1
|
Ji X, Wang T, Fu Q, Liu D, Wu Z, Zhang M, Woo HY, Liu Y. Deciphering the Effects of Molecular Dipole Moments on the Photovoltaic Performance of Organic Solar Cells. Macromol Rapid Commun 2023; 44:e2300213. [PMID: 37230735 DOI: 10.1002/marc.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Indexed: 05/27/2023]
Abstract
The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.
Collapse
Affiliation(s)
- Xiaofei Ji
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210, China
| | - Ting Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Shaanxi Coal Chemical Industry Technology Research Institute Co. LTD, Xi'an, 710076, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dongxue Liu
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mingtao Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Du J, Hu K, Zhu C, Zhang J, Zhang Z, Wei Z, Meng L, Li Y. High-Performance Polymer Acceptor Synthesized by an Asymmetric Copolymerization Strategy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaqi Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Hu
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhanjun Zhang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Chong K, Xu X, Meng H, Xue J, Yu L, Ma W, Peng Q. Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109516. [PMID: 35080061 DOI: 10.1002/adma.202109516] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Improving charge extraction and suppressing charge recombination are critically important to minimize the loss of absorbed photons and improve the device performance of polymer solar cells (PSCs). In this work, highly efficient PSCs are demonstrated by progressively improving the charge extraction and suppressing the charge recombination through the combination of side-chain engineering of new nonfullerene acceptors (NFAs), adopting ternary blends, and introducing volatilizable solid additives. The 2D side chains on BTP-Th induce a certain steric hindrance for molecular packing and phase separation, which is mitigated by fluorination of side chains on BTP-FTh. Moreover, by introducing two highly crystalline molecules as the second acceptor and volatilizable solid additive, respectively, into the BTP-FTh-based host blend, the molecular crystallinity is significantly improved and the blend morphology is finely optimized. As expected, enhanced charge extraction and suppressed charge recombination are progressively realized, contributing to the largely improved fill factor (FF) of the resultant devices. Accompanied by the enhanced open-circuit voltage (Voc ) and short-circuit current density (Jsc ), a record high power conversion efficiency (PCE) of 19.05% is realized finally.
Collapse
Affiliation(s)
- Kaien Chong
- College of Chemistry, Key Laboratory of Green Chemistry and Technology of the Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huifeng Meng
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Liyang Yu
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qiang Peng
- College of Chemistry, Key Laboratory of Green Chemistry and Technology of the Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Zhang L, Zhu X, Deng D, Wang Z, Zhang Z, Li Y, Zhang J, Lv K, Liu L, Zhang X, Zhou H, Ade H, Wei Z. High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106316. [PMID: 34773418 DOI: 10.1002/adma.202106316] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In all-small-molecule organic solar cells (ASM-OSCs), a high short-circuit current (Jsc ) usually needs a small phase separation, while a high fill factor (FF) is generally realized in a highly ordered packing system. However, small domain and ordered packing always conflicted each other in ASM-OSCs, leading to a mutually restricted Jsc and FF. In this study, alleviation of the previous dilemma by the strategy of obtaining simultaneous good miscibility and ordered packing through modulating homo- and heteromolecular interactions is proposed. By moving the alkyl-thiolation side chains from the para- to the meta-position in the small-molecule donor, the surface tension and molecular planarity are synchronously enhanced, resulting in compatible properties of good miscibility with acceptor BTP-eC9 and strong self-assembly ability. As a result, an optimized morphology with multi-length-scale domains and highly ordered packing is realized. The device exhibits a long carrier lifetime (39.8 μs) and fast charge collection (15.5 ns). A record efficiency of 16.2% with a high FF of 75.6% and a Jsc of 25.4 mA cm-2 in the ASM-OSCs is obtained. These results demonstrate that the strategy of simultaneously obtaining good miscibility with high crystallinity could be an efficient photovoltaic material design principle for high-performance ASM-OSCs.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen Wang
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Ziqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuning Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
5
|
Wu S, Li Z, Zhang J, Wu X, Deng X, Liu Y, Zhou J, Zhi C, Yu X, Choy WCH, Zhu Z, Jen AKY. Low-Bandgap Organic Bulk-Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105539. [PMID: 34601764 DOI: 10.1002/adma.202105539] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Lead halide perovskite and organic solar cells (PSCs and OSCs) are considered as the prime candidates currently for clean energy applications due to their solution and low-temperature processibility. Nevertheless, the substantial photon loss in near-infrared (NIR) region and relatively large photovoltage deficit need to be improved to enable their uses in high-performance solar cells. To mitigate these disadvantages, low-bandgap organic bulk-heterojunction (BHJ) layer into inverted PSCs to construct facile hybrid solar cells (HSCs) is integrated. By optimizing the BHJ components, an excellent power conversion efficiency (PCE) of 23.80%, with a decent open-circuit voltage (Voc ) of 1.146 V and extended photoresponse over 950 nm for rigid HSCs is achieved. The resultant devices also exhibit superior long-term (over 1000 h) ambient- and photostability compared to those from single-component PSCs and OSCs. More importantly, a champion PCE of 21.73% and excellent mechanical durability can also be achieved in flexible HSCs, which is the highest efficiency reported for flexible solar cells to date. Taking advantage of these impressive device performances, flexible HSCs into a power source for wearable sensors to demonstrate real-time temperature monitoring are successfully integrated.
Collapse
Affiliation(s)
- Shengfan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zhen Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jie Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiang Deng
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Shi K, Qiu B, Zhu C, Yao J, Xia X, Zhang J, Meng L, Huang S, Lu X, Wan Y, Zhang ZG, Li Y. Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54237-54245. [PMID: 34726374 DOI: 10.1021/acsami.1c15377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unraveling the relationship between nanoscale morphology of active layers and chemical structures of organic semiconductor photovoltaic materials is crucially important for further advancing the development of all-small-molecule organic solar cells (SM-OSCs). Here, in order to delve into the effect of flexible side chains of small molecule donors on the photovoltaic properties of SM-OSCs, we synthesized two new small molecule donors substituted by different flexible alkyl chains (iso-octyl chains for SM1-EH and n-octyl chains for SM1-Oct). As a result, the two small molecules present different absorption properties, energy levels, and stacking characteristics. When blending with Y6 as an acceptor, the SM1-Oct-based SM-OSC demonstrated a higher PCE value of 11.73%, while the SM1-EH-based device presents a relatively poorer PCE value of 8.42%. In addition, the morphology analysis demonstrated that, compared with the SM1-EH:Y6 blend, the SM1-Oct:Y6 blend film displayed better molecular stacking properties with stronger multilevel diffraction and preferable phase separation, resulting in the higher hole mobility, more efficient charge separation efficiency, and better device performance. These results underline that reasonably adjusting the flexible alkyl chains of small molecule donors can be an effective approach to further advance the development of the SM-OSCs field.
Collapse
Affiliation(s)
- Keli Shi
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Beibei Qiu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yao
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shihua Huang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhi-Guo Zhang
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Naphthalocyanine-Based NIR Organic Photodiode: Understanding the Role of Different Types of Fullerenes. MICROMACHINES 2021; 12:mi12111383. [PMID: 34832795 PMCID: PMC8623650 DOI: 10.3390/mi12111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
In this work, we presented experimental observation on solution-processed bulk heterojunction organic photodiode using vanadyl 2,11,20,29-tetra tert-butyl 2,3 naphthalocyanine (VTTBNc) as a p-type material. VTTBNc is blended with two different acceptors, which are PC61BM and PC71BM, to offer further understanding in evaluating the performance in organic photodiode (OPD). The blend film of VTTBNc:PC71BM with a volumetric ratio of 1:1 exhibits optimized performance in the VTTBNc blend structure with 2.31 × 109 Jones detectivity and 26.11 mA/W responsivity at a −1 V bias. The response and recovery time of VTTBNc:PC71BM were recorded as 241 ms and 310 ms, respectively. The light absorption measurement demonstrated that VTTBNc could extend the light absorption to the near-infrared (NIR) region. The detail of the enhancement of the performance by adding VTTBNc to the blend was further explained in the discussion section.
Collapse
|
8
|
You H, Lee S, Kim D, Kang H, Lim C, Kim FS, Kim BJ. Effects of the Selective Alkoxy Side Chain Position in Quinoxaline-Based Polymer Acceptors on the Performance of All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47817-47825. [PMID: 34590813 DOI: 10.1021/acsami.1c12288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effects of the position of alkoxy side chains in quinoxaline (Qx)-based polymer acceptors (PAs) on the characteristics of materials and the device parameters of all-polymer solar cells (all-PSCs) are investigated. The alkoxy side chains are selectively located at the meta, para, and both positions in pendant benzenes of Qx units, constructing PAs denoted as P(QxCN-T2)-m, P(QxCN-T2)-p, and P(QxCN-T2), respectively. Among them, P(QxCN-T2)-m exhibits the deepest energy levels owing to the enhanced electron-withdrawing effect of meta-positioned alkoxy chains, which is in contrast to P(QxCN-T2)-p where para-positioned alkoxy chains have an electron-donating property. In addition, the meta-positioned alkoxy chains induce good electron-conducting pathways, while the para-positioned ones significantly interrupt crystallization and intermolecular interactions between the conjugated backbones. Thus, when the PAs are applied to all-PSCs, a power conversion efficiency (PCE) of 5.07% is attained in the device using P(QxCN-T2)-m with efficient exciton dissociation and good electron-transporting ability. On the contrary, the P(QxCN-T2)-p-based counterpart has a PCE of only 1.62%. These results demonstrate that introducing alkoxy side chains at a proper location in the Qx-based PAs is crucial for their application to all-PSCs.
Collapse
Affiliation(s)
- Hoseon You
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Donguk Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chulhee Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
You H, Kang H, Kim D, Park JS, Lee JW, Lee S, Kim FS, Kim BJ. Cyano-Functionalized Quinoxaline-Based Polymer Acceptors for All-Polymer Solar Cells and Organic Transistors. CHEMSUSCHEM 2021; 14:3520-3527. [PMID: 33655716 DOI: 10.1002/cssc.202100080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Quinoxaline (Qx) derivatives are promising building units for efficient photovoltaic polymers owing to their strong light absorption and high charge-transport abilities, but they have been used exclusively in the construction of polymer donors. Herein, for the first time, Qx-based polymer acceptors (PA s) were developed by introducing electron-withdrawing cyano (CN) groups into the Qx moiety (QxCN). A series of QxCN-based PA s, P(QxCN-T2), P(QxCN-TVT), and P(QxCN-T3), were synthesized by copolymerizing the QxCN unit with bithiophene, (E)-1,2-di(thiophene-2-yl)ethene, and terthiophene, respectively. All of the PA s exhibited unipolar n-type characteristics with organic field-effect transistor (OFET) mobilities of around 10-2 cm2 V-1 s-1 . In space-charge-limited current devices, P(QxCN-T2) and P(QxCN-TVT) exhibited electron mobilities greater than 1.0×10-4 cm2 V-1 s-1 , due to the well-ordered structure with tight π-π stacking. When the PA s were applied in all-polymer solar cells (all-PSCs), the highest performance of 5.32 % was achieved in the P(QxCN-T2)-based device. These results demonstrate the significant potential of Qx-based PA s for high-performance all-PSCs and OFETs.
Collapse
Affiliation(s)
- Hoseon You
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donguk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul, 06974, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat Commun 2021; 12:5264. [PMID: 34489439 PMCID: PMC8421507 DOI: 10.1038/s41467-021-25638-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
All-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA’D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A’-core and PN-Se with benzotriazole A’-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10~20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%. Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the commercialisation. Here, the authors investigate the origin of instability of NFA solar cells, and propose some strategies to mitigate this issue.
Collapse
|
11
|
Li S, Sun Y, Zhou B, Fu Q, Meng L, Yang Y, Wang J, Yao Z, Wan X, Chen Y. Concurrently Improved Jsc, Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40766-40777. [PMID: 34424658 DOI: 10.1021/acsami.1c13035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A ternary strategy is recognized as a promising approach that enjoys both the simplicity of fabrication conditions and potential to improve performance in organic solar cells. Herein, a C-shaped narrow band gap non-fullerene acceptor GL1 with a C2v symmetry based on a new core was designed and synthesized. A power conversion efficiency (PCE) of 11.43% was achieved by employing PBDB-T:GL1 as an active layer to fabricate photovoltaic devices. To further promote photovoltaic performance, following a similar-structure prescreen principle, a middle band gap acceptor F-2Cl with the same backbone shape, side-chain distribution, and dipole moment orientation as GL1 was introduced as the guest acceptor into the active layer. Thus, benefiting from the collaboration of complementary absorption, cascade energy levels, and well-modified microstructure of the active layer, a 13.17% PCE was obtained with concurrently elevated Jsc, fill factor, and stability for the optimized ternary device. This work presents a successful example of prescreening the third component to simplify the workload for a high-performance ternary device.
Collapse
Affiliation(s)
- Shitong Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanna Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bailin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Fu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lingxian Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, P. R. China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, P. R. China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Li Y, Qian Q, Ling S, Fan T, Zhang C, Zhu X, Zhang Q, Zhang Y, Zhang J, Yu S, Yao J, Ma C. A benzothiadiazole-containing π-conjugated small molecule as promising element for nonvolatile multilevel resistive memory device. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Seo S, Kim J, Kang H, Lee JW, Lee S, Kim GU, Kim BJ. Polymer Donors with Temperature-Insensitive, Strong Aggregation Properties Enabling Additive-Free, Processing Temperature-Tolerant High-Performance All-Polymer Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinseck Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Kim HI, Baek SW, Cheon HJ, Ryu SU, Lee S, Choi MJ, Choi K, Biondi M, Hoogland S, de Arquer FPG, Kwon SK, Kim YH, Park T, Sargent EH. A Tuned Alternating D-A Copolymer Hole-Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004985. [PMID: 33118229 DOI: 10.1002/adma.202004985] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The need for optoelectronic and chemical compatibility between the layers in colloidal quantum dot (CQD) photovoltaic devices remains a bottleneck in further increasing performance. Conjugated polymers are promising candidates as new hole-transport layer (HTL) materials in CQD solar cells (CQD-SCs) owing to the highly tunable optoelectronic properties and compatible chemistries. A diketopyrrolopyrrole-based polymer with benzothiadiazole derivatives (PD2FCT-29DPP) as an HTL in these devices is reported. The energy level, molecular orientation, and hole mobility of this HTL are manipulated through molecular engineering. By levering the polymer's optical absorption spectrum complementary to that of the CQD active layer, EQE across the visible and near-infrared regions is maximized. As a result, a PD2FCT-29DPP-based device exhibits a fill factor of 70% and approximately 35% efficiency enhancement compared to a PTB7-based device.
Collapse
Affiliation(s)
- Hong Il Kim
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Se-Woong Baek
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Hyung Jin Cheon
- Department of Chemistry, Gyeongsang National University and Research Institute of Nature Science 501, Jinju-daero, Jinju, Gyeongnam, 52828, Korea
| | - Seung Un Ryu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Kyoungwon Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - F P García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI Gyeongsang National University 501, Jinju-daero, Jinju, Gyeongnam, 52828, Korea
| | - Yun-Hi Kim
- Department of Chemistry, Gyeongsang National University and Research Institute of Nature Science 501, Jinju-daero, Jinju, Gyeongnam, 52828, Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
15
|
Wang K, Dong S, Chen X, Zhou P, Zhang K, Huang J, Wang M. Improving the all-polymer solar cell performance by adding a narrow bandgap polymer as the second donor. RSC Adv 2020; 10:38344-38350. [PMID: 35517516 PMCID: PMC9057259 DOI: 10.1039/d0ra06143c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Ternary all-polymer solar cells are fabricated using an N2200 acceptor and two donor polymers (PF2 and PM2) with complementary absorption. The major donor PF2 is a relatively wide bandgap polymer that contributes the most photon absorption in the UV-vis region while the second donor PM2 improves the light harvesting due to its strong absorption in the near-IR region. By carefully tuning the ratio of two donor polymers, the best ratio of 9 : 1 : 5 (PF2 : PM2 : N2200) is achieved and shows a PCE of 6.90%, which is better than two binary devices. This work demonstrates an effective strategy of utilizing a narrow bandgap donor polymer as the second donor to improve the performance of all-polymer solar cells.
Collapse
Affiliation(s)
- Kai Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Sheng Dong
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Xudong Chen
- Shanghai International College of Design & Innovation, Tongji University Shanghai 200080 China
| | - Ping Zhou
- Shanghai International College of Design & Innovation, Tongji University Shanghai 200080 China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Jun Huang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Ming Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
16
|
Chawanpunyawat T, Funchien P, Wongkaew P, Henjongchom N, Ariyarit A, Ittisanronnachai S, Namuangruk S, Cheacharoen R, Sudyoadsuk T, Goubard F, Promarak V. A Ladder-like Dopant-free Hole-Transporting Polymer for Hysteresis-less High-Efficiency Perovskite Solar Cells with High Ambient Stability. CHEMSUSCHEM 2020; 13:5058-5066. [PMID: 32677195 DOI: 10.1002/cssc.202001350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Perovskite solar cells (PSCs) have received high attention in the past few years due to their terrific photovoltaic performance and potentially low production cost. However, the use of hole transport materials (HTMs) with hygroscopic dopants, which cause the inevitable instability of device performance, has hampered commercialization. Herein, a dopant-free polymeric HTM with functional aromatic rings was used to optimize the HTM/perovskite interface and employed in a planar n-i-p configuration. Poly(1,4-(2,5-bis((2-butyloctyloxy)phenylene)-2,7-(5,5,10,10-tetrakis(4-hexylphenyl)-5,10-dihydro-s-indaceno[2,1-b:6,5-b']dithiophene)) (IDTB) co-polymer constructed with indaceno[1,2-b:5,6-b']dithiophene and bis(alkyloxy)benzene units adopts an S⋅⋅⋅O intramolecular bond linked ladder-like planar conjugated polymer backbone. Without any dopant, the hole mobility of IDTB is in the same order of magnitude as a doped 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD). Also, the hydrophobic nature of IDTB facilitated the long-term stability of the perovskite underneath. The unencapsulated PSC devices made of IDTB-based HTM achieved a power conversion efficiency of 19.38 % with a high moisture stability, retaining above 80 % of initial power conversion efficiency at 65 % relative humidity for more than 10 days. The superior passivation effect to perovskite surface made a hysteresis of 0.44 % was almost the least reported for regular planar undoped polymer HTM PSCs.
Collapse
Affiliation(s)
- Thanyarat Chawanpunyawat
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
| | - Patteera Funchien
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
| | - Praweena Wongkaew
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Nakorn Henjongchom
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
| | - Atthaporn Ariyarit
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
| | - Somlak Ittisanronnachai
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand
| | - Rongrong Cheacharoen
- Metallurgy and Materials Science Research Institute, Chulalongkorn University Pathumwan, Bangkok, 10330, Thailand
| | - Taweesak Sudyoadsuk
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
| | - Fabrice Goubard
- Laboratory of Physicochemistry of Polymers and Interfaces, Université de Cergy-Pontoise, Cergy-Pontoise Cedex, 95000, France
| | - Vinich Promarak
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan, Rayong, 21210, Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
17
|
Wang J, Yao N, Zhang D, Zheng Z, Zhou H, Zhang F, Zhang Y. Fast Field-Insensitive Charge Extraction Enables High Fill Factors in Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38460-38469. [PMID: 32805970 DOI: 10.1021/acsami.0c09123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fill factor (FF) is a determining parameter for the power conversion efficiency (PCE) of organic solar cells (OSC). So far, nonfullerene (NF) OSCs with state-of-the-art PCEs exhibit FFs <0.8, lower than the values of Si or perovskite solar cells. The FFs directly display the dependence of photocurrent on bias, meaning that the competition between charge extraction and recombination is modulated by internal electric potential (Vin). Here, we report a study to understand key parameters/properties affecting the device FF based on seven groups of NF-OSCs consisting of widely used PBDBT-2F or PTB7-Th donors and representative NF-acceptors with FFs ranging from 0.60 to 0.78 and PCEs from 10.27 to 16.09%. We used field-dependent transient photocurrent measurements to reveal that fast and field-insensitive charge extraction at low Vin is an essential prerequisite for obtaining high FFs (0.75-0.8), which is enabled by balanced charge transport in steady and reduced bimolecular charge recombination in high purity phases. With bias-dependent quantum efficiency analysis, we further show that the recombination loss at low Vin in the devices with low FFs tends to be more significant involving excitons generated in the donor phase of blends. Our results provide relevance for how to improve the FF toward the boost of photovoltaic performance in NF-OSCs.
Collapse
Affiliation(s)
- Jianqiu Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
- Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Nannan Yao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Dongyang Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| | - Zhong Zheng
- Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Huiqiong Zhou
- Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Fengling Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Yuan Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| |
Collapse
|
18
|
Deng M, Xu X, Lee YW, Ericsson LKE, Moons E, Woo HY, Li Y, Yu L, Peng Q. Fine regulation of crystallisation tendency to optimize the BHJ nanostructure and performance of polymer solar cells. NANOSCALE 2020; 12:12928-12941. [PMID: 32525186 DOI: 10.1039/d0nr00698j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Optimizing the nanostructure of the active layer of polymer solar cells (PSCs) is one of the main challenges to achieve high device performances. The phase separation of the donor polymer and molecular acceptor within the bulk heterojunction (BHJ) layer is often driven by the crystallisation of the acceptor molecules. Hence, a suitable crystallisation tendency of the chosen acceptor is ultimately important. In this work, we identified melting temperature as an indicator for the crystallisation tendency and introduced extended fused-aromatic rings to the end groups of the nonfullerene acceptor molecule to enhance the intermolecular binding energy as well as its crystallisation tendency. The crystallinity, crystal regularity and average crystal size were significantly increased for those molecules with larger fused end groups. The devices containing molecule IDTTC with two fused thiophene rings, which displayed intermediate crystallisation tendency, were found to possess an optimized phase separation scale, balanced hole/electron mobility and highest device performances with the fill factor as high as 73.2% and a power conversion efficiency of 13.49%. With the above observations, we established a new route and paradigm to adjust the crystallisation tendency and BHJ nanostructure of nonfullerene acceptor molecules, thus enhancing the device performances through molecular engineering.
Collapse
Affiliation(s)
- Min Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ding Y, Zhang X, Feng H, Ke X, Meng L, Sun Y, Guo Z, Cai Y, Jiao C, Wan X, Li C, Zheng N, Xie Z, Chen Y. Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27425-27432. [PMID: 32466636 DOI: 10.1021/acsami.0c05331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adding an additive is one of the effective strategies to fine-tune active layer morphology and improve performance of organic solar cells. In this work, a binary additive 1,8-diiodooctane (DIO) and 2,6-dimethoxynaphthalene (DMON) to optimize the morphology of PBDB-T:TTC8-O1-4F-based devices is reported. With the binary additive, a power conversion efficiency (PCE) of 13.22% was achieved, which is higher than those of devices using DIO (12.05%) or DMON (11.19%) individually. Comparison studies demonstrate that DIO can induce the acceptor TTC8-O1-4F to form ordered packing, while DMON can inhibit excessive aggregation of the donor and acceptor. With the synergistic effect of these two additives, the PBDB-T:TTC8-O1-4F blend film with DIO and DMON exhibits a suitable phase separation and crystallite size, leading to a high short-circuit current density (Jsc) of 23.04 mA·cm-2 and a fill factor of 0.703 and thus improved PCE.
Collapse
Affiliation(s)
- Yunqian Ding
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xin Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanran Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Ke
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lingxian Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanna Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziqi Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cancan Jiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South, China University of Technology, Guangzhou 510640, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South, China University of Technology, Guangzhou 510640, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Wang X, Han J, Jiang H, Liu Z, Li Y, Yang C, Yu D, Bao X, Yang R. Regulation of Molecular Packing and Blend Morphology by Finely Tuning Molecular Conformation for High-Performance Nonfullerene Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44501-44512. [PMID: 31674175 DOI: 10.1021/acsami.9b14981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The asymmetric thienobenzodithiophene (TBD) structure is first systematically compared with the benzo[1,2-b:4,5-b']dithiophene (BDT) and dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (DTBDT) units in donor-acceptor (D-A) copolymers and applied as the central core in small molecule acceptors (SMAs). Specific polymers including PBDT-BZ, PTBD-BZ, and PDTBDT-BZ with different macromolecular conformations are synthesized and then matched with four elaborately designed acceptor-donor-acceptor (A-D-A) SMAs with structures comparable to their donor counterparts. The resulting polymer solar cell performance trends are dramatically different from each other and highly material-dependent, and the active layer morphology is largely governed by polymer conformation. Because of its more linear backbone, the PTBD-BZ film has higher crystallinity and more ordered and denser π-π stacking than those of the PBDT-BZ and PDTBDT-BZ films. Thus, PTBD-BZ shows excellent compatibility with and strong independence on the SMAs with varied structures, and PTBD-BZ-based cells deliver high power conversion efficiency (PCE) of 10-12.5%, whereas low PCE is obtained by cells based on PDTBDT-BZ because of its zigzag conformation. Overall, this study reveals control of molecular conformation as a useful approach to modulate the photovoltaic properties of conjugated polymers.
Collapse
Affiliation(s)
- Xunchang Wang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , Beijing , China
| | - Jianhua Han
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
| | - Huanxiang Jiang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , Beijing , China
| | - Zhilin Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
| | - Yonghai Li
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201204 , Jiangsu , China
| | - Donghong Yu
- Department of Chemistry and Bioscience , Aalborg University , Aalborg East DK-9220 , North Jutland Region , Denmark
| | - Xichang Bao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , Shandong , China
| |
Collapse
|
21
|
Wang HC, Lin YC, Chen CH, Huang CH, Chang B, Liu YL, Cheng HW, Tsao CS, Wei KH. Hydrogen plasma-treated MoSe 2 nanosheets enhance the efficiency and stability of organic photovoltaics. NANOSCALE 2019; 11:17460-17470. [PMID: 31531483 DOI: 10.1039/c9nr06611j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper we report the effect on the power conversion efficiency (PCE) and stability of photovoltaic devices after incorporating hydrogenated two-dimensional (2D) MoSe2 nanosheets into the active layer of bulk heterojunction (BHJ) organic photovoltaics (OPV). The surface properties of 2D MoSe2 nanosheets largely affect their dispersion in the active layer blend and, thus, influence the carrier mobility, PCE, and stability of corresponding devices. We treated MoSe2 nanosheets with hydrogen plasma and investigated their influence on the polymer packing and fullerene domain size of the active layer. For the optimized devices incorporating 37.5 wt% of untreated MoSe2, we obtained a champion PCE of 9.82%, compared with the champion reference PCE of approximately 9%. After incorporating the hydrogen plasma-treated MoSe2 nanosheets, we achieved a champion PCE of 10.44%-a relative increase of 16% over that of the reference device prepared without MoSe2 nanosheets. This PCE is the one of the highest ever reported for OPVs incorporating 2D materials. We attribute this large enhancement to the enhanced exciton generation and dissociation at the MoSe2-fullerene interface and, consequently, the balanced charge carrier mobility. The device incorporating the MoSe2 nanosheets maintained 70% of its initial PCE after heat-treatment at 100 °C for 1 h; in contrast, the PCE of the reference device decreased to 60% of its initial value-a relative increase in stability of 17% after incorporating these nanosheets. We also incorporated MoSe2 nanosheets (both with and without treatment) into a polymer donor (PBDTTBO)/small molecule (IT-4F) acceptor system. The champion PCEs reached 7.85 and 8.13% for the devices incorporating the MoSe2 nanosheets with and without plasma treatment, respectively-relative increases of 8 and 12%, respectively, over that of the reference. These results should encourage a push toward the implementation of transition metal dichalcogenides to enhance the performances of BHJ OPVs.
Collapse
Affiliation(s)
- Hao-Cheng Wang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Yu-Che Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, 24301 New Taipei City, Taiwan
| | - Bin Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Yi-Ling Liu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Hao-Wen Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Cheng-Si Tsao
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan and Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan. and Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
22
|
|
23
|
Brus VV, Lee J, Luginbuhl BR, Ko SJ, Bazan GC, Nguyen TQ. Solution-Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900904. [PMID: 31148255 DOI: 10.1002/adma.201900904] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/16/2019] [Indexed: 05/20/2023]
Abstract
Recent research efforts on solution-processed semitransparent organic solar cells (OSCs) are presented. Essential properties of organic donor:acceptor bulk heterojunction blends and electrode materials, required for the combination of simultaneous high power conversion efficiency (PCE) and average visible transmittance of photovoltaic devices, are presented from the materials science and device engineering points of view. Aspects of optical perception, charge generation-recombination, and extraction processes relevant for semitransparent OSCs are also discussed in detail. Furthermore, the theoretical limits of PCE for fully transparent OSCs, compared to the performance of the best reported semitransparent OSCs, and options for further optimization are discussed.
Collapse
Affiliation(s)
- Viktor V Brus
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jaewon Lee
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Benjamin R Luginbuhl
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Seo-Jin Ko
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
24
|
Han G, Yi Y. Origin of Photocurrent and Voltage Losses in Organic Solar Cells. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guangchao Han
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy Sciences Beijing 100049 China
| |
Collapse
|
25
|
Collado-Fregoso E, Pugliese SN, Wojcik M, Benduhn J, Bar-Or E, Perdigón Toro L, Hörmann U, Spoltore D, Vandewal K, Hodgkiss JM, Neher D. Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: The Case of Low-Donor-Content Blends. J Am Chem Soc 2019; 141:2329-2341. [PMID: 30620190 DOI: 10.1021/jacs.8b09820] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that this decay obeys an energy-gap law. Our work challenges the common view that a large energy offset at the heterojunction and/or the presence of fullerene clusters guarantee efficient CT dissociation and rather indicates that charge generation benefits from high CT state energies through a slower decay to the ground state.
Collapse
Affiliation(s)
- Elisa Collado-Fregoso
- Department of Physics and Astronomy , University of Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam-Golm , Germany
| | - Silvina N Pugliese
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6040 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6040 , New Zealand
| | - Mariusz Wojcik
- Institute of Applied Radiation Chemistry , Lodz University of Technology , Wroblewskiego 15 , 93590 Lodz , Poland
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics , Technische Universität Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| | - Eyal Bar-Or
- Department of Physics and Astronomy , University of Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam-Golm , Germany
| | - Lorena Perdigón Toro
- Department of Physics and Astronomy , University of Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam-Golm , Germany
| | - Ulrich Hörmann
- Department of Physics and Astronomy , University of Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam-Golm , Germany
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics , Technische Universität Dresden , Nöthnitzer Straße 61 , 01187 Dresden , Germany
| | - Koen Vandewal
- Institute for Materials Research (IMO-IMOMEC) , Hasselt University , Wetenschapspark 1 , 3590 Diepenbeek , Belgium
| | - Justin M Hodgkiss
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6040 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6040 , New Zealand
| | - Dieter Neher
- Department of Physics and Astronomy , University of Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam-Golm , Germany
| |
Collapse
|
26
|
Han G, Yi Y. Rationalizing Small-Molecule Donor Design toward High-Performance Organic Solar Cells: Perspective from Molecular Architectures. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guangchao Han
- CAS Key Laboratory of Organic Solids; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yuanping Yi
- CAS Key Laboratory of Organic Solids; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy Sciences; Beijing 100049 China
| |
Collapse
|
27
|
Chen X, Liu Q, Zhang M, Ju H, Zhu J, Qiao Q, Wang M, Yang S. Noncovalent phosphorylation of graphene oxide with improved hole transport in high-efficiency polymer solar cells. NANOSCALE 2018; 10:14840-14846. [PMID: 30051897 DOI: 10.1039/c8nr02638f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) has been extensively applied as an alternative hole transport layer (HTL) of bulk heterojunction polymer solar cells (BHJ-PSCs) with the function of selectively transporting holes and blocking electrons, but suffers from low electrical conductivity. Herein, using phosphorus pentoxide (P2O5) dissolved in methanol as a precursor, we successfully modified GO via noncovalent phosphorylation for the first time, which showed improved hole transport in BHJ-PSCs compared to the pristine GO. As a result, BHJ-PSC devices based on noncovalently phosphorylated GO (P-GO) HTL show dramatically higher power conversion efficiencies (7.90%, 6.59%, 3.85% for PTB7:PC71BM, PBDTTT-C:PC71BM, P3HT:PC61BM, respectively) than those of the corresponding control devices based on the pristine GO HTL (6.28%, 5.07%, 2.78%), which are comparable to those of devices based on the most widely used HTL-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS).
Collapse
Affiliation(s)
- Xiang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee SH, Lee JY. Homo-tandem structures to achieve the ideal external quantum efficiency in small molecular organic solar cells. OPTICS EXPRESS 2018; 26:A697-A708. [PMID: 30114058 DOI: 10.1364/oe.26.00a697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, we report a homo-tandem structure of small molecular organic solar cells (SMOSCs) using identical single-junction devices as sub-cells. The trade-off between the absorption and internal quantum efficiency (IQE) of single-junction devices tends to limit the external quantum efficiency (EQE). However, multiple-stacked thin cells with maximized IQE in homo-tandem structures amplify the absorption to achieve the ideal EQE. As a result, a high power conversion efficiency of 7.81% is achieved in tetraphenyldibenzoperiflanthene (DBP):C70-based homo-tandem SMOSCs, which is 21.8% higher than that in a single-junction device.
Collapse
|
29
|
Li L, Lin H, Kong X, Du X, Chen X, Zhou L, Tao S, Zheng C, Zhang X. π-π stacking induced high current density and improved efficiency in ternary organic solar cells. NANOSCALE 2018; 10:9971-9980. [PMID: 29770827 DOI: 10.1039/c8nr01421c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ternary blend systems have been used to enhance the short-circuit current density (JSC) and fill factor (FF) of organic solar cells (OSCs). However, it is still a challenge to find suitable third components that concurrently possess complementary light absorption and well-matched energy levels. Here, a small organic molecule, 4,4'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(N,N-bis(4-(pyren-1-yl)phenyl)anili-ne) (DFNPy), which contains a triphenylamine core and bulky pyrene rings, was designed and used to construct ternary blend OSCs. DFNPy shows complementary absorption spectra in the 350-450 nm shortwave band, which has seldom been reported in the field of ternary OSCs. Furthermore, the bulky pyrene rings aggregate via π-π stacking to promote charge transfer. As a result, a high power conversion efficiency (PCE) of 10.59% with an enhanced JSC of 19.72 mA cm-2 was realized in PTB7-Th:DFNPy:PC71BM-based ternary OSCs. The addition of DFNPy was found to modulate the film morphology by improving the film phase separation and crystallinity, which can facilitate charge generation and decrease charge recombination, resulting in enhanced mobility. The results demonstrate an effective strategy for improving the photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Lijuan Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Dithieno[3,2-b:2',3'-d]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707150. [PMID: 29527772 DOI: 10.1002/adma.201707150] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/10/2018] [Indexed: 05/20/2023]
Abstract
A new electron-rich central building block, 5,5,12,12-tetrakis(4-hexylphenyl)-indacenobis-(dithieno[3,2-b:2',3'-d]pyrrol) (INP), and two derivative nonfullerene acceptors (INPIC and INPIC-4F) are designed and synthesized. The two molecules reveal broad (600-900 nm) and strong absorption due to the satisfactory electron-donating ability of INP. Compared with its counterpart INPIC, fluorinated nonfullerene acceptor INPIC-4F exhibits a stronger near-infrared absorption with a narrower optical bandgap of 1.39 eV, an improved crystallinity with higher electron mobility, and down-shifted highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. Organic solar cells (OSCs) based on INPIC-4F exhibit a high power conversion efficiency (PCE) of 13.13% and a relatively low energy loss of 0.54 eV, which is among the highest efficiencies reported for binary OSCs in the literature. The results demonstrate the great potential of the new INP as an electron-donating building block for constructing high-performance nonfullerene acceptors for OSCs.
Collapse
Affiliation(s)
- Jia Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Zhuohan Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jie Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinxing Yin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Linqiang Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Renyong Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Rihong Zhu
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
31
|
Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem Rev 2018; 118:3447-3507. [PMID: 29557657 DOI: 10.1021/acs.chemrev.7b00535] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within the past five years, there have been over 100 nonfullerene acceptor molecules synthesized, and the power conversion efficiency of nonfullerene organic solar cells has increased dramatically, from ∼2% in 2012 to >13% in 2017. This review summarizes this progress, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances. We also provide perspectives from a device point of view, wherein topics including ternary blend device, multijunction device, device stability, active layer morphology, and device physics are discussed.
Collapse
Affiliation(s)
- Guangye Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China.,HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, Hi-tech Park , Nanshan, Shenzhen 518057 , China
| | - Jingbo Zhao
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China
| | - Philip C Y Chow
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China.,HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, Hi-tech Park , Nanshan, Shenzhen 518057 , China
| | - Kui Jiang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China.,HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, Hi-tech Park , Nanshan, Shenzhen 518057 , China
| | - Jianquan Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China.,HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, Hi-tech Park , Nanshan, Shenzhen 518057 , China
| | - Zonglong Zhu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China
| | - Jie Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon, Hong Kong , China.,HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, Hi-tech Park , Nanshan, Shenzhen 518057 , China.,Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
32
|
Deng D, Zhang Y, Wang Z, Wu Q, Ma W, Lu K, Wei Z. A Simple but Efficient Small Molecule with a High Open Circuit Voltage of 1.07 V in Solution-Processable Organic Solar Cells. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Zaiyu Wang
- State Key Laboratory for Mechanical Behavior of Materials; Xi'an jiaotong University; Xi'an 710049 China
| | - Qiong Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials; Xi'an jiaotong University; Xi'an 710049 China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| |
Collapse
|
33
|
Seo JW, Kim JH, Kim M, Jin SM, Lee SH, Cho C, Lee E, Yoo S, Park JY, Lee JY. Columnar-Structured Low-Concentration Donor Molecules in Bulk Heterojunction Organic Solar Cells. ACS OMEGA 2018; 3:929-936. [PMID: 31457939 PMCID: PMC6641345 DOI: 10.1021/acsomega.7b01652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
We investigate the arrangement of donor molecules in vacuum-deposited bulk heterojunction (BHJ) 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane (TAPC):C70-based organic solar cells (OSCs). Even a low dose of donors (∼10%) forms columnar structures that provide pathways for efficient hole transport in the BHJ layer; however, these structures disappear at donor concentrations below 10%, generating disconnected and isolated hole pathways. The formation of columnar donor structures is confirmed by the contrast of the contact potential difference, measured by Kelvin probe force microscopy, and by the trap-assisted charge injection at low donor concentrations. The mobility of electrons and holes is well balanced in OSCs owing to the preservation of the hole mobility at such low donor concentrations, consequently maximizing the internal quantum efficiency of the OSCs. A high power conversion efficiency of 6.24% was achieved in inverted TAPC:C70 (1:9) OSCs.
Collapse
Affiliation(s)
- Ji-Won Seo
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Hun Kim
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mincheol Kim
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Mi Jin
- Graduate
School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang-Hoon Lee
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changsoon Cho
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eunji Lee
- Graduate
School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Seunghyup Yoo
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung-Yong Lee
- Graduate
School of Energy, Environment, Water, and Sustainability
(EEWS), Graphene Research Center, KI for NanoCentury, and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Love JA, Feuerstein M, Wolff CM, Facchetti A, Neher D. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42011-42019. [PMID: 29083145 DOI: 10.1021/acsami.7b10361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.
Collapse
Affiliation(s)
- John A Love
- Institute for Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Straße 24-25, Potsdam-Golm 14476, Germany
| | - Markus Feuerstein
- Institute for Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Straße 24-25, Potsdam-Golm 14476, Germany
| | - Christian M Wolff
- Institute for Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Straße 24-25, Potsdam-Golm 14476, Germany
| | - Antonio Facchetti
- Department of Chemistry and The Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dieter Neher
- Institute for Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Straße 24-25, Potsdam-Golm 14476, Germany
| |
Collapse
|
35
|
Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Design of a New Small-Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704051. [PMID: 29058360 DOI: 10.1002/adma.201704051] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/26/2017] [Indexed: 06/07/2023]
Abstract
Improving the fill factor (FF) is known as a challenging issue in organic solar cells (OSCs). Herein, a strategy of extending the conjugated area of end-group is proposed for the molecular design of acceptor-donor-acceptor (A-D-A)-type small molecule acceptor (SMA), and an indaceno[1,2-b:5,6-b']dithiophene-based SMA, namely IDTN, by end-capping with the naphthyl fused 2-(3-oxocyclopentylidene)malononitrile is synthesized. Benefiting from the π-conjugation extension by fusing two phenyls, IDTN shows stronger molecular aggregation, more ordered packing structure, thus over one order of magnitude higher electron mobility relative to its counterpart. By utilizing the fluorinated polymer (PBDB-TF) as the electron donor, the corresponding device exhibits a high efficiency of 12.2% with a record-high FF of 0.78, which is approaching the theoretical limit of OSCs. Compared with the reference molecule, such a high FF in the IDTN system can be mainly attributed to the more ordered π-π packing of acceptor aggregates, higher domain purity and symmetric carrier transport in the blend. Hence, enlarging the conjugated area of the terminal-group in these A-D-A-type SMAs is a promising approach not only for enhancing the electron mobility, but also for improving the blend morphology, and both of them are conducive to the fill-factor breakthrough.
Collapse
Affiliation(s)
- Sunsun Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Long Ye
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wenchao Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Sharma A, Chauhan M, Bharti V, Kumar M, Chand S, Tripathi B, Tiwari JP. Revealing the correlation between charge carrier recombination and extraction in an organic solar cell under varying illumination intensity. Phys Chem Chem Phys 2017; 19:26169-26178. [PMID: 28930319 DOI: 10.1039/c7cp05235a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design and fabrication of better excitonic solar cells are the need of the hour for futuristic energy solutions. This designing needs a better understanding of the charge transport properties of excitonic solar cells. One of the popular methods of understanding the charge transport properties is the analysis of the J-V characteristics of a device through theoretical simulation at varied illumination intensity. Herein, a J-V characteristic of a polymer:fullerene based bulk heterojunction (BHJ) organic solar cells (OSCs) of structure ITO/PEDOT:PSS (∼40 nm)/PTB7:PC71BM (∼100 nm)/Al (∼120 nm) is analyzed using one- and two-diode models at varied illumination intensity in the range of 0.1-2.33 Sun. It was found that the double diode model is better with respect to the single diode model and can explain the J-V characteristics of the OSCs correctly. Further, the recombination mechanism is investigated thoroughly and it was observed that fill factor (FF) is in the range of 62.5%-41.4% for the corresponding values of the recombination-to-extraction ratio (θ) varying from 0.001 to 0.023. These findings are attributed to the change in charge transport mechanism from trap-assisted to bimolecular recombination with the variation of illumination intensity.
Collapse
Affiliation(s)
- Abhishek Sharma
- Advanced Materials and Devices Division, CSIR-National Physical Laboratory, New Delhi 110012, India.
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X. Enhancing Performance of Nonfullerene Acceptors via Side-Chain Conjugation Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702125. [PMID: 28714198 DOI: 10.1002/adma.201702125] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/24/2017] [Indexed: 06/07/2023]
Abstract
A side-chain conjugation strategy in the design of nonfullerene electron acceptors is proposed, with the design and synthesis of a side-chain-conjugated acceptor (ITIC2) based on a 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']di(cyclopenta-dithiophene) electron-donating core and 1,1-dicyanomethylene-3-indanone electron-withdrawing end groups. ITIC2 with the conjugated side chains exhibits an absorption peak at 714 nm, which redshifts 12 nm relative to ITIC1. The absorption extinction coefficient of ITIC2 is 2.7 × 105 m-1 cm-1 , higher than that of ITIC1 (1.5 × 105 m-1 cm-1 ). ITIC2 exhibits slightly higher highest occupied molecular orbital (HOMO) (-5.43 eV) and lowest unoccupied molecular orbital (LUMO) (-3.80 eV) energy levels relative to ITIC1 (HOMO: -5.48 eV; LUMO: -3.84 eV), and higher electron mobility (1.3 × 10-3 cm2 V-1 s-1 ) than that of ITIC1 (9.6 × 10-4 cm2 V-1 s-1 ). The power conversion efficiency of ITIC2-based organic solar cells is 11.0%, much higher than that of ITIC1-based control devices (8.54%). Our results demonstrate that side-chain conjugation can tune energy levels, enhance absorption, and electron mobility, and finally enhance photovoltaic performance of nonfullerene acceptors.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Wei Wang
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiaohui Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianqian Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Cenqi Yan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
38
|
Wang JL, Liu KK, Liu S, Liu F, Wu HB, Cao Y, Russell TP. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19998-20009. [PMID: 28535032 DOI: 10.1021/acsami.7b03771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC71BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.
Collapse
Affiliation(s)
- Jin-Liang Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Kai-Kai Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Sha Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510641, China
| | - Feng Liu
- Department of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University , Shanghai 200240, P. R. China
| | - Hong-Bin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510641, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510641, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003-9263, United States
| |
Collapse
|
39
|
Mitsudo K, Tanaka S, Isobuchi R, Inada T, Mandai H, Korenaga T, Wakamiya A, Murata Y, Suga S. Rh-Catalyzed Dehydrogenative Cyclization Leading to Benzosilolothiophene Derivatives via Si–H/C–H Bond Cleavage. Org Lett 2017; 19:2564-2567. [DOI: 10.1021/acs.orglett.7b00878] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Mitsudo
- Division
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiichi Tanaka
- Division
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ryota Isobuchi
- Division
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tomohiro Inada
- Division
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mandai
- Division
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Toshinobu Korenaga
- Department
of Chemistry and Bioengineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate-ken 020-8551, Japan
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Seiji Suga
- Division
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Research
Center of New Functional Materials for Energy Production, Storage
and Transport, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
40
|
Kakavelakis G, Del Rio Castillo AE, Pellegrini V, Ansaldo A, Tzourmpakis P, Brescia R, Prato M, Stratakis E, Kymakis E, Bonaccorso F. Size-Tuning of WSe 2 Flakes for High Efficiency Inverted Organic Solar Cells. ACS NANO 2017; 11:3517-3531. [PMID: 28240547 DOI: 10.1021/acsnano.7b00323] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer-fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties. While it is expected that the nanoscale domains size of the different components of the blend will significantly impact the performance of the OSC, to date, there is no evidence of quantitative information on the interplay between 2D crystals and fullerene domains size. Here, we demonstrate that by matching the size of WSe2 few-layer 2D crystals, produced by liquid-phase exfoliation, with that of the PC71BM fullerene domain in BHJ OSCs, we obtain power conversion efficiencies (PCEs) of ∼9.3%, reaching a 15% improvement with respect to standard binary devices (PCE = 8.10%), i.e., without the addition of WSe2 flakes. This is the highest ever reported PCE for 2D material-based OSCs, obtained thanks to the enhanced exciton generation and exciton dissociation at the WSe2-fullerene interface and also electron extraction to the back metal contact as a consequence of a balanced charge carriers mobility. These results push forward the implementation of transition-metal dichalcogenides to boost the performance of BHJ OSCs.
Collapse
Affiliation(s)
- George Kakavelakis
- Center of Materials Technology and Photonics and Electrical Engineering Department, Technological Educational Institute (TEI) of Crete , Heraklion 71004, Crete, Greece
| | | | | | | | - Pavlos Tzourmpakis
- Center of Materials Technology and Photonics and Electrical Engineering Department, Technological Educational Institute (TEI) of Crete , Heraklion 71004, Crete, Greece
| | | | | | - Emmanuel Stratakis
- Foundation of Research and Technology (FORTH), Institute of Electronic Structure and Laser (IESL) , Heraklion 71110, Crete, Greece
| | - Emmanuel Kymakis
- Center of Materials Technology and Photonics and Electrical Engineering Department, Technological Educational Institute (TEI) of Crete , Heraklion 71004, Crete, Greece
| | | |
Collapse
|
41
|
Huang J, Nakano K, Suzuki K, Chen Y, Wang F, Koganezawa T, Tajima K. π-Conjugation Effects of Oligo(thienylenevinylene) Side Chains in Semiconducting Polymers on Photovoltaic Performance. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianming Huang
- RIKEN Center for Emergent Matter
Science (CEMS), 2-1 Hirosawa, Wako 351-198, Japan
| | - Kyohei Nakano
- RIKEN Center for Emergent Matter
Science (CEMS), 2-1 Hirosawa, Wako 351-198, Japan
| | - Kaori Suzuki
- RIKEN Center for Emergent Matter
Science (CEMS), 2-1 Hirosawa, Wako 351-198, Japan
| | - Yujiao Chen
- RIKEN Center for Emergent Matter
Science (CEMS), 2-1 Hirosawa, Wako 351-198, Japan
| | - Fanji Wang
- RIKEN Center for Emergent Matter
Science (CEMS), 2-1 Hirosawa, Wako 351-198, Japan
- Department of Applied Chemistry Graduate
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Koganezawa
- Japan Synchrotron
Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter
Science (CEMS), 2-1 Hirosawa, Wako 351-198, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
42
|
Zhang S, Bauer NE, Kanal IY, You W, Hutchison GR, Meyer TY. Sequence Effects in Donor–Acceptor Oligomeric Semiconductors Comprising Benzothiadiazole and Phenylenevinylene Monomers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shaopeng Zhang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
| | - Nicole E. Bauer
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ilana Y. Kanal
- Department
of Chemistry, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
| | - Wei You
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Geoffrey R. Hutchison
- Department
of Chemistry, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
- Department
of Chemical Engineering University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Y. Meyer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
43
|
Love JA, Chou SH, Huang Y, Bazan GC, Nguyen TQ. Effects of solvent additive on "s-shaped" curves in solution-processed small molecule solar cells. Beilstein J Org Chem 2016; 12:2543-2555. [PMID: 28144323 PMCID: PMC5238578 DOI: 10.3762/bjoc.12.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/04/2016] [Indexed: 11/23/2022] Open
Abstract
A novel molecular chromophore, p-SIDT(FBTThCA8)2, is introduced as an electron-donor material for bulk heterojunction (BHJ) solar cells with broad absorption and near ideal energy levels for the use in combination with common acceptor materials. It is found that films cast from chlorobenzene yield devices with strongly s-shaped current-voltage curves, drastically limiting performance. We find that addition of the common solvent additive diiodooctane, in addition to facilitating crystallization, leads to improved vertical phase separation. This yields much better performing devices, with improved curve shape, demonstrating the importance of morphology control in BHJ devices and improving the understanding of the role of solvent additives.
Collapse
Affiliation(s)
- John A Love
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, United States; Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Shu-Hua Chou
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, United States; Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ye Huang
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, United States
| | - Guilllermo C Bazan
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, United States
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
44
|
Wang Q, Duan L, Tao Q, Peng W, Chen J, Tan H, Yang R, Zhu W. Photovoltaic Small Molecules of TPA(F xBT-T-Cz) 3: Tuning Open-Circuit Voltage over 1.0 V for Their Organic Solar Cells by Increasing Fluorine Substitution. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30320-30327. [PMID: 27592746 DOI: 10.1021/acsami.6b06405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To simultaneously improve both open-circuit voltage (Voc) and short-circuit current density (Jsc) for organic solar cells, a novel D(A-π-Ar)3 type of photovoltaic small molecules of TPA(FxBT-T-3Cz)3 was designed and synthesized, which contain central triphenylamine (TPA), terminal carbazole (Cz), armed fluorine-substituted benzothiadiazole (FxBT, where x = 1 or 2), and bridged thiophene (T) units. A narrowed ultraviolet-visible absorption and a decreasing highest occupied molecular orbital energy level were observed from TPA(F1BT-T-3Cz)3 to TPA(F2BT-T-3Cz)3 with increasing fluorine substitution. However, the TPA(F2BT-T-3Cz)3/PC71BM-based solar devices showed a rising Voc of 1.01 V and an enhanced Jsc of 10.84 mA cm-2 as well as a comparable power conversion efficiency of 4.81% in comparison to the TPA(F1BT-T-3Cz)3/PC71BM-based devices. Furthermore, in comparison to the parent TPA(BT-T-3Cz)3 molecule without fluorine substitution, the fluorine-substituted TPA(FxBT-T-3Cz)3 molecules exhibited significantly incremental Voc and Jsc values in their bulk heterojunction organic solar cells, owing to fluorine incorporation in the electron-deficient benzothiadiazole unit.
Collapse
Affiliation(s)
- Qiong Wang
- College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, People's Republic of China
| | - Linrui Duan
- College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, People's Republic of China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong 26610, People's Republic of China
| | - Qiang Tao
- College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, People's Republic of China
| | - Wenhong Peng
- College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, People's Republic of China
| | - Jianhua Chen
- College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, People's Republic of China
| | - Hua Tan
- College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, People's Republic of China
| | - Renqiang Yang
- School of Materials Science and Engineering, Changzhou University , Changzhou, Jiangsu 213164, People's Republic of China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Changzhou University , Changzhou, Jiangsu 213164, People's Republic of China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong 26610, People's Republic of China
| |
Collapse
|
45
|
Shen XX, Han GC, Yi YP. Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Li Y, Li H, He J, Xu Q, Li N, Chen D, Lu J. Towards Highly-Efficient Phototriggered Data Storage by Utilizing a Diketopyrrolopyrrole-Based Photoelectronic Small Molecule. Chem Asian J 2016; 11:2078-84. [DOI: 10.1002/asia.201600692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
47
|
Wang JL, Liu KK, Yan J, Wu Z, Liu F, Xiao F, Chang ZF, Wu HB, Cao Y, Russell TP. Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. J Am Chem Soc 2016; 138:7687-97. [DOI: 10.1021/jacs.6b03495] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jin-Liang Wang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of Ministry of Education, School
of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Kai-Kai Liu
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of Ministry of Education, School
of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Jun Yan
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhuo Wu
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of Ministry of Education, School
of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Feng Liu
- Materials
Science Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Fei Xiao
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of Ministry of Education, School
of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Zheng-Feng Chang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of Ministry of Education, School
of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Hong-Bin Wu
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Yong Cao
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Thomas P. Russell
- Materials
Science Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Wang K, Guo X, Guo B, Li W, Zhang M, Li Y. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content. Macromol Rapid Commun 2016; 37:1066-73. [PMID: 27174683 DOI: 10.1002/marc.201600115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/22/2016] [Indexed: 11/06/2022]
Abstract
A new broad bandgap and 2D-conjugated D-A copolymer, PBDTBTz-T, based on bithienyl-benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc ) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz-T:PC71 BM blend film with a lower PC71 BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz-based D-A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs.
Collapse
Affiliation(s)
- Kun Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bing Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wanbin Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
49
|
van der Kaap NJ, Koster LJA. Charge carrier thermalization in organic diodes. Sci Rep 2016; 6:19794. [PMID: 26791095 PMCID: PMC4726152 DOI: 10.1038/srep19794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited.
Collapse
Affiliation(s)
- N J van der Kaap
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - L J A Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
50
|
Honová J, Luňák S, Vala M, Stříteský S, Fekete L, Weiter M, Kovalenko A. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2016-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAn extended study on a group of four soluble diphenyl-amino-stilbene based diphenyl-diketopyrrolo-pyrrole molecules has been carried out. Using the materials in thin-film transistors it was shown that the above-mentioned compounds can be successfully used as donors in organic photovoltaic devices. Influence of the molecular symmetry and solubilizing chain on the morphology and solar cell performance are described. It was shown that a shorter and non-branched ethyl acetate chain leads to higher charge carrier mobility, short circuit current, and better fill factor. After the basic optimization, a power conversion efficiency of about 1.5 % was reached. This, to the best of our knowledge, is the highest reported efficiency of thiophene-free small-molecule diketo-pyrrolopyrroles.
Collapse
|