1
|
Jha K, Jaishwal P, Yadav TP, Singh SP. Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery. Biophys Chem 2024; 318:107375. [PMID: 39674128 DOI: 10.1016/j.bpc.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e., icosahedral structures), and the ability to generate a robust immune response (with multivalent epitopes) through activation of innate and/or adaptive immune signals. In this regard, coiled-coil (CC) domains are suitable building blocks for designing VLP because of their programmable interaction specificity, affinity, and well-established sequence-to-structure relationships. Generally, two CC domains with different oligomeric states (trimer and pentamer) are fused to form a monomeric protein through a short, flexible spacer sequence. By using combinations of symmetry axes (2-, 3- and 5- folds) that are unique to the geometry of the desired protein cage, it is possible, in principle, to assemble well-defined protein cages like VLP. In this review, we have discussed the crystallographic rules and the basic principles involved in the design of CC-based VLP. It also explored the functions of numerous noncovalent interactions in generating stable VLP structures, which play a crucial role in improving the properties of vaccine immunogenicity, drug delivery, and 3D cell culturing.
Collapse
Affiliation(s)
- Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Thakur Prasad Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India.
| | | |
Collapse
|
2
|
Wei J, Yu Y, Matsuo Y, Zhang L, Mitomo H, Chen Y, Ijiro K, Zhang Z. Size Segregation of Gold Nanoparticles into Bilayer-like Vesicular Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38039385 DOI: 10.1021/acs.langmuir.3c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Size segregation of nanoparticles with different sizes into highly ordered, unique nanostructures is important for their practical applications. Herein, we demonstrate spontaneous self-assembly of the binary mixtures of small and large gold nanoparticles (GNPs; 5/15, 5/20, or 10/20 in diameter) in the presence of a tetra(ethylene glycol)-terminated octafluoro-4,4'-biphenol ligand, namely, TeOFBL, resulting in a size-segregated assembly. The outer single layer of large GNPs forming a gold nanoparticle vesicle (GNV) encapsulated the inner vesicle-like assembly composed of small GNPs, which is referred to as bilayer-like GNV and similar to the molecular bilayer structure of a liposome. The size segregation was driven by the solvophobic feature of the TeOFBLs on the surface of GNPs. A time-course study indicated that size segregation occurred instantaneously during the mixing stage of the self-organization process. The size-segregated precursors quickly fused with each other through the inner-inner and outer-outer layer fashion to form the bilayer-like GNV. This study provides a new approach to creating biomimetic bilayer capsules with different physical properties for potential applications such as surface-enhanced Raman scattering and drug delivery.
Collapse
Affiliation(s)
- Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P. R. China
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
3
|
Abstract
With the advent of a new era of smart-technology, the demand for more economic optoelectronic materials that do not compromise with efficiency is gradually on the rise. Organic semiconductors provide greener alternatives to the conventional inorganic ones, but encounter the challenge of balancing charge carrier mobility with processability in devices. Discotic liquid crystals (DLCs), a class of self-assembling soft organic materials, possess the perfect degree of order and dynamics to address this challenge. Providing unidimensional charge carrier pathways through their nanoscale columnar architecture, DLCs can behave as efficient charge transport systems across a wide range of optoelectronic devices. Moreover, DLCs are solution-processable, thus reducing the fabrication cost. In this article, we have discussed the approaches towards developing DLCs as semiconductors, focusing on their molecular design concepts, supramolecular structures and electronic properties in the context of their charge carrier mobilities.
Collapse
Affiliation(s)
- Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| |
Collapse
|
4
|
Zhang J, Chen J, Yang B, Ma S, Yin L, Liu Z, Xiang W, Liu H, Zhao J, Sheng P. Energy Level, Crystal Morphology and Fluorescence Emission Tuning in Cocrystals via Molecular-Level Engineering. Chemistry 2023; 29:e202202915. [PMID: 36404599 DOI: 10.1002/chem.202202915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
Organic donor-acceptor complexes as new organic semiconductor class have attracted wide attention, due to their potential applications in functional optoelectronics. Herein, we present two new charge transfer cocrystals of di-cyanodiazafluorene -perylene (DCPE) and di-cyanodiazaflfluorene-pyrene (DCPY) through a rational cocrystal-engineering strategy. Although they are both 1 : 1 mixed stacking cocrystals with similar chemical structures, the DCPE cocrystal possesses a non-centrosymmetric space group and narrower band gap compared to DCPY cocrystal, because of the non-covalent bonding variation. The electrostatic potential accumulated in the lateral facets leads to highly twisted DCPE nanobelts, and the small band gap causes near infrared fluorescence. Meanwhile, the DCPY crystals with centrosymmetric space groups and weaker intermolecular interactions exhibited an untwisted morphology and red emission. This study will be helpful for the design and understanding of functional cocrystal materials that can be used in flexible micro/nano-mechanics, mechanical energy, and optical devices.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jinqiu Chen
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Bo Yang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shuang Ma
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Lina Yin
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, 510632, P. R. China
| | - Zhiqi Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenxin Xiang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Hongguang Liu
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, 510632, P. R. China.,School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Jianfen Zhao
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM) @School of Flexible Electronics (SIFE), Jiangsu National Synergetic Innovation Center for, Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China
| | - Peng Sheng
- Material Laboratory of State Grid Corporation of China, State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing, 102211, P. R. China
| |
Collapse
|
5
|
Chen Z, Higashi K, Shigehisa Y, Ueda K, Yamamoto K, Moribe K. Understanding the rod-to-tube transformation of self-assembled ascorbyl dipalmitate lipid nanoparticles stabilized with PEGylated lipids. NANOSCALE 2023; 15:2602-2613. [PMID: 36484313 DOI: 10.1039/d2nr04987b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We previously established a nanoparticle-based drug delivery system (DDS) for high-dose ascorbic acid therapy by self-assembly of a lipid-modified ascorbic acid derivative, L-ascorbyl 2,6-dipalmitate (ASC-DP). The particles' morphology should be modified for effective DDSs. Here, we modulated the morphology of self-assembled ASC-DP nanoparticles using two different PEGylated lipids, distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) and cholesterol-polyethylene glycol (Chol-PEG), with various PEG molecular weights. At the preparation molar ratio of 10 : 1 (ASC-DP/PEGylated lipid), rod-like nanoparticles emerged in the ASC-DP/DSPE-PEG system, whereas the ASC-DP/Chol-PEG system yielded tube-like nanoparticles. The internal structures of both rod-like ASC-DP/DSPE-PEG and tube-like ASC-DP/Chol-PEG nanoparticles were similar to that of repeated ASC-DP bilayers. The particles' surfaces featured PEGylated lipids, which stabilized the structure and dispersion of the nanoparticles. For both systems, the particle size increased slightly with increasing the PEGylated lipid's PEG molecular weight. Increasing the PEG molecular weight decreased the inner tunnel size of tube-like ASC-DP/Chol-PEG nanoparticles. A mechanism has been proposed for the rod-to-tube transformation. Surface-layer free-energy changes owing to the mixing of multiple lipids and PEG chain repulsion are thought to underlie the inner tunnels' formation. The rod-to-tube morphology of self-assembled ASC-DP nanoparticles can be modulated by controlling the PEGylated lipids' structure, including the lipid species and the PEG chain length.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuki Shigehisa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Keiji Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
6
|
Shi Y, Lv Q, Tao Y, Ma Y, Wang X. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022; 61:e202208768. [DOI: 10.1002/anie.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying‐Li Shi
- Department of Electrical and Electronic Engineering Xi'an Jiaotong-Liverpool University Suzhou Jiangsu 215123 P. R. China
| | - Qiang Lv
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Chen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ying‐Xin Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
7
|
Zhou S, Zhou L, Chen Y, Shen W, Li M, He R. Boosting Blue Emission of Organic Cations in a Sn(IV)-Based Perovskite by Constructing Intermolecular Interactions. J Phys Chem Lett 2022; 13:8717-8724. [PMID: 36094405 DOI: 10.1021/acs.jpclett.2c02413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving the photoluminescence (PL) efficiency of organic luminescent molecules is still a great challenge. Herein, a novel zero-dimensional Sn(IV)-based halide (C9H8N)2SnCl6 is prepared by assembling inactive quinoline cations and stable [SnCl6]2- polyhedra. Experimental characterizations and theoretical calculations show that the blue emission of (C9H8N)2SnCl6 centered at 433 nm is derived from the organic cations. Surprisingly, the PL efficiency of the as-prepared halide is nearly 50 times higher than that of the organic precursor and exhibits ultrahigh stability. Structural analysis shows that the introduction of inorganic clusters regulates the stacking mode of organic components and forms hydrogen bonds. This strong intermolecular interaction enhances the structural rigidity of (C9H8N)2SnCl6, inhibits concentration quenching and vibrational dissipation, and thus significantly improves the PL efficiency and stability of the organic cations. This work provides an important way to improve the PL performance and stability of organic species by constructing efficient intermolecular interactions.
Collapse
Affiliation(s)
- Shuigen Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yihao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Shi YL, Lv Q, Tao YC, Ma YX, Wang XD. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying-Li Shi
- The University of Hong Kong Physics The University of Hong Kong 999077 Hong Kong HONG KONG
| | - Qiang Lv
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Yi-Chen Tao
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Ying-Xin Ma
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xue-Dong Wang
- Soochow University Institute of Functional Nano and Soft Materials 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu 215123 Suzhou CHINA
| |
Collapse
|
9
|
Bai L, Wang N, Li Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102811. [PMID: 34486181 DOI: 10.1002/adma.202102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Currently, organic semiconductors (OSs) are widely used as active components in practical devices related to energy storage and conversion, optoelectronics, catalysis, and biological sensors, etc. To satisfy the actual requirements of different types of devices, chemical structure design and self-assembly process control have been synergistically performed. The morphology and other basic properties of multiscale OS components are governed on a broad scale from nanometers to macroscopic micrometers. Herein, the up-to-date design strategies for fabricating multiscale OSs are comprehensively reviewed. Related representative works are introduced, applications in practical devices are discussed, and future research directions are presented. Design strategies combining the advances in organic synthetic chemistry and supramolecular assembly technology perform an integral role in the development of a new generation of multiscale OSs.
Collapse
Affiliation(s)
- Ling Bai
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Ning Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, No. 2 # Zhongguancun North First Street, Beijing, 100190, P. R. China
| |
Collapse
|
10
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
11
|
Lin H, Jiang A, Xing S, Li L, Cheng W, Li J, Miao W, Zhou X, Tian L. Advances in Self-Powered Ultraviolet Photodetectors Based on P-N Heterojunction Low-Dimensional Nanostructures. NANOMATERIALS 2022; 12:nano12060910. [PMID: 35335723 PMCID: PMC8953703 DOI: 10.3390/nano12060910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
Abstract
Self-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent years because of their vast applications in the military and civil fields. Among them, self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive research field due to combining the advantages of low-dimensional semiconductor nanostructures (such as large specific surface area, excellent carrier transmission channel, and larger photoconductive gain) with the feature of working independently without an external power source. In this review, a selection of recent developments focused on improving the performance of self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects are summarized. It is expected that more novel, dexterous, and intelligent photodetectors will be developed as soon as possible on the basis of these works.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| | - Ao Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Shibo Xing
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Lun Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wenxi Cheng
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Jinling Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wei Miao
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Xuefei Zhou
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Li Tian
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| |
Collapse
|
12
|
Chaaban M, Ben-Akacha A, Worku M, Lee S, Neu J, Lin X, Vellore Winfred JSR, Delzer CJ, Hayward JP, Du MH, Siegrist T, Ma B. Metal Halide Scaffolded Assemblies of Organic Molecules with Enhanced Emission and Room Temperature Phosphorescence. J Phys Chem Lett 2021; 12:8229-8236. [PMID: 34423990 DOI: 10.1021/acs.jpclett.1c02354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ionically bonded organic metal halide hybrids have emerged as versatile multicomponent material systems exhibiting unique and useful properties. The unlimited combinations of organic cations and metal halides lead to the tremendous structural diversity of this class of materials, which could unlock many undiscovered properties of both organic cations and metal halides. Here we report the synthesis and characterization of a series benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb2X5 (X = Cl, Br), in which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides are found to exhibit enhanced photoluminescence and stability as compared to the pristine BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and theoretical calculations reveal that BZQ+ cations are responsible for the emissions in these hybrid materials. Changing the halide from Cl to Br introduces heavy atom effects, resulting in yellow room temperature phosphorescence (RTP) from BZQ+ cations.
Collapse
Affiliation(s)
- Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Michael Worku
- Materials Science and Engineering Program, Florida State University, Tallahassee, Florida 32306, United States
| | - Sujin Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jennifer Neu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - J S Raaj Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cordell J Delzer
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jason P Hayward
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mao-Hua Du
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Theo Siegrist
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Materials Science and Engineering Program, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
13
|
Hannewald N, Winterwerber P, Zechel S, Ng DYW, Hager MD, Weil T, Schubert US. DNA Origami Meets Polymers: A Powerful Tool for the Design of Defined Nanostructures. Angew Chem Int Ed Engl 2021; 60:6218-6229. [PMID: 32649033 PMCID: PMC7984297 DOI: 10.1002/anie.202005907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/19/2022]
Abstract
The combination of DNA origami nanostructures and polymers provides a new possibility to access defined structures in the 100 nm range. In general, DNA origami serves as a versatile template for the highly specific arrangement of polymer chains. Polymer-DNA hybrid nanostructures can either be created by growing the polymer from the DNA template or by attaching preformed polymers to the DNA scaffold. These conjugations can be of a covalent nature or be based on base-pair hybridization between respectively modified polymers and DNA origami. Furthermore, the negatively charged DNA backbone permits interaction with positively charged polyelectrolytes to form stable complexes. The combination of polymers with tuneable characteristics and DNA origami allows the creation of a new class of hybrid materials, which could offer exciting applications for controlled energy transfer, nanoscale organic circuits, or the templated synthesis of nanopatterned polymeric structures.
Collapse
Affiliation(s)
- Nadine Hannewald
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Pia Winterwerber
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - David Y. W. Ng
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| |
Collapse
|
14
|
Sheng W, Wang Z, Hao E, Jiao L. Ultalong nanowires self-assembled from a [b]-bisphenanthrene-fused azadipyrromethene. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zhao K, Zhang Q, Chen L, Zhang T, Han Y. Nucleation and Growth of P(NDI2OD-T2) Nanowires via Side Chain Ordering and Backbone Planarization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Zheng Y, Li J, Ji D, Dong H, Li L, Fuchs H, Hu W. Copper Tetracyanoquinodimethane: From Micro/Nanostructures to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004143. [PMID: 33301234 DOI: 10.1002/smll.202004143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Copper tetracyanoquinodimethane (CuTCNQ) has been investigated around 40 years as a representative bistable material. Meanwhile, micro/nanostructures of CuTCNQ is considered as the prototype of molecular electronics, which have attracted the world's attention and shown great potential applications in nanoelectronics. In this review, methods for synthesis of CuTCNQ micro/nanostructures are first summarized briefly. Then, the strategies for controlling morphologies and sizes of CuTCNQ micro/nanostructures are highlighted. Afterwards, the devices based on these micro/nanostructures are reviewed. Finally, an outlook of future research directions and challenges in this area is presented.
Collapse
Affiliation(s)
- Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, Münster, 48149, Germany
- Center for Nanotechnology, Heisenbergstraße 11, Münster, 48149, Germany
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
17
|
Cui C, Park DH, Ahn DJ. Organic Semiconductor-DNA Hybrid Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002213. [PMID: 33035387 DOI: 10.1002/adma.202002213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors are photonic and electronic materials with high luminescence, quantum efficiency, color tunability, and size-dependent optoelectronic properties. The self-assembly of organic molecules enables the establishment of a fabrication technique for organic micro- and nano-architectures with well-defined shapes, tunable sizes, and defect-free structures. DNAs, a class of biomacromolecules, have recently been used as an engineering material capable of intricate nanoscale structuring while simultaneously storing biological genetic information. Here, the up-to-date research on hybrid materials made from organic semiconductors and DNAs is presented. The trends in photonic and electronic phenomena discovered in DNA-functionalized and DNA-driven organic semiconductor hybrids, comprising small molecules and polymers, are observed. Various hybrid forms of solutions, arrayed chips, nanowires, and crystalline particles are discussed, focusing on the role of DNA in the hybrids. Furthermore, the recent technical advances achieved in the integration of DNAs in light-emitting devices, transistors, waveguides, sensors, and biological assays are presented. DNAs not only serve as a recognizing element in organic-semiconductor-based sensors, but also as an active charge-control material in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Chunzhi Cui
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, 133002, China
| | - Dong Hyuk Park
- Department of Chemical Engineering, Inha University, Incheon, 22212, Korea
| | - Dong June Ahn
- KU-KIST Graduate School of Converging Science and Technology and Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| |
Collapse
|
18
|
Hannewald N, Winterwerber P, Zechel S, Ng DYW, Hager MD, Weil T, Schubert US. Kombination von DNA‐Origami und Polymeren: Eine leistungsstarke Methode zum Aufbau definierter Nanostrukturen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nadine Hannewald
- Lehrstuhl für Organische und Makromolekulare Chemie (IOMC) Friedrich-Schiller-Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Jena Center for Soft Matter (JCSM) Friedrich-Schiller-Universität Jena Philosophenweg 7 07743 Jena Deutschland
| | - Pia Winterwerber
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Stefan Zechel
- Lehrstuhl für Organische und Makromolekulare Chemie (IOMC) Friedrich-Schiller-Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Jena Center for Soft Matter (JCSM) Friedrich-Schiller-Universität Jena Philosophenweg 7 07743 Jena Deutschland
| | - David Y. W. Ng
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Martin D. Hager
- Lehrstuhl für Organische und Makromolekulare Chemie (IOMC) Friedrich-Schiller-Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Jena Center for Soft Matter (JCSM) Friedrich-Schiller-Universität Jena Philosophenweg 7 07743 Jena Deutschland
| | - Tanja Weil
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Ulrich S. Schubert
- Lehrstuhl für Organische und Makromolekulare Chemie (IOMC) Friedrich-Schiller-Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Jena Center for Soft Matter (JCSM) Friedrich-Schiller-Universität Jena Philosophenweg 7 07743 Jena Deutschland
| |
Collapse
|
19
|
Lu B, Fang X, Yan D. Luminescent Polymorphic Co-crystals: A Promising Way to the Diversity of Molecular Assembly, Fluorescence Polarization, and Optical Waveguide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31940-31951. [PMID: 32551468 DOI: 10.1021/acsami.0c06794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of molecular optoelectronic materials based on fabricating polymorphs and/or co-crystals has received much recent attention in the fields of luminescence, sensors, nonlinear optics, and so on. If the advantages of the two crystal engineering strategies above were combined, the diversity of self-assembly fashions and the tuning of photofunctional performances would be largely extended. However, such multicomponent examples have still been very limited to date. Herein, we report the construction of luminescent polymorphic co-crystals by assembly of tris(pentafluorophenyl)borane (TPFB) with 9,10-dicyanoanthracene (DCA) and acridine (AC) as paradigms. Different stacking modes and arrangement styles based on identical building block units in polymorphic co-crystals result in adjustable crystalline morphologies and variant photophysical properties (such as fluorescence wavelength, lifetimes, and up-conversion luminescence). The optimized photoluminescence quantum yield (63.1%) and lifetime (57.1 ns) are much higher than those of the pristine assembled units. In addition, two polymorphic co-crystals (DCA@TPFB-1 and AC@TPFB-2) present prominent fluorescence polarization and optical waveguide behaviors due to the highly regulated molecular orientation. Their high one-dimensional luminescence anisotropy (0.652) and low optical waveguide loss (0.0079 dB/μm) outperform most state-of-the-art low-dimensional molecular systems and thus endow them with great opportunities for photonic materials and devices. Therefore, this work not only confirms that constructing polymorphic co-crystals can be an effective way to design new photofunctional materials for luminescence and photonic applications but also discloses a deep understanding on the relationship between variant self-assembled fashions and tunable photofunctional properties of new TPFB-based molecular materials.
Collapse
Affiliation(s)
- Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
20
|
Hafner RJ, Görl D, Sienkiewicz A, Balog S, Frauenrath H. Long‐Lived Photocharges in Supramolecular Polymers of Low‐Band‐Gap Chromophores. Chemistry 2020; 26:9506-9517. [DOI: 10.1002/chem.201904561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Regina J. Hafner
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-STI-IMX-LMOM, MXG 037, Station 12 1015 Lausanne Switzerland
| | - Daniel Görl
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-STI-IMX-LMOM, MXG 037, Station 12 1015 Lausanne Switzerland
| | - Andrzej Sienkiewicz
- Institute of Condensed Matter PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-SB-IPHYS-LPMC, PH L 1 491, Station 3 1015 Lausanne Switzerland
| | - Sandor Balog
- Adolphe Merkle InstituteUniversité de Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Holger Frauenrath
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-STI-IMX-LMOM, MXG 037, Station 12 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Kim YJ, Lee Y, Park K, Ahn CW, Jung HT, Jeon HJ. Hierarchical Self-Assembly of Perylene Diimide (PDI) Crystals. J Phys Chem Lett 2020; 11:3934-3940. [PMID: 32352788 DOI: 10.1021/acs.jpclett.0c01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling molecular self-assembly of organic semiconductors is a key factor in enhancing the performance of organic electronics and optoelectronics. However, unlike various p-type organic semiconductors, it has proven elusive to control molecular self-assembly with about tens of nm dimensions using n-type organic semiconductors including perylene diimide (PDI), which is the most promising alternative to fullerene derivatives, without using an additional synthetic method or additives, thus far. Here, we developed a simple self-assembling method for the hierarchical self-assembly of PDI crystals with nanometer-to-micrometer scale features using pristine PDI-C8 without using an additional synthetic method or additive. Interestingly, we observed crystalline and optical properties of self-assembled PDI crystals depending on their size and structural features. In addition, we fabricated p-n junctions composed of PDI and poly(3-hexylthiophene) (P3HT), where the p-n junctions had coassembled and blended nanomorphologies, and confirmed that coassembled nanomorphologies enabled more effective energy transfer than the blended nanomorphologies.
Collapse
Affiliation(s)
- Yong-Jae Kim
- Department of Chemical and Biomolecular Engineering (BK-21 PLUS), Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yonghee Lee
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kangho Park
- Department of Chemical and Biomolecular Engineering (BK-21 PLUS), Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi Won Ahn
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 PLUS), Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hwan-Jin Jeon
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, 237, Sangidaehak-ro, Si-heung-si, Gyeonggi-do 15073, Republic of Korea
| |
Collapse
|
22
|
Domínguez R, Moral M, Fernández-Liencres MP, Peña-Ruiz T, Tolosa J, Canales-Vázquez J, García-Martínez JC, Navarro A, Garzón-Ruiz A. Understanding the Driving Mechanisms of Enhanced Luminescence Emission of Oligo(styryl)benzenes and Tri(styryl)-s-triazine. Chemistry 2020; 26:3373-3384. [PMID: 31967698 DOI: 10.1002/chem.201905336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Indexed: 01/23/2023]
Abstract
This work is focused on unraveling the mechanisms responsible for the aggregation-induced enhanced emission and solid-state luminescence enhancement effects observed in star-shaped molecules based on 1,3,5-tris(styryl)benzene and tri(styryl)-s-triazine cores. To achieve this, the photophysical properties of this set of molecules were analyzed in three states: free molecules, molecular aggregates in solution, and the solid state. Different spectroscopy and microscopy experiments and DFT calculations were conducted to scrutinize the causative mechanisms of the luminescence enhancement phenomenon observed in some experimental conditions. Enhanced luminescence emission was interpreted in the context of short- and long-range excitonic coupling mechanisms and the restriction of intramolecular vibrations. Additionally, we found that the formation of π-stacking aggregates could block E/Z photoisomerization through torsional motions between phenylene rings in the excited state, and hence, enhancing the luminescence of the system.
Collapse
Affiliation(s)
- Rocío Domínguez
- Department of Inorganic, Organic and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain.,Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Almansa s/n, 02071, Albacete, Spain
| | - Mónica Moral
- Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071, Albacete, Spain
| | - M Paz Fernández-Liencres
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Tomás Peña-Ruiz
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Juan Tolosa
- Department of Inorganic, Organic and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain.,Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Almansa s/n, 02071, Albacete, Spain
| | - Jesús Canales-Vázquez
- Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071, Albacete, Spain
| | - Joaquín C García-Martínez
- Department of Inorganic, Organic and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain.,Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Almansa s/n, 02071, Albacete, Spain
| | - Amparo Navarro
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Andrés Garzón-Ruiz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain
| |
Collapse
|
23
|
Paolino M, Reale A, Razzano V, Giorgi G, Giuliani G, Villafiorita-Monteleone F, Botta C, Coppola C, Sinicropi A, Cappelli A. Design, synthesis, structure, and photophysical features of highly emissive cinnamic derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02429e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New cinnamic derivatives 1a–c were designed starting from the chromophores working in polybenzofulvene derivatives poly-6-DMFL-BF3k, poly-6-MCBZ-BF3k, and poly-6-TPA-BF3k endowed with outstanding optoelectronic performances.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)
- Università degli Studi di Siena, Via Aldo Moro 2
- 53100 Siena
- Italy
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)
- Università degli Studi di Siena, Via Aldo Moro 2
- 53100 Siena
- Italy
| | - Vincenzo Razzano
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)
- Università degli Studi di Siena, Via Aldo Moro 2
- 53100 Siena
- Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)
- Università degli Studi di Siena, Via Aldo Moro 2
- 53100 Siena
- Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)
- Università degli Studi di Siena, Via Aldo Moro 2
- 53100 Siena
- Italy
| | | | - Chiara Botta
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” – SCITEC (CNR), Via A. Corti 12
- 20133 Milano
- Italy
| | - Carmen Coppola
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena
- 53100 Siena
- Italy
- Center for Colloid and Surface Science (CSGI)
- 50019 Firenze
| | - Adalgisa Sinicropi
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena
- 53100 Siena
- Italy
- Center for Colloid and Surface Science (CSGI)
- 50019 Firenze
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)
- Università degli Studi di Siena, Via Aldo Moro 2
- 53100 Siena
- Italy
| |
Collapse
|
24
|
Ji M, Mason ML, Modarelli DA, Parquette JR. Threading carbon nanotubes through a self-assembled nanotube. Chem Sci 2019; 10:7868-7877. [PMID: 31853346 PMCID: PMC6844271 DOI: 10.1039/c9sc02313e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Achieving the co-assembly of more than one component represents an important challenge in the drive to create functional self-assembled nanomaterials. Multicomponent nanomaterials comprised of several discrete, spatially sorted domains of components with high degrees of internal order are particularly important for applications such as optoelectronics. In this work, single-walled carbon nanotubes (SWNTs) were threaded through the inner channel of nanotubes formed by the bolaamphiphilic self-assembly of a naphthalenediimide-lysine (NDI-Bola) monomer. The self-assembly process was driven by electrostatic interactions, as indicated by ζ-potential measurements, and cation-π interactions between the surface of the SWNT and the positively charged, NDI-Bola nanotube interior. To increase the threading efficiency, the NDI-Bola nanotubes were fragmented into shortened segments with lengths of <100 nm via sonication-induced shear, prior to co-assembly with the SWNTs. The threading process created an initial composite nanostructure in which the SWNTs were threaded by multiple, shortened segments of the NDI-Bola nanotube that progressively re-elongated along the SWNT surface into a continuous radial coating around the SWNT. The resultant composite structure displayed NDI-Bola wall thicknesses twice that of the parent nanotube, reflecting a bilayer wall structure, as compared to the monolayer structure of the parent NDI-Bola nanotube. As a final, co-axial outer layer, poly(p-phenyleneethynylene) (PPE-SO3Na, M W = 5.76 × 104, PDI - 1.11) was wrapped around the SWNT/NDI-Bola composite resulting in a three-component (SWNT/NDI-Bola/PPE-SO3Na) composite nanostructure.
Collapse
Affiliation(s)
- Mingyang Ji
- Department of Chemistry , The Ohio State University , 100 W. 18th Ave. , Columbus , Ohio 43210 , USA .
| | - McKensie L Mason
- Department of Chemistry , The Ohio State University , 100 W. 18th Ave. , Columbus , Ohio 43210 , USA .
| | - David A Modarelli
- Department of Chemistry , Center for Laser and Optical Spectroscopy , Knight Chemical Laboratory , The University of Akron , Akron , Ohio 44325-3601 , USA
| | - Jon R Parquette
- Department of Chemistry , The Ohio State University , 100 W. 18th Ave. , Columbus , Ohio 43210 , USA .
| |
Collapse
|
25
|
Pathan S, Noguchi H, Yamada N, Kuwahara Y, Takafuji M, Oda R, Ihara H. Fabrication of Fluorescent One-dimensional-nanocomposites through One-pot Self-assembling Polymerization on Nano-helical Silica. CHEM LETT 2019. [DOI: 10.1246/cl.190339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaheen Pathan
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Chemistry and Biology of Membranes and Nano-object, UMR5248 (CBMN), CNRS – Université de Bordeaux – Bordeaux INP, 2 rue Robert Escarpit, Pessac 33607, France
| | - Hiroki Noguchi
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Nobuo Yamada
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Reiko Oda
- Institute of Chemistry and Biology of Membranes and Nano-object, UMR5248 (CBMN), CNRS – Université de Bordeaux – Bordeaux INP, 2 rue Robert Escarpit, Pessac 33607, France
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
26
|
Wang Z, Cheng Q, Xing P, Cao Z, Hao A. Hydrogen bonded co-assembly of aromatic amino acids and bipyridines that serves as a sacrificial template in superstructure formation. SOFT MATTER 2019; 15:6596-6603. [PMID: 31378793 DOI: 10.1039/c9sm01271k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design and fabrication of superstructures are intriguing yet challenging tasks, which require delicate operations at micro/nanoscale such as template-directed seeding or etching processes. In this study, we prepared integrated one dimensional (1D) microrods from co-assembled N-terminated aromatic amino acids and bipyridines that could serve as sacrificial templates for micro-superstructure formation. Organic polar solvents were utilized for generating a co-assembly that showed selectivity to both molecular topology of building blocks and solvent environments via thermodynamic and kinetic manners. The addition of specific transition metal ions would extract bipyridines from crystalline microrods, leading to well-aligned engraved motifs along the 1D direction as well as the emergence of ordered packed nanostructures on microrod surfaces. Responsive to types of metal ions, diverse superstructures such as etched sculptures and surface-encapsulated heterojunctions of metal-bipyridine coordination polymers were constructed. This study offers a proof-of-concept exploration in the rational design of 1D crystalline micro-superstructures via non-covalent complexation towards potential applications in electrical and optical applications.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Aiyou Hao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
27
|
Cao X, Zhao K, Chen L, Liu J, Han Y. Conjugated polymer single crystals and nanowires. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and EngineeringHunan University of Science and Technology Xiangtan P. R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Jiangang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| |
Collapse
|
28
|
He X, Xie X, Wang J, Ma X, Xie Y, Gu J, Xiao N, Qiu J. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. NANOSCALE 2019; 11:6610-6619. [PMID: 30900702 DOI: 10.1039/c9nr00068b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is a big challenge to synthesize ultrathin carbon nanonets with an enhanced charge transfer capability for high-performance energy storage devices. Herein, ultrathin carbon nanonets (UCNs) were successfully synthesized for the first time from fluorene, a typical aromatic molecule, by a template strategy for supercapacitors. The formation mechanism of UCNs was determined using Density Functional Theory and Materials Studio, in which the fluorene-derived radicals were assembled into UCNs in the template-confinement space with the assistance of KOH. The as-made UCNs feature interconnected high-conductivity net-like architectures with enhanced charge transfer capability, evidenced by their high capacitance, excellent rate performance and cycling stability for symmetrical supercapacitors in a KOH electrolyte. This finding may provide a significant step forward in understanding the formation mechanism of graphene-like materials from more complicated aromatic hydrocarbon molecules, and our work may draw wide attention in the fields of aromatic chemistry and carbon-based energy storage materials.
Collapse
Affiliation(s)
- Xiaojun He
- Anhui Key Lab of Coal Clean Conversion and Utilization, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dolai S, Barrio J, Peng G, Grafmüller A, Shalom M. Tailoring carbon nitride properties and photoactivity by interfacial engineering of hydrogen-bonded frameworks. NANOSCALE 2019; 11:5564-5570. [PMID: 30860536 DOI: 10.1039/c9nr00711c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rational synthesis of carbon nitride materials, ranging from polymeric carbon nitride to nitrogen-doped carbon, by supramolecular preorganization of their monomers is a powerful tool for the design of their morphology and photophysical and catalytic activities. Here we show a new facile and scalable approach for the synthesis of ordered CN materials with excellent photoactivity, which consists of supramolecular interfacial preorganization of CN monomers at the interface of two non-miscible solvents. Molecular dynamic simulations supported by experimental results reveal that an appropriate choice of monomers and solvents leads to the formation of a supramolecular assembly solely at the interface of the solvents. As a proof of concept, we show that the properties of the CN materials after thermal condensation can be tuned by adding an additional monomer to one solvent only. The advantages of the new method are demonstrated here through the tunable morphologies and surface area, the formation of new electronic junctions and high activity as a photocatalyst for hydrogen evolution and pollutant degradation of the CN materials.
Collapse
Affiliation(s)
- Susmita Dolai
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | | | | | | | | |
Collapse
|
30
|
Lin H, Chen K, Li M, Ji B, Jia Y, Liu X, Li J, Song W, Guan C. Constructing a Green Light Photodetector on Inorganic/Organic Semiconductor Homogeneous Hybrid Nanowire Arrays with Remarkably Enhanced Photoelectric Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10146-10152. [PMID: 30777746 DOI: 10.1021/acsami.8b20340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate that a novel photodetector is constructed by CdS/poly( p-phenylene vinylene) (PPV) homogeneous hybrid nanowire arrays via a simple template-assisted electrochemical codeposition approach. Owing to the well-matched energy levels between CdS and PPV, the recombination of photogenerated electrons and holes in CdS/PPV hybrid nanowire arrays is greatly inhibited. It is found that the homogeneous hybrid nanowire arrays exhibit remarkably enhanced photoelectric response and the ON/OFF ratio by 17 times compared to the individual CdS component. More importantly, the CdS/PPV hybrid nanowire arrays are observed with significant spectral selectivity especially for green light under 545 nm. In addition, a straight linear relationship is obtained between the ON/OFF ratios and the illumination intensities, implying that the quantitative detection of illumination intensity can be achieved. The new as-prepared homogeneous hybrid organic/inorganic semiconductor nanowire arrays have a bright prospect for applications in high-sensitivity and high-speed green photodetectors.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Kai Chen
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Mingke Li
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Beibei Ji
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yaohui Jia
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Xinyu Liu
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jinling Li
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Weiqiang Song
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Chunlong Guan
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| |
Collapse
|
31
|
Zha B, Li J, Wu J, Miao X, Zhang M. Cooperation and competition of hydrogen and halogen bonds in 2D self-assembled nanostructures based on bromine substituted coumarins. NEW J CHEM 2019. [DOI: 10.1039/c9nj04726c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three coumarin derivatives (Co16, 6-Br-Co16 and 6,8-Br-Co16) with ester, ether, and carbonyl groups and different numbers of bromine substituents on the coumarin cores were synthesized.
Collapse
Affiliation(s)
- Bao Zha
- School of Electronic and Computer Engineering
- Peking University
- Shenzhen 518055
- People's Republic of China
- Shenzhen China Star Optoelectronics Technology Co., Ltd
| | - Jinxing Li
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Juntian Wu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Min Zhang
- School of Electronic and Computer Engineering
- Peking University
- Shenzhen 518055
- People's Republic of China
| |
Collapse
|
32
|
Chan AKW, Yam VWW. Precise Modulation of Molecular Building Blocks from Tweezers to Rectangles for Recognition and Stimuli-Responsive Processes. Acc Chem Res 2018; 51:3041-3051. [PMID: 30427166 DOI: 10.1021/acs.accounts.8b00339] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alkynylplatinum(II) terpyridine complexes have been increasingly explored since the previous decades, mainly arising from their intriguing photophysical properties and aggregation affinities associated with their extensive Pt(II)···Pt(II) and π-π stacking interactions. Through molecular engineering, one can modulate their fundamental properties and assembly behavior by introduction of various functional groups and structural features. They can therefore serve as ideal candidates to construct metal complex-based molecular architectures to provide an alternative to organic compounds. The metal-based framework can be simultaneously built from predetermined building blocks, giving rise to their well-defined, unique, and discrete natures for molecular recognition. The individual constituents can contribute to molecular architectures with their integrated properties, allowing the manipulation of the various noncovalent intermolecular forces and interactions for selective guest capture. In this Account, our recent progress in the development of these metallomolecular frameworks based on the alkynylplatinum(II) terpyridine system and their recognition properties toward different guest molecules will be presented. Phosphorescent molecular tweezers have been constructed from the alkynylplatinum(II) terpyridine moiety to demonstrate host-guest interactions with cationic, charge-neutral and anionic platinum(II), palladium(II), gold(I), and gold(III) complexes and their binding affinities were found to be perturbed by different metal···metal, π-π and electrostatic interactions. The host-guest assembly process has also resulted in dramatic color changes, together with the turning on of near-IR (NIR) emissions as a result of extensive Pt(II)···Pt(II) interactions. Further work has also been performed to demonstrate that the tweezers can selectively recognize π-surfaces of different planar π-conjugated organic guests. The framework of molecular tweezers has been extended to a double-decker tweezers structure, or a triple-decker structure, which can bind two equivalents of square-planar platinum(II) guests cooperatively to induce a significant color change in solution, representing rare examples of discrete Magnus' green-like salts. By the approaches of structural modifications, we have further modulated the host architecture from molecular tweezers to molecular rectangles. The rectangles have been found to show selective encapsulation of different transition metal complex guests based on the size and steric environment of the host cavity. The molecular rectangles also exhibit reversible host-guest association, in which guest capture and ejection processes can be manipulated by the pH environment, illustrating a potential approach for precise and smart delivery of therapeutic reagents to the slightly more acidic cancer cells.
Collapse
Affiliation(s)
- Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
33
|
Sun Q, Zhu HY, Wang JF, Chen X, Wang KR, Li XL. Supramolecular nanofiber of pyrene-lactose conjugates and its two-photon fluorescence imaging. Bioorg Chem 2018; 79:126-130. [DOI: 10.1016/j.bioorg.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
|
34
|
Zhang L, Chen P, Wang J, Li H, Sun W, Yan P. Anthracene-decorated TiO 2 thin films with the enhanced photoelectrochemical performance. J Colloid Interface Sci 2018; 530:624-630. [PMID: 30005239 DOI: 10.1016/j.jcis.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
New insight of introducing new organic compounds for the efficient photogenerated charge separation is vitally important for the current solar energy conversion. Herein, (2Z,2'Z)-4,4'-(anthracene-2,6-diylbis(azanediyl))bis(4-oxobut-2-enoic acid) (ADA)/TiO2 composite thin film is fabricated through the wet-impregnation strategy, which exhibits excellent photoelectrochemical performance (PEC). A combined study of ultraviolet-visible absorption spectra, scanning Kelvin probe maps, electrochemical and photoelectrochemical measurements reveals that the ADA/TiO2 composite with narrow bandgap of 2.42 eV extends the photo response to the visible light region. The photocurrent generated by the optimal ADA/TiO2 is 2.5 times higher than that of the pristine TiO2. The result is attributed to the broader light absorption range and the separation of photoelectrons and holes prompted by ADA. Moreover, the high stability of the ADA/TiO2 composite favors the practical application. The present work may offer a promising strategy for the low-cost PEC cell in the clean solar hydrogen production.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| | - Jiliang Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Wenbin Sun
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
35
|
Chan AKW, Ng M, Low KH, Yam VWW. Versatile Control of Directed Supramolecular Assembly via Subtle Changes of the Rhodium(I) Pincer Building Blocks. J Am Chem Soc 2018; 140:8321-8329. [DOI: 10.1021/jacs.8b04687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Kam-Hung Low
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| |
Collapse
|
36
|
Zhao S, Han F, Li J, Meng X, Huang W, Cao D, Zhang G, Sun R, Wong CP. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800047. [PMID: 29707894 DOI: 10.1002/smll.201800047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Copper nanowires (CuNWs) are attracting a myriad of attention due to their preponderant electric conductivity, optoelectronic and mechanical properties, high electrocatalytic efficiency, and large abundance. Recently, great endeavors are undertaken to develop controllable and facile approaches to synthesize CuNWs with high dispersibility, oxidation resistance, and zero defects for future large-scale nano-enabled materials. Herein, this work provides a comprehensive review of current remarkable advancements in CuNWs. The Review starts with a thorough overview of recently developed synthetic strategies and growth mechanisms to achieve single-crystalline CuNWs and fivefold twinned CuNWs by the reduction of Cu(I) and Cu(II) ions, respectively. Following is a discussion of CuNW purification and multidimensional assemblies comprising films, aerogels, and arrays. Next, several effective approaches to protect CuNWs from oxidation are highlighted. The emerging applications of CuNWs in diverse fields are then focused on, with particular emphasis on optoelectronics, energy storage/conversion, catalysis, wearable electronics, and thermal management, followed by a brief comment on the current challenges and future research directions. The central theme of the Review is to provide an intimate correlation among the synthesis, structure, properties, and applications of CuNWs.
Collapse
Affiliation(s)
- Songfang Zhao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Fei Han
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jinhui Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiangying Meng
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Wangping Huang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Duxia Cao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Guoping Zhang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
37
|
Hu S, Xiao W, Yang W, Yang J, Fang Y, Xiong J, Luo Z, Deng H, Guo Y, Zhang L, Ding J. Molecular O 2 Activation over Cu(I)-Mediated C≡N Bond for Low-Temperature CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17167-17174. [PMID: 29682956 DOI: 10.1021/acsami.8b02367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The activation of molecular oxygen (O2) is extremely crucial in heterogeneous oxidations for various industrial applications. Here, a charge-transfer complex CuTCNQ nanowire (CuTCNQ NW) array grown on the copper foam was first reported to show CO catalytic oxidation activity at a temperature below 200 °C with the activated O2 as an oxidant. The molecular O2 was energetically activated over the Cu(I)-mediated C≡N bond with a lower energy of -1.167 eV and preferentially reduced to •O2- through one-electron transfer during the activation process by density functional theory calculations and electron paramagnetic resonance. The theoretical calculations indicated that the CO molecule was oxidized by the activated O2 on the CuTCNQ NW surface via the Eley-Rideal mechanism, which had been further confirmed by in situ diffuse reflectance infrared Fourier transform spectra. These results indicated that the local C≡N bond electron-state engineering could effectively improve the molecular O2 activation efficiency, which facilitates the low-temperature CO catalytic oxidation. The findings reported here enhance our understanding on the molecular oxygen activation pathway over metal-organic nanocatalysts and provide a new avenue for rational design of novel low-cost, organic-based heterogeneous catalysts.
Collapse
Affiliation(s)
- Siyu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Wen Xiao
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Weiwei Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Juxia Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Hongtao Deng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Jun Ding
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| |
Collapse
|
38
|
Xing P, Li Y, Wang Y, Li PZ, Chen H, Phua SZF, Zhao Y. Water-Binding-Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pengyao Xing
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
| | - Yang Wang
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
| | - Pei-Zhou Li
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link 637371 Singapore
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
39
|
Xing P, Li Y, Wang Y, Li PZ, Chen H, Phua SZF, Zhao Y. Water-Binding-Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angew Chem Int Ed Engl 2018; 57:7774-7779. [PMID: 29696772 DOI: 10.1002/anie.201802825] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/08/2022]
Abstract
Determination of molecular structural parameters of hydrophobic cholesterol-naphthalimide conjugates for water binding capabilities as well as their moisture-sensitive supramolecular self-assembly were revealed. Water binding was a key factor in leading trace water-induced crystallization against gelation in apolar solvent. Ordered water molecules entrapped in self-assembly arrays revealed by crystal structures behave as hydrogen-bonding linkers to facilitate three-dimensional growth into crystals rather than one-dimensional gel nanofibers. Water binding was also reflected on the supramolecular chirality inversion of vesicle self-assembly in aqueous media via heating-induced dehydration. Structural parameters that favor water binding were evaluated in detail, which could help rationally design organic building units for advancing soft materials, crystal engineering, and chiral recognition.
Collapse
Affiliation(s)
- Pengyao Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Pei-Zhou Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
40
|
Xu H, Zhou Y, Zhang J, Jin J, Liu G, Li Y, Ganguly R, Huang L, Xu W, Zhu D, Huang W, Zhang Q. Polymer-Assisted Single Crystal Engineering of Organic Semiconductors To Alter Electron Transport. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11837-11842. [PMID: 29578675 DOI: 10.1021/acsami.8b01731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new crystal phase of a naphthalenediimide derivative (α-DPNDI) has been prepared via a facial polymer-assisted method. The stacking pattern of DPNDI can be tailored from the known one-dimensional (1D) ribbon (β phase) to a novel two-dimensional (2D) plate (α phase) through the assistance from polymers. We believe that the presence of polymers during crystal growth is likely to weaken the direct π-π interactions and favor side-to-side C-H-π contacts. Furthermore, β phase architecture shows electron mobility higher than that of the α phase in the single-crystal-based OFET. Theoretical calculations not only confirm that β-DPNDI has an electron transport performance better than that of the α phase but also indicate that the α phase crystal displays 2D transport while the β phase possesses 1D transport. Our results clearly suggest that polymer-assisted crystal engineering should be a promising approach to alter the electronic properties of organic semiconductors.
Collapse
Affiliation(s)
- Haixiao Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Yecheng Zhou
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Jianqun Jin
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | | | | | | | - Li Huang
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , Shaanxi , China
| | | |
Collapse
|
41
|
Guo K, Zhang F, Guo S, Li K, Lu X, Li J, Wang H, Cheng J, Zhao Q. Achieving red/near-infrared mechanoresponsive luminescence turn-on: mechanically disturbed metastable nanostructures in organic solids. Chem Commun (Camb) 2018; 53:1309-1312. [PMID: 28070571 DOI: 10.1039/c6cc09186e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two slightly twisted A-π-D-π-A molecules were prepared to demonstrate that the red/near-infrared mechanoresponsive luminescence turn-on behaviors could be realized through mechanically disturbing their weakly/non-emissive metastable nanostructures, giving emissive amorphous aggregates with λem = 620 nm, ΦF = 12% (h-DIPT) and λem = 700 nm, ΦF = 10% (DIPT), respectively.
Collapse
Affiliation(s)
- Kunpeng Guo
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Fang Zhang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Song Guo
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Ke Li
- College of Science, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xiaoqing Lu
- College of Science, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Jie Li
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Hua Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jun Cheng
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
42
|
Wan Q, To WP, Yang C, Che CM. The Metal-Metal-to-Ligand Charge Transfer Excited State and Supramolecular Polymerization of Luminescent Pincer PdII
-Isocyanide Complexes. Angew Chem Int Ed Engl 2018; 57:3089-3093. [DOI: 10.1002/anie.201712249] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Qingyun Wan
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen Guangdong 518053 China
| |
Collapse
|
43
|
Wan Q, To WP, Yang C, Che CM. The Metal-Metal-to-Ligand Charge Transfer Excited State and Supramolecular Polymerization of Luminescent Pincer PdII
-Isocyanide Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingyun Wan
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Institute of Molecular Functional Materials; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen Guangdong 518053 China
| |
Collapse
|
44
|
Xing P, Chen H, Xiang H, Zhao Y. Selective Coassembly of Aromatic Amino Acids to Fabricate Hydrogels with Light Irradiation-Induced Emission for Fluorescent Imprint. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705633. [PMID: 29226605 DOI: 10.1002/adma.201705633] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Controlling the structural parameters in coassembly is crucial for the fabrication of multicomponent functional materials. Here a proof-of-concept study is presented to reveal the α-substituent effect of aromatic amino acids on their selective coassembly with bipyridine binders. With the assistance of X-ray scattering technique, it is found that individual packing in the solid state as well as bulky effect brought by α-substitution determines the occurrence of coassembly. A well-performed hydrogels based on the complexation between certain aromatic amino acids and bipyridine units are successfully constructed, providing unprecedented smart materials with light irradiation-triggered luminescence. Such hydrogels without the phase separation and photobleaching during light irradiation are able to behave fluorescent imprint materials. This study provides a suitable protocol in rationally designing amino acid residues of short peptides for fabricating self-assembled multicomponent materials. In addition, this protocol is useful in screening potential functional materials on account of diverse self-assembly behavior.
Collapse
Affiliation(s)
- Pengyao Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huijing Xiang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
45
|
Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. 2D Organic Materials for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702415. [PMID: 29024065 DOI: 10.1002/adma.201702415] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/15/2017] [Indexed: 06/07/2023]
Abstract
The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D-materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self-assembly monolayers, and covalent organic frameworks. The protocols for 2D-organic-crystal-fabrication and -patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented.
Collapse
Affiliation(s)
- Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Shanshan Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaochen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
46
|
Wang B, Anpo M, Wang X. Visible Light-Responsive Photocatalysts—From TiO 2 to Carbon Nitrides and Boron Carbon Nitride. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Song X, Yu H, Zhang Y, Miao Y, Ye K, Wang Y. Controllable morphology and self-assembly of one-dimensional luminescent crystals based on alkyl-fluoro-substituted dithienophenazines. CrystEngComm 2018. [DOI: 10.1039/c8ce00021b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A class of dithienophenazine derivatives, 9,10-difluoro-2,5-dialkyldithieno[3,2-a:2′,3′-c]phenazine (F-n, n = 4, 5, 6, 7 and 8), modified with various lengths of linear alkyl chains were synthesized and used as building blocks to assemble luminescent one-dimensional (1D) nano/microcrystals.
Collapse
Affiliation(s)
- Xiaoxian Song
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hanbo Yu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yuewei Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yang Miao
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
48
|
Zhang K, Yeung MCL, Leung SYL, Yam VWW. Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers. Proc Natl Acad Sci U S A 2017; 114:11844-11849. [PMID: 29078381 PMCID: PMC5692582 DOI: 10.1073/pnas.1712827114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An important feature of biological systems to achieve complexity and precision is the involvement of multiple components where each component plays its own role and collaborates with other components. Mimicking this, we report living supramolecular polymerization achieved by collaborative assembly of two structurally dissimilar components, that is, platinum(II) complexes and poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA). The PAA blocks neutralize the charges of the platinum(II) complexes, with the noncovalent metal-metal and π-π interactions directing the longitudinal growth of the platinum(II) complexes into 1D crystalline nanostructures, and the PEG blocks inhibiting the transverse growth of the platinum(II) complexes and providing the whole system with excellent solubility. The ends of the 1D crystalline nanostructures have been found to be active during the assembly and remain active after the assembly. One-dimensional segmented nanostructures with heterojunctions have been produced by sequential growth of two types of platinum(II) complexes. The PAA blocks act as adapters at the heterojunctions for lattice matching between chemically and crystallographically different platinum(II) complexes, achieving heterojunctions with a lattice mismatch as large as 21%.
Collapse
Affiliation(s)
- Kaka Zhang
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
49
|
Ji M, Dawadi MB, LaSalla AR, Sun Y, Modarelli DA, Parquette JR. Strategy for the Co-Assembly of Co-Axial Nanotube-Polymer Hybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9129-9136. [PMID: 28805395 DOI: 10.1021/acs.langmuir.7b02245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructured materials having multiple, discrete domains of sorted components are particularly important to create efficient optoelectronics. The construction of multicomponent nanostructures from self-assembled components is exceptionally challenging due to the propensity of noncovalent materials to undergo structural reorganization in the presence of excipient polymers. This work demonstrates that polymer-nanotube composites comprised of a self-assembled nanotube wrapped with two conjugated polymers could be assembled using a layer-by-layer approach. The polymer-nanotube nanostructures arrange polymer layers coaxially on the nanotube surface. Femtosecond transient absorption (TA) studies indicated that the polymer-nanotube composites undergo photoinduced charge separation upon excitation of the NDI chromophore within the nanotube.
Collapse
Affiliation(s)
- Mingyang Ji
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| | - Mahesh B Dawadi
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron , Akron, Ohio 44325-3601, United States
| | - Alexandria R LaSalla
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| | - Yuan Sun
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| | - David A Modarelli
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron , Akron, Ohio 44325-3601, United States
| | - Jon R Parquette
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| |
Collapse
|
50
|
Xiao Y, Wang FX, Yang JM, Zhang MR, Pan GB. Direct physical vapor deposition and flexible photoelectrical properties of large-area free-standing films of metal octaethylporphyrin on ionic liquid surface. Sci Rep 2017; 7:9838. [PMID: 28852101 PMCID: PMC5575091 DOI: 10.1038/s41598-017-10293-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Free-standing films of metal octaethylporphyrins (MOEPs) were prepared for the first time by a physical vapor deposition on surface of an ionic liquid (IL). Different from those on solid surfaces, the as-obtained films were very compact and with plannar structure. The monitoring of time-dependent process indicated that the high surface energy of IL and the strong π…π interaction between MOEP molecules played key roles in forming such films. Furthermore, the as-obtained film showed good transferability, which made it possible to be easily transferred to any substrates for further device application. More importantly, the prototype photodetectors based on free-standing films of MOEP showed ultra flexibility, mechanical stability, and durability.
Collapse
Affiliation(s)
- Yan Xiao
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences Suzhou, 215125, Jiangsu, China.,University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Feng-Xia Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences Suzhou, 215125, Jiangsu, China
| | - Jia-Mei Yang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences Suzhou, 215125, Jiangsu, China
| | - Miao-Rong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences Suzhou, 215125, Jiangsu, China.,University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Ge-Bo Pan
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences Suzhou, 215125, Jiangsu, China.
| |
Collapse
|