of various sizes (2-200 nm) show that for particle radii comparable with the Bohr radius of the exciton (a few nanometers in perovskites), the blue-shift of the photoluminescence, scattering, and absorption cross-section peaks related to quantum confinement should be dominating due to the weakness of Mie resonances for such small sizes. On the other hand, for larger sizes (more than 50-100 nm), the influence of Mie modes increases, and the blue shift remains despite the fact that the effect of quantum confinement becomes much weaker.
Collapse
Affiliation(s)
- A S Berestennikov
- Department of Nanophotonics and Metamatarials, ITMO University, 49 Kronverkskii pr., Saint Petersburg 197101, Russia.
| | | | | | | | | | | |
Collapse
|
43
|
Li H, Jia C, Meng X, Li H. Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals. Front Chem 2019; 6:652. [PMID: 30671431 PMCID: PMC6331784 DOI: 10.3389/fchem.2018.00652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Colloidal nanocrystals (NCs) have emerged as promising materials in optoelectronic devices and biological imaging application due to their tailorable properties through size, shape, and composition. Among these NCs, metal phosphide is an important class, in parallel with metal chalcogenide. In this review, we summarize the recent progress regarding the chemical synthesis and applications of colloidal metal phosphide NCs. As the most important metal phosphide NCs, indium phosphide (InP) NCs have been intensively investigated because of their low toxicity, wide and tunable emission range from visible to the near-infrared region. Firstly, we give a brief overview of synthetic strategies to InP NCs, highlighting the benefit of employing zinc precursors as reaction additive and the importance of different phosphorus precursors to improve the quality of the InP NCs, in terms of size distribution, quantum yield, colloidal stability, and non-blinking behavior. Next, we discuss additional synthetic techniques to overcome the issues of lattice mismatch in the synthesis of core/shell metal phosphide NCs, by constructing an intermediate layer between core/shell or designing a shell with gradient composition in a radial direction. We also envision future research directions of InP NCs. The chemical synthesis of other metal phosphide NCs, such as II-V metal phosphide NCs (Cd3P2, Zn3P2) and transition metal phosphides NCs (Cu3P, FeP) is subsequently introduced. We finally discuss the potential applications of colloidal metal phosphide NCs in photovoltaics, light-emitting diodes, and lithium ion battery. An overview of several key applications based on colloidal metal phosphide NCs is provided at the end.
Collapse
Affiliation(s)
- Hui Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chao Jia
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Hongbo Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
44
|
Affiliation(s)
- Max R. Friedfeld
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dane A. Johnson
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
45
|
Crisp RW, Kirkwood N, Grimaldi G, Kinge S, Siebbeles LDA, Houtepen AJ. Highly Photoconductive InP Quantum Dots Films and Solar Cells. ACS APPLIED ENERGY MATERIALS 2018; 1:6569-6576. [PMID: 30506040 PMCID: PMC6259048 DOI: 10.1021/acsaem.8b01453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 05/05/2023]
Abstract
InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb-providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Ryan W. Crisp
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Nicholas Kirkwood
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Gianluca Grimaldi
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Sachin Kinge
- Toyota
Motor Europe, Materials Research & Development, Hoge Wei 33, Zaventem B-1930, Belgium
| | - Laurens D. A. Siebbeles
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Arjan J. Houtepen
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
- . Website: www.tudelft.nl/cheme/houtepengroup
| |
Collapse
|
46
|
Friedfeld MR, Stein JL, Ritchhart A, Cossairt BM. Conversion Reactions of Atomically Precise Semiconductor Clusters. Acc Chem Res 2018; 51:2803-2810. [PMID: 30387984 DOI: 10.1021/acs.accounts.8b00365] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Clusters are unique molecular species that can be viewed as a bridge between phases of matter and thus between disciplines of chemistry. The structural and compositional complexity observed in cluster chemistry serves as an inspiration to the material science community and motivates our search for new phases of matter. Moreover, the formation of kinetically persistent cluster molecules as intermediates in the nucleation of crystals makes these materials of great interest for determining and controlling mechanisms of crystal growth. Our lab developed a keen interest in clusters insofar as they relate to the nucleation of nanoscale semiconductors and the modeling of postsynthetic reaction chemistry of colloidal materials. In particular, our discovery of a structurally unique In37P20X51 (X = carboxylate) cluster en route to InP quantum dots has catalyzed our interest in all aspects of cluster conversion, including the use of clusters as precursors to larger nanoscale colloids and as platforms for examining postsynthetic reaction chemistry. This Account is presented in four parts. First, we introduce cluster chemistry in a historical context with a focus on main group, metallic, and semiconductor clusters. We put forward the concept of rational, mechanism-driven design of colloidal semiconductor nanocrystals as the primary motivation for the studies we have undertaken. Second, we describe the role of clusters as intermediates both in the synthesis of well-known material phases and in the discovery of unprecedented nanomaterial structures. The primary distinction between these two approaches is one of kinetics; in the case of well-known phases, we are often operating under high-temperature thermolysis conditions, whereas for materials discovery, we are discovering strategies to template the growth of kinetic phases as dictated by the starting cluster structure. Third, we describe reactions of clusters as model systems for their larger nanomaterial progeny with a primary focus on cation exchange. In the case of InP, cation exchange in larger nanostructures has been challenging due to the covalent nature of the crystal lattice. However, in the higher energy, strained cluster intermediates, cation exchange can be accomplished even at room temperature. This opens opportunities for accessing doped and alloyed nanomaterials using postsynthetically modified clusters as single-source precursors. Finally, we present surface chemistry of clusters as the gateway to subsequent chemistry and reactivity, and as an integral component of cluster structure and stability. Taken as a whole, we hope to make a compelling case for using clusters as a platform for mechanistic investigation and materials discovery.
Collapse
Affiliation(s)
- Max R. Friedfeld
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer L. Stein
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew Ritchhart
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Kim JH, Yoon SY, Kim KH, Lim HB, Kim HJ, Yang H. Electroluminescence from two I-III-VI quantum dots of A-Ga-S (A=Cu, Ag). OPTICS LETTERS 2018; 43:5287-5290. [PMID: 30382989 DOI: 10.1364/ol.43.005287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Together with III-V InP, chalcopyrite I-III-VI metal chalcogenides particularly with the compositions of A-B-S (A=Cu+, Ag+, B=In3+, Ga3+) are regarded as an emerging non-Cd class for synthesis of visible-emitting colloidal quantum dots (QDs) and the following fabrication of QD-light-emitting diodes (QLEDs). To date, the composition of I-III-VI QDs which were exploited for QLED fabrication remains highly limited, with most devices demonstrated from Cu-In-S-based ones. Herein, we explore the synthesis of two Ga-based I-III-VI QDs of Ag-Ga-S (AGS) and Cu-Ga-S (CGS) QDs and their application to QLED fabrication. Using cyan AGS/ZnS and azure CGS/ZnS core/shell QDs, all-solution-processed, multilayered QLEDs with a hybrid combination of organic hole transport layer and inorganic electron transport layer are fabricated and compared. We observe that CGS QLED by far outperforms in luminance and efficiency its AGS counterpart, which is ascribable to the differences in both electronic band structure and core/shell structure between two comparative QDs.
Collapse
|
48
|
Kumar BG, Sadeghi S, Melikov R, Aria MM, Jalali HB, Ow-Yang CW, Nizamoglu S. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. NANOTECHNOLOGY 2018; 29:345605. [PMID: 29846177 DOI: 10.1088/1361-6528/aac8c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W-1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.
Collapse
|
49
|
Zhang WJ, Pan CY, Cao F, Wang H, Yang X. Bright violet-to-aqua-emitting cadmium-free Ag-doped Zn-Ga-S quantum dots with high stability. Chem Commun (Camb) 2018; 54:4176-4179. [PMID: 29629448 DOI: 10.1039/c8cc01293h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a new series of ultra-stable Cd-free Ag:Zn-Ga-S/ZnS quantum dots (QDs) with an overall short emission wavelength tunable from 370 to 540 nm via a facile one-pot non-injection method. The highest PL quantum yield of the resultant core/shell QDs could be up to 85%, and the exceptional luminescence could be maintained not only at 300 °C but also after phase transfer.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
50
|
Chal P, Shit A, Nandi AK. Optoelectronic Properties of Supramolecular Aggregates of Phenylalanine Conjugated Perylene Bisimide. ChemistrySelect 2018. [DOI: 10.1002/slct.201800363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pousali Chal
- Polymer Science unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata-700032 India
| | - Arnab Shit
- Polymer Science unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata-700032 India
| | - Arun K. Nandi
- Polymer Science unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata-700032 India
| |
Collapse
|