1
|
Sabadini JB, Oliveira CLP, Loh W. Do ethoxylated polymeric coacervate micelles respond to temperature similarly to ethoxylated surfactant aggregates? J Colloid Interface Sci 2025; 678:1012-1021. [PMID: 39232474 DOI: 10.1016/j.jcis.2024.08.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
HYPOTHESIS Ethoxylated complex coacervate core micelles (C3Ms), formed by the electrostatic coacervation of a charge-neutral diblock copolymer and an oppositely charged homopolymer, exhibit morphology governed by molecular packing principles. Additionally, this morphology is temperature-dependent, leading to transitions similar to those observed in classical ethoxylated surfactant aggregates. EXPERIMENTS To explore the thermal effects on the size and morphology of C3Ms, we employed dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). These techniques were applied to C3Ms formed by copolymers with varying poly(ethylene oxide) (EO) lengths. FINDINGS Increasing the temperature-induced a transition from spherical to elongated aggregates, contingent on the EO block length. This morphological transition in EO-containing C3Ms parallels the behavior of classical ethoxylated surfactant aggregates. Despite the fundamental differences between hydrophobically driven and electrostatic coacervate micelles, our findings suggest that similar molecular packing principles are universally applicable across both systems. Our results offer valuable insights for predicting the structural properties of these coacervate platforms, which is crucial for envisioning their future applications.
Collapse
Affiliation(s)
- Júlia Bonesso Sabadini
- Institute of Chemistry, University of Campinas (UNICAMP), P.O Box 6154, Campinas, SP, Brazil.
| | | | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O Box 6154, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Chee CH, Benharush R, Knight LR, Laaser JE. Segregative phase separation of strong polyelectrolyte complexes at high salt and high polymer concentrations. SOFT MATTER 2024; 20:8505-8514. [PMID: 39415735 DOI: 10.1039/d4sm00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The phase behavior of polyelectrolyte complexes and coacervates (PECs) at low salt concentrations has been well characterized, but their behavior at concentrations well above the binodal is not well understood. Here, we investigate the phase behavior of stoichiometric poly(styrene sulfonate)/poly(diallyldimethylammonium) mixtures at high salt and high polymer concentrations. Samples were prepared by direct mixing of PSS/PDADMA PECs, water, and salt (KBr). Phase separation was observed at salt concentrations approximately 1 M above the binodal. Characterization by thermogravimetric analysis, FTIR, and NMR revealed that both phases contained significant amounts of polymer, and that the polymer-rich phase was enriched in PSS, while the polymer-poor phase was enriched in PDADMA. These results suggest that high salt concentrations drive salting out of the more hydrophobic polyelectrolyte (PSS), consistent with behavior observed in weak polyelectrolyte systems. Interestingly, at the highest salt and polymer concentrations studied, the polymer-rich phase contained both PSS and PDADMA, suggesting that high salt concentrations can drive salting out of partially-neutralized complexes as well. Characterization of the behavior of PECs in the high concentration limit appears to be a fruitful avenue for deepening fundamental understanding of the molecular-scale factors driving phase separation in these systems.
Collapse
Affiliation(s)
- Conner H Chee
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| | - Rotem Benharush
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| | - Lexi R Knight
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Li J, Li L, Lindhoud S. Achieving lysozyme functionalization in PDADMAC-NaPSS saloplastics through salt annealing. RSC Adv 2024; 14:32863-32875. [PMID: 39429930 PMCID: PMC11487472 DOI: 10.1039/d4ra04986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Hot-pressed saloplastics are dense and transparent polyelectrolyte complex materials governed by ionic crosslinking. Such plastics have several advantages, for example, salt water processibility and recyclability. Here, we demonstrate a simple but effective post-treatment method to incorporate lysozyme as a biocatalytic component into the hot-pressed saloplastics. Changes in salt concentration can be used for annealing and curing the saloplastics, where the temporary opening allows for lysozyme loading. This process was carefully examined by two different routes and the salt concentrations and incubation times were varied systematically. Optimised saloplastics showed an enzymatic activity against Micrococcus lysodeikticus of 4.44 ± 0.37 U cm-2 and remained partially active (∼72% activity preserved) after 7 days. This approach opens new routes to incorporate enzymes or other biological functionality into saloplastics which is difficult to achieve for conventional plastics.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology P. O. Box 217 7500 AE Enschede The Netherlands
| | - Lijie Li
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology P. O. Box 217 7500 AE Enschede The Netherlands
| | - Saskia Lindhoud
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology P. O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
4
|
Allegri G, Huskens J, Martinho RP, Lindhoud S. Distribution of polyelectrolytes and counterions upon polyelectrolyte complexation. J Colloid Interface Sci 2024; 672:654-663. [PMID: 38865879 DOI: 10.1016/j.jcis.2024.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
HYPOTHESIS Understanding polyelectrolyte complexation remains limited due to the absence of a systematic methodology for analyzing the distribution of components between the polyelectrolyte complex (PEC) and the dilute phases. EXPERIMENTS We developed a methodology based on NMR to quantify all components of solid-like PECs and their supernatant phases formed by mixing different ratios of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid)-sodium salt (PAA). This approach allowed for determining relative and absolute concentrations of polyelectrolytes in both phases by 1H NMR studies. Using 23Na and 35Cl NMR spectroscopy we measured the concentration of counterions in both phases. FINDINGS Regardless of the mixing ratio of the polyelectrolytes the PEC is charge-stoichiometric, and any excess polyelectrolytes to achieve charge stoichiometry remains in the supernatant phase. The majority of counterions were found in the supernatant phase, confirming counterion release being a major thermodynamic driving force for PEC formation. The counterion concentrations in the PEC phase were approximately twice as high as in the supernatant phase. The complete mass balance of PEC formation could be determined and translated into a molecular picture. It appears that PAH is fully charged, while PAA is more protonated, so less charged, and some 10% extrinsic PAH-Cl- pairs are present in the complex.
Collapse
Affiliation(s)
- Giulia Allegri
- Molecular Nanofabrication Group, Department for Molecules & Materials, MESA+ Institute & Faculty of Science Technology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, Department for Molecules & Materials, MESA+ Institute & Faculty of Science Technology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Ricardo P Martinho
- Biomolecular Nanotechnology Group, Department for Molecules & Materials, MESA+ Institute & Faculty of Science Technology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Saskia Lindhoud
- Molecular Nanofabrication Group, Department for Molecules & Materials, MESA+ Institute & Faculty of Science Technology, University of Twente, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
5
|
Yu J, Tavsanli B, Tamminga MJ, Gillies ER. Compact Polyelectrolyte Complexes of Poly(l-Lysine) and Anionic Polysaccharides. Biomacromolecules 2024; 25:5160-5168. [PMID: 39041825 DOI: 10.1021/acs.biomac.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compact polyelectrolyte complexes (CoPECs) can exhibit mechanical properties similar to those of biological tissues and other interesting properties, such as self-healing. To date, a variety of CoPECs prepared from synthetic polyelectrolytes have been investigated, but there are very few examples based entirely on biopolymers. We describe here an investigation of CoPECs based on poly(l-lysine) (PLL) with sodium hyaluronate (HA) and alginate (Alg). A 2:1 ratio of cation:anion and 0.25 M NaBr was beneficial for the formation of viscoelastic PLL-HA CoPECs, with the favorable ratio attributed to the spacing of carboxylates on HA being one every two saccharide units. In contrast, 1.0 M NaBr and a 1:1 ratio were better for PLL-Alg CoPECs. Both CoPECs swelled or retained a constant volume when immersed in hypertonic media, but contracted in hypotonic media. The loading of molecules into the PLL-HA (2:1) CoPECs was investigated. Higher loadings were achieved for anionic molecules compared to cations, presumably due to the excess cationic binding sites on the networks. The times required for full release of the molecules ranged from less than 2 h for neutral paracetamol to about 48 h for crystal violet and diclofenac.
Collapse
Affiliation(s)
- Jaehak Yu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Burak Tavsanli
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Micah J Tamminga
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
6
|
Holkar A, Gao S, Villaseñor K, Lake M, Srivastava S. Quantitative turbidimetric characterization of stabilized complex coacervate dispersions. SOFT MATTER 2024; 20:5060-5070. [PMID: 38743276 DOI: 10.1039/d3sm01761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stabilizing complex coacervate microdroplets is desirable due to their various applications, such as bioreactors, drug delivery vehicles, and encapsulants. Here, we present quantitative characterization of complex coacervate dispersion stability inferred by turbidimetry measurements. The stability of the dispersions is shown to be modulated by the concentrations of comb polyelectrolyte (cPE) stabilizers and salt. We demonstrate cPEs as effective stabilizers for complex coacervate dispersions independent of the chemistry or length of the constituent polyelectrolytes, salts, or preparation routes. By monitoring the temporal evolution of dispersion turbidity, we show that cPEs suppress microdroplet coalescence with minimal change in microdroplet sizes over 48 hours, even at salt concentrations up to 300 mM. The number density and average microdroplet size are shown to be controlled by varying the cPE and salt concentrations. Lastly, turbidity maps, akin to binodal phase maps, depict an expansion of the turbid two-phase region and an increase in the salt resistance of the coacervates upon the introduction of cPEs. The coacervate salt resistance is shown to increase by >3×, and this increase is maintained for up to 15 days, demonstrating that cPEs impart higher salt resistance over extended durations.
Collapse
Affiliation(s)
- Advait Holkar
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shang Gao
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kathleen Villaseñor
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Lake
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samanvaya Srivastava
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Lalwani S, Hellikson K, Batys P, Lutkenhaus JL. Counter Anion Type Influences the Glass Transition Temperature of Polyelectrolyte Complexes. Macromolecules 2024; 57:4695-4705. [PMID: 38827958 PMCID: PMC11140738 DOI: 10.1021/acs.macromol.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Salt acts as a plasticizer in polyelectrolyte complexes (PECs), which impacts the physical, thermal, and mechanical properties, thus having implications in applications, such as drug delivery, energy storage, and smart coatings. Added salt disrupts polycation-polyanion intrinsic ion pairs, lowering a hydrated PEC's glass transition temperature (Tg). However, the relative influence of counterion type on the PEC's Tg is not well understood. Here, the effect of anion type (NaCl, NaBr, NaNO3, and NaI) on the Tg of solid-like, hydrated PECs composed of poly(diallydimethylammonium) (PDADMA)-poly(styrenesulfonate) (PSS) is investigated. With increasing the chaotropic nature of the salt anion, the Tg decreases. The relative differences are attributed to the doping level, the amount of bound water, the mobility of water molecules within the PECs, and the strength of interactions between the PEs. For all studied salt concentrations and salt types, the Tg followed the scaling of -1/Tg ≈ ln([IP]/[H2O]), in which [IP]/[H2O] is the ratio of intrinsic pairs to water. The scaling estimates that about 7 to 17% of the intrinsic ion pairs should be weakened for the PEC to partake in a glass transition. Put together, this study highlights that the Tg in PECs is impacted by the salt anion, but the mechanism of the glass transition remains unchanged.
Collapse
Affiliation(s)
- Suvesh
Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kayla Hellikson
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL-30239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
8
|
Li L, Wang R, Zhao B, Yin B, Zhang H, Liang C, Hu X. Enzyme-Triggered Polyelectrolyte Complex for Responsive Delivery of α-Helical Polypeptides to Optimize Antibacterial Therapy. Biomacromolecules 2024; 25:3112-3121. [PMID: 38651274 DOI: 10.1021/acs.biomac.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 μg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed β-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.
Collapse
Affiliation(s)
- Liuxuan Li
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Ruoxue Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Bo Zhao
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Bowen Yin
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Huijuan Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Chunyong Liang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
9
|
Es Sayed J, Mukherjee A, El Aani S, Vengallur N, Koch M, Giuntoli A, Kamperman M. Structure-Property Relationships of Granular Hybrid Hydrogels Formed through Polyelectrolyte Complexation. Macromolecules 2024; 57:3190-3201. [PMID: 38616812 PMCID: PMC11008357 DOI: 10.1021/acs.macromol.3c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Hybrid hydrogels are hydrogels that exhibit heterogeneity in the network architecture by means of chemical composition and/or microstructure. The different types of interactions, together with structural heterogeneity, which can be created on different length scales, determine the mechanical properties of the final material to a large extent. In this work, the microstructure-mechanical property relationships for a hybrid hydrogel that contains both electrostatic and covalent interactions are investigated. The hybrid hydrogel is composed of a microphase-separated polyelectrolyte complex network (PEC) made of poly(4-styrenesulfonate) and poly(diallyldimethylammonium chloride) within a soft and elastic polyacrylamide hydrogel network. The system exhibits a granular structure, which is attributed to the liquid-liquid phase separation into complex coacervate droplets induced by the polymerization and the subsequent crowding effect of the polyacrylamide chains. The coacervate droplets are further hardened into PEC granules upon desalting the hydrogel. The structure formation is confirmed by a combination of electron microscopic imaging and molecular dynamics simulations. The interpenetration of both networks is shown to enhance the toughness of the resulting hydrogels due to the dissipative behavior of the PEC through the rupture of electrostatic interactions. Upon cyclic loading-unloading, the hydrogels show recovery of up to 80% of their original dissipative behavior in less than 300 s of rest with limited plasticity. The granular architecture and the tough and self-recoverable properties of the designed hybrid networks make them good candidates for applications, such as shape-memory materials, actuators, biological tissue mimics, and elastic substrates for soft sensors.
Collapse
Affiliation(s)
- Julien Es Sayed
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Adrivit Mukherjee
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siham El Aani
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nayan Vengallur
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus Koch
- INM
− Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Andrea Giuntoli
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Wang J, Li XY, Qian HL, Wang XW, Wang YX, Ren KF, Ji J. Robust, Sprayable, and Multifunctional Hydrogel Coating through a Polycation Reinforced (PCR) Surface Bridging Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310216. [PMID: 38237136 DOI: 10.1002/adma.202310216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The sprayable hydrogel coatings that can establish robust adhesion onto diverse materials and devices hold enormous potential; however, a significant challenge persists due to monomer hydration, which impedes even coverage during spraying and induces inadequate adhesion post-gelation. Herein, a polycation-reinforced (PCR) surface bridging strategy is presented to achieve tough and sprayable hydrogel coatings onto diverse materials. The polycations offer superior wettability and instant electrostatic interactions with plasma-treated substrates, facilitating an effective spraying application. This PCR-based hydrogel coatings demonstrate tough adhesion performance to inert PTFE and silicone, including remarkable shear strength (161 ± 49 kPa for PTFE), interfacial toughness (198 ± 27 J m-2 for PTFE), and notable tolerance to cyclic tension (10 000 cycles, 200% strain, silicone). Meanwhile, this method can be applied to various hydrogel formulations, offering diverse functionalities, including underwater adhesion, lubrication, and drug delivery. Furthermore, the PCR concept enables the conformal construction of durable hydrogel coatings onto sophisticated medical devices like cardiovascular stents. Given its simplicity and adaptability, this approach paves an avenue for incorporating hydrogels onto solid surfaces and potentially promotes untapped applications.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| | - Xin-Yi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
11
|
Li J, de Heer Kloots MHP, van Ewijk G, van Dijken DJ, de Vos WM, van der Gucht J. Evaporation-Induced Polyelectrolyte Complexation: The Role of Base Volatility and Cosolvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2531-2542. [PMID: 38258284 PMCID: PMC10851664 DOI: 10.1021/acs.langmuir.3c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Film formation is a vital step for coating applications where a homogeneous, defect-free solid phase should be obtained, starting from a liquid casting formulation. Recently, an alternative waterborne-coating approach was proposed, based on the formation of a polyelectrolyte complex film. In this approach, an evaporating base induces a pH change during drying that initiates the complexation of oppositely charged polyelectrolytes, followed by further densification. In previous studies, ammonia was used as the evaporative base, leading to relatively fast evaporation and resulting in films showing significant brittleness, which tended to crack at low relative humidity or larger thicknesses. We hypothesize that slower complexation and/or evaporation can reduce the problematic stress build-up in the prepared polyelectrolyte complex coatings. For this reason, we studied the changes in the film formation process when there are different bases and cosolvents. We found that reducing the evaporation rate by changing ammonia to the slower evaporating dimethylamine or by adding DMSO as a cosolvent, led to less internal stress build-up during film formation, which could be beneficial for film application. Indeed, films prepared with ammonia showed cracking after 1 h, while films prepared with dimethylamine only showed cracking after one month. The fast evaporation of ammonia was also found to cause a temporary turbid phase, indicating phase separation, while for the slower evaporating bases, this did not occur. All prepared films remained sensitive to humidity, which poses the next challenge for these promising coatings.
Collapse
Affiliation(s)
- Jiaying Li
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | - Gerard van Ewijk
- AkzoNobel,
Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | | | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jasper van der Gucht
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, 6708 WEWageningen, The Netherlands
| |
Collapse
|
12
|
Liang ZX, Chen HD, Hu CK, Fang YX, Fang YP, Lu CX, Wang J, Mi L, Chen XC. Microporous Polyelectrolyte Complexes by Hydroplastic Foaming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1892-1901. [PMID: 38192235 DOI: 10.1021/acs.langmuir.3c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.
Collapse
Affiliation(s)
- Zi-Xuan Liang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hao-Dong Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Kui Hu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yi-Xuan Fang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - You-Peng Fang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Xin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jing Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
13
|
van Westerveld L, Pelras T, Hofman AH, Loos K, Kamperman M, Es Sayed J. Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives. Macromolecules 2024; 57:652-663. [PMID: 38283122 PMCID: PMC10810003 DOI: 10.1021/acs.macromol.3c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
It is well-known that the phase behavior and physicochemical and adhesive properties of complex coacervates are readily tuneable with the salt concentration of the medium. For toxicity reasons, however, the maximum applicable salt concentration in biomedical applications is typically low. Consequently, other strategies must be implemented in order to optimize the properties of the resulting complex coacervates. In this work, the effect of the charge density of a strong polyanion on the properties of complex coacervates was studied. To control this charge density, statistical anionic/charge-neutral hydrophilic copolymers were synthesized by means of an elegant protection/deprotection strategy and subsequently complexed with a strong polycation. The resulting complexes were observed to have an increasing water content as well as faster relaxation dynamics, with either increasing salt concentration or decreasing charge density. Time-salt and time-salt-charge density superpositions could be performed and showed that the relaxation mechanism of the complex coacervates remained unchanged. When the charge density was decreased, lower salt concentration complexes became suitable for viscoelastic adhesion with improved injectability. Such complex coacervates are promising candidates for injectable biomedical adhesives.
Collapse
Affiliation(s)
- Larissa van Westerveld
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Théophile Pelras
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Anton H. Hofman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Julien Es Sayed
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
14
|
van Lange SGM, te Brake DW, Portale G, Palanisamy A, Sprakel J, van der Gucht J. Moderated ionic bonding for water-free recyclable polyelectrolyte complex materials. SCIENCE ADVANCES 2024; 10:eadi3606. [PMID: 38198554 PMCID: PMC10780884 DOI: 10.1126/sciadv.adi3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
While nature extensively uses electrostatic bonding between oppositely charged polymers to assemble and stabilize materials, harnessing these interactions in synthetic systems has been challenging. Synthetic materials cross-linked with a high density of ionic bonds, such as polyelectrolyte complexes, only function properly when their charge interactions are attenuated in the presence of ample amounts of water; dehydrating these materials creates such strong Coulombic bonding that they become brittle, non-thermoplastic, and virtually impossible to process. We present a strategy to intrinsically moderate the electrostatic bond strengths in apolar polymeric solids by the covalent grafting of attenuator spacers to the charge carrying moieties. This produces a class of polyelectrolyte materials that have a charge density of 100%, are processable and malleable without requiring water, are highly solvent- and water-resistant, and are fully recyclable. These materials, which we coin "compleximers," marry the properties of thermoplastics and thermosets using tailored ionic bonding alone.
Collapse
Affiliation(s)
- Sophie G. M. van Lange
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Diane W. te Brake
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Anbazhagan Palanisamy
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| |
Collapse
|
15
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
16
|
Li H, Lalwani SM, Eneh CI, Braide T, Batys P, Sammalkorpi M, Lutkenhaus JL. A Perspective on the Glass Transition and the Dynamics of Polyelectrolyte Multilayers and Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14823-14839. [PMID: 37819874 PMCID: PMC10863056 DOI: 10.1021/acs.langmuir.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Polyelectrolyte multilayers (PEMs) or polyelectrolyte complexes (PECs), formed by layer-by-layer assembly or the mixing of oppositely charged polyelectrolytes (PEs) in aqueous solution, respectively, have potential applications in health, energy, and the environment. PEMs and PECs are very tunable because their structure and properties are influenced by factors such as pH, ionic strength, salt type, humidity, and temperature. Therefore, it is increasingly important to understand how these factors affect PECs and PEMs on a molecular level. In this Feature Article, we summarize our contributions to the field in the development of approaches to quantify the swelling, thermal properties, and dynamic mechanical properties of PEMs and PECs. First, the role of water as a plasticizer and in the glass-transition temperature (Tg) in both strong poly(diallyldimethylammonium)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) and weak poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) systems is presented. Then, factors influencing the dynamics of PECs and PEMs are discussed. We also reflect on the swelling of PEMs in response to different salts and solvent additives. Last, the nature of water's microenvironment in PEMs/PECs is discussed. A special emphasis is placed on experimental techniques, along with molecular simulations. Taken together, this review presents an outlook and offers recommendations for future research directions, such as studying the additional effects of hydrogen-bonding hydrophobic interactions.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Chikaodinaka I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tamunoemi Braide
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77840, United States
| |
Collapse
|
17
|
Chowdhury A, Borgia A, Ghosh S, Sottini A, Mitra S, Eapen RS, Borgia MB, Yang T, Galvanetto N, Ivanović MT, Łukijańczuk P, Zhu R, Nettels D, Kundagrami A, Schuler B. Driving forces of the complex formation between highly charged disordered proteins. Proc Natl Acad Sci U S A 2023; 120:e2304036120. [PMID: 37796987 PMCID: PMC10576128 DOI: 10.1073/pnas.2304036120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Soumik Mitra
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Rohan S. Eapen
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | | | - Tianjin Yang
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Paweł Łukijańczuk
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Ruijing Zhu
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Arindam Kundagrami
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
18
|
Wang W, Zhang C, Huang H, Xue B, Yang S. Ambient Environment Adaptive Elastomer Constructed by Microphase Separation and Segment Complexation of Triblock Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22426-22434. [PMID: 37126649 DOI: 10.1021/acsami.3c02931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Elastomers with environmental adaption have attracted considerable attention for advanced applications in various areas. Here, we fabricate an ambient environment adaptive elastomer by assembling triblock copolymers polystyrene-b-poly(acrylic acid)-b-polystyrene (SAS) and polystyrene-b-poly(ethylene oxide)-b-polystyrene (SES). Owing to the microphase separation of triblock polymers and hydrogen-bonding complexation of their middle segments, the SAS/SES complex presents dichotomy of vitrified hard PS domains and soft PAA/PEO domains, which presents major relaxation transition in the temperature zone 10-30 °C and relative humidity (RH) 40-60%. The SAS/SES elastomer presents quick adaption to the ambient environment change with temperature and humidity coupling. Moreover, after a loading-unloading cycle training, the SAS/SES elastomer exhibits domain orientation, low energy dissipation, high recovery ratio, and distinct strain stiffening compared with the pristine complex. The SAS/SES elastomer has potential to be used as a sensing and adaption component for complicated intelligent systems.
Collapse
Affiliation(s)
- Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Caihong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
19
|
Krishna B A, de Vos WM, Lindhoud S. Control over Charge Density by Tuning the Polyelectrolyte Type and Monomer Ratio in Saloplastic-Based Ion-Exchange Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6874-6884. [PMID: 37126784 DOI: 10.1021/acs.langmuir.3c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Membranes based on polyelectrolyte complexes (PECs) can now be prepared through several sustainable, organic solvent-free approaches. A recently developed approach allows PECs made by stoichiometric mixing of polyelectrolytes to be hot-pressed into dense saloplastics, which then function as ion-exchange membranes. An important advantage of PECs is that tuning their properties can provide significant control over the properties of the fabricated materials, and thus over their separation properties. This work studies the effects of two key parameters─(a) ratio of mixing and (b) choice of polyelectrolytes─on the mechanical, material, and separation properties of their corresponding hot-pressed saloplastic-based ion-exchange membranes. By varying these two main parameters, charge density─the key property of any IEM─was found to be controllable. While studying several systems, including strong/strong, strong/weak, and weak/weak combinations of polyelectrolytes, it was observed that not all systems could be processed into saloplastic membranes. For the processable systems, expected trends were observed where a higher excess of one polyelectrolyte would lead to a more charged system, resulting in higher water uptake and better permselectivities. An anomaly was the polystyrenesulfonate-polyvinylamine system, which showed an opposite trend with a higher polycation ratio, leading to a more negative charge. Overall, we have found that it is possible to successfully fabricate saloplastic-based anion- and cation-exchange membranes with tunable charge densities through careful choice of polyelectrolyte combination and ratio of mixing.
Collapse
Affiliation(s)
- Ameya Krishna B
- Membrane Surface Science, Membrane Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Overijssel 7500 AE, The Netherlands
- Department of Molecules and Materials, University of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| | - Wiebe M de Vos
- Membrane Surface Science, Membrane Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| | - Saskia Lindhoud
- Department of Molecules and Materials, University of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| |
Collapse
|
20
|
Benselfelt T, Kummer N, Nordenström M, Fall AB, Nyström G, Wågberg L. The Colloidal Properties of Nanocellulose. CHEMSUSCHEM 2023; 16:e202201955. [PMID: 36650954 DOI: 10.1002/cssc.202201955] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Malin Nordenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | | | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| |
Collapse
|
21
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
22
|
Sagawa T, Nikaido Y, Iijima K, Sakaguchi M, Yataka Y, Hashizume M. Preparation of Mechanically Anisotropic Polysaccharide Composite Films Using Roll-Press Techniques. ACS OMEGA 2023; 8:5607-5616. [PMID: 36816663 PMCID: PMC9933227 DOI: 10.1021/acsomega.2c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Natural polysaccharides are biocompatible and biodegradable; therefore, they can be used as feedstock for biodegradable structural materials and biomaterials. In this study, anisotropic polysaccharide composite films consisting of chondroitin sulfate C (CS) and chitosan (CHI) were fabricated from their polyion complex (PIC) gels by roll-press techniques. The obtained films (CS/CHI films) were thin and transparent, similar to the composite films prepared by hot-press techniques. The roll-press conditions were optimized, and it was observed that the molecular weight of CHI did not significantly affect the formability of the films, whereas the roll temperature and rolling speed were important. The tensile tests of the roll-pressed films revealed that the mechanical strength of the films in the mechanical direction (MD) was approximately 5 times higher than that in the transverse direction (TD), indicating that the roll-press techniques imparted mechanical anisotropy to the films. Additionally, the films shrank in the MD and expanded in the TD after immersion in aqueous solutions, followed by drying. Such anisotropic shrinking and expanding properties indicate that these films can be used as shape-memory materials.
Collapse
Affiliation(s)
- Takuya Sagawa
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Graduate
School of Engineering, Tokyo University
of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuichi Nikaido
- Graduate
School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Kazutoshi Iijima
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masahiro Sakaguchi
- Graduate
School of Engineering, Tokyo University
of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yusuke Yataka
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Mineo Hashizume
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Graduate
School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
- Graduate
School of Engineering, Tokyo University
of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
23
|
Akintola J, Digby ZA, Schlenoff JB. Polyelectrolyte Complexes as Desiccants: Thirsty Saloplastics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9962-9969. [PMID: 36749323 DOI: 10.1021/acsami.2c19934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Desiccants or drying agents are used extensively to remove water from liquids and gases. Many organic reactions, from the laboratory to the industrial scale, are sensitive to even trace amounts of water. A new class of desiccants made from complexed polyelectrolytes, PECs, is described here, exploiting the affinity of charged polymer repeat units for water. The enthalpy of hydration of dry PECs was used for the first time as a quantitative measure of PEC water affinity. Several combinations of positive, Pol+, and negative, Pol-, polymers were used to prepare PECs. All of these displayed significant exothermic (favorable) enthalpies of hydration, measured at room temperature using solution calorimetry. A PEC made from poly(diallyldimethylammonium) and poly(styrene sulfonate) was extruded into convenient shapes. This PEC was used to dry three common solvents, acetonitrile, tetrahydrofuran, and toluene, representing a range of polarities. Added water was radiolabeled with tritium to provide accurate and sensitive detection of residual water after treatment. This PEC was almost as efficient as the comparison desiccants, molecular sieve 3A and calcium sulfate, after 3 days of static drying but could be regenerated at a lower temperature (120 °C) and shed far fewer dust particles.
Collapse
Affiliation(s)
- John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Zachary A Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
24
|
Sun J, Monreal Santiago G, Yan F, Zhou W, Rudolf P, Portale G, Kamperman M. Bioinspired Processing of Keratin into Upcycled Fibers through pH-Induced Coacervation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1985-1994. [PMID: 36778523 PMCID: PMC9906721 DOI: 10.1021/acssuschemeng.2c06865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Keratin is an important byproduct of the animal industry, but almost all of it ends up in landfills due to a lack of efficient recycling methods. To make better use of keratin-based natural resources, the current extraction and processing strategies need to be improved or replaced by more sustainable and cost-effective processes. Here, we developed a simple and environmentally benign method to process extracted keratin, using HCl to induce the formation of a coacervate, a separate aqueous phase with a very high protein concentration. Remarkably, this pH-induced coacervation did not result in the denaturation of keratin, and we could even observe an increase in the amount of ordered secondary structures. The low-pH coacervates could be extruded and wet-spun into high-performance keratin fibers, without requiring heating or any organic solvents. The secondary structure of keratin was largely conserved in these regenerated fibers, which exhibited excellent mechanical performance. The process developed in this study represents a simple and environmentally friendly strategy to upcycle waste keratin into high-performance materials.
Collapse
Affiliation(s)
- Jianwu Sun
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Feng Yan
- Surfaces
and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Surfaces
and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Giuseppe Portale
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
25
|
A mini-review on bio-inspired polymer self-assembly: single-component and interactive polymer systems. Emerg Top Life Sci 2022; 6:593-607. [PMID: 36254846 DOI: 10.1042/etls20220057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
Biology demonstrates meticulous ways to control biomaterials self-assemble into ordered and disordered structures to carry out necessary bioprocesses. Empowering the synthetic polymers to self-assemble like biomaterials is a hallmark of polymer physics studies. Unlike protein engineering, polymer science demystifies self-assembly by purposely embedding particular functional groups into the backbone of the polymer while isolating others. The polymer field has now entered an era of advancing materials design by mimicking nature to a very large extend. For example, we can make sequence-specific polymers to study highly ordered mesostructures similar to studying proteins, and use charged polymers to study liquid-liquid phase separation as in membraneless organelles. This mini-review summarizes recent advances in studying self-assembly using bio-inspired strategies on single-component and multi-component systems. Sequence-defined techniques are used to make on-demand hybrid materials to isolate the effects of chirality and chemistry in synthetic block copolymer self-assembly. In the meantime, sequence patterning leads to more hierarchical assemblies comprised of only hydrophobic and hydrophilic comonomers. The second half of the review discusses complex coacervates formed as a result of the associative charge interactions of oppositely charged polyelectrolytes. The tunable phase behavior and viscoelasticity are unique in studying liquid macrophase separation because the slow polymer relaxation comes primarily from charge interactions. Studies of bio-inspired polymer self-assembly significantly impact how we optimize user-defined materials on a molecular level.
Collapse
|
26
|
Sun J, Monreal Santiago G, Zhou W, Portale G, Kamperman M. Water-Processable, Stretchable, and Ion-Conducting Coacervate Fibers from Keratin Associations with Polyelectrolytes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:15968-15977. [PMID: 36507097 PMCID: PMC9727776 DOI: 10.1021/acssuschemeng.2c05411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Keratin is one of the most abundant biopolymers, produced on a scale of millions of tons per year but often simply discarded as waste. Due to its abundance, biocompatibility, and excellent mechanical properties, there is an extremely high interest in developing protocols for the recycling of keratin and its conversion into protein-based materials. In this work, we describe a novel protocol for the conversion of keratin from wool into hybrid fibers. Our protocol uses a synthetic polyanion, which undergoes complex coacervation with keratin, leading to a viscous liquid phase that can be used directly as a dope for dry-spinning. The use of polyelectrolyte complexation allows us to use all of the extracted keratin, unlike previous works that were limited to the fraction with the highest molecular weight. The fibers prepared by this protocol show excellent mechanical properties, humidity responsiveness, and ion conductivity, which makes them promising candidates for applications as a strain sensor.
Collapse
Affiliation(s)
- Jianwu Sun
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Guillermo Monreal Santiago
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The
Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering
and Technology Institute Groningen, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Giuseppe Portale
- Macromolecular
Chemistry and New Polymeric Material, Zernike
Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
27
|
He H, Chen R, Yue S, Yu S, Wei J, Ouyang J. Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. SCIENCE ADVANCES 2022; 8:eabq8160. [PMID: 36427298 PMCID: PMC9699665 DOI: 10.1126/sciadv.abq8160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
High mechanical ductility and high mechanical strength are important for materials including polymers. Current methods to increase the ductility of polymers such as plasticization always cause a remarkable drop in the ultimate tensile strength. There is no report on the ductilization of polymers that can notably increase the elongation at break while not lowering the ultimate tensile strength. Here, we report the salt-induced ductilization of an intrinsically conducting polymer, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Treating highly conductive PEDOT:PSS with a salt such as sodium perchlorate can enhance its elongation at break from 8.5 to 53.2%, whereas it hardly affects the tensile strength. Moreover, the resistance of the ductilized PEDOT:PSS films is insensitive to the tensile strain before fracture and slightly increases by only ~6% during the cyclic tensile testing with the strain up to 30%. These effects are ascribed to the decrease in the Coulomb attraction between PEDOT+ and PSS- by the salt ions.
Collapse
Affiliation(s)
- Hao He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
| | - Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Shizhong Yue
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
| | - Suzhu Yu
- Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore
- Harbin Institute of Technology, University Town of Shenzhen, Shenzhen 518055, P. R. China
| | - Jun Wei
- Harbin Institute of Technology, University Town of Shenzhen, Shenzhen 518055, P. R. China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
- NUS Research Institute, No 16 South Huashan Road, Liangjiang New Area, Chongqing, China
| |
Collapse
|
28
|
Kong R, Ren J, Mo M, Zhang L, Zhu J. Multifunctional antifogging, self-cleaning, antibacterial, and self-healing coatings based on polyelectrolyte complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Wang H, Zhou X, Wang J, Zhang X, Zhu M, Wang H. Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation. Bioact Mater 2022; 17:261-275. [PMID: 35386455 PMCID: PMC8965085 DOI: 10.1016/j.bioactmat.2022.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
One of the pivotal factors that limit the clinical translation of tissue engineering is the inability to create large volume and complex three-dimensional (3D) tissues, mainly due to the lack of long-range mass transport with many current scaffolds. Here we present a simple yet robust sacrificial strategy to create hierarchical and perfusable microchannel networks within versatile scaffolds via the combination of embedded 3D printing (EB3DP), tunable polyelectrolyte complexes (PEC), and casting methods. The sacrificial templates of PEC filaments (diameter from 120 to 500 μm) with arbitrary 3D configurations were fabricated by EB3DP and then incorporated into various castable matrices (e.g., hydrogels, organic solutions, meltable polymers, etc.). Rapid dissolution of PEC templates within a 2.00 M potassium bromide aqueous solution led to the high fidelity formation of interconnected channels for free mass exchange. The efficacy of such channeled scaffolds for in vitro tissue formation was demonstrated with mouse fibroblasts, showing continuous cell proliferation and ECM deposition. Subcutaneous implantation of channeled silk fibroin (SF) scaffolds with a porosity of 76% could lead to tissue ingrowth as high as 53% in contrast to 5% for those non-channeled controls after 4 weeks. Both histological and immunofluorescence analyses demonstrated that such channeled scaffolds promoted cellularization, vascularization, and host integration along with immunoregulation.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Juan Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Xinping Zhang
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Meifeng Zhu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- College of Life Science, Key Laboratory of Bioactive Materials, State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, PR China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| |
Collapse
|
30
|
Cai H, Wang Z, Utomo NW, Vidavsky Y, Silberstein MN. Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes. SOFT MATTER 2022; 18:7679-7688. [PMID: 36173254 DOI: 10.1039/d2sm00755j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.
Collapse
Affiliation(s)
- Hongyi Cai
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Zhongtong Wang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Nyalaliska W Utomo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yuval Vidavsky
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
31
|
Li S, Wang L, Zhang J, Zhao Z, Yu W, Tan Z, Gao P, Chen X. Combination of natural polyanions and polycations based on interfacial complexation for multi-functionalization of wound dressings. Front Bioeng Biotechnol 2022; 10:1006584. [PMID: 36159700 PMCID: PMC9500409 DOI: 10.3389/fbioe.2022.1006584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-functionalization of wound dressings with natural polymers is meaningful and remains a challenge. The combination of natural polyanions and polycations appears to be a promising strategy. Still, its performances based on current layer-by-layer self-assembly or homogeneous complexation are mutable and limited. Herein, Ca2+-incorporated carboxymethyl cellulose (Ca/Na-CMC) and hydroxypropyltrimethyl ammonium chloride chitosan (HACC) are adopted as the model polyanion and polycation, respectively, to develop multi-functionalized dressings based on interfacial complexation. The dressings exhibit a multilayer structure composed of a polyanion layer (Ca/Na-CMC) for hemostasis and promotion of cell proliferation, a formed polyelectrolyte complex (PEC) layer for structural stability, and a polycation layer (HACC) for antibiosis. Compared to the dressing based on homogeneous complexation, the multilayer dressings show stronger moisture penetrability (around 1,150 g/m2/24 h), higher hemostatic activity, and higher antibacterial rate (up to 100%) and promoted effect on cell proliferation. An in vivo evaluation using a rat full-thickness skin defect model reveals that the multilayer dressings can accelerate wound healing in 2 weeks. Overall, owing to interfacial complexation resulting in separate layers, the performances of polyanions and polycations after combination are more predictable, and their biological functions can be effectively preserved. These findings not only support the extensive application of multilayer dressings but also offer an alternative strategy for multi-functionalizing wound dressings with natural polyanions and polycations.
Collapse
Affiliation(s)
- Shuyang Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Liya Wang
- Department of Gynecologic Oncology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Municipal Key Clinical Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Zijun Zhao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Tan
- Chengdu Customs Technology Center, Chengdu, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingtao Chen
- Sichuan Provincial Laboratory of Orthopaedic Engineering, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Krishna B A, Zwijnenberg HJ, Lindhoud S, de Vos WM. Sustainable K+/Na+ monovalent-selective membranes with hot-pressed PSS-PVA saloplastics. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Luangaramvej P, Wijitsettakun P, Plengplung P, Dubas ST. In‐situ polymerization of polyaniline in
PDADMAC
/
PSS
complex membranes: Effect of the polyelectrolyte stoichiometry. J Appl Polym Sci 2022. [DOI: 10.1002/app.51684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Pisut Wijitsettakun
- The Petroleum and Petrochemical College Chulalongkorn University Bangkok Thailand
| | - Pha‐sita Plengplung
- The Petroleum and Petrochemical College Chulalongkorn University Bangkok Thailand
| | | |
Collapse
|
34
|
Baig M, Pejman M, Willott JD, Tiraferri A, de Vos WM. Polyelectrolyte Complex Hollow Fiber Membranes Prepared via Aqueous Phase Separation. ACS APPLIED POLYMER MATERIALS 2022; 4:1010-1020. [PMID: 35178524 PMCID: PMC8845049 DOI: 10.1021/acsapm.1c01464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/29/2021] [Indexed: 05/08/2023]
Abstract
Hollow fiber (HF) membrane geometry is the preferred choice for most commercial membrane operations. Such fibers are conventionally prepared via the non-solvent-induced phase separation technique, which heavily relies on hazardous and reprotoxic organic solvents such as N-methyl pyrrolidone. A more sustainable alternative, i.e., aqueous phase separation (APS), was introduced recently that utilizes water as a solvent and non-solvent for the production of polymeric membranes. Herein, for the first time, we demonstrate the preparation of sustainable and functional HF membranes via the APS technique in a dry-jet wet spinning process. The dope solution comprising poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI) at high pH along with an aqueous bore liquid is pushed through a single orifice spinneret into a low pH acetate buffer coagulation bath. Here, PEI becomes charged resulting in the formation of a polyelectrolyte complex with PSS. The compositions of the bore liquid and coagulation bath were systematically varied to study their effect on the structure and performance of the HF membranes. The microfiltration-type membranes (permeability ∼500 to 800 L·m-2·h-1·bar-1) with complete retention of emulsion droplets were obtained when the precipitation rate was slow. Increasing the concentration of the acetate buffer in the bath led to the increase in precipitation rate resulting in ultrafiltration-type membranes (permeability ∼12 to 15 L·m-2·h-1·bar-1) having molecular weight cut-offs in the range of ∼7.8-11.6 kDa. The research presented in this work confirms the versatility of APS and moves it another step closer to large-scale use.
Collapse
Affiliation(s)
- Muhammad
Irshad Baig
- Faculty
of Science and Technology, Membrane Science and Technology, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Mehdi Pejman
- Faculty
of Science and Technology, Membrane Science and Technology, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
- Department
of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Joshua D. Willott
- Faculty
of Science and Technology, Membrane Science and Technology, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Wiebe M. de Vos
- Faculty
of Science and Technology, Membrane Science and Technology, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| |
Collapse
|
35
|
Jukić J, Kovačević D, Cindro N, Fink R, Oder M, Milisav AM, Požar J. Predicting the outcomes of interpolyelectrolyte neutralization at surfaces on the basis of complexation experiments and vice versa. SOFT MATTER 2022; 18:744-754. [PMID: 34927650 DOI: 10.1039/d1sm01308d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study was carried out with the aim of establishing how the outcomes of polyelectrolyte multilayer formation can be predicted on the basis of the results of complexation studies in solution and vice versa. For this purpose, the correlation between the processes of complex and multilayer formation involving three pairs of vinylic polyions in solutions of binary 1 : 1 sodium salts (NaX; X = F, Cl, Br, I, NO3, ClO4) was explored by means of dynamic and electrophoretic light scattering, potentiometry, microcalorimetry, spectrophotometry and quartz crystal microbalance. The gradual reactant mixing in solution at lower salt concentrations resulted in a Fuoss-Sadek sequence of events (primary complexes → secondary complexes → 1 : 1 flocculate), whereby the obtained nano-complexes could be successively overcharged. At high salt concentration and with excess polycation present, metastable nano-complexes and precipitates containing surplus of positively charged monomers were formed. The amount of extrinsically compensated charge was in accord with the polycation affinities toward counteranions, established by monitoring the electrolyte-induced aggregation of positively charged nano-complexes. Perfect analogy with respect to counteranion influence on the amount of adsorbed polycation was noticed for corresponding multilayers. Aside from providing a deeper understanding of interpolyelectrolyte neutralization, the gained insights can also be used to steer the polyelectrolyte multilayer composition and properties.
Collapse
Affiliation(s)
- Jasmina Jukić
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Nikola Cindro
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Rok Fink
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| | - Martina Oder
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| | - Ana-Marija Milisav
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| | - Josip Požar
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
36
|
Krishna B A, Willott JD, Lindhoud S, de Vos WM. Hot-pressing polyelectrolyte complexes into tunable dense saloplastics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Faseela KP, Benny AP, Kim Y, Baik S. Highly Conductive Strong Healable Nanocomposites via Diels-Alder Reaction and Filler-Polymer Covalent Bifunctionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104764. [PMID: 34761523 DOI: 10.1002/smll.202104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Healable stretchable conductive nanocomposites have received considerable attention. However, there has been a trade-off between the filler-induced electrical conductivity (σ) and polymer-driven mechanical strength. Here significant enhancements in both σ and mechanical strength by designing reversible covalent bonding of the polymer matrix and filler-matrix covalent bifunctionalization are reported. A polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene grafted with maleic anhydride forms the strong reversible covalent bonding with furfuryl alcohol through the Diels-Alder reaction. Small (7.5 nm) and medium (117 nm) nanosatellite particles are generated by in situ etching of silver flakes, enabling electron tunneling-assisted percolation. The filler-polymer covalent bifunctionalization is achieved by 3-mercaptopropanoic acid. Altogether, this results in high σ (108 300 S m-1 ) and tensile strength (16.4 MPa), breaking the trade-off behavior. A nearly perfect (≈100%) healing efficiency is achieved in both σ and tensile strength. The conductive nanocomposite figure of merit (1.78 T Pa S m-1 ), defined by the product of σ and tensile strength, is orders of magnitude greater than the data in literature. The nanocomposite may find applications in healable strain sensors and electronic materials.
Collapse
Affiliation(s)
- K P Faseela
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Aby Paul Benny
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yongjun Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seunghyun Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
38
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
39
|
Chen Y, Shull KR. Processing Polyelectrolyte Complexes with Deep Eutectic Solvents. ACS Macro Lett 2021; 10:1243-1247. [PMID: 35549044 DOI: 10.1021/acsmacrolett.1c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyelectrolyte complexes (PECs) formed from mixtures of polycations and polyanions are useful in a variety of applications and can be processed by the addition of salt. Salt mediates the ionic interactions within the polyelectrolyte complexes, with appropriately chosen salts enabling complete dissolution of solid PEC in aqueous media. Substantial complications arise from the crystallization of the salt during subsequent processing steps. Here we show that appropriately chosen noncrystallizing deep eutectic solvents can be used to process solid PECs. Mixtures of ethylene glycol and guanidine thiocyanate are used for a particularly effective deep eutectic solvent. The phase behaviors of this deep eutectic system and of its mixtures with a model polyelectrolyte complex were quantified.
Collapse
Affiliation(s)
- YuLing Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
41
|
Lalwani SM, Batys P, Sammalkorpi M, Lutkenhaus JL. Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suvesh M. Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16100, FI-00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
42
|
Lee M, Perry SL, Hayward RC. Complex Coacervation of Polymerized Ionic Liquids in Non-aqueous Solvents. ACS POLYMERS AU 2021; 1:100-106. [PMID: 36855425 PMCID: PMC9954202 DOI: 10.1021/acspolymersau.1c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oppositely charged polymerized ionic liquids (PILs) were used to form complex coacervates in two different organic solvents, 2,2,2-trifluoroethanol (TFE) and hexafluoro-2-propanol (HFIP), and the corresponding phase diagrams were constructed using UV-vis, NMR, and turbidity experiments. While previous studies on complex coacervates have focused almost exclusively on aqueous environments, the use of PILs in the current work enabled studies in solvents with substantially lower dielectric constants (27.0 for TFE, 16.7 for HFIP). The critical salt concentration required to induce complete miscibility was roughly 2-fold larger in HFIP compared with TFE, and two different PIL complexes, solidlike precipitates and liquidlike coacervates, were found in both systems. This study provides insight into the effects of low-dielectric-constant solvents on complex coacervation, which has not been widely studied because of the limited solubility of conventional polyelectrolytes in these media.
Collapse
Affiliation(s)
- Minjung Lee
- Department
of Polymer Science and Engineering, University
of Massachusetts, Amherst, 120 Governors Drive, Amherst, Massachusetts 01003-9263, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts,
Amherst, 686 North Pleasant
Street, Amherst, Massachusetts 01003-9303, United States
| | - Ryan C. Hayward
- Department
of Polymer Science and Engineering, University
of Massachusetts, Amherst, 120 Governors Drive, Amherst, Massachusetts 01003-9263, United States,Department
of Chemical and Biological Engineering, University of Colorado Boulder, 596
UCB, Boulder, Colorado 80309, United States,
| |
Collapse
|
43
|
Huang J, Laaser JE. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates. ACS Macro Lett 2021; 10:1029-1034. [PMID: 35549116 DOI: 10.1021/acsmacrolett.1c00382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of hydrophobicity, and particularly of nonionic hydrophobic comonomers, in the phase behavior of polyelectrolyte complex coacervates is not well-understood. Here, we address this problem by synthesizing a library of polymers with a wide range of charge densities and nonionic hydrophobic side chain lengths, and characterizing their phase behavior by optical turbidity. The polymers were prepared by postpolymerization modification of poly(N-acryloxy succinimide), targeting charge densities between 40 and 100% and nonionic aliphatic side chains with lengths from 0 to 12 carbons long. Turbidity measurements on pairs of polycations and polyanions with matched charge densities and nonionic side chain lengths revealed a complex salt response with distinct charge density-dominated and hydrophobicity-dominated regimes. The polymer solubilities were not directly correlated with the phase behavior of the coacervates, indicating the difficulty of understanding the coacervate phase behavior in terms of the polymer-water interaction parameter. This result suggests that there is significant room for further work to understand the mechanisms by which specific molecular-scale interactions moderate the phase behavior of complex coacervates.
Collapse
Affiliation(s)
- Jun Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
44
|
Neitzel A, Fang YN, Yu B, Rumyantsev AM, de Pablo JJ, Tirrell MV. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021; 54:6878-6890. [PMID: 34334816 PMCID: PMC8320234 DOI: 10.1021/acs.macromol.1c00703] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Polyelectrolyte complex coacervates of homologous (co)polyelectrolytes with a near-ideally random distribution of a charged and neutral ethylene oxide comonomer were synthesized. The unique platform provided by these building blocks enabled an investigation of the phase behavior across charge fractions 0.10 ≤ f ≤ 1.0. Experimental phase diagrams for f = 0.30-1.0 were obtained from thermogravimetric analysis of complex and supernatant phases and contrasted with molecular dynamics simulations and theoretical scaling laws. At intermediate to high f, a dependence of polymer weight fraction in the salt-free coacervate phase (w P,c) of w P,c ∼ f 0.37±0.01 was extracted; this trend was in good agreement with accompanying simulation predictions. Below f = 0.50, w P,c was found to decrease more dramatically, qualitatively in line with theory and simulations predicting an exponent of 2/3 at f ≤ 0.25. Preferential salt partitioning to either coacervate or supernatant was found to be dictated by the chemistry of the constituent (co)polyelectrolytes.
Collapse
Affiliation(s)
- Angelika
E. Neitzel
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Yan N. Fang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| |
Collapse
|
45
|
Queirós MVA, Loh W. Preparation of Poly(acrylate)/Poly(diallyldimethylammonium) Coacervates without Small Counterions and Their Phase Behavior upon Salt Addition towards Poly-Ions Segregation. Polymers (Basel) 2021; 13:2259. [PMID: 34301019 PMCID: PMC8309331 DOI: 10.3390/polym13142259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the phase behavior of polyelectrolyte complex coacervates (PECs) of poly(acrylate) (PA-) and poly(diallyldimethylammonium) (PDADMA+) in the presence of inorganic salts. Titrations of the polyelectrolytes in their acidic and alkaline forms were performed to obtain the coacervates in the absence of their small counterions. This approach was previously applied to the preparation of polymer-surfactant complexes, and we demonstrate that it also succeeded in producing complexes free of small counterions with a low extent of Hofmann elimination. For phase behavior studies, two different molar masses of poly(acrylate) and two different salts were employed over a wide concentration range. It was possible to define the regions at which associative and segregative phase separation take place. The latter one was exploited in more details because the segregation phenomenon in mixtures of oppositely charged polyelectrolytes is scarcely reported. Phase composition analyses showed that there is a strong segregation for both PA- and PDADMA+, who are accompanied by their small counterions. These results demonstrate that the occurrence of poly-ion segregation in these mixtures depends on the anion involved: in this case, it was observed with NaCl, but not with Na2SO4.
Collapse
Affiliation(s)
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil;
| |
Collapse
|
46
|
Krishna B A, Lindhoud S, de Vos WM. Hot-pressed polyelectrolyte complexes as novel alkaline stable monovalent-ion selective anion exchange membranes. J Colloid Interface Sci 2021; 593:11-20. [DOI: 10.1016/j.jcis.2021.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
|
47
|
Meng X, Du Y, Liu Y, Coughlin EB, Perry SL, Schiffman JD. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yifeng Du
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yalin Liu
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| |
Collapse
|
48
|
Zhao T, Li X, Gong Y, Guo Y, Quan F, Shi Q. Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers. Int J Biol Macromol 2021; 184:181-187. [PMID: 34051261 DOI: 10.1016/j.ijbiomac.2021.05.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Sodium alginate (SA) blending with quaternary ammonium chitosan (QAC) polysaccharide polyelectrolyte complex (PEC) system was chosen to research the binary blending of anionic and cationic polyelectrolytes in detail and to fabricate SA/QAC composite fibers. The potential charge and the rheology of the PEC solution were characterized through Zeta Laser Particle Size Analyzer and DV-C Rotary Rheometer, the structure and properties of the composite fiber were examined by FT-IR, XRD, SEM, EDS, and YG004 single fiber strength meter. The results showed that as the mass ratio of SA to QAC increased from 0/1 to 10/1, the state of the binary solution in water changed from transparent uniform solution to turbid solution with flocculent precipitate, then back to uniform solution, accompanied by the electrical potential change. Moreover, the electrical potential also depended on salt in solution. By using this uniform PEC solution with the mass ratio of SA to QAC 10/1 and concentration 5.5 wt% in water, SA/QAC composite fibers with excellent performances of breaking strength 2.37 cN·dtex-1 and breaking elongation 14.11%, good antibacterial and hydrophobic properties were fabricated via green wet-spinning process. The FT-IR and EDS determination indicated there formed egg-box between SA and Ca2+, cross-linked network between glutaraldehyde(GA) and SA, QAC, respectively. Depending on its mechanical, natural, and antibacterial properties, the SA/QAC composite fiber has advantages in wound dressing, medical gauze, medical absorbable suture, and tissue engineering.
Collapse
Affiliation(s)
- Tongyao Zhao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanzhu Guo
- School of Light and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
49
|
Deng G, Schoch TD, Cavicchi KA. Systematic Modification of the Glass Transition Temperature of Ion-Pair Comonomer Based Polyelectrolytes and Ionomers by Copolymerization with a Chemically Similar Cationic Monomer. Gels 2021; 7:45. [PMID: 33924350 PMCID: PMC8167584 DOI: 10.3390/gels7020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/20/2022] Open
Abstract
Ion-pair comonomers (IPCs) where both the anion and cation contain polymerizable functional groups offer a route to prepare polyampholyte, ion-containing polymers. Polymerizing vinyl functional groups by free-radical polymerization produces bridging ion-pairs that act as non-covalent crosslinks between backbone segments. In particular the homopolymerization of the IPC vinyl benzyl tri-n-octylphosphonium styrene sulfonate produces a stiff, glassy polymer with a glass transition temperature (Tg) of 191 °C, while copolymerization with a non-ionic acrylate produces microphase separates ionomers with ion-rich and ion-poor domains. This work investigates the tuning of the Tg of the polyelectrolyte or ion-rich domains of the ionomers by copolymerizing with vinyl benzyl tri-n-octylphosphonium p-toluene sulfonic acid. This chemically similar repeat unit with pendant rather than bridging ion-pairs lowers the Tg compared to the polyelectrolyte or ionomer containing only the IPC segments. Rheological measurements were used to characterize the thermomechanical behavior and Tg of different copolymers. The Tg variation in the polyelectrolyte vs. weight fraction IPC could be fit with either the Gordon-Taylor or Couchman-Karasz equation. Copolymerization of IPC with a chemically similar cationic monomer offers a viable route to systematically vary the Tg of the resulting polymers useful for tailoring the material properties in applications such as elastomers or shape memory polymers.
Collapse
Affiliation(s)
- Guodong Deng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA; (G.D.); (T.D.S.)
- Promerus LLC., 225 W Bartges St, Akron, OH 44307, USA
| | - Timothy D. Schoch
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA; (G.D.); (T.D.S.)
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kevin A. Cavicchi
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA; (G.D.); (T.D.S.)
| |
Collapse
|
50
|
Morin FJ, Puppo ML, Laaser JE. Decoupling salt- and polymer-dependent dynamics in polyelectrolyte complex coacervates via salt addition. SOFT MATTER 2021; 17:1223-1231. [PMID: 33331383 DOI: 10.1039/d0sm01412e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In polyelectrolyte complex coacervates, changes in salt concentration and changes in polymer concentration are typically strongly coupled, complicating interpretation of the salt- and polymer-concentration-dependent dynamics of these materials. To address this problem, we developed a "salt addition" method for preparation of complex coacervates that allows the salt concentration of a coacervate sample to be varied without changing its polymer concentration. This method was used to prepare coacervates of poly(styrene sulfonate) (PSS) with poly(diallyldimethylammonium chloride) (PDADMAC) with salt concentrations between 1.2 and 2 M and volume fractions of polymer between 0.1 and 0.25. Characterization of these samples by small-amplitude oscillatory shear rheology revealed that the relaxation times scale significantly more strongly with polymer volume fraction than has been previously assumed, highlighting the need to account for both salt and polymer-dependent contributions to the dynamics of these complex materials.
Collapse
Affiliation(s)
- Frances J Morin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, USA.
| | - Marissa L Puppo
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, USA.
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, USA.
| |
Collapse
|