1
|
Abbasoglu T, Skarsetz O, Fanlo P, Grignard B, Detrembleur C, Walther A, Sardon H. Spatio-Selective Reconfiguration of Mechanical Metamaterials Through the Use of Dynamic Covalent Chemistries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407746. [PMID: 39439214 DOI: 10.1002/advs.202407746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Mechanical metamaterials achieve unprecedented mechanical properties through their periodically interconnected unit cell structure. However, their geometrical design and resulting mechanical properties are typically fixed during fabrication. Despite efforts to implement covalent adaptable networks (CANs) into metamaterials for permanent shape reconfigurability, emphasis is given to global rather than local shape reconfiguration. Furthermore, the change of effective material properties like Poisson's ratio remains to be explored. In this work, a non-isocyanate polyurethane elastomeric CAN, which can be thermally reconfigured, is introduced into a metamaterial architecture. Structural reconfiguration allows for the local and global reprogramming of the Poisson's ratio with change of unit cell angle from 60° to 90° for the auxetic and 120° to 90° for the honeycomb metamaterial. The respective Poisson's ratio changes from -1.4 up to -0.4 for the auxetic and from +0.7 to +0.2 for the honeycomb metamaterial. Carbon nanotubes are deposited on the metamaterials to enable global and spatial electrothermal heating for on-demand reshaping with a heterogeneous Poisson's ratio ranging from -2 to ≈0 for a single auxetic or +0.6 to ≈0 for a single honeycomb metamaterial. Finite element simulations reveal how permanent geometrical reconfiguration results from locally and globally relaxed heated patterns.
Collapse
Affiliation(s)
- Tansu Abbasoglu
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián, 20018, Spain
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Paula Fanlo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián, 20018, Spain
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Liège, 4000, Belgium
- FRITCO2T Platform, University of Liège, Sart-Tilman B6a, Liège, 4000, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Liège, 4000, Belgium
- WEL Research Institute, Wavre, 1300, Belgium
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián, 20018, Spain
| |
Collapse
|
2
|
Yao H, Zhao X, Shi K, Sun W, Mi S. Programmable and resilient metamaterials with anisotropic and non-linear mechanical responses composed exclusively of stiff constituents. MATERIALS HORIZONS 2024; 11:4689-4704. [PMID: 38984435 DOI: 10.1039/d4mh00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Recently, significant progress has been made in the field of flexible bulk metamaterials composed of soft and elastic materials, unlocking the potential for achieving programmable non-linear mechanical responses, such as shape morphing, energy absorption, and information processing. However, the majority of these metamaterials utilize expensive hyperelastic materials and require complex fabrication processes. Additionally, constructing eco-friendly stiff constituents for these metamaterials remains challenging due to their limited elastic limit strains (<0.1). Here, we propose a systematic design strategy by combining curved beams with chiral metastructures to generate a family of three-dimensional programmable resilient mechanical metamaterials without relying on flexible or hyperelastic constituents. These tiled metamaterials demonstrate robust, anisotropic and non-linear resilience under large elastic compression strains (>0.75), while exhibiting a programmable effective modulus reduction of nearly 6 orders of magnitude compared to the native stiff components. Furthermore, leveraging their stable resilience under high-frequency stimuli, we successfully developed a meter-scale soft robot capable of traversing complex narrow scenarios on demand without the need for flexible materials or sophisticated pipelines. We anticipate that these mechanical metamaterials could serve as a universal platform for programmable active dampers, modular flexible robots, and medical rehabilitation equipment at various scales.
Collapse
Affiliation(s)
- Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Kaiwen Shi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Wei Sun
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Wang M, Jiang J, Liang S, Sui C, Wu S. Functional Semi-Interpenetrating Polymer Networks. Macromol Rapid Commun 2024:e2400539. [PMID: 39212315 DOI: 10.1002/marc.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Semi-interpenetrating polymer networks (SIPNs) have garnered significant interest due to their potential applications in self-healing materials, drug delivery systems, electrolytes, functional membranes, smart gels and, toughing. SIPNs combine the characteristics of physical cross-linking with advantageous chemical properties, offering broad application prospects in materials science and engineering. This perspective introduces the history of semi-interpenetrating polymer networks and their diverse applications. Additionally, the ongoing challenges associated with traditional semi-interpenetrating polymer materials are discussed and provide an outlook on future advancements in novel functional SIPNs.
Collapse
Affiliation(s)
- Minghao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawei Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Sui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Gongora AE, Friedman C, Newton DK, Yee TD, Doorenbos Z, Giera B, Duoss EB, Han TYJ, Sullivan K, Rodriguez JN. Accelerating the design of lattice structures using machine learning. Sci Rep 2024; 14:13703. [PMID: 38871775 DOI: 10.1038/s41598-024-63204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Lattices remain an attractive class of structures due to their design versatility; however, rapidly designing lattice structures with tailored or optimal mechanical properties remains a significant challenge. With each added design variable, the design space quickly becomes intractable. To address this challenge, research efforts have sought to combine computational approaches with machine learning (ML)-based approaches to reduce the computational cost of the design process and accelerate mechanical design. While these efforts have made substantial progress, significant challenges remain in (1) building and interpreting the ML-based surrogate models and (2) iteratively and efficiently curating training datasets for optimization tasks. Here, we address the first challenge by combining ML-based surrogate modeling and Shapley additive explanation (SHAP) analysis to interpret the impact of each design variable. We find that our ML-based surrogate models achieve excellent prediction capabilities (R2 > 0.95) and SHAP values aid in uncovering design variables influencing performance. We address the second challenge by utilizing active learning-based methods, such as Bayesian optimization, to explore the design space and report a 5 × reduction in simulations relative to grid-based search. Collectively, these results underscore the value of building intelligent design systems that leverage ML-based methods for uncovering key design variables and accelerating design.
Collapse
Affiliation(s)
- Aldair E Gongora
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
| | - Caleb Friedman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Deirdre K Newton
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Timothy D Yee
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Zachary Doorenbos
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Brian Giera
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Eric B Duoss
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Thomas Y-J Han
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Kyle Sullivan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Jennifer N Rodriguez
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| |
Collapse
|
5
|
Hardiagon A, Coudert FX. Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior. Acc Chem Res 2024; 57:1620-1632. [PMID: 38752454 DOI: 10.1021/acs.accounts.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ConspectusNanoporous frameworks are a large and diverse family of supramolecular materials, whose chemical building units (organic, inorganic, or both) are assembled into a 3D architecture with well-defined connectivity and topology, featuring intrinsic porosity. These materials play a key role in various industrial processes and applications, such as energy production and conversion, fluid separation, gas storage, water harvesting, and many more. The performance and suitability of nanoporous materials for each specific application are directly related to both their physical and chemical properties, and their determination is crucial for process engineering and optimization of performances. In this Account, we focus on some recent developments in the multiscale modeling of physical properties of nanoporous frameworks, highlighting the latest advances in three specific areas: mechanical properties, thermal properties, and adsorption.In the study of the mechanical behavior of nanoporous materials, the past few years have seen a rapid acceleration of research. For example, computational resources have been pooled to create a public large-scale database of elastic constants as part of the Materials Project initiative to accelerate innovation in materials research: those can serve as a basis for data-based discovery of materials with targeted properties, as well as the training of machine learning predictor models.The large-scale prediction of thermal behavior, in comparison, is not yet routinely performed at such a large scale. Tentative databases have been assembled at the DFT level on specific families of materials, such as zeolites, but prediction at larger scale currently requires the use of transferable classical force fields, whose accuracy can be limited.Finally, adsorption is naturally one of the most studied physical properties of nanoporous frameworks, as fluid separation or storage is often the primary target for these materials. We highlight the recent achievements and open challenges for adsorption prediction at a large scale, focusing in particular on the accuracy of computational models and the reliability of comparisons with experimental data available. We detail some recent methodological improvements in the prediction of adsorption-related properties: in particular, we describe the recent research efforts to go beyond the study of thermodynamic quantities (uptake, adsorption enthalpy, and thermodynamic selectivity) and predict transport properties using data-based methods and high-throughput computational schemes. Finally, we stress the importance of data-based methods of addressing all sources of uncertainty.The Account concludes with some perspectives about the latest developments and open questions in data-based approaches and the integration of computational and experimental data together in the materials discovery loop.
Collapse
Affiliation(s)
- Arthur Hardiagon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| |
Collapse
|
6
|
Dong Z, Ren X, Jia B, Zhang X, Wan X, Wu Y, Huang H. Composite patch with negative Poisson's ratio mimicking cardiac mechanical properties: Design, experiment and simulation. Mater Today Bio 2024; 26:101098. [PMID: 38840795 PMCID: PMC11152757 DOI: 10.1016/j.mtbio.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Developing patches that effectively merge intrinsic deformation characteristics of cardiac with superior tunable mechanical properties remains a crucial biomedical pursuit. Currently used traditional block-shaped or mesh patches, typically incorporating a positive Poisson's ratio, often fall short of matching the deformation characteristics of cardiac tissue satisfactorily, thus often diminishing their repairing capability. By introducing auxeticity into the cardiac patches, this study is trying to present a beneficial approach to address these shortcomings of the traditional patches. The patches, featuring the auxetic effect, offer unparalleled conformity to the cardiac complex mechanical challenges. Initially, scaffolds demonstrating the auxetic effect were designed by merging chiral rotation and concave angle units, followed by integrating scaffolds with a composite hydrogel through thermally triggering, ensuring excellent biocompatibility closely mirroring heart tissue. Tensile tests revealed that auxetic patches possessed superior elasticity and strain capacity exceeding cardiac tissue's physiological activity. Notably, Model III showed an equivalent modulus ratio and Poisson's ratio closely toward cardiac tissue, underscoring its outstanding mechanical potential as cardiac patches. Cyclic tensile loading tests demonstrated that Model III withstood continuous heartbeats, showcasing outstanding cyclic loading and recovery capabilities. Numerical simulations further elucidated the deformation and failure mechanisms of these patches, leading to an exploration of influence on mechanical properties with alternative design parameters, which enabled the customization of mechanical strength and Poisson's ratio. Therefore, this research presents substantial potential for designing cardiac auxetic patches that can emulate the deformation properties of cardiac tissue and possess adjustable mechanical parameters.
Collapse
Affiliation(s)
- Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xuanjia Zhang
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan, 610207, China
| | - Xiaopeng Wan
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yang Wu
- Department of Cardiovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
7
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Xiang J, Xu J, Li H, Chen L, Liu W. Distribution of oxygen-containing functional groups on defective graphene: properties engineering and Li adsorption. Phys Chem Chem Phys 2024; 26:12764-12777. [PMID: 38619495 DOI: 10.1039/d4cp00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, the distribution of oxygen-containing functional groups on graphene with vacancies and topological defects was systematically investigated using advanced computational methods and the structure models for multi-defect graphene oxides (GOs) were proposed. All potential adsorption sites were considered through an automated structure generation program to identify energetically favorable structures. Unlike the pristine graphene surface where oxygen-containing functional groups always aggregate with each other, we observed a tendency for them to preferentially adsorb near defects. Furthermore, they may also be distributed on the same side or both sides of the defective graphene. These multi-defect GOs can exhibit either metallic or semiconducting properties. Notably, upon adsorbing the same oxygen-containing functional groups onto the surface of defective graphene, their electronic characteristics become homogeneous. The coexistence of vacancy/topological defects and oxygen-containing functional groups within the graphene lattice introduces intriguing mechanical anisotropic properties to graphene, including the uncommon negative Poisson's ratio. Additionally, these materials exhibit anisotropic optical behavior, displaying heightened absorption within the infrared and visible regions compared to pristine graphene. Finally, it is found that Li atoms are adsorbed stably on the surfaces of multi-defect GOs via the formation of LinO/LimOH clusters. The research findings presented in this paper, encompassing the development of structural models for multi-defect GOs, could provide crucial insights into the properties and potential applications of graphene oxides.
Collapse
Affiliation(s)
- Jiang Xiang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Hongyan Li
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| |
Collapse
|
9
|
Ma Y, Ying P, Luo K, Wu Y, Li B, He J. Theoretical insights into the structural, mechanical, and electronic properties of bcc-C40 carbon. Phys Chem Chem Phys 2024; 26:10932-10939. [PMID: 38525965 DOI: 10.1039/d4cp00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Novel materials displaying multiple exceptional properties are the backbone of the advancement of various industries. In the field of carbon materials, the combination of different properties has been extensively developed to satisfy diverse application scenarios, for instance, conductivity paired with exceptional hardness, outstanding toughness coupled with super-hardness, or heat resistance combined with super-hardness. In this work, a new carbon allotrope, bcc-C40 carbon, was predicted and investigated using first-principles calculations based on density functional theory. The allotrope exhibits unique structural features, including a combination of sp3 hybridized diatomic carbon and four-fold carbon chains. The mechanical and dynamic stability of bcc-C40 carbon has been demonstrated by its elastic constants and phonon spectra. Additionally, bcc-C40 carbon exhibits remarkable mechanical properties, such as zero homogeneous Poisson's ratio, superhardness with a value of 58 GPa, and stress-adaptive toughening. The analysis of the electronic properties demonstrates that bcc-C40 carbon is a semiconductor with an indirect band gap of 3.255 eV within the HSE06 functional, which increases with the increase in pressure. At a pressure of 150 GPa, bcc-C40 carbon transforms into a direct band gap material. These findings suggest the prospective use of bcc-C40 carbon as a superhard material and a novel semiconductor.
Collapse
Affiliation(s)
- Ying Ma
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| | - Pan Ying
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kun Luo
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| | - Yingju Wu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
- Key Laboratory of Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Baozhong Li
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| | - Julong He
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
10
|
Fan D, Ozcan A, Lyu P, Maurin G. Unravelling abnormal in-plane stretchability of two-dimensional metal-organic frameworks by machine learning potential molecular dynamics. NANOSCALE 2024; 16:3438-3447. [PMID: 38265127 DOI: 10.1039/d3nr05966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) hold immense potential for various applications due to their distinctive intrinsic properties compared to their 3D analogues. Herein, we designed a highly stable NiF2(pyrazine)2 2D MOF in silico with a two-dimensional periodic wine-rack architecture. Extensive first-principles calculations and molecular dynamics (MD) simulations based on a newly developed machine learning potential (MLP) revealed that this 2D MOF exhibits huge in-plane Poisson's ratio anisotropy. This results in anomalous negative in-plane stretchability, as evidenced by an uncommon decrease in its in-plane area upon the application of uniaxial tensile strain, which makes this 2D MOF particularly attractive for flexible wearable electronics and ultra-thin sensor applications. We further demonstrated the unique capability of MLP to accurately predict the finite-temperature properties of MOFs on a large scale, exemplified by MLP-MD simulations with a dimension of 28.2 × 28.2 nm2, relevant to the length scale experimentally attainable for the fabrication of MOF films.
Collapse
Affiliation(s)
- Dong Fan
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France.
| | - Aydin Ozcan
- TUBİTAK Marmara Research Center, Materials Technologies, Gebze, Kocaeli, 41470, Turkey
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France.
| |
Collapse
|
11
|
Anh NPQ, Poklonski NA, Vi VTT, Nguyen CQ, Hieu NN. Two-dimensional Janus Si 2OX (X = S, Se, Te) monolayers as auxetic semiconductors: theoretical prediction. RSC Adv 2024; 14:4966-4974. [PMID: 38327810 PMCID: PMC10848126 DOI: 10.1039/d4ra00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The auxetic materials have exotic mechanical properties compared to conventional materials, such as higher indentation resistance, more superior sound absorption performance. Although the auxetic behavior has also been observed in two-dimensional (2D) nanomaterials, to date there has not been much research on auxetic materials in the vertical asymmetric Janus 2D layered structures. In this paper, we explore the mechanical, electronic, and transport characteristics of Janus Si2OX (X = S, Se, Te) monolayers by first-principle calculations. Except for the Si2OTe monolayer, both Si2OS and Si2OSe are found to be stable. Most importantly, both Si2OS and Si2OSe monolayers are predicted to be auxetic semiconductors with a large negative Poisson's ratio. The auxetic behavior is clearly observed in the Janus Si2OS monolayer with an extremely large negative Poisson's ratio of -0.234 in the x axis. At the equilibrium state, both Si2OS and Si2OSe materials exhibit indirect semiconducting characteristics and their band gaps can be easily altered by the mechanical strain. More interestingly, the indirect-direct bandgap phase transitions are observed in both Si2OS and Si2OSe monolayers when the biaxial strains are introduced. Further, the studied Janus structures also exhibit remarkably high electron mobility, particularly along the x direction. Our findings demonstrate that Si2OS and Si2OSe monolayers are new auxetic materials with asymmetric structures and show their great promise in electronic and nanomechanical applications.
Collapse
Affiliation(s)
- Nguyen P Q Anh
- Faculty of Electrical, Electronics and Materials Technology, University of Sciences, Hue University Hue 530000 Viet Nam
| | - N A Poklonski
- Faculty of Physics, Belarusian State University Minsk 220006 Belarus
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue 530000 Viet Nam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Viet Nam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Viet Nam
| |
Collapse
|
12
|
Zhang X, Sun Q, Liang X, Gu P, Hu Z, Yang X, Liu M, Sun Z, Huang J, Wu G, Zu G. Stretchable and negative-Poisson-ratio porous metamaterials. Nat Commun 2024; 15:392. [PMID: 38195718 PMCID: PMC10776607 DOI: 10.1038/s41467-024-44707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Highly stretchable porous materials are promising for flexible electronics but their fabrication is a great challenge. Herein, several kinds of highly stretchable conductive porous elastomers with low or negative Poisson's ratios are achieved by uniaxial, biaxial, and triaxial hot-pressing strategies. The reduced graphene oxide/polymer nanocomposite elastomers with folded porous structures obtained by uniaxial hot pressing exhibit high stretchability up to 1200% strain. Furthermore, the meta-elastomers with reentrant porous structures combining high biaxial (or triaxial) stretchability and negative Poisson's ratios are achieved by biaxial (or triaxial) hot pressing. The resulting elastomer-based wearable strain sensors exhibit an ultrawide response range (0-1200%). The materials can be applied for smart thermal management and electromagnetic interference shielding, which are achieved by regulating the porous microstructures via stretching. This work provides a versatile strategy to highly stretchable and negative-Poisson-ratio porous materials with promising features for various applications such as flexible electronics, thermal management, electromagnetic shielding, and energy storage.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Qi Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Muxiang Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| |
Collapse
|
13
|
Liu F, Terakawa T, Long S, Komori M. Rigid-foldable cylindrical origami with tunable mechanical behaviors. Sci Rep 2024; 14:145. [PMID: 38168539 PMCID: PMC10762141 DOI: 10.1038/s41598-023-50353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Rigid-foldable origami shows significant promise in advanced engineering applications including deployable structures, aerospace engineering, and robotics. It undergoes deformation solely at the creases during the folding process while maintaining rigidity throughout all facets. However, most types of cylindrical origami, such as Kresling origami, water-bomb origami, and twisted tower origami, lack rigid-foldability. Although shape transformation can be achieved through elastic folding, their limited rigid foldability constrains their engineering applications. To address this limitation, we proposed a type of cylindrical origami inspired by Kresling origami, named foldable prism origami (FP-ori), in this paper. FP-ori possesses not only rigid-foldability but also several tunable properties, including flat-foldability, self-locking, and bistability. The geometric properties of FP-ori were analyzed and the relationship between different parameters and tunable mechanical behaviors were verified through finite element method simulations, as well as experiments using paper models. Furthermore, we proposed stacked structures composed of multiple cubic FP-ori units, the rotation directions of which could be controlled through the combination arrangement. And drawing inspiration from kirigami, a negative Poisson's ratio tessellation structure was created. These results indicated that FP-ori has substantial potential for broad application in engineering fields.
Collapse
Affiliation(s)
- Fengrui Liu
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tatsuro Terakawa
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Siying Long
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Masaharu Komori
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
14
|
Thakur S, Giri A. Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio. MATERIALS HORIZONS 2023; 10:5484-5491. [PMID: 37843868 DOI: 10.1039/d3mh01417g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The ability to dynamically and reversibly control thermal transport in solid-state systems can redefine and propel a plethora of technologies including thermal switches, diodes, and rectifiers. Current material systems, however, do not possess the swift and large changes in thermal conductivity required for such practical applications. For instance, stimuli responsive materials, that can reversibly switch between a high thermal conductivity state and a low thermal conductivity state, are mostly limited to thermal switching ratios in the range of 1.5 to 4. Here, we demonstrate reversible thermal conductivity switching with an unprecedented 18× change in thermal transport in a highly flexible covalent organic framework with revolving imine bonds. The pedal motion of the imine bonds is capable of reversible transformations of the framework from an expanded (low thermal conductivity) to a contracted (high thermal conductivity) phase, which can be triggered through external stimuli such as exposure to guest adsorption and desorption or mechanical strain. We also show that the dynamic imine linkages endow the material with a negative Poisson's ratio, thus marking a regime of materials design that combines low densities with exceptional thermal and mechanical properties.
Collapse
Affiliation(s)
- Sandip Thakur
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Ashutosh Giri
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
15
|
Zhao H, Wang H, Tan W, Ren N, Ding L, Yu X, Wang A. A novel two-dimensional NiCl 2O 8 lattice with negative Poisson's ratio and magnetic modulation. Phys Chem Chem Phys 2023; 25:31050-31056. [PMID: 37942556 DOI: 10.1039/d3cp02400h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Two-dimensional (2D) materials with simultaneous magnetic semiconducting properties and a negative Poisson's ratio are crucial for fabricating multifunctional electronic devices. However, progress in this area has been generally constrained. Based on first-principles calculations, we engineered a 2D Ni-based oxyhalide with a honeycomb lattice structure. It was observed that the NiCl2O8 monolayer exhibits both high- and low-buckling states in its geometry, along with intrinsic magnetic semiconductor properties in its electronic structure. Importantly, we demonstrated that the magnetic ordering of the NiCl2O8 lattice is susceptible to applied strain, which resulted in a phase transition from paramagnetic to ferromagnetic under biaxial strain. The Curie temperature was also evaluated using Monte Carlo simulations within the Ising model. Additionally, our research uncovered that the 2D NiCl2O8 lattice chain displays a negative Poisson's ratio (NPR) along the z-direction. The triangular hinge structure in its centrosymmetric configuration was identified as the origin of this unique phenomenon. The coexistence of NPR and magnetic phase transition properties in the NiCl2O8 lattice makes it quite promising for applications in nanoelectronic and spintronic devices.
Collapse
Affiliation(s)
- Hongbo Zhao
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, China.
| | - Hongguang Wang
- Jinan Jingheng Electronics Co., Ltd, Jinan, Shandong, 250014, China
| | - Wei Tan
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, China.
| | - Na Ren
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, China.
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, China.
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, China.
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, China.
| |
Collapse
|
16
|
Nulakani NVR, Ali MA, Subramanian V. A Novel Quasi-Planar Two-dimensional Carbon Sulfide with Negative Poisson's Ratio and Dirac Fermions. Chemphyschem 2023; 24:e202300266. [PMID: 37609863 DOI: 10.1002/cphc.202300266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
In the present study, a novel and unconventional two-dimensional (2D) material with Dirac electronic features has been designed using sulflower with the help of density functional theory methods and first principles calculations. This 2D material comprises of hetero atoms (C, S) and belongs to the tetragonal lattice with P4 /nmm space group. Scrutiny of the results show that the 2D nanosheet exhibits a nanoporous wave-like geometrical structure. Quantum molecular dynamics simulations and phonon mode analysis emphasize the dynamical and thermal stability. The novel 2D nanosheet is an auxetic material with an anisotropy in the in-plane mechanical properties. Both composition and geometrical features are completely different from the conditions necessary for the formation of Dirac cones in graphene. However, the presence of semi-metallic nature, linear band dispersion relation, massive fermions and massless Dirac fermions are observed in the novel 2D nanosheet. The massless Dirac fermions exhibit highly isotropic Fermi velocities (vf =0.68×106 m/s) along all crystallographic directions. The zero-band gap semi metallic features of the novel 2D nanosheet are perturbative to the electric field and external strain.
Collapse
Affiliation(s)
- Naga Venkateswara Rao Nulakani
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600020, India
| | - Mohamad Akbar Ali
- Department of Chemistry, College of Art and Science, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Venkatesan Subramanian
- Centre for High Computing, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600020, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Zeng L, Ling S, Du D, He H, Li X, Zhang C. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303716. [PMID: 37740446 PMCID: PMC10646286 DOI: 10.1002/advs.202303716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Indexed: 09/24/2023]
Abstract
Despite tremendous efforts that have been dedicated to high-performance electrochemical energy storage devices (EESDs), traditional electrode fabrication processes still face the daunting challenge of limited energy/power density or compromised mechanical compliance. 3D thick electrodes can maximize the utilization of z-axis space to enhance the energy density of EESDs but still suffer from limitations in terms of poor mechanical stability and sluggish electron/ion transport. Direct ink writing (DIW), an eminent branch of 3D printing technology, has gained popularity in the manufacture of 3D electrodes with intricately designed architectures and rationally regulated porosity, promoting a triple boost in areal mass loading, ion diffusion kinetics, and mechanical flexibility. This focus review highlights the fundamentals of printable inks and typical configurations of 3D-printed devices. In particular, preparation strategies for high-performance and multifunctional 3D-printed EESDs are systemically discussed and classified according to performance evaluation metrics such as high areal energy density, high power density, high volumetric energy density, and mechanical flexibility. Challenges and prospects for the fabrication of high-performance 3D-printed EESDs are outlined, aiming to provide valuable insights into this thriving field.
Collapse
Affiliation(s)
- Li Zeng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Shangwen Ling
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Dayue Du
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Hanna He
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
18
|
Wurmshuber M, Wilmers J, Kim J, Oh SH, Bargmann S, Kiener D. Lower hardness than strength: The auxetic composite microstructure of limpet tooth. Acta Biomater 2023; 166:447-453. [PMID: 37121368 DOI: 10.1016/j.actbio.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
The limpet tooth is widely recognized as nature's strongest material, with reported strength values up to 6.5 GPa. Recently, microscale auxeticity has been discovered in the leading part of the tooth, providing a possible explanation for this extreme strength. Utilizing micromechanical experiments, we find hardness values in nanoindentation that are lower than the respective strength observed in micropillar compression tests. Using micromechanical modeling, we show that this unique behavior is a result of local tensile strains during indentation, originating from the microscale auxeticity. As the limpet tooth lacks ductility, these tensile strains lead to microdamage in the auxetic regions of the microstructure. Consequently, indentation with a sharp indenter always probes a damaged version of the material, explaining the lower hardness and modulus values gained from nanoindentation. Micropillar tests were found to be mostly insensitive to such microdamage due to the lower applied strain and are therefore the suggested method for characterizing auxetic nanocomposites. STATEMENT OF SIGNIFICANCE: This work explores the micromechanical properties of limpet teeth, nature's strongest biomaterial, using micropillar compression testing and nanoindentation. The limpet tooth microstructure consists of ceramic nanorods embedded in a matrix of amorphous SiO2 and arranged in a pattern that leads to local auxetic behavior. We report lower values for nanoindentation hardness than for compressive strength, a unique behavior usually not achievable in conventional materials. Utilizing micromechanical finite element simulations, we identify the reason for this behavior to be microdamage formation resultant of the auxetic behavior, sharp indenter tip and lack of ductility of the limpet tooth microstructure. This formation of microdamage is not expected in micropillar compression tests due to lower locally imposed strain.
Collapse
Affiliation(s)
- Michael Wurmshuber
- Chair of Materials Physics, Department Materials Science, Montanuniversität Leoben, Austria
| | - Jana Wilmers
- Chair of Solid Mechanics, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Germany; Wuppertal Center for Smart Materials & Systems, University of Wuppertal, Germany
| | - Jongil Kim
- Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Republic of Korea
| | - Sang Ho Oh
- Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Republic of Korea.
| | - Swantje Bargmann
- Chair of Solid Mechanics, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Germany; Wuppertal Center for Smart Materials & Systems, University of Wuppertal, Germany.
| | - Daniel Kiener
- Chair of Materials Physics, Department Materials Science, Montanuniversität Leoben, Austria.
| |
Collapse
|
19
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Zhang H, Wang J, Guégan F, Frapper G. First-principles structure prediction of two-dimensional HCN polymorphs obtained via formal molecular polymerization. NANOSCALE 2023; 15:7472-7481. [PMID: 37016969 DOI: 10.1039/d2nr07239d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the present study, ab initio evolutionary algorithms and heuristic approach were used to predict new two-dimensional (2D) hydrogen cyanide crystalline phases based on HCN and HNC molecular building blocks. Our research revealed thirty-seven 2D HCN and HNC structures within six topological families which contain N1, N2 dimers, N3 trimers, infinite poly-N motifs, or zigzag C-C chains. HSE06 functional calculations indicated that 2D 1Pmn21 HCN, 2Pma2 HCN, 3P21212 HCN, and 6Pbcm HNC are direct semiconductors with band gaps Eg of 5.1, 4.2, 4.3, and 2.8 eV, respectively, and isovalent element substitutions (C by Ge/Si, and H by F) were performed to tune the electronic band gaps of the resulting 2D structures (Eg = 1.2-7.4 eV). Moreover, it has been found that the high in-plane Young's modulus (330.3-445.8 N m-1) and strong tolerance of direct band transitions (Eg = 1.2-5.3 eV) against the external biaxial strains in these four 2D HCN structures endow them with potential applications in photofunctional and flexible electronic devices. Finally, ab initio molecular dynamics simulations showed that at 50 GPa and 400 K, HCN molecules in a bulk I4mm hydrogen cyanide molecular crystal can extend to 2D HCN covalent nets.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.
- Applied Quantum Chemistry group, E4, IC2MP, UMR 7285 Poitiers University-CNRS, 4 rue Michel Brunet TSA 51106, 86073 Poitiers Cedex 9, France.
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.
| | - Frédéric Guégan
- Applied Quantum Chemistry group, E4, IC2MP, UMR 7285 Poitiers University-CNRS, 4 rue Michel Brunet TSA 51106, 86073 Poitiers Cedex 9, France.
| | - Gilles Frapper
- Applied Quantum Chemistry group, E4, IC2MP, UMR 7285 Poitiers University-CNRS, 4 rue Michel Brunet TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
21
|
Lan D, Zhou H, Wu H. A polymer sponge with dual absorption of mechanical and electromagnetic energy. J Colloid Interface Sci 2023; 633:92-101. [PMID: 36436351 DOI: 10.1016/j.jcis.2022.11.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Polyaniline, a modified conductive polymer, has been widely studied in the field of electromagnetic (EM) wave absorption due to its excellent dielectric and conductive properties. However, it has limited applications due to its hard molding and processing, and poor mechanical stability. In this study, ice crystals with rapid directional growth were used as templates for polymerization to obtain polymer precursors with directional channels, and then ternary polymer sponges with oriented pore channels were designed and synthesized using a secondary template method. The Poisson's ratio of the study material reaches -1.52 and it absorbs 5.1 mJ/cm3 energy in a single compression cycle at 25% longitudinal strain. Also, the material has more than 90% absorption efficiency for X-band EM waves at a thickness of 4 mm. The flexibility of polymer molecular chains and the arrangement of oriented pores are the reasons for the negative Poisson's ratio property of the material, while the key to the loss of EM energy in the absorption process is the conversion of quinone bipolaron to monopolaron structure. Due to its large-scale green preparation with ice crystal as the template, this lightweight and robust material system are ideal for absorbing EM waves under extreme conditions.
Collapse
Affiliation(s)
- Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongjun Zhou
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
22
|
Negative Poisson's ratio polyethylene matrix and 0.5Ba(Zr 0.2 Ti 0.8) O 3-0.5(Ba 0.7 Ca 0.3)TiO 3 based piezocomposite for sensing and energy harvesting applications. Sci Rep 2022; 12:22610. [PMID: 36585424 PMCID: PMC9803716 DOI: 10.1038/s41598-022-26834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3-0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0-3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between -0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between -0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters.
Collapse
|
23
|
Wang V, Tang G, Liu YC, Wang RT, Mizuseki H, Kawazoe Y, Nara J, Geng WT. High-Throughput Computational Screening of Two-Dimensional Semiconductors. J Phys Chem Lett 2022; 13:11581-11594. [PMID: 36480578 DOI: 10.1021/acs.jpclett.2c02972] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) materials have attracted great attention mainly due to their unique physical properties and ability to fulfill the demands of future nanoscale devices. By performing high-throughput first-principles calculations combined with a semiempirical van der Waals dispersion correction, we have screened 73 direct- and 183 indirect-gap 2D nonmagnetic semiconductors from nearly 1000 monolayers according to the criteria for thermodynamic, mechanical, dynamic, and thermal stabilities and conductivity type. We present the calculated lattice constants, formation energy, Young's modulus, Poisson's ratio, shear modulus, anisotropic effective mass, band structure, band gap, ionization energy, electron affinity, and simulated scanning tunnel microscopy for each candidate meeting our criteria. The resulting 2D semiconductor database (2DSdb) can be accessed via the Web site https://materialsdb.cn/2dsdb/index.html. The 2DSdb provides an ideal platform for computational modeling and design of new 2D semiconductors and heterostructures in photocatalysis, nanoscale devices, and other applications. Further, a linear fitting model was proposed to evaluate band gap, ionization energy, and electron affinity of 2D semiconductors from the density functional theory (DFT) calculated data as initial input. This model can be as precise as hybrid DFT but with much lower computational cost.
Collapse
Affiliation(s)
- Vei Wang
- Department of Applied Physics, Xi'an University of Technology, Xi'an710054, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing100081, China
| | - Ya-Chao Liu
- Department of Applied Physics, Xi'an University of Technology, Xi'an710054, China
| | - Ren-Tao Wang
- Department of Applied Physics, Xi'an University of Technology, Xi'an710054, China
| | - Hiroshi Mizuseki
- Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi980-8579, Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu603203, India
- Department of Physics, Suranaree University of Technology, Nakhon Ratchasima30000, Thailand
| | - Jun Nara
- National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Wen Tong Geng
- School of Materials Science and Engineering, Hainan University, Haikou570228, China
| |
Collapse
|
24
|
Oh SH, Kim JK, Liu Y, Wurmshuber M, Peng XL, Seo J, Jeong J, Wang Z, Wilmers J, Soyarslan C, Kim J, Kittiwirayanon B, Jeong J, Kim HJ, Huh YH, Kiener D, Bargmann S, Gao H. Limpet teeth microstructure unites auxeticity with extreme strength and high stiffness. SCIENCE ADVANCES 2022; 8:eadd4644. [PMID: 36459556 PMCID: PMC10936056 DOI: 10.1126/sciadv.add4644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Materials displaying negative Poisson's ratio, referred to as auxeticity, have been found in nature and created in engineering through various structural mechanisms. However, uniting auxeticity with high strength and high stiffness has been challenging. Here, combining in situ nanomechanical testing with microstructure-based modeling, we show that the leading part of limpet teeth successfully achieves this combination of properties through a unique microstructure consisting of an amorphous hydrated silica matrix embedded with bundles of single-crystal iron oxide hydroxide nanorods arranged in a pseudo-cholesteric pattern. During deformation, this microstructure allows local coordinated displacement and rotation of the nanorods, enabling auxetic behavior while maintaining one of the highest strengths among natural materials. These findings lay a foundation for designing biomimetic auxetic materials with extreme strength and high stiffness.
Collapse
Affiliation(s)
- Sang Ho Oh
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Korea
| | - Jin-Kyung Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
- Department of Material Science and Chemical Engineering, Hanyang University, Ansan, Korea
| | - Yue Liu
- School of Engineering, Brown University, Providence, RI 02912, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Wurmshuber
- Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Leoben, Austria
| | - Xiang-Long Peng
- Chair of Solid Mechanics, University of Wuppertal, Wuppertal, Germany
- Mechanics of Functional Materials Division, Institute of Materials Science, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Jinsol Seo
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Korea
| | - Jiwon Jeong
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
| | - Zhen Wang
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
| | - Jana Wilmers
- Chair of Solid Mechanics, University of Wuppertal, Wuppertal, Germany
| | - Celal Soyarslan
- Chair of Solid Mechanics, University of Wuppertal, Wuppertal, Germany
- Chair of Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente, Enschede 7522 NB, Netherlands
- Fraunhofer Innovation Platform, University of Twente, Enschede 7522 NB, Netherlands
| | - Jongil Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Korea
| | | | - Jeehun Jeong
- Department of Energy Science, Sungkyunkwan University, Suwon, Korea
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Korea
| | - Hyo-Jeong Kim
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Korea
| | - Daniel Kiener
- Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Leoben, Austria
| | - Swantje Bargmann
- Chair of Solid Mechanics, University of Wuppertal, Wuppertal, Germany
- Wuppertal Center for Smart Materials and Systems, University of Wuppertal, Wuppertal, Germany
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|
25
|
Wang L, Ulliac G, Wang B, Iglesias Martínez JA, Dudek KK, Laude V, Kadic M. 3D Auxetic Metamaterials with Elastically-Stable Continuous Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204721. [PMID: 36257832 PMCID: PMC9731712 DOI: 10.1002/advs.202204721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Indexed: 05/27/2023]
Abstract
In solid state physics, phase transitions can influence material functionality and alter their properties. In mechanical metamaterials, structural-phase transitions can be achieved through instability or buckling of certain structural elements. However, these fast transitions in one mechanical parameter typically affect significantly the remaining parameters, hence, limiting their applications. Here, this limitation is addressed by designing a novel 3D mechanical metamaterial that is capable of undergoing a phase transition from positive to negative Poisson's ratio under compression, without significant degradation of Young's modulus (i.e. the phase transition is elastically-stable). The metamaterial is fabricated by two-photon lithography at the micro-scale and its mechanical behavior is assessed experimentally. For another choice of structural parameters, it is then shown that the auxetic behavior of the considered 3D metamaterial class can be maintained over a wide range of applied compressive strain.
Collapse
Affiliation(s)
- Lianchao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001P. R. China
- Institut FEMTO‐STCNRS UMR 6174, University Bourgogne Franche‐ComtéBesançon25000France
| | - Gwenn Ulliac
- Institut FEMTO‐STCNRS UMR 6174, University Bourgogne Franche‐ComtéBesançon25000France
| | - Bing Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001P. R. China
| | | | - Krzysztof K. Dudek
- Institut FEMTO‐STCNRS UMR 6174, University Bourgogne Franche‐ComtéBesançon25000France
- Institute of PhysicsUniversity of Zielona Goraul. Szafrana 4aZielona Gora65‐069Poland
| | - Vincent Laude
- Institut FEMTO‐STCNRS UMR 6174, University Bourgogne Franche‐ComtéBesançon25000France
| | - Muamer Kadic
- Institut FEMTO‐STCNRS UMR 6174, University Bourgogne Franche‐ComtéBesançon25000France
| |
Collapse
|
26
|
Wang L, Chen Y, Miura H, Suzuki K, Wang C. Penta-graphene and phagraphene: thermal expansion, linear compressibility, and Poisson's ratio. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505301. [PMID: 36265479 DOI: 10.1088/1361-648x/ac9c3e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Nonplanar penta-graphene and planar phagraphene, which are connected by carbon pentagons and penta-hexa-hepta carbon rings, respectively, are two allotropes of graphene. Graphene as a star material in two-dimensional materials has been widely studied. However, the studies around penta-graphene and phagraphene are still insufficient. We are interested in both materials' response to temperature, hydrostatic pressure, and stress. In this work, the thermal expansion, linear compressibility, and Poisson's ratio of penta-graphene and phagraphene have been investigated systematically. It is found that both materials can exhibit abnormal negative thermal expansion behavior, while their linear compressibility behavior is normal. The negative Poisson's ratio behavior only occurs in penta-graphene, which is consistent with other work. Through an analysis of the lattice vibrations and associated mode Grüneisen parameters, it is found that there are anomalies in the phonon spectra of both penta-graphene and phagraphene. It is noted that acoustic phonons contribute most to their respective anomalies, especially the transverse acoustic mode. The librational motion of the lowest-frequency optical phonon of both materials is identified and also associated with their novel properties. In general, the unique topological arrangement of carbon atoms can play a decisive role in determining the performances of penta-graphene and phagraphene.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Ying Chen
- Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hideo Miura
- Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Ken Suzuki
- Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Cong Wang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
27
|
Han Z, Xiao X, Chen J, Wei K, Wang Z, Yang X, Fang D. Bifunctional Metamaterials Incorporating Unusual Geminations of Poisson's Ratio and Coefficient of Thermal Expansion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50068-50078. [PMID: 36283006 DOI: 10.1021/acsami.2c11702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Natural materials overwhelmingly shrink laterally under stretching and expand upon heating. Through incorporating Poisson's ratio and coefficient of thermal expansion (PR and CTE) in unusual geminations, such as positive PR and negative CTE, negative PR and positive CTE, and even zero PR and zero CTE, bifunctional metamaterials would generate attractive shape control capacity. However, reported bifunctional metamaterials are only theoretically constructed by simple skeletal ribs, and the magnitudes of the bifunctions are still in quite narrow ranges. Here, we propose a methodology for generating novel bifunctional metamaterials consisting of engineering polymers. From concept to refinement, the topology and shape optimization are integrated for programmatically designing bifunctional metamaterials in various germinations of the PR and CTE. The underlying deformation mechanisms of the obtained bifunctions are distinctly revealed. All of the designs with complex architectures and material layouts are fabricated using the multimaterial additive manufacturing, and their effective properties are experimentally characterized. Good agreements of the design, simulation, and experiments are achieved. Especially, the accessible range of the bifunction, namely, PR and CTE, is remarkably enlarged nearly 4 times. These developed approaches open an avenue to explore the bifunctional metamaterials, which are the basis of myriad mechanical- and temperature-sensitive devices, e.g., morphing structures and high-precision components of the sensors/actuators in aerospace and electronical domains.
Collapse
Affiliation(s)
- Zhengtong Han
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, People's Republic of China
| | - Xiaoyujie Xiao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, People's Republic of China
| | - Jiaxin Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, People's Republic of China
| | - Kai Wei
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, People's Republic of China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan410083, People's Republic of China
| | - Zhonggang Wang
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan410083, People's Republic of China
| | - Xujing Yang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan410082, People's Republic of China
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing100081, People's Republic of China
| |
Collapse
|
28
|
Sharma SB, Qattan IA, KC S, Alsaad AM. Large Negative Poisson's Ratio and Anisotropic Mechanics in New Penta-PBN Monolayer. ACS OMEGA 2022; 7:36235-36243. [PMID: 36278108 PMCID: PMC9583336 DOI: 10.1021/acsomega.2c03567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The scarce negative Poisson's ratio (NPR) in a two-dimensional (2D) material is an exceptional auxetic property that offers an opportunity to develop nanoscale futuristic multi-functional devices and has been drawing extensive research interest. Inspired by the buckled pentagonal iso-structures that often expose NPR, we employ state-of-the-art first-principles density functional theory calculations and analyses to predict a new 2D metallic ternary auxetic penta-phosphorus boron nitride (p-PBN) with a high value of NPR. The new p-PBN is stable structurally, mechanically, and dynamically and sustainable at room temperature, with experimental feasibility. The short and strong quasi sp3-hybridized B-N bond and unique bond variation and geometrical reconstruction with an applied strain allow p-PBN to inherit a high value of NPR (-0.236) along the (010) direction, the highest among any other ternary penta iso-structures reported to date. Despite having a small elastic strength, the highly asymmetric Young's modulus and Poisson's ratio along the (100) and (010) directions indicate large anisotropic mechanics, which are crucial for potential applications in nanomechanics and nanoauxetics.
Collapse
Affiliation(s)
- Shambhu Bhandari Sharma
- Department
of Physics, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi127788, United
Arab Emirates
| | - Issam A. Qattan
- Department
of Physics, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi127788, United
Arab Emirates
| | - Santosh KC
- Chemical
and Materials Engineering, San Jose State
University, San Jose, California95112, United States
| | - Ahmad M. Alsaad
- Department
of Physical Sciences, Jordan University
of Science and Technology, P.O. Box 3030, Irbid22110, Jordan
| |
Collapse
|
29
|
Zhang H, Wang J, Guégan F, Frapper G. Prediction of Two-Dimensional Group IV Nitrides A xN y (A = Sn, Ge, or Si): Diverse Stoichiometric Ratios, Ferromagnetism, and Auxetic Mechanical Property. J Phys Chem Lett 2022; 13:9316-9325. [PMID: 36178176 DOI: 10.1021/acs.jpclett.2c02376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we unveiled a new class of two-dimensional (2D) group IV nitride AxNy (A = Sn, Ge, or Si) prototypes, C2/m A4N, P3̅m1 A3N, P3m1 A2N, P3̅m1 A3N2, P6̅m2 AN, P3̅m1 AN, P6̅2m A3N4, P3m1 A2N3, P4̅21m AN2, and P3̅m1 AN3, by using evolutionary algorithms combined with first-principles calculations. Using HSE06 functional calculations, a wide range of band gaps from metal to semiconductor (0.405-5.050 eV) and ultrahigh carrier mobilities (1-24 × 103 cm2 V-1 s-1) were evidenced in these 2D structures. We found that 2D P3m1 Sn2N3, Ge2N3, and Si2N3 are intrinsic ferromagnetic semiconductors with gaps of 0.677, 1.285, and 2.321 eV, respectively. The lattice symmetry and Si-to-N2 charge transfer upon strain lead to large anisotropic negative Poisson's ratios (-0.281 to -0.146) along whole in-plane directions in 2D P4̅21m SiN2. Our findings not only enrich the family of 2D nitrides but also highlight the promising optoelectronic and nanoauxetic applications of 2D group IV nitrides.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
- Applied Quantum Chemistry group, E4, IC2MP, UMR 7285 Poitiers University-CNRS, 4 rue Michel Brunet TSA, 51106, 86073 Poitiers Cedex 9, France
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Frédéric Guégan
- Applied Quantum Chemistry group, E4, IC2MP, UMR 7285 Poitiers University-CNRS, 4 rue Michel Brunet TSA, 51106, 86073 Poitiers Cedex 9, France
| | - Gilles Frapper
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
- Applied Quantum Chemistry group, E4, IC2MP, UMR 7285 Poitiers University-CNRS, 4 rue Michel Brunet TSA, 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
30
|
Tian L, Yang J, You X, Wang M, Ren X, Zhang X, Dong S. Tailoring centripetal metamaterial with superelasticity and negative Poisson's ratio for organic solvents adsorption. SCIENCE ADVANCES 2022; 8:eabo1014. [PMID: 36179028 PMCID: PMC9524823 DOI: 10.1126/sciadv.abo1014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 05/27/2023]
Abstract
Graphene metamaterials with a radial-like structure and negative Poisson's ratio (NPR) were assembled using a unique centripetal freezing technique. Driven by the centripetal temperature gradient, ice crystals were grown toward the center of an aqueous graphene dispersion and form a radially arranged skeleton. A reentrant structure was formed at the diagonal of the monolith as the ice crystals sublimate. The obtained centripetal graphene metamaterial (CGM) was endowed with NPR response. CGM maintained NPR under 50% compression, which reached a minimum (-0.18) at 10% strain. After 50 compressive cycles at 50% strain, CGM retained approximately 96% of the original compressive strength. The radial channels endowed CGM with fast absorption kinetics, and the NPR response effectively accommodated the damage caused by volume shrinkage during repeated adsorption-regeneration cycles. This strategy is an effective method for achieving NPR response and improving the mechanical properties of porous materials.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinshan Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiao You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mengmeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoyin Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiangyu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shaoming Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Tian J, Tang K, Chen X, Wang X. Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio. NANOSCALE 2022; 14:12677-12691. [PMID: 35972125 DOI: 10.1039/d2nr02509d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the aid of recent efficient and prior knowledge-free machine learning (ML) algorithms, extraordinary mechanical properties such as negative Poisson's ratio have extensively promoted the diverse designs of metamaterials with distinctive cellular structures. However, most existing ML approaches applied to the design of metamaterials are primarily based on a single property value with the assumption that the Poisson's ratio of a material is stationary, neglecting the dynamic variability of Poisson's ratio, termed deformation-dependent Poisson's ratio, during the loading process that a metamaterial other than conventional materials may experience. This paper first proposes a crystallographic symmetry-based methodology to build 2D metamaterials with complex but patterned topological structures, and then converts them into computational models suitable for molecular dynamics simulations. Then, we employ an integrated approach, consisting of molecular dynamics simulations capable of generating and collecting a large dataset for training/validation, in addition to ML algorithms (CNN and Cycle-GAN) able to predict the dynamic characteristics of Poisson's ratio and offer the inverse design of a metamaterial structure based on a target quasi-continuous Poisson's ratio-strain curve, to eventually unravel the underlying mechanism and design principles of 2D metamaterial structures with tunable Poisson's ratio. The close match between the predefined Poisson's ratio response and that from the generated structure validates the feasibility of the proposed ML model. Owing to the high efficiency and complete independence from prior knowledge, our proposed approach offers a novel and robust technique for the prediction and inverse design of metamaterial structures with tailored deformation-dependent Poisson's ratio, an unprecedented property attractive in flexible electronics, soft robotics, and nanodevices.
Collapse
Affiliation(s)
- Jie Tian
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
| | - Keke Tang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
| | - Xianyan Chen
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Xianqiao Wang
- School of ECAM, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
32
|
Wang S, Shi B. Auxetic ographene: a new 2D Dirac nodal-ring semimetal carbon-based material with a high negative Poisson's ratio. Phys Chem Chem Phys 2022; 24:21806-21811. [PMID: 36056705 DOI: 10.1039/d2cp01469f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Auxetic and semimetallic materials possess many advanced applications due to the negative Poisson's ratio (NPR) effect and unique electronic properties. However, candidates with the above properties are rather scarce, especially in the 2D carbon materials. Here, a new 2D NPR material with a Dirac nodal ring, named ographene, is identified using first-principles calculations. Ographene possesses anisotropic Young's modulus and unusual in-plane NPR (-0.11), which mainly originated from its puckered tetrahedron structure. In addition, the electronic band structure calculations show that ographene is a topological node-ring semimetal with high Fermi velocity. Moreover, the electronic band structure is robust against external strain. The intrinsic NPR coupled with robust electronic properties renders auxetic ographene promising for applications in electronics and mechanics areas.
Collapse
Affiliation(s)
- Shuaiwei Wang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Bingjun Shi
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
33
|
Qu Z, Xu M, Lin S, Liang Y, Yuan X, Wang F, Hao J, Li Y. Two-dimensional Si 2S with a negative Poisson's ratio and promising optoelectronic properties. NANOSCALE 2022; 14:10573-10580. [PMID: 35838197 DOI: 10.1039/d2nr01465c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials with a negative Poisson's ratio, known as auxetic materials, are of great interest owing to their improved mechanical properties, which enable plenty of advanced nanomechanical devices. Here, by first-principles swarm-intelligence structural search methods, we predict a thermodynamically stable Si2S monolayer, which has a puckered 2D lattice in which the S atoms are adsorbed on the top of a distorted tetragonal silicene layer. The puckered 2D lattice makes the Si2S monolayer exhibit in-plane negative Poisson's ratios of -0.05 and -0.069 along the x and y directions, respectively. Moreover, electronic structure calculations reveal that the Si2S monolayer is a semiconductor with a quasi-direct band gap of 1.81 eV, which can be converted into a direct gap semiconductor of 1.43 eV by applying a low tensile strain (∼2%). The Si2S monolayer has a large visible light absorption coefficient of 105 cm-1. The hole (electron) mobility is 200 (81) cm2 V-1 s-1 along the y direction, 3.4 (1.5) times that along the x direction, comparable to MoS2. Moreover, the Si2S monolayer has the good ability of oxidation resistance. We provide a possible route to experimentally grow a Si2S monolayer on a suitable substrate such as the Cu(100) surface. The versatile properties render the Si2S monolayer potential for advanced application in nanodevices.
Collapse
Affiliation(s)
- Ziyang Qu
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Meiling Xu
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Shuyi Lin
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yiwei Liang
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xuanhao Yuan
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Feilong Wang
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jian Hao
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
34
|
Veerabagu U, Palza H, Quero F. Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:2798-2824. [PMID: 35709523 DOI: 10.1021/acsbiomaterials.2c00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last three decades but more particularly during the last 5 years, auxetic mechanical metamaterials constructed from precisely architected polymer-based materials have attracted considerable attention due to their fascinating mechanical properties. These materials present a negative Poisson's ratio and therefore unusual mechanical behavior, which has resulted in enhanced static modulus, energy adsorption, and shear resistance, as compared with the bulk properties of polymers. Novel advanced polymer processing and fabrication techniques, and in particular additive manufacturing, allow one to design complex and customizable polymer architectures that are particularly relevant to fabricate auxetic mechanical metamaterials. Although these metamaterials exhibit exotic mechanical properties with potential applications in several engineering fields, biomedical applications seem to be one of the most relevant with a growing number of articles published over recent years. As a result, special focus is needed to understand the potential of these structures and foster theoretical and experimental investigations on the potential benefits of the unusual mechanical properties of these materials on the way to high performance biomedical applications. The present Review provides up to date information on the recent progress of polymer-based auxetic mechanical metamaterials mainly fabricated using additive manufacturing methods with a special focus toward biomedical applications including tissue engineering as well as medical devices including stents and sensors.
Collapse
Affiliation(s)
- Udayakumar Veerabagu
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Humberto Palza
- Laboratorio de Ingeniería de Polímeros, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Avenida Beauchef 851, Santiago 8370456, Chile.,Millennium Nucleus on Smart Soft Mechanical Metamaterials, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile.,Millennium Nucleus on Smart Soft Mechanical Metamaterials, Avenida Beauchef 851, Santiago 8370456, Chile
| |
Collapse
|
35
|
Amombo Noa FM, Grape ES, Åhlén M, Reinholdsson WE, Göb CR, Coudert FX, Cheung O, Inge AK, Öhrström L. Chiral Lanthanum Metal-Organic Framework with Gated CO 2 Sorption and Concerted Framework Flexibility. J Am Chem Soc 2022; 144:8725-8733. [PMID: 35503249 PMCID: PMC9122260 DOI: 10.1021/jacs.2c02351] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
A metal–organic
framework (MOF) CTH-17 based
on lanthanum(III) and the conformationally chiral linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene,
cpb6–: [La2(cpb)]·1.5dmf was prepared
by the solvothermal method in dimethylformamide (dmf) and characterized
by variable-temperature X-ray powder diffraction (VTPXRD), variable-temperature
X-ray single-crystal diffraction (SCXRD), and thermogravimetric analysis
(TGA). CTH-17 is a rod-MOF with new topology och. It has high-temperature stability with Sohncke space groups P6122/P6522 at 90
K and P622 at 300 and 500 K, all phases characterized
with SCXRD and at 293 K also with three-dimensional (3D) electron
diffraction. VTPXRD indicates a third phase appearing after 620 K
and stable up to 770 K. Gas sorption isotherms with N2 indicate
a modest surface area of 231 m2 g–1 for CTH-17, roughly in agreement with the crystal structure. Carbon
dioxide sorption reveals a gate-opening effect of CTH-17 where the structure opens up when the loading of CO2 reaches
approximately ∼0.45 mmol g–1 or 1 molecule
per unit cell. Based on the SCXRD data, this is interpreted as flexibility
based on the concerted movements of the propeller-like hexatopic cpb
linkers, the movement intramolecularly transmitted by the π–π
stacking of the cpb linkers and helped by the fluidity of the LaO6 coordination sphere. This was corroborated by density functional
theory (DFT) calculations yielding the chiral phase (P622) as the energy minimum and a completely racemic phase (P6/mmm), with symmetric cpb linkers representing
a saddle point in a racemization process.
Collapse
Affiliation(s)
- Francoise M Amombo Noa
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Michelle Åhlén
- Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden
| | - William E Reinholdsson
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christian R Göb
- Rigaku Europe SE, Hugenottenallee 167, Neu-Isenburg D-63263, Germany
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Ocean Cheung
- Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Lars Öhrström
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
36
|
Giri A, Evans AM, Rahman MA, McGaughey AJH, Hopkins PE. Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks. ACS NANO 2022; 16:2843-2851. [PMID: 35143183 DOI: 10.1021/acsnano.1c09833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The prospect of combining two-dimensional materials in vertical stacks has created a new paradigm for materials scientists and engineers. Herein, we show that stacks of two-dimensional covalent organic frameworks are endowed with a host of unique physical properties that combine low densities, high thermal conductivities, and highly negative Poisson's ratios. Our systematic atomistic simulations demonstrate that the tunable mechanical and thermal properties arise from their singular layered architecture comprising strongly bonded light atoms and periodic laminar pores. For example, the negative Poisson's ratio arises from the weak van der Waals interactions between the two-dimensional layers along with the strong covalent bonds that act as hinges along the layers, which facilitate the twisting and swiveling motion of the phenyl rings relative to the tensile plane. The mechanical and thermal properties of two-dimensional covalent organic frameworks can be tailored through structural modularities such as control over the pore size and/or interlayer separation. We reveal that these materials mark a regime of materials design that combines low densities with high thermal conductivities arising from their nanoporous yet covalently interconnected structure.
Collapse
Affiliation(s)
- Ashutosh Giri
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Austin M Evans
- Department of Chemistry, Columbia University, New York City, New York 10027, United States
| | - Muhammad Akif Rahman
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Alan J H McGaughey
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
37
|
|
38
|
Lan Q, Chen C. Two-dimensional ferroelasticity and negative Poisson's ratios in monolayer YbX (X = S, Se, Te). Phys Chem Chem Phys 2022; 24:2203-2208. [PMID: 35006218 DOI: 10.1039/d1cp05080j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional ferroelastic materials and two-dimensional materials with negative Poisson's ratios have attracted great interest. Here, using first-principles calculations, we reveal monolayer YbX (X = S, Se, Te) materials that harbor both ferroelasticity and negative Poisson's ratios. Indirect wide band gaps of about 3 eV have been found in these three materials. Mechanical analysis reveals that the three materials are flexible and they possess large in-plane negative Poisson's ratios from -0.114 to -0.366. Meanwhile, the ferroelasticity in the monolayer YbX shows moderate energy barriers and strong ferroelastic signals, beneficial for applications in shape memory devices. These intriguing properties make monolayer YbX promising candidate materials for applications in nanoelectronics and nanomechanics.
Collapse
Affiliation(s)
- Qingwen Lan
- School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Changpeng Chen
- School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China. .,Research Center of Materials Genome Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
39
|
Kim SU, Lee YJ, Liu J, Kim DS, Wang H, Yang S. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. NATURE MATERIALS 2022; 21:41-46. [PMID: 34489567 DOI: 10.1038/s41563-021-01075-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/07/2021] [Indexed: 05/24/2023]
Abstract
Living organisms such as fishes1, cephalopods2 and clams3 are cryptically coloured with a wide range of hues and patterns for camouflage, signalling or energy regulation. Despite extensive efforts to create colour-changing materials and devices4, it is challenging to achieve pixelated structural coloration with broadband spectral shifts in a compact space. Here, we describe pneumatically inflating thin membranes of main-chain chiral nematic liquid crystalline elastomers that have such properties. By taking advantage of the large elasticity anisotropy and Poisson's ratio (>0.5) of these materials, we geometrically program the size and the layout of the encapsulated air channels to achieve colour shifting from near-infrared to ultraviolet wavelengths with less than 20% equi-biaxial transverse strain. Each channel can be individually controlled as a colour 'pixel' to match with surroundings, whether periodically or irregularly patterned. These soft materials may find uses in distinct applications such as cryptography, adaptive optics and soft robotics.
Collapse
Affiliation(s)
- Se-Um Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiaqi Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Dae Seok Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Polymer Engineering, Pukyong National University, Busan, South Korea
| | - Haihuan Wang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Zhehua Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance, and Department of Physics, University of Science and Technology of China Hefei 230026 P. R. China
| | - Ning xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance, and Department of Physics, University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
41
|
Li L, Meng J, Zhang M, Liu T, Zhang C. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem Commun (Camb) 2021; 58:185-207. [PMID: 34881748 DOI: 10.1039/d1cc05526g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flexible electrochemical supercapacitors have shown great potential in the next-generation wearable and implantable energy-storage devices. Conductive polymer hydrogels usually possess unique porosity, high conductivity, and broadly tunable properties through molecular designs and structural regulations, thus holding tremendous promise as high-performance electrodes and electrolytes for flexible electrochemical supercapacitors. Numerous chemical and structural designs have provided unlimited opportunities to tune the properties of conductive polymer hydrogels to match the various practical demands. Various electrically and ionically conductive hydrogels have been developed to fabricate novel electrodes and electrolytes with satisfactory mechanical and electrochemical performance. This feature article focuses on the fabrication and applications of conductive polymer hydrogel composites and nanocomposites as respective electrodes and electrolytes for flexible electrochemical supercapacitors. First, we introduce the representative strategies to prepare electrically and ionically conductive polymer hydrogels. Second, conductive polymer hydrogel composites and nanocomposites as supercapacitor electrodes and electrolytes are presented and discussed. Finally, challenges and perspectives on conductive polymer hydrogel composites and nanocomposites for future flexible electrochemical supercapacitors are presented.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Meng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingtong Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
42
|
Bu H, Liu X, Yuan H, Yuan X, Zhao M. Two-dimensional XC 6-enes (X = Ge, Sn, Pb) with moderate band gaps, biaxial negative Poisson's ratios, and high carrier mobility. Phys Chem Chem Phys 2021; 23:26468-26475. [PMID: 34806719 DOI: 10.1039/d1cp04174f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene-based analogs and derivatives provide numerous routes to achieve unconventional properties and potential applications. Particularly, two-dimensional (2D) binary materials of group-IV elements are drawing increasing interest. In this work, we proposed the design of three 2D graphene-based materials, namely, XC6-enes (X = Ge, Sn, or Pb), based on first-principles calculations. These new materials possess intriguing properties superior to graphene, such as biaxial negative Poisson's ratio (NPR), moderate bandgap, and high carrier mobility. These XC6-enes comprise sp2 carbon and sp3 X (X = Ge, Sn, Pb) atoms with hexagonal and pentagonal units by doping graphene with X atoms. The stability and plausibility of these 2D materials are verified from formation energies, phonon spectra, ab initio molecular dynamic simulations, and elastic constants. The incorporation of X atoms leads to highly anisotropic mechanical properties along with NPR due to the unique tetrahedral structure and hat-shaped configuration. In the equilibrium state, all the XC6-enes are moderate-band-gap semiconductors. The carrier mobilities of the XC6-enes were highly anisotropic (∼104 cm-2 V-1 s-1 along the [010]-direction). Such outstanding properties make the 2D frameworks promising for application in novel electronic and micromechanical devices.
Collapse
Affiliation(s)
- Hongxia Bu
- College of Physics and Electronic Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Xiaobiao Liu
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Huimin Yuan
- College of Physics and Electronic Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Xiaojuan Yuan
- College of Physics and Electronic Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Mingwen Zhao
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
43
|
Ning L, Wang YZ, Wang YS. Broadband square cloak in elastic wave metamaterial plate with active control. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4343. [PMID: 34972279 DOI: 10.1121/10.0008974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Cloaking invisibility is a novel technique that prevents the object from being detected in the background field. The development of new artificial materials and structures promotes the emergence of new achievements in cloaking research. In this work, a broadband square cloaking configuration of elastic wave metamaterial plate is designed and fabricated by the external active control system. The approximate parameters of the flexural wave cloak can be obtained by the coordinate transformation and achieved by alternating layers of the Acrylonitrile Butadiene Styrene (ABS), polydimethylsiloxane (PDMS), and piezoelectric (PZT) patches. With the introduction of active control systems, the square cloak has a wide effective frequency range. The simulation and experimental results show that the square cloak of flexural waves exhibits a good invisible performance in the frequency region of 500-2200 Hz. Compared to the structure without active control systems, the frequency region 2200-2750 Hz is extended for the active cloak. The design and fabrication of the broadband cloak is wished to be helpful during the practical engineering.
Collapse
Affiliation(s)
- Li Ning
- Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044, China
| | - Yi-Ze Wang
- Department of Mechanics, Tianjin University, Tianjin 300350, China
| | - Yue-Sheng Wang
- Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
44
|
Guo H, Zhao Z, Wu L, Qiu J, Zhang F, Zhu B, Yu J, Chen X. Novel Braceletlike BiSbX 3 (X = S, Se) Monolayers with an In-Plane Negative Poisson's Ratio and Anisotropic Photoelectric Properties. J Phys Chem Lett 2021; 12:11353-11360. [PMID: 34783548 DOI: 10.1021/acs.jpclett.1c02995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we predict two novel two-dimensional (2D) auxetic materials, BiSbX3 (X = S, Se) monolayers, through first-principles calculations. Attributed to their special braceletlike structure, the in-plane negative Poisson's ratio (NPR) of BiSbS3 and BiSbSe3 monolayers are as high as -0.25 and -0.26, respectively. The phonon dispersion calculations, ab initio molecular dynamics simulations, and elastic constants calculations demonstrate that these two monolayers possess excellent dynamic, thermal, and mechanical stabilities. The band gap values of BiSbS3 and BiSbSe3 calculated at the HSE level by considering the spin-orbit coupling (SOC) effect are 1.68 and 1.20 eV. The anisotropic carrier mobility and superior optical absorption indicate that they may shine in the next generation of electronic and optoelectronic devices. All of these discoveries not only enrich the types of auxetic materials but also provide a structural reference for designing new auxetic materials on the molecular level. Furthermore, they can provide theoretical guidance for future applications of BiSbX3 (X = S, Se) monolayers in various fields.
Collapse
Affiliation(s)
- Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - ZengXiu Zhao
- College of Architectural Engineering, Shanxi Institute of Applied Science and Technology, Taiyuan 030031, China
| | - Lingmei Wu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Jian Qiu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fusheng Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Bao Zhu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering. State Key Laboratory of Power Transmission Equipment & System Security and New Technology and School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
45
|
Rahman MA, Giri A. Uniquely anisotropic mechanical and thermal responses of hybrid organic-inorganic perovskites under uniaxial strain. J Chem Phys 2021; 155:124703. [PMID: 34598592 DOI: 10.1063/5.0065207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The complete understanding of the mechanical and thermal responses to strain in hybrid organic-inorganic perovskites holds great potential for their proper functionalities in a range of applications, such as in photovoltaics, thermoelectrics, and flexible electronics. In this work, we conduct systematic atomistic simulations on methyl ammonium lead iodide, which is the prototypical hybrid inorganic-organic perovskite, to investigate the changes in their mechanical and thermal transport responses under uniaxial strain. We find that the mechanical response and the deformation mechanisms are highly dependent on the direction of the applied uniaxial strain with a characteristic ductile- or brittle-like failure accompanying uniaxial tension. Moreover, while most materials shrink in the two lateral directions when stretched, we find that the ductile behavior in hybrid perovskites can lead to a very unique mechanical response where negligible strain occurs along one lateral direction while the length contraction occurs in the other direction due to uniaxial tension. This anisotropy in the mechanical response is also shown to manifest in an anisotropic thermal response of the hybrid perovskite where the anisotropy in thermal conductivity increases by up to 30% compared to the unstrained case before plastic deformation occurs at higher strain levels. Along with the anisotropic responses of these physical properties, we find that uniaxial tension leads to ultralow thermal conductivities that are well below the value predicted with a minimum thermal conductivity model, which highlights the potential of strain engineering to tune the physical properties of hybrid organic-inorganic perovskites.
Collapse
Affiliation(s)
- Muhammad Akif Rahman
- Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Ashutosh Giri
- Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
46
|
Sachdeva PK, Gupta S, Bera C. Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene. NANOSCALE ADVANCES 2021; 3:3279-3287. [PMID: 36133659 PMCID: PMC9418014 DOI: 10.1039/d0na00930j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Two dimensional (2D) chalcogenide monolayers have diversified applications in optoelectronics, piezotronics, sensors and energy harvesting. The group-IV tellurene monolayer is one such emerging material in the 2D family owing to its piezoelectric, thermoelectric and optoelectronic properties. In this paper, the mechanical and piezoelectric properties of 2D tellurene in centrosymmetric β and non-centrosymmetric β' phases are investigated using density functional theory. β'-Te has shown a negative Poisson's ratio of -0.024 along the zigzag direction. Giant in-plane piezoelectric coefficients of -83.89 × 10-10 C m-1 and -42.58 × 10-10 C m-1 are observed for β'-Te under biaxial and uniaxial strains, respectively. The predicted values are remarkably higher, that is 23 and 12 times the piezoelectric coefficient of a MoS2 monolayer with biaxial and uniaxial strain in the zigzag direction, respectively. A large thermal expansion coefficient of tellurene is also estimated using quasi harmonic approximation. High piezoelectricity combined with exotic mechanical and thermal properties makes tellurene a very promising candidate in nanoelectronics.
Collapse
Affiliation(s)
- Parrydeep Kaur Sachdeva
- Institute of Nano Science and Technology Knowledge City, Sector-81, S. A. S Nagar Mohali Punjab 140306 India
- University Institute of Engineering and Technology, Panjab University Sector-25 Chandigarh 160014 India
- Department of Physics, Panjab University Sector-14 Chandigarh 160014 India
| | - Shuchi Gupta
- University Institute of Engineering and Technology, Panjab University Sector-25 Chandigarh 160014 India
| | - Chandan Bera
- Institute of Nano Science and Technology Knowledge City, Sector-81, S. A. S Nagar Mohali Punjab 140306 India
| |
Collapse
|
47
|
Narojczyk JW, Wojciechowski KW, Smardzewski J, Imre AR, Grima JN, Bilski M. Cancellation of Auxetic Properties in F.C.C. Hard Sphere Crystals by Hybrid Layer-Channel Nanoinclusions Filled by Hard Spheres of Another Diameter. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3008. [PMID: 34206145 PMCID: PMC8199564 DOI: 10.3390/ma14113008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
The elastic properties of f.c.c. hard sphere crystals with periodic arrays of nanoinclusions filled by hard spheres of another diameter are the subject of this paper. It has been shown that a simple modification of the model structure is sufficient to cause very significant changes in its elastic properties. The use of inclusions in the form of joined (mutually orthogonal) layers and channels showed that the resulting tetragonal system exhibited a complete lack of auxetic properties when the inclusion spheres reached sufficiently large diameter. Moreover, it was very surprising that this hybrid inclusion, which can completely eliminate auxeticity, was composed of components that, alone, in these conditions, enhanced the auxeticity either slightly (layer) or strongly (channel). The study was performed with computer simulations using the Monte Carlo method in the isothermal-isobaric (NpT) ensemble with a variable box shape.
Collapse
Affiliation(s)
- Jakub W. Narojczyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland;
| | - Krzysztof W. Wojciechowski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland;
- Akademia Kaliska im. Prezydenta Stanisława Wojciechowskiego, Nowy Świat 4, 62-800 Kalisz, Poland
| | - Jerzy Smardzewski
- Department of Furniture Design, Faculty of Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-627 Poznań, Poland;
| | - Attila R. Imre
- Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3, H-1111 Budapest, Hungary;
- Centre for Energy Research, Department of Thermohydraulics, POB. 49, H-1525 Budapest, Hungary
| | - Joseph N. Grima
- Department of Chemistry, Faculty of Science, University of Malta, MSD 2080 Msida, Malta;
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta
| | - Mikołaj Bilski
- Institute of Applied Mechanics, Poznań University of Technology, Jana Pawla II 24, 60-965 Poznań, Poland;
| |
Collapse
|
48
|
Tong Z, Zhang B, Yu H, Yan X, Xu H, Li X, Ji H. Si 3N 4 Nanofibrous Aerogel with In Situ Growth of SiO x Coating and Nanowires for Oil/Water Separation and Thermal Insulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22765-22773. [PMID: 33947180 DOI: 10.1021/acsami.1c05575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofibrous aerogels constructed by ceramic fiber components (CNFAs) feature lightweight, compressibility, and high-temperature resistance, which are superior to brittle ceramic aerogels assembled from nanoparticles. Up to now, in order to obtain CNFAs with stable framework and multifunctionality such as hydrophobicity and gas absorption, it is necessary to perform binding and surface modification processes, respectively. However, the microstructure as well as properties of CNFAs are deteriorated by the direct addition of binders and modifiers. To tackle these problems, we introduced a unique low-temperature (100 °C) chemical vapor deposition method (LTCVD) to achieve the cross-linking and hydrophobization of Si3N4 CNFA in only one step. More importantly, during the LTCVD process, SiOx coatings and nanowire arrays were in situ formed via vapor-solid (VS) and vapor-liquid-solid (VLS) mechanisms on the surface and intersection of Si3N4 nanofibers, which cemented the aerogel framework, endowed it with hydrophobicity, and improved its oxidation resistance at high temperature. Compared to most of its counterparts, the Si3N4/SiOx CNFA exhibited better mechanical properties, higher capability of oil/water separation (33-76 g·g-1), lower thermal conductivity (0.0157 W/m·K-1), and superior structural stability in a wide temperature range of -196-1200 °C. This work not only presents an excellent Si3N4/SiOx CNFA for the first time but also provides fresh insights for the exquisite preparation strategy of CNFAs.
Collapse
Affiliation(s)
- Zongwei Tong
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Baojie Zhang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huijun Yu
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangjie Yan
- School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hui Xu
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaolei Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huiming Ji
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
Li X, Qiang X, Gong Z, Zhang Y, Gong P, Chen L. Tunable Negative Poisson's Ratio in Van der Waals Superlattice. RESEARCH 2021; 2021:1904839. [PMID: 33937863 PMCID: PMC8054987 DOI: 10.34133/2021/1904839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
Negative Poisson's ratio (NPR) materials are functional and mechanical metamaterials that shrink (expand) longitudinally after being compressed (stretched) laterally. By using first-principles calculations, we found that Poisson's ratio can be tuned from near zero to negative by different stacking modes in van der Waals (vdW) graphene/hexagonal boron nitride (G/h-BN) superlattice. We attribute the NPR effect to the interaction of pz orbitals between the interfacial layers. Furthermore, a parameter calculated by analyzing the electronic band structure, namely, distance-dependent hopping integral, is used to describe the intensity of this interaction. We believe that this mechanism is not only applicable to G/h-BN superlattice but can also explain and predict the NPR effect in other vdW layered superlattices. Therefore, the NPR phenomenon, which was relatively rare in 3D and 2D materials, can be realized in the vdW superlattices by different stacking orders. The combinations of tunable NPRs with the excellent electrical/optical properties of 2D vdW superlattices will pave a novel avenue to a wide range of multifunctional applications.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaobin Qiang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhenhao Gong
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yubo Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Penglai Gong
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
50
|
Rong X, Chen X, Chen W, Xu Y, Huang P, Zhang X. Electrical Switch of Poisson's Ratio in IV-VI Monolayers via Pseudophase Transitions. J Phys Chem Lett 2021; 12:3217-3223. [PMID: 33761265 DOI: 10.1021/acs.jpclett.1c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The recent discovery of negative Poisson's ratio (NPR) in two-dimensional (2D) atomic crystals has stimulated extensive research interest in their intriguing physical properties. Here, via density functional theory (DFT) calculations, we reveal in the family of 2D IV-VI semiconductors that an iso-symmetry structure variation concerning the switch of the cation (IV) versus anion (VI) in the outermost layers leads to the change of sign of Poisson's ratio. Such iso-symmetry structural pseudo-phase transition can be induced by external strains, as well as electric fields, realizing the possibility of an electrically switchable Poisson effect. The phase transition process could involve a dynamic intermediate state with an alternative cation/anion switch in the frequencies of 2-3 THz according to the real-time time-dependent DFT (rt-TDDFT) calculations. The results open the way for studying pseudophases in 2D materials associated with sharply different physical properties, such as Poisson's ratio, for electromechanical and optoelectronic applications.
Collapse
Affiliation(s)
- Ximing Rong
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinbo Chen
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weida Chen
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiguo Xu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pu Huang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuwen Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|