1
|
Liu T, Lv G, Liu M, Cui X, Liu H, Li H, Zhao C, Wang L, Guo J, Liao L. MOF-Derived Nitrogen-Rich Hollow Nanocages as a Sulfur Carrier for High-Voltage Aluminum Sulfur Batteries. ACS NANO 2024; 18:31559-31568. [PMID: 39475559 DOI: 10.1021/acsnano.4c13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Aluminum-sulfur batteries (ASBs) are emerging as promising energy storage systems due to their safety, low cost, and high theoretical capacity. However, it remains a challenge to overcome voltage hysteresis and short cycle life in the sulfur/Al2S3 conversion reaction, which hinders the development of ASBs. Here, we studied a high-voltage ASB system based on sulfur oxidation in an AlCl3/urea electrolyte. Nitrogen-doped hollow nanocages (HNCs) synthesized from MOF precursors were rationally designed as sulfur/carbon composite electrodes (S@HNC), and the impact of the nitrogen species on the electrochemical performance of sulfur electrodes was systematically investigated. The S@HNC-900 achieved efficient conversion at 1.9 V, delivering a stable capacity of 197.3 mA h g-1 and a Coulombic efficiency of 93.28% after 100 cycles. Furthermore, the S@HNC-900 electrode exhibited exceptional rate capacity and 800th long-term cycling stability, retaining a capacity of 87.1 mA h g-1 at 500 mA g-1. Ex situ XPS and XRD characterizations elucidated the redox mechanism, revealing a four-electron transfer process (S/AlSCl7) at the S@HNC-900 electrode. Density functional theory calculations demonstrated that pyridinic nitrogen-enriched HNC-900 significantly enhanced the sulfur conversion reaction and facilitated the adsorption of sulfur intermediates (SCl3+) on the carbon interface. This work provides critical insights into the high-voltage sulfur redox mechanism and establishes a foundation for the rational design of carbon-based electrocatalysts for the enhancement of ASB performance.
Collapse
Affiliation(s)
- Tianming Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
- School of Science, China University of Geosciences, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100140, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Meng Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xiaoya Cui
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Haodong Li
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Changchun Zhao
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100140, China
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
An B, Li J, Li Z, Li R. The Mechanism of Aluminum Deposition and Dendrite Growth on a Copper Substrate in Anode-Free Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39503569 DOI: 10.1021/acsami.4c12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Given the critical demand for batteries with a high energy density and the global scarcity of lithium, anode-free aluminum batteries (AFABs) have attracted significant attention. AFABs utilize collectors instead of traditional anode metal foils, eliminating the need for anode materials and significantly enhancing the energy density of the batteries. However, the proliferation of aluminum dendrites might cause safety risks and reduce Coulombic efficiency, possibly impeding commercialization. This study employs molecular dynamics (MD) simulations to explore the deposition mechanisms of aluminum (Al) on copper (Cu) collectors and the dynamics of aluminum dendrite growth under nonhomogeneous deposition conditions. The results indicate that the surface properties of the Cu substrate significantly affect aluminum deposition, leading to more homogeneous and amorphous deposition on Cu(110) surfaces. However, the FCC structure of Al atoms on the Cu(111) surfaces exhibited the largest number. Strategically increasing the temperature and pressure can effectively prevent the formation of aluminum dendrites. The results are helpful for enhancing the battery cycle stability and the application of novel AFABs.
Collapse
Affiliation(s)
- Ben An
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiaqi Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhenshun Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Wang T, Shi Z, Zhong Y, Ma Y, He J, Zhu Z, Cheng XB, Lu B, Wu Y. Biomass-Derived Materials for Advanced Rechargeable Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310907. [PMID: 39051510 DOI: 10.1002/smll.202310907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Indexed: 07/27/2024]
Abstract
Biomass-derived materials generally exhibit uniform and highly-stable hierarchical porous structures that can hardly be achieved by conventional chemical synthesis and artificial design. When used as electrodes for rechargeable batteries, these structural and compositional advantages often endow the batteries with superior electrochemical performances. This review systematically introduces the innate merits of biomass-derived materials and their applications as the electrode for advanced rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and metal-sulfur batteries. In addition, biomass-derived materials as catalyst supports for metal-air batteries, fuel cells, and redox-flow batteries are also included. The major challenges for specific batteries and the strategies for utilizing biomass-derived materials are detailly introduced. Finally, the future development of biomass-derived materials for advanced rechargeable batteries is prospected. This review aims to promote the development of biomass-derived materials in the field of energy storage and provides effective suggestions for building advanced rechargeable batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Zezhong Shi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yiren Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yuan Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
4
|
Meng Y, Du X, Xie Y, Li Z, Wang S, Liang Z, Cheng L, Li X. Nonsolvent-Induced Phase Separation pPAN Separators for Dendrite-Free Rechargeable Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53610-53620. [PMID: 39324663 DOI: 10.1021/acsami.4c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Rechargeable aluminum batteries (RAB) are a promising energy storage system with high safety, long cycle life, and low cost. However, the strong corrosiveness of chloroaluminate ionic liquid electrolytes (ILEs) severely limits the development of RAB separators. Herein, a nonsolvent-induced phase separation strategy was applied to fabricate the pPAN (poly(vinyl alcohol)-modified polyacrylonitrile) separator, which exhibits prominent chemical and electrochemical stability in ILEs. The pPAN separator, owing to its uniform pore size distribution and strong electronegativity with a zeta potential of about -10.20 mV, can effectively inhibit the growth of dendrites. Benefiting from the good ion conductivity (6.38 mS cm-1) and high ion migration number (0.133) of pPAN separator, the full cell with pPAN separator demonstrates stable operation for more than 500 cycles at 600 mA g-1, with a high capacity of 88.8 mAh g-1. When integrating into sodium-ion batteries, the pPAN separators also show an excellent electrochemical performance. This work provides a considerable approach for designing separators to address the issue of Al anode dendrite growth in RABs.
Collapse
Affiliation(s)
- Yi Meng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xianfeng Du
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuehong Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhuo Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shixin Wang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhongshuai Liang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lihua Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiang Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
5
|
Li J, Liang Z, Jin Y, Yu B, Wang T, Wang T, Zhou L, Xia H, Zhang K, Chen M. A High-Voltage Cathode Material with Ultralong Cycle Performance for Sodium-Ion Batteries. SMALL METHODS 2024; 8:e2301742. [PMID: 38461542 DOI: 10.1002/smtd.202301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Vanadium-based polyanionic materials are promising electrode materials for sodium-ion batteries (SIBs) due to their outstanding advantages such as high voltage, acceptable specific capacity, excellent structural reversibility, good thermal stability, etc. Polyanionic compounds, moreover, can exhibit excellent multiplicity performance as well as good cycling stability after well-designed carbon covering and bulk-phase doping and thus have attracted the attention of multiple researchers in recent years. In this paper, after the modification of carbon capping and bulk-phase nitrogen doping, compared to pristine Na3V2(PO4)3, the well optimized Na3V(PO3)3N/C possesses improved electromagnetic induction strength and structural stability, therefore exhibits exceptional cycling capability of 96.11% after 500 cycles at 2 C (1 C = 80 mA g-1) with an elevated voltage platform of 4 V (vs Na+/Na). Meanwhile, the designed Na3V(PO3)3N/C possesses an exceptionally low volume change of ≈0.12% during cycling, demonstrating its quasi-zero strain property, ensuring an impressive capacity retention of 70.26% after 10,000 cycles at 2 C. This work provides a facial and cost-effective synthesis method to obtain stable vanadium-based phosphate materials and highlights the enhanced electrochemical properties through the strategy of carbon rapping and bulk-phase nitrogen doping.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zixin Liang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuqin Jin
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Binkai Yu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ting Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Wang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hui Xia
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
Luo Z, Peng X, Wang L, Luo B. Insights into Mechanistic Aspect of Organic Materials for Aluminum-Ion Batteries. CHEMSUSCHEM 2024:e202401397. [PMID: 39257025 DOI: 10.1002/cssc.202401397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Rechargeable aluminum-ion batteries (AIBs) with organic electrode materials have garnered significant attention due to their excellent safety profile, cost-effectiveness, and eco-friendly nature. This review examines the fundamental properties of organic compounds and their effects on battery performance, with a primary focus on how changes in ion interactions and charge storage mechanisms at active sites influence overall performance. The aim is to propose innovative design approaches for AIBs that overcome the constraints associated with various types of organic materials. The review also discusses the application of advanced analytical tools, providing insights to better understand the electrochemical process of AIBs.
Collapse
Affiliation(s)
- Zhiruo Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
7
|
Yang C, Liang Z, Dong B, Guo Y, Xie W, Chen M, Zhang K, Zhou L. Heterostructure Engineering for Aluminum-Ion Batteries: Mechanism, Challenge, and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405495. [PMID: 39235359 DOI: 10.1002/smll.202405495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Benefiting from high volumetric capacity, environmental friendliness, and high safety, aluminum-ion batteries (AIBs) are considered to be promising battery system among emerging electrochemical energy storage technologies. As an important component of AIBs, the cathode material is crucial to decide the energy density and cycle life of AIBs. However, single-component cathode materials are unable to achieve a balance between cycling stability and rate performance. In recent years, research on heterostructure cathode materials has gained significant attention in AIBs. By harnessing the synergistic effects of heterostructure, the shortcomings of individual materials can be overcome, contributing to improved conductivity and structural stability. This review offers a detailed insight into the Al-storage mechanism of heterostructure cathodes, and provides an overview of the current research progresses on heterostructure cathode materials for AIBs. Starting from the relationship between the microstructure and electrochemical performance of heterostructure materials, the different structure design strategies are elaborated. Besides, the challenges faced by heterostructure are summarized, and their potential impact on the future of the energy storage industry is anticipated. This review provides the guidelines for the future research of heterostructure as cathode materials for AIBs.
Collapse
Affiliation(s)
- Cheng Yang
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| | - Zixin Liang
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| | - Bo Dong
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| | - Yaokun Guo
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| | - Weibin Xie
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and technology, Nanjing, 210094, P. R. China
| |
Collapse
|
8
|
Yang X, Sun Q, Chai L, Chen S, Zhang W, Yang HY, Li Z. α-MnO 2 Cathode with Oxygen Vacancies Accelerated Affinity Electrolyte for Dual-Ion Co-Encapsulated Aqueous Aluminum Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400335. [PMID: 38682593 DOI: 10.1002/smll.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Aluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large-scale energy storage elements because of their efficient three-electron reaction. Compared to ionic electrolytes, aqueous aluminum-ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte-friendly cathodes are most desirable for AAIBs. Herein, a rod-shaped defect-rich α-MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g-1 and maintains a discharge specific capacity of ≈100 mAh g-1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand-new design for the development and characterization of cathodes for AAIBs.
Collapse
Affiliation(s)
- Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Qiwen Sun
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Luning Chai
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| |
Collapse
|
9
|
Gao Y, Zhang D, Zhang S, Li L. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries. CHEM REC 2024; 24:e202400085. [PMID: 39148161 DOI: 10.1002/tcr.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Indexed: 08/17/2024]
Abstract
Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.
Collapse
Affiliation(s)
- Yanhong Gao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
- School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
10
|
Lu C, Zhao F, Tao B, Wang Z, Wang Y, Sheng J, Tang G, Wang Y, Guo X, Li J, Wei L. Anode-Free Aqueous Aluminum Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402025. [PMID: 38766971 DOI: 10.1002/smll.202402025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Indexed: 05/22/2024]
Abstract
Aqueous aluminum ion batteries (AAIBs) possess the advantages of high safety, cost-effectiveness, eco-friendliness and high theoretical capacity. However, the Al2O3 film on the Al anode surface, a natural physical barrier to the plating of hydrated aluminum ions, is a key factor in the decomposition of the aqueous electrolyte and the severe hydrogen precipitation reaction. To circumvent the obnoxious Al anode, a proof-of-concept of an anode-free AAIB is first proposed, in which Al2TiO5, as a cathode pre-aluminum additive (Al source), can replenish Al loss by over cycling. The Al-Cu alloy layer, formed by plating Al on the Cu foil surface during the charge process, possesses a reversible electrochemical property and is paired with a polyaniline (cathode) to stimulate the battery to exhibit high initial discharge capacity (175 mAh g-1), high power density (≈410 Wh L-1) and ultra-long cycle life (4000 cycles) with the capacity retention of ≈60% after 1000 cycles. This work will act as a primer to ignite the enormous prospective researches on the anode-free aqueous Al ion batteries.
Collapse
Affiliation(s)
- Cheng Lu
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Fangfang Zhao
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Bowen Tao
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, Hubei, 441003, China
| | - Zhilong Wang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Ying Wang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Jiaping Sheng
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Gen Tang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, Hubei, 441003, China
| | - Yue Wang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, Hubei, 441003, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, Hubei, 441003, China
| | - Jinjin Li
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Liangming Wei
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| |
Collapse
|
11
|
De P, Pumera M. Aqueous Multivalent Metal-ion Batteries: Toward 3D-printed Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404227. [PMID: 39105470 DOI: 10.1002/smll.202404227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Energy storage has become increasingly crucial, necessitating alternatives to lithium-ion batteries due to critical supply constraints. Aqueous multivalent metal-ion batteries (AMVIBs) offer significant potential for large-scale energy storage, leveraging the high abundance and environmentally benign nature of elements like zinc, magnesium, calcium, and aluminum in the Earth's crust. However, the slow ion diffusion kinetics and stability issues of cathode materials pose significant technical challenges, raising concerns about the future viability of AMVIB technologies. Recent research has focused on nanoengineering cathodes to address these issues, but practical implementation is limited by low mass-loading. Therefore, developing effective engineering strategies for cathode materials is essential. This review introduces the 3D printing-enabled structural design of cathodes as a transformative strategy for advancing AMVIBs. It begins by summarizing recent developments and common challenges in cathode materials for AMVIBs and then illustrates various 3D-printed cathode structural designs aimed at overcoming the limitations of conventional cathode materials, highlighting pioneering work in this field. Finally, the review discusses the necessary technological advancements in 3D printing processes to further develop advanced 3D-printed AMVIBs. The reader will receive new fresh perspective on multivalent metal-ion batteries and the potential of additive technologies in this field.
Collapse
Affiliation(s)
- Puja De
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
| |
Collapse
|
12
|
Yang Y, Zhao R, Chen YP. Expanded graphite with boron-doping for cathode materials of high-capacity and stable aluminum ion batteries. RSC Adv 2024; 14:23902-23909. [PMID: 39086521 PMCID: PMC11289664 DOI: 10.1039/d4ra03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Recently, aluminum ion batteries (AIBs) have attracted more attention due to the reliable, cost-effective, and air-stable Al metal anode. Among various cathode materials of AIBs, graphite was paid more attention owing to its high-voltage plateau and stable properties in storing chloroaluminate anions (AlCl4 -). However, its low capacity limits the real application and can not satisfy the requirements of modern society. To solve the above issue, herein, boron (B)-doping expanded graphite (B-EG) was prepared by thermal treatment of expanded graphite and boric acid together in a reduction atmosphere. Based on the structural and electrochemical characterization, the results show that B-doping amplifies the interlayer space of expanded graphite (EG), introduces more mesoporous structures, and induces electron deficiency, which is beneficial to accelerating the transfer and adsorption of active ions. The results indicate that the B-EG electrode exhibits excellent rate capability and a high specific capacity of 84.9 mA h g-1 at 500 mA g-1. Compared with the EG electrode, B-EG shows better cycle stability with the specific capacity of 87.7 mA h g-1 after 300 cycles, which could be attributed to lower pulverization and higher pseudo-capacitance contribution of B-EG after the introduction of B species.
Collapse
Affiliation(s)
- Ying Yang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology Av. Wai Long Macao SAR 999078 China
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Ruirui Zhao
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Yong P Chen
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology Av. Wai Long Macao SAR 999078 China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
- Department of Physics and Astronomy, Elmore Family School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue Quantum Science and Engineering Institute, Purdue University West Lafayette IN 47907 USA
- Institute of Physics and Astronomy, Villum Center for Hybrid, Quantum Materials and Devices, Aarhus University Aarhus-C 8000 Denmark
| |
Collapse
|
13
|
Yang X, Gu H, Chai L, Chen S, Zhang W, Yang HY, Li Z. Construction of V 2O 5@MXene Cathodes toward a High Specific Capacity Aqueous Aluminum-Ion Battery. NANO LETTERS 2024; 24:8542-8549. [PMID: 38973706 DOI: 10.1021/acs.nanolett.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Aqueous aluminum-ion batteries (AAIBs) are considered a strong candidate for the new generation of energy storage devices. The lack of suitable cathode materials has been a bottleneck factor hindering the future development of AAIBs. In this work, we design and construct a highly effective cathode with dual morphologies. Two-dimensional (2D) layered MXene materials possessed good conductivity and hydrophilicity, which are used as the substrates to deposit rod-shaped vanadium oxides (V2O5) to form a three-dimensional (3D) cathode. The cathode design provides a strong boost for the rapid electrochemical activities of rod-shaped V2O5 by embedding/extracting both protons (H+) and aluminum-ion (Al3+). As a result, the V2O5@MXene cathode based AAIB delivers an ultrahigh initial specific capacity of 626 mAh/g at 0.1 A/g with a stable cycle performance up to 100 cycles. This work is a breakthrough for the development of cathode materials for AAIBs.
Collapse
Affiliation(s)
- Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hanqing Gu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Luning Chai
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
14
|
Wang X, Zhao C, Luo P, Xin Y, Ge Y, Tian H. An artificial aluminum-tin alloy layer on aluminum metal anodes for ultra-stable rechargeable aluminum-ion batteries. NANOSCALE 2024; 16:13171-13182. [PMID: 38913445 DOI: 10.1039/d4nr01318b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Rechargeable aluminum ion batteries (RAIBs) exhibit great potential for next-generation energy storage systems owing to the abundant resources, high theoretical volumetric capacity and light weight of the Al metal anode. However, the development of RAIBs based on Al metal anodes faces challenges such as dendrite formation, self-corrosion, and volume expansion at the anode/electrolyte interface, which needs the rational design of an aluminum anode for high-performance RAIBs. This work proposes a novel and low-cost strategy by utilizing an alloy electrodeposition method in a low-temperature molten salt system to fabricate an aluminum-tin (AlSn) alloy coating layer on copper foil as the anode for RAIBs, which successfully addresses the issues of dendrite formation and corrosion at the anode/electrolyte interface. The artificial AlSn alloy layer could enhance the active sites for metal Al homogeneous deposition and effectively retard the dendrite formation, which was verified by an in situ optical microscopy study. The symmetric AlSn@Cu cell demonstrates a low average overpotential of ∼38 mV at a current density of 0.5 mA cm-2 and a long-term lifespan of over 1100 h. Moreover, the AlSn@Cu//Mo6S8 full cells deliver a high capacity of 114.9 mA h g-1 at a current density of 100 mA g-1 and maintain ultra-stable cycling stability even over 1400 cycles with a ∼100% coulombic efficiency (CE) during the long-term charge/discharge processes. This facile alloy electrodeposition approach for designing high-performance Al-based anodes provides insights into the understanding of artificial interface chemistry on Al-based anodes and potentially accelerates the design of high-performance RAIBs.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Chen Zhao
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Peng Luo
- Institute of Digital Technology, State Grid Digital Technology Holding Co., Ltd, China
| | - Yan Xin
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Yunnian Ge
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| | - Huajun Tian
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
15
|
Gordon LW, Jay R, Jadhav AL, Bhalekar SS, Messinger RJ. Elucidating Consequences of Selenium Crystallinity on Its Electrochemical Reduction in Aluminum-Selenium Batteries. ACS MATERIALS LETTERS 2024; 6:2577-2581. [PMID: 38966823 PMCID: PMC11220787 DOI: 10.1021/acsmaterialslett.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Selenium (Se) is an attractive positive electrode material for rechargeable aluminum (Al) batteries due to its high theoretical capacity of 2037 mA h g-1 and its higher electronic conductivity compared to sulfur. Selenium can undergo a series of electrochemical reactions between Se(-II) and Se(IV), resulting in a six-electron capacity per Se atom. However, existing Al-Se battery literature is inconsistent regarding the different electrochemical reactions possible, while the conditions enabling the electrochemical reduction of Se to Al2Se3 are not well understood. Here, we demonstrate that this electrochemical reduction is achievable using amorphous selenium but is suppressed for crystalline selenium. We further show that the electrochemical oxidation of Se to SeCl4, which occurs at higher potentials, reduces the long-range order of crystalline Se and enables its discharge to Al2Se3. Solid-state 77Se nuclear magnetic resonance (NMR) measurements further establish that the local Se helical structures are maintained upon the loss of crystallinity.
Collapse
Affiliation(s)
| | | | - Ankur L. Jadhav
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, New York 10031, United States
| | - Snehal S. Bhalekar
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, New York 10031, United States
| | - Robert J. Messinger
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, New York 10031, United States
| |
Collapse
|
16
|
Meng H, Ran Q, Zhu MH, Zhao QZ, Han GF, Wang TH, Wen Z, Lang XY, Jiang Q. Benzoquinone-Lubricated Intercalation in Manganese Oxide for High-Capacity and High-Rate Aqueous Aluminum-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310722. [PMID: 38229525 DOI: 10.1002/smll.202310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-AlxMnO2) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-AlxMnO2 exhibits superior rate capability and cycling stability. At 1 A g-1, the specific capacity of BQ-AlxMnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the AlxMnO2 without BQ co-incorporation.
Collapse
Affiliation(s)
- Huan Meng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Ran
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Mei-Hua Zhu
- School of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang-Zuo Zhao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
17
|
Zhu Q, Fu D, Ji Q, Yang Z. A Review of Macrocycles Applied in Electrochemical Energy Storge and Conversion. Molecules 2024; 29:2522. [PMID: 38893398 PMCID: PMC11173979 DOI: 10.3390/molecules29112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Macrocycles composed of diverse aromatic or nonaromatic structures, such as cyclodextrins (CDs), calixarenes (CAs), cucurbiturils (CBs), and pillararenes (PAs), have garnered significant attention due to their inherent advantages of possessing cavity structures, unique functional groups, and facile modification. Due to these distinctive features enabling them to facilitate ion insertion and extraction, form crosslinked porous structures, offer multiple redox-active sites, and engage in host-guest interactions, macrocycles have made huge contributions to electrochemical energy storage and conversion (EES/EEC). Here, we have summarized the recent advancements and challenges in the utilization of CDs, CAs, CBs, and PAs as well as other novel macrocycles applied in EES/EEC devices. The molecular structure, properties, and modification strategies are discussed along with the corresponding energy density, specific capacity, and cycling life properties in detail. Finally, crucial limitations and future research directions pertaining to these macrocycles in electrochemical energy storage and conversion are addressed. It is hoped that this review is able to inspire interest and enthusiasm in researchers to investigate macrocycles and promote their applications in EES/EEC.
Collapse
Affiliation(s)
- Qijian Zhu
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Danfei Fu
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| | - Qing Ji
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Zhongjie Yang
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| |
Collapse
|
18
|
De P, Priya S, Halder J, Srivastava AK, Chandra A. Metal-Organic Framework for Aluminum based Energy Storage Devices: Utilizing Redox Additives for Significant Performance Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26299-26315. [PMID: 38733338 DOI: 10.1021/acsami.4c04112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
There are various methods being tried to address the sluggish kinetics observed in Al-ion batteries (AIBs). They mostly deal with morphology tuning, but have led to limited improvement. A new approach is proposed to overcome this limitation. It focuses on the use of a redox additive modified electrolyte in combination with framework like materials, which have wider channels. The ordered microporous and interconnected framework of ZIF 67, with large surface area, effectively facilitates the diffusion of aluminum ions. Therefore, AIBs are able to exhibit a superior discharge capacity of 288 mAh g-1 at 0.2 A g-1 current density with robust cycling stability. The addition of potassium ferricyanide as a redox-active species in an aqueous solution of aluminum chloride (supporting electrolyte) leads to significant enhancement in the specific capacity with much higher cycling stability. Al-ion based BatCap devices can be assembled by using ZIF 67 as the cathode, ZIF 67 derived porous carbon as the anode, and a redox additive modified electrolyte. The BatCap device exhibits excellent energy density of 86 Wh kg-1 at a power density of 2 KW kg-1, which is higher than reported aqueous AIBs. The ex situ characterization clearly explains the unexplored mechanism of redox additives in AIBs.
Collapse
Affiliation(s)
- Puja De
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Surbhi Priya
- School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joyanti Halder
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Amreesh Chandra
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
19
|
Ma W, Zhang P, Tang L, Ge M, Qi Y, Chen Y, Zhang C, Jiang JX. Towards Durable and High-Rate Rechargeable Aluminum Dual-ion Batteries via a Crosslinked Diphenylphenazine-based Conjugated Polymer Cathode. CHEMSUSCHEM 2024; 17:e202301725. [PMID: 38225682 DOI: 10.1002/cssc.202301725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Rechargeable aluminum battery (RAB) is expected to be a promising energy storage technique for grid-scale energy storage. However, the development of RABs is seriously plagued by the lack of suitable cathode materials. Herein, we report two p-type conjugated polymers of L-PBPz and C-PBPz with the same building blocks of diphenylphenazine but different linkage patterns of linear and crosslinked structures as the cathode materials for Al dual-ion batteries. Compared to the linear polymer skeleton in L-PBPz, the crosslinked structure endows C-PBPz with amorphous nature and low dihedral angles of the polymer chains, which severally contribute to the fast diffusion of AlCl4 - with large size and the electron transfer during the redox reaction of diphenylphenazine. As a result, C-PBPz delivers a much better rate performance than L-PBPz. The crosslinked structure also leads to a stable cyclability with over 80000 cycles for C-PBPz. Benefiting from the fast kinetics, meanwhile, the C-PBPz cathode could realize a high redox activity of 117 mAh g-1, corresponding to an areal capacity of 2.30 mAh cm-2, even under a high mass loading of 19.7 mg cm-2 and a low content of 10 wt% conductive agent. These results might boost the development of polymer cathodes for RABs.
Collapse
Affiliation(s)
- Wenyan Ma
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pengchao Zhang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Linting Tang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Mantang Ge
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yunpeng Qi
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Chong Zhang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jia-Xing Jiang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|
20
|
Zhang Y, Lv C, Zhu Y, Kuang J, Wang H, Li Y, Tang Y. Challenges and Strategies of Aluminum Anodes for High-Performance Aluminum-Air Batteries. SMALL METHODS 2024; 8:e2300911. [PMID: 38150657 DOI: 10.1002/smtd.202300911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Indexed: 12/29/2023]
Abstract
Aluminum-air battery (AAB) is a promising candidate for next-generation energy storage/conversion systems due to its cost-effectiveness and impressive theoretical energy density of 8100 Wh kg-1, surpassing that of lithium-ion batteries. Nonetheless, the practical applicability of AABs is hampered by the occurrence of serious self-corrosion side reactions and substantial capacity loss, resulting in suboptimal anode utilization. Consequently, improving the anode utilization to facilitate the construction of high-performance AABs have attracted widespread attention. Herein, the fundamentals and strategies to enhance aluminum anode utilization are reviewed from modifications of aluminum anodes and electrolytes. This comprehensive review may provide a scientific tool for the development of novel AABs in the future.
Collapse
Affiliation(s)
- Yuxin Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chaonan Lv
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yuanxin Zhu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jialin Kuang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yixin Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
21
|
El-Sayed A, Abdelsamie M, Elrouby M. Tracing the impact of CO 2 on the electrochemical and charge-discharge behavior for Al-Mg alloy in KOH and LiOH electrolytes for battery applications. Sci Rep 2024; 14:7714. [PMID: 38565635 PMCID: PMC10987513 DOI: 10.1038/s41598-024-57638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
For the first time, it has been found that the electrochemical performance of the Al-Mg alloy as an anode in alkaline batteries has been markedly enhanced in the presence of CO2 and LiOH as an electrolyte. This work compares the electrochemical performance of an Al-Mg alloy used as an anode in Al-air batteries in KOH and LiOH solutions, both with and without CO2. Potentiodynamic polarization (Tafel), charging-discharging (galvanostatic) experiments, and electrochemical impedance spectroscopy (EIS) are used. X-ray diffraction spectroscopy (XRD) and a scanning electron microscope (SEM) outfitted with an energetic-dispersive X-ray spectroscope (EDX) were utilized for the investigation of the products on the corroded surface of the electrode. Findings revealed that the examined electrode's density of corrosion current (icorr.) density in pure LiOH is significantly lower than in pure KOH (1 M). Nevertheless, in the two CO2-containing solutions investigated, icorr. significantly decreased. The corrosion rate of the examined alloy in the two studied basic solutions with and without CO2 drops in the following order: KOH > LiOH > KOH + CO2 > LiOH + CO2. The obtained results from galvanostatic charge-discharge measurements showed excellent performance of the battery in both LiOH and KOH containing CO2. The electrochemical findings and the XRD, SEM, and EDX results illustrations are in good accordance.
Collapse
Affiliation(s)
- Abdelrahman El-Sayed
- Chemistry Department, Faculty of Science, Sohag University, Sohâg, 82524, Egypt.
| | - Mohamed Abdelsamie
- Chemistry Department, Faculty of Science, Sohag University, Sohâg, 82524, Egypt
| | - Mahmoud Elrouby
- Chemistry Department, Faculty of Science, Sohag University, Sohâg, 82524, Egypt.
- Faculty of Science, King Salman International University, Ras Sedr, Sinai, 46612, Egypt.
| |
Collapse
|
22
|
Shanmugasundaram E, Vellaisamy K, Ganesan V, Narayanan V, Saleh N, Thambusamy S. Dual Applications of Cobalt-Oxide-Grafted Carbon Quantum Dot Nanocomposite for Two Electrode Asymmetric Supercapacitors and Photocatalytic Behavior. ACS OMEGA 2024; 9:14101-14117. [PMID: 38559980 PMCID: PMC10976396 DOI: 10.1021/acsomega.3c09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Carbon materials, such as graphene, carbon nanotubes, and quantum-dot-doped metal oxides, are highly attractive for energy storage and environmental applications. This is due to their large surface area and efficient optical and electrochemical activity. In this particular study, a composite material of cobalt oxide and carbon quantum dots (Co3O4-CQD) was prepared using cobalt nitrate and ascorbic acid (carbon source) through a simple one-pot hydrothermal method. The properties of the composite material, including the functional groups, composition, surface area, and surface morphology, were evaluated by using various methods such as ultraviolet, Fourier transform infrared, X-ray diffraction, Raman, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, scanning electron microscopy, and transmission electron microscopy analysis. The electrochemical performance of the Co3O4-CQD composite has been studied using a three-electrode system. The results show that at 1 A g-1, the composite delivers a higher capacitance of 1209 F g-1. The asymmetric supercapacitor (Co3O4-CQD//AC) provided 13.88 W h kg-1 energy and 684.65 W kg-1 power density with a 96% capacitance retention. The Co3O4-CQD composite also demonstrated excellent photocatalytic activity (90% in 60 min) for the degradation of methylene blue dye under UV irradiation, which is higher than that of pristine Co3O4 and CQD. This demonstrates that the Co3O4-CQD composite is a promising material for commercial energy storage and environmental applications.
Collapse
Affiliation(s)
| | - Kannan Vellaisamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vigneshkumar Ganesan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vimalasruthi Narayanan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Na’il Saleh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Stalin Thambusamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| |
Collapse
|
23
|
Rahide F, Palanisamy K, Flowers JK, Hao J, Stein HS, Kranz C, Ehrenberg H, Dsoke S. Modification of Al Surface via Acidic Treatment and its Impact on Plating and Stripping. CHEMSUSCHEM 2024; 17:e202301142. [PMID: 37870540 DOI: 10.1002/cssc.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Amorphous Al2 O3 film that naturally exists on any Al substrate is a critical bottleneck for the cyclic performance of metallic Al in rechargeable Al batteries. The so-called electron/ion insulator Al oxide slows down the anode's activation and hinders Al plating/stripping. The Al2 O3 film induces different surface properties (roughness and microstructure) on the metal. Al foils present two optically different sides (shiny and non-shiny), but their surface properties and influence on plating and stripping have not been studied so far. Compared to the shiny side, the non-shiny one has a higher (~28 %) surface roughness, and its greater concentration of active sites (for Al plating and stripping) yields higher current densities. Immersion pretreatments in Ionic-Liquid/AlCl3 -based electrolyte with various durations modify the surface properties of each side, forming an electrode-electrolyte interphase layer rich in Al, Cl, and N. The created interphase layer provides more tunneling paths for better Al diffusion upon plating and stripping. After 500 cycles, dendritic Al deposition, generated active sites, and the continuous removal of the Al metal and oxide cause accelerated local corrosion and electrode pulverization. We highlight the mechanical surface properties of cycled Al foil, considering the role of immersion pretreatment and the differences between the two sides.
Collapse
Affiliation(s)
- Fatemehsadat Rahide
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Krishnaveni Palanisamy
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jackson K Flowers
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
| | - Junjie Hao
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Helge S Stein
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Helmut Ehrenberg
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
24
|
Miao D, Li S, Jin D, Long J, Qu J, Wang Y, Wu Z. Hybrid Organic-Inorganic Additive for Robust Al Anode in Alkaline Aluminum-Air Battery. SMALL METHODS 2024; 8:e2301255. [PMID: 37994290 DOI: 10.1002/smtd.202301255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Indexed: 11/24/2023]
Abstract
Aluminum-air batteries (AABs), known for their high energy density, environmental friendliness, and cost-effectiveness, show immense promise in the realm of energy conversion applications. Nonetheless, their commercialization has encountered inherent challenges of Al anode corrosion and material degradation. In this study, economical hybrid electrolyte additives to inhibit the Al corrosion are developed, safeguarding the integrity of the Al anode. Due to the synergistic interplay between the organic compound dithiothreitol, and inorganic compounds zinc chloride, a robust zinc film is formed on the Al surface This Zn film plays a pivotal role in quelling parasitic hydrogen evolution reactions that typically can plague the Al electrode. Consequently, the as-prepared hybrid additive culminates in a remarkable enhancement to AABs, delivering exceptional discharge capacity of 1793.37 mAh g-1 , high energy density of 2047 Wh kg-1 , and excellent battery longevity (over 20 h in on/off cycling tests). This study, therefore, introduces a novel approach in utilizing hybrid electrolyte additives to effectively counteract corrosion-related challenges and boost the stability and performance of AABs.
Collapse
Affiliation(s)
- Di Miao
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shiliang Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Dongxiao Jin
- Xinglv New Energy Technology Co., Ltd, Xuzhou, 221000, P. R. China
| | - Jiangtao Long
- Xinglv New Energy Technology Co., Ltd, Xuzhou, 221000, P. R. China
| | - Jie Qu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yun Wang
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, 4222, Australia
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
25
|
Matuszek K, Piper SL, Brzęczek-Szafran A, Roy B, Saher S, Pringle JM, MacFarlane DR. Unexpected Energy Applications of Ionic Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313023. [PMID: 38411362 DOI: 10.1002/adma.202313023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Ionic liquids and their various analogues are without doubt the scientific sensation of the last few decades, paving the way to a more sustainable society. Their versatile suite of properties, originating from an almost inconceivably large number of possible cation and anion combinations, allows tuning of the structure to serve a desired purpose. Ionic liquids hence offer a myriad of useful applications from solvents to catalysts, through to lubricants, gas absorbers, and azeotrope breakers. The purpose of this review is to explore the more unexpected of these applications, particularly in the energy space. It guides the reader through the application of ionic liquids and their analogues as i) phase change materials for thermal energy storage, ii) organic ionic plastic crystals, which have been studied as battery electrolytes and in gas separation, iii) key components in the nitrogen reduction reaction for sustainable ammonia generation, iv) as electrolytes in aluminum-ion batteries, and v) in other emerging technologies. It is concluded that there is tremendous scope for further optimizing and tuning of the ionic liquid in its task, subject to sustainability imperatives in line with current global priorities, assisted by artificial intelligence.
Collapse
Affiliation(s)
- Karolina Matuszek
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Samantha L Piper
- Institute for Frontier Materials, Deakin University, Burwood Campus, Burwood, Victoria, 3125, Australia
| | - Alina Brzęczek-Szafran
- Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, Gliwice, 44-100, Poland
| | - Binayak Roy
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Saliha Saher
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, Burwood Campus, Burwood, Victoria, 3125, Australia
| | | |
Collapse
|
26
|
Mączka M, Guzik M, Mosiałek M, Wojnarowska M, Pasierb P, Nitkiewicz T. Life cycle assessment of experimental Al-ion batteries for energy storage applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169258. [PMID: 38101635 DOI: 10.1016/j.scitotenv.2023.169258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In this work, the analysis of environmental performance and its coherence with circular economy priorities of different variants of Al-ion battery construction was performed. Al-ion-based batteries can be considered as one of the future alternatives for currently used Li-ion-based cells when the shortage of lithium or cobalt becomes a challenge. All tested batteries were constructed with Al anodes, polypropylene foil separator, polyvinylidene fluoride + N-Methyl-2-pyrrolidone (PVDF+NMP) binder, Al collector and laminated Al foil pouch cell. WO3, Norit and carbon from potato starch (CPS) were used as a cathode material. Saturated solutions of AlCl3 dissolved in diethylene glycol dimethyl ether (DEG) and deep eutectic solvents (DES) originating from bacterial polymer polyhydroxyalkanoate were used as electrolytes. The ReCiPe impact assessment method was used in this analysis. The indicator in this study was ReCiPe Endpoint (H) V1.07 referring to Europe. SimaPro 9.4 software with Ecoinvent 3.8 inventory database were used for all calculations. The analysis included experimental production and assembly of batteries and their end-of-life processing. Based on the performed analysis it was found that the overall weighted impact of each single construction variant of an Al-ion battery is dominated by the use of electricity, no matter which variant is considered since it is related to the electricity mix in Poland and its high dependence on fossil fuels. Overall environmental impact is the smallest for CPS DEG battery, while Norit DEG and CPS DEG variants have slightly higher impacts. The share of end-of-life processing in overall environmental impacts of all analysed variants was found low compared to the Li-ion batteries. This observation indicates the Al-ion batteries as a promising direction of alternative electrochemical devices for energy storage systems while end-of-life processing and circular solution are concerned.
Collapse
Affiliation(s)
- Magda Mączka
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Michał Mosiałek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Magdalena Wojnarowska
- Cracow University of Economics, Institute of Quality Sciences and Product Management, al. Rakowicka 27, 31-510 Kraków, Poland
| | - Paweł Pasierb
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Tomasz Nitkiewicz
- Częstochowa University of Technology, Faculty of Management, al. Armii Krajowej 19B, 42-201 Częstochowa, Poland.
| |
Collapse
|
27
|
Zhao Z, Zhang Z, Xu T, Wang W, Wang B, Yu X. Solvation Structure Regulation for Highly Reversible Aqueous Al Metal Batteries. J Am Chem Soc 2024; 146:2257-2266. [PMID: 38195401 DOI: 10.1021/jacs.3c13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Metallic Al has been deemed an ideal electrode material for aqueous batteries by virtue of its abundance and high theoretical capacity (8056 mAh cm-3). However, the development of aqueous Al metal batteries has been hindered by several side reactions, including water decomposition, Al corrosion, and passivation, which arise from the solvation reaction of Al and H2O in conventional aqueous electrolytes. In this work, we report that water activity in electrolyte can be suppressed by optimizing the Al3+ solvation structure through intercalation of polar pyridine-3-carboxylic acid in an aluminum trifluoromethanesulfonate aqueous environment. Furthermore, the pyridine-3-carboxylic acid molecules are inclined to alter the surface energy of Al, thus suppressing the random deposition of Al. As a result, the Al corrosion in the hybrid electrolyte is restrained, and the long-term electrochemical stability of the electrolyte is tremendously improved. These merits bring remarkable reversibility to aqueous Al batteries using Al-preintercalated MnO2 cathodes, delivering a retaining energy density of >250 Wh kg-1 at 0.2 A g-1 after 600 cycles.
Collapse
Affiliation(s)
- Zhongchen Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Zonghan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Wenbin Wang
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Baofeng Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Guan W, Gu B, Tu J, Wang Z, Zhang P, Meng L, Jiao S. Stable Low-Temperature Al Batteries Enabled by Integrating Polydopamine-Derived N-Doped Carbon Nanospheres With Flake Graphite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303836. [PMID: 37670221 DOI: 10.1002/smll.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/20/2023] [Indexed: 09/07/2023]
Abstract
The battery performance declines significantly in severely cold areas, especially discharge capacity and cycle life, which is the most significant pain point for new energy consumers. To address this issue and improve the low-temperature characteristic of aluminum-ion batteries, in this work, polydopamine-derived N-doped carbon nanospheres are utilized to modify the most promising graphite material. More active sites are introduced into graphite, more ion transport channels are provided, and improved ionic conductivity is achieved in a low-temperature environment. Due to the synergistic effect of the three factors, the ion diffusion resistance is significantly reduced and the diffusion coefficient of aluminum complex ions in the active material become larger at low temperatures. Therefore, the battery delivers an improved capacity retention rate from 23% to 60% at -20 °C and excellent ultra-long cycling stability over 5500 cycles at -10 °C. This provides a novel strategy for constructing low-temperature aluminum-ion batteries with high energy density, which is conducive to promoting the practicality of aluminum-ion batteries.
Collapse
Affiliation(s)
- Wei Guan
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Bojun Gu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhe Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Ping Zhang
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Long Meng
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
29
|
Xu J, Li H, Jin Y, Zhou D, Sun B, Armand M, Wang G. Understanding the Electrical Mechanisms in Aqueous Zinc Metal Batteries: From Electrostatic Interactions to Electric Field Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309726. [PMID: 37962322 DOI: 10.1002/adma.202309726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Aqueous Zn metal batteries are considered as competitive candidates for next-generation energy storage systems due to their excellent safety, low cost, and environmental friendliness. However, the inevitable dendrite growth, severe hydrogen evolution, surface passivation, and sluggish reaction kinetics of Zn metal anodes hinder the practical application of Zn metal batteries. Detailed summaries and prospects have been reported focusing on the research progress and challenges of Zn metal anodes, including electrolyte engineering, electrode structure design, and surface modification. However, the essential electrical mechanisms that significantly influence Zn2+ ions migration and deposition behaviors have not been reviewed yet. Herein, in this review, the regulation mechanisms of electrical-related electrostatic repulsive/attractive interactions on Zn2+ ions migration, desolvation, and deposition behaviors are systematically discussed. Meanwhile, electric field regulation strategies to promote the Zn2+ ions diffusion and uniform Zn deposition are comprehensively reviewed, including enhancing and homogenizing electric field intensity inside the batteries and adding external magnetic/pressure/thermal field to couple with the electric field. Finally, future perspectives on the research directions of the electrical-related strategies for building better Zn metal batteries in practical applications are offered.
Collapse
Affiliation(s)
- Jing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Haolin Li
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
30
|
Gu H, Yang X, Chen S, Zhang W, Yang HY, Li Z. Oxygen Vacancies Boosted Proton Intercalation Kinetics for Aqueous Aluminum-Manganese Batteries. NANO LETTERS 2023; 23:11842-11849. [PMID: 38071640 DOI: 10.1021/acs.nanolett.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Aluminum-ion batteries have garnered an extensive amount of attention due to their superior electrochemical performance, low cost, and high safety. To address the limitation of battery performance, exploring new cathode materials and understanding the reaction mechanism for these batteries are of great significance. Among numerous candidates, multiple structures and valence states make manganese-based oxides the best choice for aqueous aluminum-ion batteries (AAIBs). In this work, a new cathode consists of γ-MnO2 with abundant oxygen vacancies. As a result, the electrode shows a high discharge capacity of 481.9 mAh g-1 at 0.2 A g-1 and a sustained reversible capacity of 128.6 mAh g-1 after 200 cycles at 0.4 A g-1. In particular, through density functional theory calculation and experimental comparison, the role of oxygen vacancies in accelerating the reaction kinetics of H+ has been verified. This study provides insights into the application of manganese dioxide materials in aqueous AAIBs.
Collapse
Affiliation(s)
- Hanqing Gu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
31
|
Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries. NANO-MICRO LETTERS 2023; 16:51. [PMID: 38099969 PMCID: PMC10724106 DOI: 10.1007/s40820-023-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
Collapse
Affiliation(s)
- Xiaochen Yang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yue Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Longtao Ma
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
32
|
Yan H, Li S, Zhong J, Li B. An Electrochemical Perspective of Aqueous Zinc Metal Anode. NANO-MICRO LETTERS 2023; 16:15. [PMID: 37975948 PMCID: PMC10656387 DOI: 10.1007/s40820-023-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Based on the attributes of nonflammability, environmental benignity, and cost-effectiveness of aqueous electrolytes, as well as the favorable compatibility of zinc metal with them, aqueous zinc ions batteries (AZIBs) become the leading energy storage candidate to meet the requirements of safety and low cost. Yet, aqueous electrolytes, acting as a double-edged sword, also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side. These reactions include hydrogen evolution reaction, passivation, and dendrites, resulting in poor Coulombic efficiency and short lifespan of AZIBs. A comprehensive review of aqueous electrolytes chemistry, zinc chemistry, mechanism and chemistry of parasitic reactions, and their relationship is lacking. Moreover, the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough. In this review, firstly, the chemistry of electrolytes, zinc anodes, and parasitic reactions and their relationship in AZIBs are deeply disclosed. Subsequently, the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes, and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed. Lastly, the perspectives on the future development direction of aqueous electrolytes, zinc anodes, and Zn/electrolyte interfaces are presented.
Collapse
Affiliation(s)
- Huibo Yan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Songmei Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jinyan Zhong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| | - Bin Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
33
|
Borozdin AV, Shevelin PY, Elterman VA, Yolshina LA. Electrochemical behavior of aluminum in triethylamine hydrochloride-aluminum chloride ionic liquid. Phys Chem Chem Phys 2023; 25:30543-30552. [PMID: 37929678 DOI: 10.1039/d3cp03403h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
This paper studies the electrochemical behavior of aluminum in AlCl3-Et3NHCl with a molar ratio of AlCl3 to Et3NHCl (N) from 1.3 to 1.95 by stationary electrolysis and electrochemical impedance spectroscopy. Cathodic and anodic stationary polarization curves are obtained. The cathodic polarization curves are S-shaped and contain limiting current plateau sections. Salt passivation is observed at anodic overpotentials. Apparent exchange current densities were measured for the first time and were found to increase from 1.02 to 2.50 mA cm-2 with an increase in Al2Cl7- concentration. The apparent electrochemical rate constant and transfer coefficient at T = 303 K were calculated (1.14 × 10-6 cm s-1 and 0.14, respectively). Apparent exchange current densities at the Al|AlCl3-Et3NHCl interface are determined at temperatures between 303 and 373 K (N = 1.5), and the data are used to calculate the apparent electrochemical rate constant (2.6 × 10-6 to 10-6 cm s-1); the activation energy for the charge transfer process was also determined (31.4 kJ mol-1). The results obtained in this paper may be used to optimize the composition of electrolytes in aluminum-ion batteries and also to further investigate the processes taking place in chloroaluminate ILs.
Collapse
Affiliation(s)
- Alexey V Borozdin
- Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.
| | - Peter Yu Shevelin
- Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.
| | - Vladimir A Elterman
- Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.
| | - Liudmila A Yolshina
- Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
34
|
Zhang C, Yang Y, Liu X, Mao M, Li K, Li Q, Zhang G, Wang C. Mobile energy storage technologies for boosting carbon neutrality. Innovation (N Y) 2023; 4:100518. [PMID: 37841885 PMCID: PMC10568306 DOI: 10.1016/j.xinn.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Carbon neutrality calls for renewable energies, and the efficient use of renewable energies requires energy storage mediums that enable the storage of excess energy and reuse after spatiotemporal reallocation. Compared with traditional energy storage technologies, mobile energy storage technologies have the merits of low cost and high energy conversion efficiency, can be flexibly located, and cover a large range from miniature to large systems and from high energy density to high power density, although most of them still face challenges or technical bottlenecks. In this review, we provide an overview of the opportunities and challenges of these emerging energy storage technologies (including rechargeable batteries, fuel cells, and electrochemical and dielectric capacitors). Innovative materials, strategies, and technologies are highlighted. Finally, the future directions are envisioned. We hope this review will advance the development of mobile energy storage technologies and boost carbon neutrality.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Yang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minglei Mao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanghua Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangzu Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengliang Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| |
Collapse
|
35
|
Kosar M, Taimoory SM, Diesenhaus O, Trant JF. Improvement of electrolytes for aluminum ion batteries: A molecular dynamics study. J Chem Phys 2023; 159:144503. [PMID: 37823460 DOI: 10.1063/5.0166001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The aluminum ion battery (AIB) is a promising technology, but there is a lack of understanding of the desired nature of the batteries' electrolytes. The ionic charge carriers in these batteries are not simply Al3+ ions but the anionic AlCl4- and Al2Cl7-, which form in the electrolyte. Using computational analysis, this study illustrates the effect of mole ratios and organic solvents to improve the AIB electrolytes. To this end, molecular dynamics simulations were conducted on varying ratios forming acidic, neutral, and basic mixtures of the AlCl3 salt with 1-ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid (IL) and an organic solvent electrolyte [dichloromethane (DCM) or toluene]. The data obtained from diffusion calculations indicates that the solvents could improve the transport properties. Both DCM and toluene lead to higher diffusion coefficients, and higher conductivity. Detailed calculations demonstrated solvents can effectively improve the formation of AlCl3⋯Cl (AlCl4-) and AlCl4-···AlCl4- (Al2Cl7-) especially in acidic mixtures. The densities, around 1.25 g/cm3 for electrolyte mixtures of AlCl3-EMImCl, were consistent with experiment. These results, in agreement with experimental findings, strongly suggest that DCM in acidic media with AlCl3 and EMImCl might provide a promising basis for battery development.
Collapse
Affiliation(s)
- Maryam Kosar
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - S Maryamdokht Taimoory
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Owen Diesenhaus
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
36
|
Rezaei M, Sakong S, Groß A. Molecular Modeling of Water-in-Salt Electrolytes: A Comprehensive Analysis of Polarization Effects and Force Field Parameters in Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5712-5730. [PMID: 37528639 DOI: 10.1021/acs.jctc.3c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Accurate modeling of highly concentrated aqueous solutions, such as water-in-salt (WiS) electrolytes in battery applications, requires proper consideration of polarization contributions to atomic interactions. Within the force field molecular dynamics (MD) simulations, the atomic polarization can be accounted for at various levels. Nonpolarizable force fields implicitly account for polarization effects by incorporating them into their van der Waals interaction parameters. They can additionally mimic electron polarization within a mean-field approximation through ionic charge scaling. Alternatively, explicit polarization description methods, such as the Drude oscillator model, can be selectively applied to either a subset of polarizable atoms or all polarizable atoms to enhance simulation accuracy. The trade-off between simulation accuracy and computational efficiency highlights the importance of determining an optimal level of accounting for atomic polarization. In this study, we analyze different approaches to include polarization effects in MD simulations of WiS electrolytes, with an example of a Na-OTF solution. These approaches range from a nonpolarizable to a fully polarizable force field. After careful examination of computational costs, simulation stability, and feasibility of controlling the electrolyte properties, we identify an efficient combination of force fields: the Drude polarizable force field for salt ions and non-polarizable models for water. This cost-effective combination is sufficiently flexible to reproduce a broad range of electrolyte properties, while ensuring simulation stability over a relatively wide range of force field parameters. Furthermore, we conduct a thorough evaluation of the influence of various force field parameters on both the simulation results and technical requirements, with the aim of establishing a general framework for force field optimization and facilitating parametrization of similar systems.
Collapse
Affiliation(s)
- Majid Rezaei
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89069 Ulm, Germany
| |
Collapse
|
37
|
Yu Z, Wang W, Zhu Y, Song WL, Huang Z, Wang Z, Jiao S. Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer. Nat Commun 2023; 14:5596. [PMID: 37699878 PMCID: PMC10497635 DOI: 10.1038/s41467-023-41361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Achieving high energy density and long cycling life simultaneously remains the most critical challenge for aluminum-ion batteries (AIBs), especially for high-capacity conversion-type positive electrodes suffering from shuttle effect in strongly acidic electrolytes. Herein, we develop a layered quasi-solid AIBs system with double reaction zones (DRZs, Zone 1 and Zone 2) to address such issues. Zone 1 is designed to accelerate reaction kinetics by improving wetting ability of quasi-solid electrolyte to active materials. A composite three-dimensional conductive framework (Zone 2) interwoven by gel network for ion conduction and carbon nanotube network as electronic conductor, can fix the active materials dissolved from Zone 1 to allow for continuing electrochemical reactions. Therefore, a maximum electron transfer is realized for the conversion-type mateials in DRZs, and an ultrahigh capacity (400 mAh g-1) and an ultralong cycling life (4000 cycles) are achieved. Such strategy provides a new perspective for constructing high-energy-density and long-life AIBs.
Collapse
Affiliation(s)
- Zhijing Yu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yong Zhu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei-Li Song
- Institute of Advanced Structural Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhe Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
38
|
Guo Y, Lim GJH, Verma V, Cai Y, Chua R, Nicholas Lim JJ, Srinivasan M. Solid State Zinc and Aluminum ion batteries: Challenges and Opportunities. CHEMSUSCHEM 2023; 16:e202202297. [PMID: 37424157 DOI: 10.1002/cssc.202202297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023]
Abstract
Solid-state zinc ion batteries (ZIBs) and aluminum-ion batteries (AIBs) are deemed as promising candidates for supplying power in wearable devices due to merits of low cost, high safety, and tunable flexibility. However, their wide-scale practical application is limited by various challenges, down to the material level. This Review begins with elaboration of the root causes and their detrimental effect for four main limitations: electrode-electrolyte interface contact, electrolyte ionic conductivity, mechanical strength, and electrochemical stability window of the electrolyte. Thereafter, various strategies to mitigate each of the described limitation are discussed along with future research direction perspectives. Finally, to estimate the viability of these technologies for wearable applications, economic-performance metrics are compared against Li-ion batteries.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
| | - Gwendolyn J H Lim
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
| | - Vivek Verma
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| | - Yi Cai
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| | - Rodney Chua
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| | - J J Nicholas Lim
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
| | - Madhavi Srinivasan
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| |
Collapse
|
39
|
Lv A, Wang M, Shi H, Lu S, Zhang J, Jiao S. A Carbon Aerogel Lightweight Al Battery for Fast Storage of Fluctuating Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303943. [PMID: 37402138 DOI: 10.1002/adma.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Al batteries have great potential for renewable energy storage owing to their low cost, high capacity, and safety. High energy density and adaptability to fluctuating electricity are major challenges. Here, a lightweight Al battery for fast storage of fluctuating energy is constructed based on a novel hierarchical porous dendrite-free carbon aerogel film (CAF) anode and an integrated graphite composite carbon aerogel film (GCAF) cathode. A new induced mechanism by the O-containing functional groups on the CAF anode is con-firmed for uniform Al deposition. The GCAF cathode possesses a higher mass utilization ratio due to the extremely high loading mass (9.5-10.0 mg cm-2 ) of graphite materials compared to conventional coated cathodes. Meanwhile, the volume expansion of the GCAF cathode is almost negligible, resulting in better cycling stability. The lightweight CAF‖GCAF full battery can adapt well to large and fluctuating current densities owing to its hierarchical porous structure. A large discharge capacity (115.6 mAh g-1 ) after 2000 cycles and a short charge time (7.0 min) at a high current density are obtained. The construction strategy of lightweight Al batteries based on carbon aerogel electrodes can promote the breakthrough of high-energy-density Al batteries adapted to the fast storage of fluctuating renewable energy.
Collapse
Affiliation(s)
- Aijing Lv
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haotian Shi
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Songle Lu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jintao Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
40
|
Luo Y, Chen S, Zhang J, Ding X, Pan B, Wang L, Lu J, Cao M, Li Y. Perovskite-Derived Bismuth with I - and Cs + Dual Modification for High-Efficiency CO 2 -to-Formate Electrosynthesis and Al-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303297. [PMID: 37272677 DOI: 10.1002/adma.202303297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Bi-based materials are one of the most promising candidates for electrochemical CO2 reduction reaction (CO2 RR) to formate; however, the majority of them still suffer from low current density and stability that essentially constrain their potential applications at the industrial scale. Surface modification represents an effective approach to modulate the electrode microenvironment and the relative binding strength of key intermediates. Herein, it is demonstrated that the surface comodification with halides and alkali metal ions from the conversion of Bi-based halide perovskite nanocrystals is a viable strategy to boost the CO2 RR performance of Bi for formate electrosynthesis. Cs3 Bi2 I9 nanocrystals are prepared by a hot-injection method. The as-prepared products feature well-defined hexagonal shape and uniform size distribution. When used as the precatalyst, Cs3 Bi2 I9 nanocrystals are converted to Cs+ and I- comodified Bi. The resultant catalyst exhibits high formate Faradaic efficiency close to 100%, and remarkable partial current density up to 44 mA cm-2 in an H-cell and up to 276 mA cm-2 in a flow cell. Moreover, Cs3 Bi2 I9 is used as the cathode catalyst and paired with an Al anode in an Al-CO2 battery for simultaneous CO2 valorization and power generation.
Collapse
Affiliation(s)
- Yuqing Luo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shuhua Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xue Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
41
|
Wang J, Zhang J, Wu J, Huang M, Jia L, Li L, Zhang Y, Hu H, Liu F, Guan Q, Liu M, Adenusi H, Lin H, Passerini S. Interfacial "Single-Atom-in-Defects" Catalysts Accelerating Li + Desolvation Kinetics for Long-Lifespan Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302828. [PMID: 37341309 DOI: 10.1002/adma.202302828] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Indexed: 06/22/2023]
Abstract
The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+ , Li0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1- x S embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4 cathode, the full cell (10.7 mg cm-2 ) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications.
Collapse
Affiliation(s)
- Jian Wang
- Helmholtz Institute Ulm (HIU), D89081, Ulm, Germany
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
| | - Jing Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Min Huang
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lujie Jia
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Linge Li
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hongfei Hu
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Fangqi Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Qinghua Guan
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Meinan Liu
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Henry Adenusi
- The University of Hong Kong, Department of Chemistry, Hong Kong, P. R. China
- Hong Kong Quantum AI Lab, 17 Science Park West Avenue, Hong Kong, P. R. China
| | - Hongzhen Lin
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), D89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
- Sapienza University of Rome, Chemistry Department, P. A. Moro 5, Rome, 00185, Italy
| |
Collapse
|
42
|
Wang G, Park JM, Kang T, Lee SJ, Park HS. Anion Storage of MXenes. SMALL METHODS 2023; 7:e2201440. [PMID: 36707415 DOI: 10.1002/smtd.202201440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Recently, anion storage materials have gained significant attention owing to the widened cell voltage and additional anion storing capacity for a large energy density. MXenes are considered as the emerging anion storing materials owing to their sufficient interlayer spacing, rich surface chemistries, tunable structures, remarkable electrochemical properties, and mechanical integrity. Herein, a comprehensive review on the anion storage of MXenes covering their anion storage mechanism and state-of-the-art chemical strategies for the improved anion storage performances is reported. The recent progress of MXenes on aluminum ion batteries, metal halogen batteries, halogen ion batteries, and electrochemical electrode deionization is addressed. The scientific and technical challenges and the research direction into the anion storage of MXenes are also addressed and finally the authors' perspective on anion storage of MXenes is provided. Therefore, this review offers an insight into the rational design of MXenes for anion storage materials and the correlation of surface chemistries and structural modifications with anion storage properties for the applications into electrochemical energy storage and water purification.
Collapse
Affiliation(s)
- Guanyao Wang
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Jae Min Park
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Taehun Kang
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Sang Joon Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| |
Collapse
|
43
|
Hao Q, Chen F, Chen X, Meng Q, Qi Y, Li N. Highly Stable Al Metal Anode Enabled by Surface Chemical Passivation for Long-Life Aqueous Al Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37419496 DOI: 10.1021/acsami.3c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Aqueous aluminum (Al) metal batteries (AMBs) have received much attention due to their high volumetric energy density, low cost, and high safety. However, the practical application of aqueous AMBs is limited by the electrochemical reversibility of the Al anode, which is often deteriorated by corrosion. Herein, we developed a dense passivation layer based on Mn/Ti/Zr compounds on the Al metal anode by a rapid surface passivation strategy. The passivation layer can effectively uniform Al deposition, increase corrosion resistance, and significantly enhance the cycling stability of Al anodes in both symmetric and full cells. Symmetric cells assembled with the treated Al electrodes exhibit stable cycling for over 300 cycles at 0.1 mA cm-2 and 0.05 mA h cm-2, and a 600-cycle life is achieved for a prototype full cell. This work provides a versatile remedy for the limited cycle life of Al metal anodes for rechargeable aqueous batteries.
Collapse
Affiliation(s)
- Qingfei Hao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fei Chen
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiangtao Chen
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qihan Meng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yang Qi
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Na Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
44
|
Li J, Luo W, Zhang Z, Li F, Chao Z, Fan J. ZnSe/SnSe 2 hollow microcubes as cathode for high performance aluminum ion batteries. J Colloid Interface Sci 2023; 639:124-132. [PMID: 36804785 DOI: 10.1016/j.jcis.2023.02.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Advances in cathode material design and understanding of intercalation mechanisms are necessary to improve the overall performance of aluminum ion batteries. Therefore, we designed ZnSe/SnSe2 hollow microcubes with heterojunction structure as a cathode material for aluminum ion batteries. ZnSe/SnSe2 hollow microcubes with an average size of about1.4 µm were prepared by selenization of ZnSn(OH)6 microcubes successfully. The shell thickness of ZnSe/SnSe2 hollow microcubes is about 250 nm. On one hand, the hollow cubic structure can effectively alleviate the volume effect, provide shorter ion diffusion paths, and increase the contact area with the electrolyte. On the other hand, ZnSe/SnSe2 heterojunction structure can establish a built-in electric field to facilitate ion transport. The synergistic effect of the two leads to the improved electrochemical performance of ZnSe/SnSe2 as the cathode of aluminum ion batteries. The material delivered a reversible capacity of 124 mAh/g after 150 cycles at a current density of 100 mA/g. Meanwhile, coulombic efficiency remained above 98% in almost all cycles. In addition, the electrochemical reaction mechanism and kinetic process of Al3+ and ZnSe/SnSe2 were studied.
Collapse
Affiliation(s)
- Jian Li
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Wenbin Luo
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China.
| | - Zhen Zhang
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Fenghong Li
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Zisheng Chao
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China.
| | - JinCheng Fan
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| |
Collapse
|
45
|
Greco G, Elia GA, Hermida-Merino D, Hahn R, Raoux S. A Direct Real-Time Observation of Anion Intercalation in Graphite Process and Its Fully Reversibility by SAXS/WAXS Techniques. SMALL METHODS 2023; 7:e2201633. [PMID: 36895075 DOI: 10.1002/smtd.202201633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Indexed: 06/09/2023]
Abstract
The process of anion intercalation in graphite and its reversibility plays a crucial role in the next generation energy-storage devices. Herein the reaction mechanism of the aluminum graphite dual ion cell by operando X-ray scattering from small angles to wide angles is investigated. The staging behavior of the graphite intercalation compound (GIC) formation, its phase transitions, and its reversible process are observed for the first time by directly measuring the repeated intercalation distance, along with the microporosity of the cathode graphite. The investigation demonstrates complete reversibility of the electrochemical intercalation process, alongside nano- and micro-structural reorganization of natural graphite induced by intercalation. This work represents a new insight into thermodynamic aspects taking place during intermediate phase transitions in the GIC formation.
Collapse
Affiliation(s)
- Giorgia Greco
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
- Chemistry Department, Sapienza University of Rome, P.le Aldo Moro 5, Roma, 00185, Italy
| | - Giuseppe Antonio Elia
- Technical University of Berlin, Research Center of Microperipheric Technologies, Gustav-Meyer-Allee 25, D-13355, Berlin, Germany
| | - Daniel Hermida-Merino
- DUBBLE-Dutch Belgian Beamline (BM26), ESRF, 6 Rue Jules Horowitz, BP 220, 38043, Grenoble, CEDEX 9, France
| | - Robert Hahn
- Technical University of Berlin, Research Center of Microperipheric Technologies, Gustav-Meyer-Allee 25, D-13355, Berlin, Germany
- Fraunhofer IZM, Institut für Zuverlässigkeit und Mikrointegration, Gustav-Meyer-Allee 25, D-13355, Berlin, Germany
| | - Simone Raoux
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
| |
Collapse
|
46
|
Sijuade AA, Eze VO, Arnett NY, Okoli OI. Vanadium MXenes materials for next-generation energy storage devices. NANOTECHNOLOGY 2023; 34:252001. [PMID: 36930968 DOI: 10.1088/1361-6528/acc539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.
Collapse
Affiliation(s)
- Ayomide Adeola Sijuade
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Vincent Obiozo Eze
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Natalie Y Arnett
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Okenwa I Okoli
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
- Herff College of Engineering, University of Memphis, Memphis, TN, 38111, United States of America
| |
Collapse
|
47
|
Meng Y, Wang M, Li K, Zhu Z, Liu Z, Jiang T, Zheng X, Zhang K, Wang W, Peng Q, Xie Z, Wang Y, Chen W. Reversible, Dendrite-Free, High-Capacity Aluminum Metal Anode Enabled by Aluminophilic Interface Layer. NANO LETTERS 2023; 23:2295-2303. [PMID: 36876971 DOI: 10.1021/acs.nanolett.2c05077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) metal is an attractive anode material for next-generation rechargeable batteries, because of its low cost and high capacities. However, it brings some fundamental issues such as dendrites, low Coulombic efficiency (CE), and low utilization. Here, we propose a strategy for constructing an ultrathin aluminophilic interface layer (AIL) to regulate the Al nucleation and growth behaviors, which enables highly reversible and dendrite-free Al plating/stripping under high areal capacity. Metallic Al can maintain stable plating/stripping on the Pt-AIL@Ti for over 2000 h at 10 mAh cm-2 with an average CE of 99.9%. The Pt-AIL also enables reversible Al plating/stripping at a record high areal capacity of 50 mAh cm-2, which is 1-2 orders of magnitude higher than the previous studies. This work provides a valuable direction for further construction of high-performance rechargeable Al metal batteries.
Collapse
Affiliation(s)
- Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- Center for Electron Microscopy and South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Zhang B, Zhang W, Jin H, Wan J. Research Progress of Cathode Materials for Rechargeable Aluminum Batteries in AlCl
3
/[EMIm]Cl and Other Electrolyte Systems. ChemistrySelect 2023. [DOI: 10.1002/slct.202204575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Boya Zhang
- College of Materials Science & Engineering Qingdao University of Science & Technology Qingdao 266042, Shandong P. R. China
| | - Wenyang Zhang
- Kagami Memorial Research Institute for Materials Science and Technology Waseda University 2-8-26 Nishiwaseda, Shinjuku-ku Tokyo 169-0051 Japan
| | - Huixin Jin
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan 250061 PR China
| | - Jiaqi Wan
- College of Materials Science & Engineering Qingdao University of Science & Technology Qingdao 266042, Shandong P. R. China
| |
Collapse
|
49
|
Liu T, Lv G, Liu M, Zhao C, Liao L, Liu H, Shi J, Zhang J, Guo J. Synergistic Transition-Metal Selenide Heterostructure as a High-Performance Cathode for Rechargeable Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11906-11913. [PMID: 36843285 DOI: 10.1021/acsami.2c23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We synthesize and characterize a rechargeable aluminum battery cathode material composed of heterostructured Co3Se4/ZnSe embedded in a hollow carbon matrix. This heterostructure is synthesized from a metal-organic framework composite, in which ZIF-8 is grown on the surface of ZIF-67 cube. Both experimental and theoretical studies indicate that the internal electric field across the heterostructure interface between Co3Se4 and ZnSe promotes the fast transport of electron and Al-ion diffusion. As a result, the heterostructured Co3Se4/ZnSe demonstrates superior specific capacity and cycle stability compared to the single-phase Co3Se4 and ZnSe cathode materials.
Collapse
Affiliation(s)
- Tianming Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Meng Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Changchun Zhao
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Jiayan Shi
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jian Zhang
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
50
|
Gordon LW, Wang J, Messinger RJ. Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107374. [PMID: 36706465 DOI: 10.1016/j.jmr.2023.107374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.
Collapse
Affiliation(s)
- Leo W Gordon
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA
| | - Jonah Wang
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA
| | - Robert J Messinger
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA.
| |
Collapse
|