1
|
Zhang J, Villalobos LF, Lee J, Zhong M, Elimelech M. Ionophore-Based Molecular Layer-by-Layer Polyamide Membranes for Facilitated Single-Ion Transport. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359549 DOI: 10.1021/acsami.5c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Single-ion-selective membranes are indispensable for efficient ion separations in environmental, energy, and biomedical technologies. Inspired by biological ion channels, this work harnessed the selective and reversible ion binding features of ionophores to fabricate an ultrathin, ionophore-based K+-selective polyamide membrane through molecular layer-by-layer (m-LbL) polymerization with 18-crown-6-functionalized monomers. Compared with Cs+, Li+, and Mg2+, K+ exhibited the highest binding energy to 18-crown-6, facilitating its transport over the competing cations across the sub-10 nm polyamide film in a binary salt mixture. The need for competitive binding for selective K+ transport was further demonstrated through investigations of ion selectivity at varying concentration ratios between K+ and competing cations. Additionally, we extended the Nernst-Planck equation to describe individual ion flux in a binary system, identifying factors that govern ion transport. Our findings demonstrate the potential of selective single-ion transport enabled by preferential ion binding, showing promise for the development of biomimetic ion-selective polymeric membranes.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Luis Francisco Villalobos
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Junwoo Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Yang F, Yong M, Li Z, Yang Z, Zhang X. Breaking the trade-off between lithium purity and lithium recovery: A comprehensive mathematical modeling based on membrane structure-property-performance relationships. WATER RESEARCH 2025; 281:123678. [PMID: 40280005 DOI: 10.1016/j.watres.2025.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The application of nanofiltration (NF) membranes for resource recovery, particularly lithium (Li) extraction from high magnesium (Mg) brines, is a rapidly growing research area. However, the trade-off between high Li+ purity and recovery remains challenging. In our study, we extend the widely adopted Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE) to analyze membrane structure-property-performance relationships at the process scale. For the first time, we quantify how membrane intrinsic parameters (e.g., pore size, effective thickness, and charge density) affect Li+ purity and recovery under module-scale processes. Under this framework, we demonstrate that electrically neutral and positively charged membranes outperform negatively charged membranes, albeit at the cost of slightly higher required hydraulic pressure. Notably, positively charged membranes with smaller pore size yet high water permeance (40-80 L m-2 h-1 bar-1) are preferred, which could simultaneously achieve excellent Li+ purity (∼98 %) and high Li+ recovery (∼93 %) in the single-pass process, effectively overcoming the purity-recovery trade-off correlation. We further demonstrate that negative Li+ rejection plays a crucial role in overcoming the trade-off correlation by significantly increasing Li+ recovery. Nevertheless, poor system flux distribution is inadvertently observed in the regions where strong negative rejection occurs, highlighting the need for careful consideration of the balance between system stability and lithium extraction performances. Our study identifies critical membrane parameters for achieving optimal lithium extraction performance at the process scale, offering fundamental insights for designing high-performance membranes for resource recovery.
Collapse
Affiliation(s)
- Fengrui Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ming Yong
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhikao Li
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xiwang Zhang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Australia
| |
Collapse
|
3
|
Shaligram S, Shevate R, Paul S, Shaffer DL. Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9716-9727. [PMID: 39876064 DOI: 10.1021/acsami.4c14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with m-phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization. The mLbL process allows precise nanoscale control over polyamide selective layer thickness, network structure, and surface roughness. The resulting controlled film thicknesses enable direct measurements of water and NaCl permeabilities. The permselectivities of contorted polyamide membranes surpass those of commercial desalination membranes and approach the reported polyamide upper bound. Solution-diffusion transport modeling indicates that this high permselectivity may be attributed to enhanced water transport pathways in the contorted polyamides that increase water diffusivity-permeability while maintaining high solute rejection through solubility-selectivity.
Collapse
Affiliation(s)
- Sayali Shaligram
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Rahul Shevate
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Siddhartha Paul
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Devin L Shaffer
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
6
|
Yu J, Marchesi D'Alvise T, Harley I, Krysztofik A, Lieberwirth I, Pula P, Majewski PW, Graczykowski B, Hunger J, Landfester K, Kuan SL, Shi R, Synatschke CV, Weil T. Ion and Molecular Sieving With Ultrathin Polydopamine Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401137. [PMID: 38742799 DOI: 10.1002/adma.202401137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Indexed: 05/16/2024]
Abstract
In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.
Collapse
Affiliation(s)
- Jiyao Yu
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tommaso Marchesi D'Alvise
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Iain Harley
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adam Krysztofik
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Ingo Lieberwirth
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Johannes Hunger
- Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Rachel Shi
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
7
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
8
|
Chen W, Qiu X, Chen Y, Ke J, Ji Y, Chen J. Supramolecular Interaction Modulation in Thermosensitive Composites: Enantiomeric Recognition and Chiral Site Regeneration. Anal Chem 2024; 96:5580-5588. [PMID: 38532617 DOI: 10.1021/acs.analchem.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Herein, a novel strategy was implemented to modulate the supramolecular interaction between enantiomers and chiral recognition sites (CRSs), effectively resolving the issue of CRS saturation. Randomly methylated-β-cyclodextrin (Rm-β-CD) was used as the CRS (host molecule), and polymerized ionic liquids [poly([vbim]TFSI)] were used as the supramolecular modulator (guest molecule), which self-assembled to generate thermosensitive supramolecular host/guest complexes. The enantiomeric binding capacity and enantioselectivity of chiral separation systems centered on supramolecular host-guest complexes are characterized by a high degree of temperature dependence. Poly([vbim]TFSI) bonded to Rm-β-CD at temperatures between 17 °C ± 3 and 50 °C ± 3 °C, and the binding free energy difference (|ΔΔG|) between the (S)- and (R)-enantiomer was 0.55. Conversely, poly([vbim]TFSI detached from Rm-β-CD at temperatures >50 °C ± 3 °C or <17 °C ± 3 °C, and |ΔΔG| between (S)- and (R)-enantiomer was 0.03. The |ΔΔG| value of the (R)-enantiomer can reach 0.86 in two temperature intervals. Therefore, the binding of poly([vbim]TFSI) to Rm-β-CD afforded the favorable separation of four racemic sample mixtures: mandelic acid (e.e.% = 61.3%), ibuprofen (e.e.% = 21.6%), warfarin (e.e.% = 14.9%), and naproxen (e.e% = 18.2%). The detachment of poly([vbim]TFSI) from Rm-β-CD released the enantiomer bound to CRSs. The decomplexation of mandelic acid reached 75.1%.
Collapse
Affiliation(s)
- Wenbei Chen
- China Pharmaceutical University, Nanjing 210009, China
| | - Xin Qiu
- China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Chen
- China Pharmaceutical University, Nanjing 210009, China
| | - Jian Ke
- China Pharmaceutical University, Nanjing 210009, China
| | - Yibing Ji
- China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
9
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
10
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
11
|
Fan D, Miller Naranjo B, Mansi S, Mela P, Lieleg O. Dopamine-Mediated Biopolymer Multilayer Coatings for Modulating Cell Behavior, Lubrication, and Drug Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37986-37996. [PMID: 37491732 DOI: 10.1021/acsami.3c05298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biopolymer coatings on implants mediate the interactions between the synthetic material and its biological environment. Owing to its ease of preparation and the possibility to incorporate other bioactive molecules, layer-by-layer deposition is a method commonly used in the construction of biopolymer multilayers. However, this method typically requires at least two types of oppositely charged biopolymers, thus limiting the range of macromolecular options by excluding uncharged biopolymers. Here, we present a layer-by-layer approach that employs mussel-inspired polydopamine as the adhesive intermediate layer to build biopolymer multilayer coatings without requiring any additional chemical modifications. We select three biopolymers with different charge states─anionic alginate, neutral dextran, and cationic polylysine─and successfully assemble them into mono-, double-, or triple-layers. Our results demonstrate that both the layer number and the polymer type modulate the coating properties. Overall, increasing the number of layers in the coatings leads to reduced cell attachment, lower friction, and higher drug loading capacity but does not alter the surface potential. Moreover, varying the biopolymer type affects the surface potential, macrophage differentiation, lubrication performance, and drug release behavior. This proof-of-concept study offers a straightforward and universal coating method, which may broaden the use of multilayer coatings in biomedical applications.
Collapse
Affiliation(s)
- Di Fan
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Bernardo Miller Naranjo
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Salma Mansi
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Oliver Lieleg
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| |
Collapse
|
12
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
13
|
Guo H, Li F, Shui X, Wang J, Fang C, Zhu L. Ultrathin Polyamide Nanofilms with Controlled Microporosity for Enhanced Solvent Permeation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37479673 DOI: 10.1021/acsami.3c07440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Organic solvent nanofiltration (OSN) technology shows reduced energy consumption by almost 90% with great potential in achieving low-carbon separation applications. Polyamide nanofilms with controlled intrinsic and extrinsic structures (e.g., thickness and porosity) are important for achieving such a goal but are technically challenging. Herein, ultrathin polyamide nanofilms with controlled microporosity and morphology were synthesized via a molecular layer deposition method for OSN. The key is that the polyamide synthesis is controlled in a homogenous organic phase, rather than an interface, not only involving no monomer kinetic diffusion but also broadening the applicability of amine monomers. The particular nonplanar and rigid amine monomers were superbly used to increase microporosity and the nanofilm was linearly controlled at the nanometer scale to decrease thickness. The composite membrane with the polyamide nanofilms as separation layers displayed highly superior performance to current counterparts. The ethanol and methanol permeances were up to 5.5 and 14.6 L m-2 h-1 bar-1, respectively, but the molecular weight cutoff was tailored as low as 300 Da. Such separation performance remained almost unchanged during a long-term operation. This work demonstrates a promising alternative that could synergistically control the physicochemical structures of ultrathin selective layers to fabricate high-performance OSN membranes for efficient separations.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Fupeng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xuerong Shui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jianyu Wang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
14
|
Swain A, Adarsh S, Biswas A, Bose S, Benicewicz BC, Kumar SK, Basu JK. Enhanced efficiency of water desalination in nanostructured thin-film membranes with polymer grafted nanoparticles. NANOSCALE 2023. [PMID: 37366152 DOI: 10.1039/d3nr00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Polyamide composite (PA-TFC) membranes are the state-of-the-art ubiquitous platforms to desalinate water at scale. We have developed a novel, transformative platform where the performance of such membranes is significantly and controllably improved by depositing thin films of polymethylacrylate [PMA] grafted silica nanoparticles (PGNPs) through the venerable Langmuir-Blodgett method. Our key practically important finding is that these constructs can have unprecedented selectivity values (i.e., ∼250-3000 bar-1, >99.0% salt rejection) at reduced feed water pressure (i.e., reduced cost) while maintaining acceptable water permeance A (= 2-5 L m-2 h-1 Bar-1) with as little as 5-7 PGNP layers. We also observe that the transport of solvent and solute are governed by different mechanisms, unlike gas transport, leading to independent control of A and selectivity. Since these membranes can be formulated using simple and low cost self-assembly methods, our work opens a new direction towards development of affordable, scalable water desalination methods.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - S Adarsh
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Ashish Biswas
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore, 560012, Karnataka, India
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, South Carolina, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, 10027, New York, USA
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
15
|
Bai Y, Liu B, Li J, Li M, Yao Z, Dong L, Rao D, Zhang P, Cao X, Villalobos LF, Zhang C, An QF, Elimelech M. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration. SCIENCE ADVANCES 2023; 9:eadg6134. [PMID: 37146143 PMCID: PMC10162667 DOI: 10.1126/sciadv.adg6134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The successful implementation of thin-film composite membranes (TFCM) for challenging solute-solute separations in the pharmaceutical industry requires a fine control over the microstructure (size, distribution, and connectivity of the free-volume elements) and thickness of the selective layer. For example, desalinating antibiotic streams requires highly interconnected free-volume elements of the right size to block antibiotics but allow the passage of salt ions and water. Here, we introduce stevioside, a plant-derived contorted glycoside, as a promising aqueous phase monomer for optimizing the microstructure of TFCM made via interfacial polymerization. The low diffusion rate and moderate reactivity of stevioside, together with its nonplanar and distorted conformation, produced thin selective layers with an ideal microporosity for antibiotic desalination. For example, an optimized 18-nm membrane exhibited an unprecedented combination of high water permeance (81.2 liter m-2 hour-1 bar-1), antibiotic desalination efficiency (NaCl/tetracycline separation factor of 11.4), antifouling performance, and chlorine resistance.
Collapse
Affiliation(s)
- Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Beibei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Jiachen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Zheng Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100124, Beijing, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
17
|
Xie S, Pan C, Yao Y, Yu X, Xu Z, Yuan W, Zhang Y, Guo N, Li X, Mao X, Xiao S, Li J, Guo Y. Ultra-high-efficiency capture of lead ions over acetylenic bond-rich graphdiyne adsorbent in aqueous solution. Proc Natl Acad Sci U S A 2023; 120:e2221002120. [PMID: 37036993 PMCID: PMC10120024 DOI: 10.1073/pnas.2221002120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 μg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 μg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.
Collapse
Affiliation(s)
- Shuanglei Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yuan Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Ze Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Weidong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yi Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Ning Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei430082, China
| |
Collapse
|
18
|
Zhu H, Yuan B, Li Y. Title Preparation and Desalination of Semi-Aromatic Polyamide Reverse Osmosis Membranes (ROMs). Polymers (Basel) 2023; 15:polym15071683. [PMID: 37050299 PMCID: PMC10096747 DOI: 10.3390/polym15071683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Reverse osmosis membrane (ROM) technology has a series of advantages, such as a simple process, no secondary pollution, high efficiency, energy saving, environmental protection, and good separation and purification effects. High-performance semi-aromatic polyamide reverse osmosis membranes (ROMs) were prepared by interfacial polymerization (IP) of novel cyclopentanecarbonyl chloride (CPTC) and m-phenylenediamine (MPD) monomers. The surface morphology, hydrophilicity and charge of the ROMs were characterized by field-emission scanning electron microscopy (SEM), a contact angle tester and a solid-surface zeta potential analyzer. The effects of CPTC concentration, MPD concentration, oil-phase solvent type, IP reaction time and additive concentration on the performance of semi-aromatic polyamide ROMs were studied. SEM morphology characterization showed that the surface of the prepared polyamide ROMs presented a multinodal structure. The performance test showed that when the concentration of MPD in the aqueous phase was 2.5 wt.%, the concentration of sodium dodecylbenzene sulfonate (SDBS) was 0.2%, the residence time in the aqueous phase was 2 min, the concentration of CPTC/cyclohexane in the oil phase was 0.13 wt.%, the IP reaction was 20 s, the NaCl rejection rate of the semi-aromatic polyamide ROM was 98.28% and the flux was 65.38 L/m2·h, showing good desalination performance. Compared with an NF 90 commercial membrane, it has a good anti-BSA pollution ability.
Collapse
|
19
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
20
|
Hu Y, Wang F, Yang Z, Tang CY. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
21
|
Solvent transport model for polyamide nanofilm membranes based on accurate Hansen solubility parameters. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
22
|
He J, Arbaugh T, Nguyen D, Xian W, Hoek E, McCutcheon JR, Li Y. Molecular mechanisms of thickness-dependent water desalination in polyamide reverse-osmosis membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
23
|
Kadhom M. A Review on the Polyamide Thin Film Composite (TFC) Membrane Used for Desalination: Improvement Methods, Current Alternatives, and Challenges. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Xu GR, An ZH, Min-Wang, Ke-Xu, Zhao HL, Liu Q. Polyamide Layer Modulation for PA-TFC Membranes Optimization: Developments, Mechanisms, and Implications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Gao F, Liu H, Zhang Y, Liu D, Xie Z, Peng W, Song Y, Hu R, Chen D, Kang J, Xu R, Cao Y, Xiang M. Polyamide membrane with nanoscale stripes and internal voids for high-performance nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Ma D, Zhang Z, Xiong S, Zhou J, Wang Y. Additive manufacturing of defect-healing polyamide membranes for fast and robust desalination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Xie T, Wang H, Chen K, Li F, Zhao S, Sun H, Yang X, Hou Y, Li P, Niu QJ. High-performance polyethyleneimine based reverse osmosis membrane fabricated via spin-coating technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
Chen D, Gao F, Peng W, Song Y, Hu R, Zheng Z, Kang J, Cao Y, Xiang M. Artificial water channels engineered thin-film nanocomposite membranes for high-efficient application in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Li X, Jiao C, Zhang X, Li X, Song X, Zhang Z, Jiang H. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Stafford CM, Guan X, Qi Y, Zhang Y, Liu X. Tuning the surface functionality of polyamide films via termination reaction in molecular layer-by-layer deposition. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Cheng FY, Zhang X, Lin YF, Wu LK, Xu ZL, Taymazov D. Mutual-assisted structure of sodium alginate-polyamide membrane for high-efficient dehydration of ethanol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
β-Cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Jeong S, Yuan G, Satija SK, Jeon N, Lee E, Kim Y, Choi S, Koo J. Polyamide thin films with nanochannel networks synthesized at the liquid–gas interface for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
He J, Yang J, McCutcheon JR, Li Y. Molecular insights into the structure-property relationships of 3D printed polyamide reverse-osmosis membrane for desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Hafeez A, Karim ZA, Ismail AF, Jamil A, Mohammad Said KA, Ali A. Tuneable molecular selective boron nitride nanosheet ultrafiltration lamellar membrane for dye exclusion to remediate the environment. CHEMOSPHERE 2022; 303:135066. [PMID: 35623426 DOI: 10.1016/j.chemosphere.2022.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Smart tuning of the membrane's porous nanostructures offers an effective strategy for creating state-of-the-art, high-performance separation membranes. In aqueous solution, polyethylene glycol (PEG) grafted boron nitride PEGX-g-(f-BN) nanosheets exhibit high permeance and excellent molecular sieving. The molecular selectivity of the PEGX-g-(f-BN) lamellar membrane is controlled by the nanopores, which can be tuned by modulating the interplanar spacing between the nanosheets. Herein, the interplanar spacing of h-BN nanosheets is enhanced in the range of 0.334-0.348 nm through grafting different molecular weight PEG. Moreover, the grafted PEG instigates a synergistic effect on the nanosheets in two ways. Firstly, through PEG intercalation, the interlayer spacing of the (002) plane could be adjusted without significant deterioration to the hexagonal crystallographic structure. Secondly, intercalated PEG in BN nanosheets reflects in terms of improved h-BN wettability through transformation to hydrophilic surface characteristics (small contact angle of 36-39°). The fabricated PEGX-g-(f-BN) lamellar membrane acquires stable and interconnected nanopores and nanochannels with an average pore diameter of 1.36-2.19 nm. Permeance-exclusion trade-off manipulation through methodical approaches of PEGX-g-(f-BN) decoration thickness and interplanar spacing is exploited to build a better understanding of water transport behavior. PEGX-g-(f-BN) lamellar membranes show unprecedented permeance of ∼1253 L m-2 h-1 bar-1 with a steady methyl blue (MB) exclusion of 98.9% even in different pH conditions.
Collapse
Affiliation(s)
- Asif Hafeez
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia; Department of Materials, National Textile University, Sheikhupura Road, Faisalabad, 37610, Pakistan
| | - Zulhairun Abdul Karim
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia; School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia; School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia.
| | - Asif Jamil
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology (New Campus), 54890, Lahore, Pakistan
| | - Khairul Anwar Mohammad Said
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia; Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Barnett A, Karnes JJ, Lu J, Major DR, Oakdale JS, Grew KN, McClure JP, Molinero V. Exponential Water Uptake in Ionomer Membranes Results from Polymer Plasticization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam Barnett
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - John J. Karnes
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jibao Lu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Dale R. Major
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - James S. Oakdale
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Kyle N. Grew
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Joshua P. McClure
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
38
|
Nain A, Sangili A, Hu SR, Chen CH, Chen YL, Chang HT. Recent progress in nanomaterial-functionalized membranes for removal of pollutants. iScience 2022; 25:104616. [PMID: 35789839 PMCID: PMC9250028 DOI: 10.1016/j.isci.2022.104616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane technology has gained tremendous attention for removing pollutants from wastewater, mainly due to their affordable capital cost, miniature equipment size, low energy consumption, and high efficiency even for the pollutants present in lower concentrations. In this paper, we review the literature to summarize the progress of nanomaterial-modified membranes for wastewater treatment applications. Introduction of nanomaterial in the polymeric matrix influences membrane properties such as surface roughness, hydrophobicity, porosity, and fouling resistance. This review also covers the importance of functionalization strategies to prepare thin-film nanocomposite hybrid membranes and their effect on eliminating pollutants. Systematic discussion regarding the impact of the nanomaterials incorporated within membrane, toward the recovery of various pollutants such as metal ions, organic compounds, dyes, and microbes. Successful examples are provided to show the potential of nanomaterial-functionalized membranes for regeneration of wastewater. In the end, future prospects are discussed to develop nanomaterial-based membrane technology.
Collapse
Affiliation(s)
- Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shun-Ruei Hu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
39
|
Zhou Z, Chen IC, Rehman LM, Aboalsaud AM, Shinde DB, Cao L, Zhang Y, Lai Z. Conjugated microporous polymer membranes for light-gated ion transport. SCIENCE ADVANCES 2022; 8:eabo2929. [PMID: 35714184 PMCID: PMC9205585 DOI: 10.1126/sciadv.abo2929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Inspired by the light-gated ion channels in cell membranes that play important roles in many biological activities, herein, we developed an artificial light-gated ion channel membrane out of conjugated microporous polymers. Through bottom-up design of the monomer molecular structure and by the electropolymerization method, the membrane pore size and thickness were precisely controlled on the molecular level. The obtained membrane exhibited uniform pore size and highly sensitive light-switchable response. The photoisomerization of the polymer chain resulted in a reversible "on and off" light control over the pore size and subsequently led to light-gated ion transport across the membrane for a series of ions including hydrogen, potassium, sodium, lithium, calcium, magnesium, and aluminum ions.
Collapse
|
40
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
41
|
Luo H, Bai X, Liu H, Qiu X, Chen J, Ji Y. β-Cyclodextrin covalent organic framework modified-cellulose acetate membranes for enantioseparation of chiral drugs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Qian X, Ostwal M, Asatekin A, Geise GM, Smith ZP, Phillip WA, Lively RP, McCutcheon JR. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Li Y, Wang S, Li H, Kang G, Sun Y, Yu H, Jin Y, Cao Y. Preparation of highly selective nanofiltration membranes by moderately increasing pore size and optimizing microstructure of polyamide layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Manna P, Bernstein R, Kasher R. Stepwise synthesis of polyacrylonitrile-supported oligoamide membranes with selective dye–salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
|
46
|
Hasler R, Reiner-Rozman C, Fossati S, Aspermair P, Dostalek J, Lee S, Ibáñez M, Bintinger J, Knoll W. Field-Effect Transistor with a Plasmonic Fiber Optic Gate Electrode as a Multivariable Biosensor Device. ACS Sens 2022; 7:504-512. [PMID: 35134289 DOI: 10.1021/acssensors.1c02313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel multivariable system, combining a transistor with fiber optic-based surface plasmon resonance spectroscopy with the gate electrode simultaneously acting as the fiber optic sensor surface, is reported. The dual-mode sensor allows for discrimination of mass and charge contributions for binding assays on the same sensor surface. Furthermore, we optimize the sensor geometry by investigating the influence of the fiber area to transistor channel area ratio and distance. We show that larger fiber optic tip diameters are favorable for electronic and optical signals and demonstrate the reversibility of plasmon resonance wavelength shifts after electric field application. As a proof of principle, a layer-by-layer assembly of polyelectrolytes is performed to benchmark the system against multivariable sensing platforms with planar surface plasmon resonance configurations. Furthermore, the biosensing performance is assessed using a thrombin binding assay with surface-immobilized aptamers as receptors, allowing for the detection of medically relevant thrombin concentrations.
Collapse
Affiliation(s)
- Roger Hasler
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ciril Reiner-Rozman
- Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Stefan Fossati
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Patrik Aspermair
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Jakub Dostalek
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Seungho Lee
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Ibáñez
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Johannes Bintinger
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
- Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
- Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| |
Collapse
|
47
|
Electrosprayed polyamide nanofiltration membrane with uniform and tunable pores for sub-nm precision molecule separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Highly Selective and pH-Stable Reverse Osmosis Membranes Prepared via Layered Interfacial Polymerization. MEMBRANES 2022; 12:membranes12020156. [PMID: 35207077 PMCID: PMC8874617 DOI: 10.3390/membranes12020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/22/2023]
Abstract
Ultrathin and smooth polyamide (PA) reverse osmosis (RO) membranes have attracted significant interest due to their potential advantages of high permeance and low fouling propensity. Although a layered interfacial polymerization (LIP) technique aided by the insertion of a polyelectrolyte interlayer has proven effective in fabricating ultrathin and uniform membranes, the RO performance and pH stability of the fabricated LIP membrane remain inadequate. In this study, a poly(piperazineamide) (PIPA) layer prepared via interfacial polymerization (IP) was employed as an interlayer to overcome the limitations of the prototype LIP method. Similar to the control polyelectrolyte-interlayered LIP membrane, the PIPA-interlayered LIP (pLIP) membrane had a much thinner (~20 nm) and smoother selective layer than the membrane fabricated via conventional IP due to the highly surface-confined and uniform LIP reaction. The pLIP membrane also exhibited RO performance exceeding that of the control LIP and conventional IP-assembled membranes, by enabling denser monomer deposition and a more confined interfacial reaction. Importantly, the chemically crosslinked PIPA interlayer endowed the pLIP membrane with higher pH stability than the control polyelectrolyte interlayer. The proposed strategy enables the fabrication of high-performance and pH-stable PA membranes using hydrophilic supports, which can be applied to other separation processes, including osmosis-driven separation and organic solvent filtration.
Collapse
|
49
|
Shen L, Cheng R, Yi M, Hung WS, Japip S, Tian L, Zhang X, Jiang S, Li S, Wang Y. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nat Commun 2022; 13:500. [PMID: 35079023 PMCID: PMC8789816 DOI: 10.1038/s41467-022-28183-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/04/2022] [Indexed: 01/29/2023] Open
Abstract
Thin-film composite membranes formed by conventional interfacial polymerization generally suffer from the depth heterogeneity of the polyamide layer, i.e., nonuniformly distributed free volume pores, leading to the inefficient permselectivity. Here, we demonstrate a facile and versatile approach to tune the nanoscale homogeneity of polyamide-based thin-film composite membranes via inorganic salt-mediated interfacial polymerization process. Molecular dynamics simulations and various characterization techniques elucidate in detail the underlying molecular mechanism by which the salt addition confines and regulates the diffusion of amine monomers to the water-oil interface and thus tunes the nanoscale homogeneity of the polyamide layer. The resulting thin-film composite membranes with thin, smooth, dense, and structurally homogeneous polyamide layers demonstrate a permeance increment of ~20-435% and/or solute rejection enhancement of ~10-170% as well as improved antifouling property for efficient reverse/forward osmosis and nanofiltration separations. This work sheds light on the tunability of the polyamide layer homogeneity via salt-regulated interfacial polymerization process.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruihuan Cheng
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- R&D Centre for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Susilo Japip
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Lian Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shudong Jiang
- College of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Song Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
50
|
Ma H, Luo D, Zhao Q, Liu R, Zhang Z, Hou X, Sun X, Wang Y. Crown ether and crown ether/K+ complex assisted DOSY NMR: A versatile tool for positional isomers identification in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|