1
|
Wei S, Shang J, Zheng Y, Wang T, Kong X, He Q, Zhang Z, Zhao Y. Leveraging doping strategies and interface engineering to enhance catalytic transformation of lithium polysulfides for high-performance lithium-sulfur batteries. J Colloid Interface Sci 2024; 675:904-914. [PMID: 39002240 DOI: 10.1016/j.jcis.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The commercialization of lithium-sulfur (Li-S) batteries has faced challenges due to the shuttle effect of soluble intermediate polysulfides and the sluggish kinetics of sulfur redox reactions. In this study, a synergistic catalyst medium was developed as a high-performance sulfur cathode material for Li-S batteries. Termed A/R-TiO2@ Ni-N-MXene, this sulfur cathode material features an in-situ derived anatase-rutile homojunction of TiO2 nanoparticles on Ni-N dual-atom-doped MXene nanosheets. Using in-situ transmission electron microscopy (TEM) technique, we observed the growth process of the homojunction for the first time confirming that homojunctions facilitated charge transfer, while dual-atom doping offered abundant active sites for anchoring and converting soluble polysulfides. Theoretical calculations and experiments showed that these synergistic effects effectively mitigated the shuttle effect, leading to improved cycling performance of Li-S batteries. After 500 cycles at a 1C rate, Li-S batteries using A/R-TiO2@Ni-N-MXene as cathode materials exhibited stable and highly reversible capacity with a capacity decay of only 0.056 % per cycle. Even after 150 cycles at a 0.1C rate, a high-capacity retention rate of 62.8 % was achieved. Additionally, efficient sulfur utilization was observed, with 1280.76 mA h/g at 0.1C, 694.24 mA h/g at 1C, alongside a sulfur loading of 1.5-2 mg/cm2. The effective strategy based on homojunctions showcases promise for designing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Shasha Wei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Jitao Shang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Yayun Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Teng Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Xirui Kong
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Qiu He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China.
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China; College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
2
|
Ren X, Wu H, Guo Y, Wei H, Wu H, Wang H, Lin Z, Xiong C, Liu H, Zhang L, Li Z. The Impact of Oxygen Content in O-Doped MoS 2 on the Kinetics of Polysulfide Conversion in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312256. [PMID: 39030979 DOI: 10.1002/smll.202312256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Polysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high-content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low-content oxygen doping, which can be attributed to the alteration of crystal structure from 2H-phase to the 1T-phase, the introduction of increased Li-O interactions, and the effect of defects resulting from high-oxygen doping. Consequently, the lithium-sulfur batteries using high-oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g-1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium-sulfur batteries employing paper-based electrodedemonstrate an areal capacity of 3.91 mAh cm-2 at 0.15C, even with sulfur loading of 4.1 mg cm-2 and electrolyte of 6.7 µL mg-1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high-oxygen doped MoS2 shows promise as an efficient catalyst for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Xuan Ren
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Yanbo Guo
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Hairu Wei
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Haoteng Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Huan Wang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Zhihua Lin
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz University Hannover, 30167, Hannover, Germany
- Institute of Solid State Physics, Leibniz University Hannover, 30167, Hannover, Germany
| | - Chuanyin Xiong
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Hanbin Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Lin Zhang
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz University Hannover, 30167, Hannover, Germany
- Institute of Solid State Physics, Leibniz University Hannover, 30167, Hannover, Germany
| | - Zhijian Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
3
|
Wang B, Fang R, Chen K, Huang S, Niu R, Yu Z, O'Connell GEP, Jin H, Lin Q, Liang J, Cairney JM, Wang DW. Heterostructured WO x/W 2C Nanocatalyst for Li 2S Oxidation in Lithium-Sulfur Batteries with High-Areal-Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310801. [PMID: 38308086 DOI: 10.1002/smll.202310801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Lithium-sulfur (Li-S) batteries show extraordinary promise as a next-generation battery technology due to their high theoretical energy density and the cost efficiency of sulfur. However, the sluggish reaction kinetics, uncontrolled growth of lithium sulfide (Li2S), and substantial Li2S oxidation barrier cause low sulfur utilization and limited cycle life. Moreover, these drawbacks get exacerbated at high current densities and high sulfur loadings. Here, a heterostructured WOx/W2C nanocatalyst synthesized via ultrafast Joule heating is reported, and the resulting heterointerfaces contribute to enhance electrocatalytic activity for Li2S oxidation, as well as controlled Li2S deposition. The densely distributed nanoparticles provide abundant binding sites for uniform deposition of Li2S. The continuous heterointerfaces favor efficient adsorption and promote charge transfer, thereby reducing the activation barrier for the delithiation of Li2S. These attributes enable Li-S cells to deliver high-rate performance and high areal capacity. This study provides insights into efficient catalyst design for Li2S oxidation under practical cell conditions.
Collapse
Affiliation(s)
- Biying Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ruopian Fang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ke Chen
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shiyang Huang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ranming Niu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhichun Yu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - George E P O'Connell
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Huanyu Jin
- Institute for Sustainability, Energy and Resources, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qiaowei Lin
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiaxing Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julie M Cairney
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Duan S, Liu M, Cao C, Liu H, Ye M, Duan W. A computational study on bifunctional 1T-MnS 2 with an adsorption-catalysis effect for lithium-sulfur batteries. Phys Chem Chem Phys 2023. [PMID: 37470670 DOI: 10.1039/d3cp01633a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Lithium-sulfur (Li-S) batteries are promising rechargeable energy storage systems with a high energy density, environmental friendliness and low cost. However, the commercialization process of Li-S batteries has been seriously hindered by the shuttling of lithium polysulfides (LiPSs) and the sluggish kinetics of conversion reaction among sulfur species. In this work, the adsorption-catalysis performance of five transition metal disulfide 1T-MS2 (M = Mn, V, Ti, Zr, and Hf) surfaces is investigated by evaluating the adsorption energy of sulfur species, Li-ion diffusion energy barrier, decomposition energy barrier of Li2S, and the Gibbs free energy barrier of the sulfur reduction reaction based on first-principles calculations. Our results show that the sulfiphilicity of 1T-MS2 plays an important role in the adsorption behavior of short-chain sulfur species, in addition to lithiophilicity. Remarkably, among the five 1T-MS2 materials, our results confirm that 1T-TiS2 and 1T-VS2 show excellent adsorption-catalysis performance and it is predicted that 1T-MnS2 is an even better candidate catalyst to inhibit the shuttle effect and accelerate delithiation/lithiation kinetics. Moreover, the outstanding performance of 1T-MnS2 persists in a solvent environment and under strain modulation. Our results not only demonstrate that 1T-MnS2 is an excellent potential catalyst for high-performance Li-S batteries, but also provide great insights into the adsorption-catalysis mechanism during the cycling process.
Collapse
Affiliation(s)
- Shaorong Duan
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Mingyi Liu
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Chuanzhao Cao
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Haitao Liu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Meng Ye
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China.
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
5
|
Wang Z, Che H, Lu W, Chao Y, Wang L, Liang B, Liu J, Xu Q, Cui X. Application of Inorganic Quantum Dots in Advanced Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301355. [PMID: 37088862 PMCID: PMC10323660 DOI: 10.1002/advs.202301355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 05/03/2023]
Abstract
Lithium-sulfur (Li-S) batteries have emerged as one of the most attractive alternatives for post-lithium-ion battery energy storage systems, owing to their ultrahigh theoretical energy density. However, the large-scale application of Li-S batteries remains enormously problematic because of the poor cycling life and safety problems, induced by the low conductivity , severe shuttling effect, poor reaction kinetics, and lithium dendrite formation. In recent studies, catalytic techniques are reported to promote the commercial application of Li-S batteries. Compared with the conventional catalytic sites on host materials, quantum dots (QDs) with ultrafine particle size (<10 nm) can provide large accessible surface area and strong polarity to restrict the shuttling effect, excellent catalytic effect to enhance the kinetics of redox reactions, as well as abundant lithiophilic nucleation sites to regulate Li deposition. In this review, the intrinsic hurdles of S conversion and Li stripping/plating reactions are first summarized. More importantly, a comprehensive overview is provided of inorganic QDs, in improving the efficiency and stability of Li-S batteries, with the strategies including composition optimization, defect and morphological engineering, design of heterostructures, and so forth. Finally, the prospects and challenges of QDs in Li-S batteries are discussed.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Haiyun Che
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Wenqiang Lu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Liu Wang
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Bingyu Liang
- High & New Technology Research CenterHenan Academy of SciencesZhengzhou450002P. R. China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage MaterialsSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
6
|
Wang L, Lin M, Hou X, Dou L, Huang Z, Liu R, Zhang J, Cai C, Chen C, Liu Y, Wang D, Guo D, An R, Wei L, Yao Y, Zhang Y. Black phosphorus quantum dots induce autophagy and apoptosis of human bronchial epithelial cells via endoplasmic reticulum stress. CHEMOSPHERE 2023; 327:138463. [PMID: 36966929 DOI: 10.1016/j.chemosphere.2023.138463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE The board application of black phosphorus quantum dots (BP-QDs) increases the risk of inhalation exposure in the manufacturing process. The aim of this study is to explore the toxic effect of BP-QDs on human bronchial epithelial cells (Beas-2B) and lung tissue of Balb/c mice. METHODS The BP-QDs were characterized using transmission electron microscopy (TEM) and a Malvern laser particle size analyzer. Cell Counting Kit-8 (CCK-8) and TEM were used to detect cytotoxicity and organelle injury. Damage to the endoplasmic reticulum (ER) was detected by using the ER-Tracker molecular probe. Rates of apoptosis were detected by AnnexinV/PI staining. Phagocytic acid vesicles were detected using AO staining. Western blotting and immunohistochemistry were used to examine the molecular mechanisms. RESULTS After treatment with different concentrations of BP-QDs for 24 h, the cell viability decreased, as well as activation of the ER stress and autophagy. Furthermore, the rate of apoptosis was increased. Inhibition of ER stress caused by 4-phenyl butyric acid (4-PBA) was shown to significantly inhibit both apoptosis and autophagy, suggesting that ER stress could be an upstream mediator of both autophagy and apoptosis. BP-QD-induced autophagy can also inhibit the occurrence of apoptosis using molecules related to autophagy including rapamycin (Rapa), 3-methyladenine (3-MA), and bafilomycin A1 (Bafi A1). In general, BP-QDs activate ER stress in Beas-2B cells, which further induces autophagy and apoptosis, and autophagy may be activated as a factor that protects against apoptosis. We also observed strong staining of related proteins of ER stress, autophagy, and apoptosis proteins in mouse lung tissue following intracheal instillation over the course of a week. CONCLUSION BP-QD-induced ER stress facilitates autophagy and apoptosis in Beas-2B cells and autophagy may be activated as a protective factor against apoptosis. Under conditions of ER stress induced by BP-QDs, The interplay between autophagy and apoptosis determines cell fate.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mo Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liangding Dou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rong Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chuchu Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ran An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lifang Wei
- Department of Nephrology, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Yongxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
7
|
Huang Z, Ma D, Nian P, Zhou Y, Wang D, Gong X, Wang Z, Yue Q. Coordinating Interface Polymerization with Micelle Mediated Assembly Towards Two-Dimensional Mesoporous Carbon/CoNi for Advanced Lithium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207411. [PMID: 36965086 DOI: 10.1002/smll.202207411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Lithium-sulfur battery has attracted significant attention by virtues of their high theoretical energy density, natural abundance, and environmental friendliness. However, the notorious shuttle effect of polysulfides intermediates severely hinders its practical application. Herein, a novel 2D mesoporous N-doped carbon nanosheet with confined bimetallic CoNi nanoparticles sandwiched graphene (mNC-CoNi@rGO) is successfully fabricated through a coordinating interface polymerization and micelle mediated co-assembly strategy. mNC-CoNi@rGO serves as a robust host material that endows lithium-sulfur batteries with a high reversible capacity of 1115 mAh g-1 at 0.2 C after 100 cycles, superior rate capability, and excellent cycling stability with 679.2 mAh g-1 capacity retention over 700 cycles at 1 C. With sulfur contents of up to 5.0 mg cm-2 , the area capacity remains to be 5.1 mAh cm-2 after 100 cycles at 0.2 C. The remarkable performance is further resolved via a series of experimental characterizations combined with density functional theory calculations. These results reveal that the ordered mesoporous N-doped carbon-encapsulated graphene framework acts as the ion/electron transport highway with excellent electrical conductivity, while bimetallic CoNi nanoparticles enhance the polysulfides adsorption and catalytic conversion that simultaneously accelerate the multiphase sulfur/polysulfides/sulfides conversion and inhibit the polysulfides shuttle.
Collapse
Affiliation(s)
- Zheng Huang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dongsheng Ma
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Pei Nian
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Yu Zhou
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dong Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200 237, P. R. China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200 237, P. R. China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
8
|
Batool S, Idrees M, Han S, Zhou Y. 2D Layers of Group VA Semiconductors: Fundamental Properties and Potential Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203956. [PMID: 36285813 PMCID: PMC9811453 DOI: 10.1002/advs.202203956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Members of the 2D group VA semiconductors (phosphorene, arsenene, antimonene, and bismuthine) present a new class of 2D materials, which are recently gaining a lot of research interest. These materials possess layered morphology, tunable direct bandgap, high charge carrier mobility, high stability, unique in-plane anisotropy, and negative Poisson's ratio. They prepare the ground for novel and multifunctional applications in electronics, optoelectronics, and batteries. The most recent analytical and empirical developments in the fundamental characteristics, fabrication techniques, and potential implementation of 2D group VA materials in this review, along with presenting insights and concerns for the field's future are analyzed.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced StudyShenzhen UniversityShenzhen518060P. R. China
| | - Muhammad Idrees
- Additive Manufacturing InstituteCollege of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Su‐Ting Han
- College of Electronics Science & TechnologyShenzhen UniversityShenzhen518060P. R. China
| | - Ye Zhou
- Institute for Advanced StudyShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
9
|
Qu Z, Mao C, Zhu X, Zhang J, Jiang H, Chen R. Pd-Decorated Hierarchically Porous Carbon Nanofibers for Enhanced Selective Hydrogenation of Phenol. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengyan Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chao Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
10
|
Qi X, Huang L, Luo Y, Chen Q, Chen Y. Ni 3Sn 2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. J Colloid Interface Sci 2022; 628:896-910. [PMID: 36030715 DOI: 10.1016/j.jcis.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Lithium-sulfur batteries have been widely studied because of their advantages of abundant reserves, environmental friendliness, low cost andhighspecific capacity. However, the volume expansionand the low electrical conductivity of sulfur, and the shuttle effect of polysulfides limit their application. Herein,wesynthesizea two-dimensional layered Ni3Sn2/nitrogen-doped graphene (NG) composite asseparator modifying material for lithium-sulfur batteries. The Ni3Sn2formed by dual metal salts Ni(NO3)2·6H2O and SnCl2·2H2O can adsorb polysulfide and catalyze its transformation to improve the electrochemical reaction kinetics. Moreover, the layered NG can not only disperse the Ni3Sn2particles, but alsoensure rapid electron transfer. Therefore, the lithium-sulfur battery with the Ni3Sn2/NG modified separator shows excellent electrochemical performance. At a current rate of 1 C, the lithium-sulfur battery with the Ni3Sn2/NG modified separator can provide a high initial discharge capacity of 1022.1 mAh g-1and maintain a reversible specific capacity of 758.3 mAh g-1after 400 cycles.
Collapse
Affiliation(s)
- Xinmei Qi
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liwu Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, PR China.
| | - Yiteng Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qinghao Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, PR China
| |
Collapse
|
11
|
Li Y, Wu H, Wu D, Wei H, Guo Y, Chen H, Li Z, Wang L, Xiong C, Meng Q, Liu H, Chan CK. High-Density Oxygen Doping of Conductive Metal Sulfides for Better Polysulfide Trapping and Li 2 S-S 8 Redox Kinetics in High Areal Capacity Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200840. [PMID: 35411708 PMCID: PMC9189686 DOI: 10.1002/advs.202200840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Indexed: 05/10/2023]
Abstract
Exploring new materials and methods to achieve high utilization of sulfur with lean electrolyte is still a common concern in lithium-sulfur batteries. Here, high-density oxygen doping chemistry is introduced for making highly conducting, chemically stable sulfides with a much higher affinity to lithium polysulfides. It is found that doping large amounts of oxygen into NiCo2 S4 is feasible and can make it outperform the pristine oxides and natively oxidized sulfides. Taking the advantages of high conductivity, chemical stability, the introduced large Li-O interactions, and activated Co (Ni) facets for catalyzing Sn 2- , the NiCo2 (O-S)4 is able to accelerate the Li2 S-S8 redox kinetics. Specifically, lithium-sulfur batteries using free-standing NiCo2 (O-S)4 paper and interlayer exhibit the highest capacity of 8.68 mAh cm-2 at 1.0 mA cm-2 even with a sulfur loading of 8.75 mg cm-2 and lean electrolyte of 3.8 µL g-1 . The high-density oxygen doping chemistry can be also applied to other metal compounds, suggesting a potential way for developing more powerful catalysts towards high performance of Li-S batteries.
Collapse
Affiliation(s)
- Yiyi Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Donghai Wu
- Henan Key Laboratory of Nanocomposites and ApplicationsInstitute of Nanostructured Functional MaterialsHuanghe Science and Technology CollegeZhengzhou450006P. R. China
| | - Hairu Wei
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Yanbo Guo
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| | - Zhijian Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Lei Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsSchool of Materials Science and EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Chuanyin Xiong
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Qingjun Meng
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Hanbin Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Candace K. Chan
- Materials Science and EngineeringSchool for Engineering of MatterTransport and EnergyArizona State UniversityTempe85287USA
| |
Collapse
|
12
|
Maihom T, Sittiwong J, Probst M, Limtrakul J. Understanding the interactions between lithium polysulfides and anchoring materials in advanced lithium-sulfur batteries using density functional theory. Phys Chem Chem Phys 2022; 24:8604-8623. [PMID: 35363239 DOI: 10.1039/d1cp05715d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lithium-sulfur batteries (LSBs) are promising energy storage devices because of their high theoretical capacity and energy density. However, the "shuttle" effect in lithium polysulfides (LiPSs) is an unresolved issue that can hinder their practical commercial application. Research on LSBs has focused on finding appropriate materials that suppress this effect by efficiently anchoring the LiPSs intermediates. Quantum chemical computations are a useful tool for understanding the mechanistic details of chemical interaction involving LiPSs, and they can also offer strategies for the rational design of LiPSs anchoring materials. In this perspective, we highlight computational and theoretical work performed on this topic. This includes elucidating and characterizing the adsorption mechanisms, and the dominant types of interactions, and summarizing the binding energies of LiPSs on anchoring materials. We also give examples and discuss the potential of descriptors and machine learning approaches to predict the adsorption strength and reactivity of materials. We believe that both approaches will become indispensable in modelling future LSBs.
Collapse
Affiliation(s)
- Thana Maihom
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand. .,Department of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Jarinya Sittiwong
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| | - Michael Probst
- Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria.,School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
13
|
Wang L, Hua W, Wan X, Feng Z, Hu Z, Li H, Niu J, Wang L, Wang A, Liu J, Lang X, Wang G, Li W, Yang QH, Wang W. Design Rules of a Sulfur Redox Electrocatalyst for Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110279. [PMID: 35102639 DOI: 10.1002/adma.202110279] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Seeking an electrochemical catalyst to accelerate the liquid-to-solid conversion of soluble lithium polysulfides to insoluble products is crucial to inhibit the shuttle effect in lithium-sulfur (Li-S) batteries and thus increase their practical energy density. Mn-based mullite (SmMn2 O5 ) is used as a model catalyst for the sulfur redox reaction to show how the design rules involving lattice matching and 3d-orbital selection improve catalyst performance. Theoretical simulation shows that the positions of Mn and O active sites on the (001) surface are a good match with those of Li and S atoms in polysulfides, resulting in their tight anchoring to each other. Fundamentally, dz2 and dx2 -y2 around the Fermi level are found to be crucial for strongly coupling with the p-orbitals of the polysulfides and thus decreasing the redox overpotential. Following the theoretical calculation, SmMn2 O5 catalyst is synthesized and used as an interlayer in a Li-S battery. The resulted battery has a high cycling stability over 1500 cycles at 0.5 C and more promisingly a high areal capacity of 7.5 mAh cm-2 is achieved with a sulfur loading of ≈5.6 mg cm-2 under the condition of a low electrolyte/sulfur (E/S) value ≈4.6 µL mg-1 .
Collapse
Affiliation(s)
- Li Wang
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Wuxing Hua
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Wan
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Ze Feng
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Zhonghao Hu
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Huan Li
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Linxia Wang
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Ansheng Wang
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Jieyu Liu
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Xiuyao Lang
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Geng Wang
- Tianjin Academy of Eco-environment Sciences, state Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin, 300191, China
| | - Weifang Li
- Tianjin Academy of Eco-environment Sciences, state Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin, 300191, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Nanoyang Group, Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Weichao Wang
- Shenzhen Research Institute of Nankai University, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Kang J, Tian X, Yan C, Wei L, Gao L, Ju J, Zhao Y, Deng N, Cheng B, Kang W. Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104469. [PMID: 35015928 DOI: 10.1002/smll.202104469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur batteries (LSBs) are attracting much attention due to their high theoretical energy density and are considered to be the predominant competitors for next-generation energy storage systems. The practical commercial application of LSBs is mainly hindered by the severe "shuttle effect" of the lithium polysulfides (LiPSs) and the serious damage of lithium dendrites. Various carbon materials with different characteristics have played an important role in overcoming the above-mentioned problems. Carbon spheres (CSs) are extensively explored to enhance the performance of LSBs owing to their superior structures. The review presents the state-of-the-art advances of CSs for advanced high-energy LSBs, including their preparation strategies and applications in inhibiting the "shuttle effect" of the LiPSs and protecting lithium anodes. The unique restriction effect of CSs on LiPSs is explained from three working mechanisms: physical confinement, chemical interaction, and catalytic conversion. From the perspective of interfacial engineering and 3D structure designing, the protective effect of CSs on the lithium anode is also analyzed. Not only does this review article contain a summary of CSs in LSBs, but also future directions and prospects are discussed. The systematic discussions and suggested directions can enlighten thoughts in the reasonable design of CSs for LSBs in near future.
Collapse
Affiliation(s)
- Junbao Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xiaohui Tian
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chenzheng Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Liying Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yixia Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
15
|
Zhang J, Low ZX, Shao Y, Jiang H, Chen R. Two-dimensional N-doped Pd/carbon for highly efficient heterogeneous catalysis. Chem Commun (Camb) 2022; 58:1422-1425. [PMID: 35001097 DOI: 10.1039/d1cc06427d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel two-dimensional ZIF-derived Pd@CN material prepared via one-step calcination exhibits outstanding catalytic activity in heterogeneous hydrogenation. Its well-developed porous structure, low dimensions and low density make active sites more accessible. This facile and effective strategy can guide the synthesis of highly active and durable Pd@CN catalysts with specific morphologies.
Collapse
Affiliation(s)
- Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yanhua Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Yuan K, Yuan L, Xiang J, Liao Y, Chen J, Huang Y. "First-Cycle Effect" of Trace Li 2S in a High-Performance Sulfur Cathode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:698-705. [PMID: 34958194 DOI: 10.1021/acsami.1c18327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur battery is one of the most promising choices for next-generation batteries due to its high theoretical energy density and natural abundance. However, the sulfur cathode undergoes a stepwise reduction process and generates multiple soluble polysulfide intermediates; for the further conversion from the dissolved intermediates to the final solid product (Li2S), the surface nucleation barrier limits the speed of the electrochemical precipitation, resulting in serious polysulfide diffusion loss and low sulfur utilization. Herein, the trace Li2S (tLi2S) is modified on the carbon fiber (CF) skeleton as preloaded crystal nuclei to boost the electrokinetics of Li2S deposition in the initial cycle. The trace Li2S decreases the nucleation barrier on the modified electrode (tLi2S@CF), resulting in a high initial capacity of 1423 mAh g-1 for the Li2S6 catholyte (0.2 C), which corresponds to a nearly 100% utilization of Li2S6. Furthermore, the trace Li2S nuclei induce a uniform distribution of the redeposited active materials, and the uniform distribution persists in the following cycles, which benefits the cycle life significantly. The sulfur cathode based on the tLi2S@CF matrix maintains a capacity of 1106 mAh g-1 at 1 C rate after 100 cycles. The strategy can provide a new avenue for the rational design of the sulfur cathode.
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lixia Yuan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingwei Xiang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaqi Liao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jie Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
17
|
Cheng M, Yan R, Yang Z, Tao X, Ma T, Cao S, Ran F, Li S, Yang W, Cheng C. Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102217. [PMID: 34766470 PMCID: PMC8805578 DOI: 10.1002/advs.202102217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 05/05/2023]
Abstract
Benefiting from the merits of low cost, ultrahigh-energy densities, and environmentally friendliness, metal-sulfur batteries (M-S batteries) have drawn massive attention recently. However, their practical utilization is impeded by the shuttle effect and slow redox process of polysulfide. To solve these problems, enormous creative approaches have been employed to engineer new electrocatalytic materials to relieve the shuttle effect and promote the catalytic kinetics of polysulfides. In this review, recent advances on designing principles and active centers for polysulfide catalytic materials are systematically summarized. At first, the currently reported chemistries and mechanisms for the catalytic conversion of polysulfides are presented in detail. Subsequently, the rational design of polysulfide catalytic materials from catalytic polymers and frameworks to active sites loaded carbons for polysulfide catalysis to accelerate the reaction kinetics is comprehensively discussed. Current breakthroughs are highlighted and directions to guide future primary challenges, perspectives, and innovations are identified. Computational methods serve an ever-increasing part in pushing forward the active center design. In summary, a cutting-edge understanding to engineer different polysulfide catalysts is provided, and both experimental and theoretical guidance for optimizing future M-S batteries and many related battery systems are offered.
Collapse
Affiliation(s)
- Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Xuefeng Tao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Sujiao Cao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Shuang Li
- Department of ChemistryTechnische Universität BerlinHardenbergstraße 40Berlin10623Germany
| | - Wei Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| |
Collapse
|
18
|
Wang J, Li F, Liu Z, Dai Z, Gao S, Zhao M. Two-Dimensional Conductive Metal-Organic Frameworks as Highly Efficient Electrocatalysts for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61205-61214. [PMID: 34918904 DOI: 10.1021/acsami.1c19381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur batteries (LiSBs) which are expected to fulfill the increasing demands of high-density energy storage have been under intensive investigation. However, the development of LiSBs is facing many obstacles, such as the poor electronic conductivity of sulfur, shuttling effects of lithium polysulfides (LiPSs), sluggish Li2S decomposition, and low discharging/charging efficiency. Suitable electrocatalysts that can solve the above problems are promising in the development of LiSBs. Herein, 13 two-dimensional (2D) metal-organic frameworks (MOFs) of nitrogen-, sulfur-, and oxygen-coordinated transition-metal (TM) atoms (Co, Ni, Cu, and Zn) are selected and constructed to reveal the structure-activity relationship of 2D MOFs in terms of the electrocatalytic performance. Among all the 2D MOFs investigated, Cu3(HITP)2, Zn3(HITP)2, and Cu3(C18H9O3N3)2 offer moderate binding strength to LiPSs, which effectively suppresses Li2Sn dissolution and shuttling. Cu3(HITP)2 exhibits good electrical conductivity, a low Gibbs free energy barrier, effective electrocatalytic ability for Li2S decomposition, and a high sulfur loading amount. A descriptor φ is proposed to correlate the binding energies of the 2D MOFs to the coordination environment and the electronegativity of the TM atoms in the LiPSs via an implicit volcano plot. These findings are helpful for understanding the electrocatalytic effect of 2D MOFs in LiSBs and represent a promising approach for the development of future LiSBs.
Collapse
Affiliation(s)
- Junru Wang
- Department of Physics, Yantai University, Yantai 264005, Shandong, China
| | - Feng Li
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Zhichao Liu
- Department of Physics, Yantai University, Yantai 264005, Shandong, China
| | - Zhenhong Dai
- Department of Physics, Yantai University, Yantai 264005, Shandong, China
| | - Shuxia Gao
- Department of Physics, Yantai University, Yantai 264005, Shandong, China
| | - Mingwen Zhao
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
19
|
Chen D, Mukherjee S, Zhang C, Li Y, Xiao B, Singh CV. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. J Colloid Interface Sci 2021; 613:435-446. [PMID: 35042041 DOI: 10.1016/j.jcis.2021.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Lithium-sulfur (Li-S) batteries are considered as new generation of energy storage which offer cost-effectiveness and high energy density. However, their commercialization is restricted due to a host of challenges associated with the cathode material which usually contains sulfur with several drawbacks, including a low electronic conductivity of sulfur, the 'shuttle effect', and a large volume expansion during discharge. Herein, a novel two-dimensional porphyrin-like square metal organic framework (MOF) was explored as a promising cathode material using first principles density function theory (DFT) assisted by genetic global search. The DFT results show that, among 7 kinds of transition-metal organic framework (TM-MOF), only V-MOF and Ru-MOF is found to possess considerable chemical interactions with S8 and lithium polysulfides (LiPSs) in both vacuum and in electrolytic solvents, demonstrating distinguishable anchoring performance. The genetic global search and further DFT calculations indicate that the lithiation process on V-MOF exhibited a nearly constant open-circuit voltage of about 1.92 V to 1.95 V, and the theoretical energy density could reach up to 1469 Wh kg-1 when lithiation of S8 is considered on both sides of the substrate. The volume expansion of V-MOF during discharge is found to be about 34%, much smaller than 80% for solid sulfur. The band structure and density of states of V-MOF suggest metallic properties or a small band gap for bare surface or during the lithiation process. These results indicate that two-dimensional (2D) V-MOFs can serve as high-performance cathode material with distinguished anchoring performance to block polysulfide dissolution and thereby reduce the 'shuttle effect', and help attain ultra-high energy density. Our work points the way for designing and providing experimental realization of 2D layered materials applied in cathode with high energy density and stability.
Collapse
Affiliation(s)
- Dachang Chen
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Sankha Mukherjee
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Cong Zhang
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
20
|
Gao N, Li B, Zhang Y, Li W, Li X, Zhao J, Yue W, Xing Z, Wang B. CoFe Alloy-Decorated Interlayer with a Synergistic Catalytic Effect Improves the Electrochemical Kinetics of Polysulfide Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57193-57203. [PMID: 34797970 DOI: 10.1021/acsami.1c17374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Good electrical conductivity, strong catalytic activity, high interaction with lithium polysulfides (LIPSs), simple method, and low cost should be considered for the design and preparation of high-performance electrochemical catalysts that catalyze the conversion of LIPSs. In this work, we designed a bimetallic alloyed multifunctional interlayer with multiple adsorption/catalysis sites. The interwoven carbon fibers derived from bacterial cellulose (BC) not only contribute to reducing metal ions to metals but also confine the growth of Co-Fe alloys formed in situ. The metal supported on carbon is very effective for the conversion of LIPSs due to its high adsorption and catalytic sites. In addition, the synergistic effect between Fe and Co species leads to excellent bifunctional catalytic activity. Through detailed electrochemical analysis and theoretical calculations, we revealed that CoFe@CNFs has superior electrocatalytic activity, and the lithium-sulfur (Li-S) batteries with a catalytic interlayer can deliver satisfactory rate and cycle performance. At a high current density of 2C, the discharge capacity can still reach 627 mAh g-1. At a current density of 1C, the Coulombic efficiency is maintained at a level close to 100% during the whole cycle process and a satisfying low capacity decay of 0.08% per cycle. More importantly, even if the ambient temperature drops to 0 °C, the Li-S battery using the interlayer can still be charged and discharged normally and shows acceptable discharge capacity, which shows that it has good rate kinetics.
Collapse
Affiliation(s)
- Ning Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yujiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenbiao Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China
| | - Wence Yue
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhenyu Xing
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China
| |
Collapse
|
21
|
Lin H, Shi H, Wang Z, Mu Y, Li S, Zhao J, Guo J, Yang B, Wu ZS, Liu F. Scalable Production of Freestanding Few-Layer β 12-Borophene Single Crystalline Sheets as Efficient Electrocatalysts for Lithium-Sulfur Batteries. ACS NANO 2021; 15:17327-17336. [PMID: 34549941 DOI: 10.1021/acsnano.1c04961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) borophene has attracted tremendous interest due to its fascinating properties, which have potential applications in catalysts, energy storage devices, and high-speed transistors. In the past few years, borophene was theoretically predicted as an ideal electrode material for lithium-sulfur (Li-S) batteries because of its low-density, metallic conductivity, high Li-ion surface mobility, and strong interface bonding energy to polysulfide. But until now, borophene-based Li-S batteries have not yet been achieved in experiments due to the absence of a large-scale synthetic method of freestanding borophene nanostructures with a high enough structural stability, conductivity, and uniformity. Herein, we developed a low-temperature liquid exfoliation (LTLE) method to synthesize freestanding few-layer β12-borophene single-crystalline sheets with a P6¯m2 symmetry in tens of milligrams. The as-synthesized 2D sheets were used as the polysulfide immobilizers and electrocatalysts of Li-S batteries. The resulting borophene-based Li-S battery delivered an extralarge areal capacity of 5.2 mAh cm-2 at a high sulfur loading of 7.8 mg cm-2, an excellent rate performance of 8 C (@721 mAh g-1), and an ultralow capacity fading rate of 0.039% in 1000 cycles, outperforming commercial Li-ion batteries and many other 2D material-based Li-S batteries. Based on the density functional theory model, the excellent electrochemical performances of the borophene-based Li-S batteries should originate from the enormous enhancement of β12-borophene sheets for both the surface migration of the Li-ions and the adsorption energy of Li2Sn clusters. Our results thus demonstrate a great potential for scalable production of freestanding β12-borophene single-crystalline sheets in future high-performance Li-S batteries.
Collapse
Affiliation(s)
- Haojian Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Haodong Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yuewen Mu
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Sidian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jingwei Guo
- Key Laboratory of Chemical Lasers, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Ren H, Wang Z, Guo S, Guo W, Tian G, Tian B. Ultrafast stimulated resonance Raman signatures of lithium polysulfides for shuttling effect characterization: An ab initio study. J Chem Phys 2021; 155:174301. [PMID: 34742224 DOI: 10.1063/5.0070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The shuttling effect is a crucial obstacle to the practical deployment of lithium sulfur batteries (LSBs). This can be ascribed to the generation of lithium polysulfide (LiPS) redox intermediates that are soluble in the electrolyte. The detailed mechanism of the shuttling, including the chemical structures responsible for the loss of effective mass and the dynamics/kinetics of the redox reactions, are not clear so far. To obtain this microscopic information, characterization techniques with high spatial and temporal resolutions are required. Here, we propose that resonance Raman spectroscopy combined with ultrafast broadband pulses is a powerful tool to reveal the mechanism of the shuttling effect. By combining the chemical bond level spatial resolution of resonance Raman and the femtosecond scale temporal resolution of the ultrafast pulses, this novel technique holds the potential of capturing the spectroscopic fingerprints of the LiPS intermediates during the working stages of LSBs. Using ab initio simulations, we show that, in addition to the excitation energy selective enhancement, resonance Raman signals of different LiPS intermediates are also characteristic and distinguishable. These results will facilitate the real-time in situ monitoring of LiPS species and reveal the underlying mechanism of the shuttling effect.
Collapse
Affiliation(s)
- Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Zhengjie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Sibei Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Baoling Tian
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
23
|
Guo J, Huang Y, Zhao S, Li Z, Wang Z, Shao G, Liu J. Array-Structured Double-Ion Cooperative Adsorption Sites as Multifunctional Sulfur Hosts for Lithium-Sulfur Batteries with Low Electrolyte/Sulfur Ratio. ACS NANO 2021; 15:16322-16334. [PMID: 34590488 DOI: 10.1021/acsnano.1c05536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium-sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong "shuttle effect" during both the cycle and storage process, and limited sulfur utilization. Herein, we develop a Na2Ti6O13 (NTO) nanowire array as a multifunctional sulfur host to simultaneously tackle both the above problems. The synergistic coordination between Na and Ti cations in NTO can accelerate the conversion of soluble polysulfides (PSs) to insoluble sulfides and significantly enhance their adsorption. Therefore, accumulation of PSs, which is the primary cause of the "shuttle effect", can be avoided in two ways. One is fast conversion kinetics during cycles; another is strong PS adsorption, which can suppress the disproportionation of PSs during storage. The as-prepared array represents an easy-to-infiltrate structure with efficient electron transport that allows good wetting ability of the conductive surface toward the electrolyte. Therefore, it helps improve sulfur utilization that is mainly limited by the presence of unwetted conductive surface. Consequently, NTO/sulfur array cathodes exhibit high sulfur utilization and extended cycle- and shelf-lives at a low E/S (5:1). Our work suggests that array materials featuring cooperative multi-ion adsorption sites are promising hosts for LSBs.
Collapse
Affiliation(s)
- Junling Guo
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Yuanyuan Huang
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Siyuan Zhao
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Zixuan Li
- Zhengzhou Materials Genome Institute, Zhongyuanzhigu, Xingyang 450100, China
| | - Zhuo Wang
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Zhengzhou Materials Genome Institute, Zhongyuanzhigu, Xingyang 450100, China
| | - Guosheng Shao
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Zhengzhou Materials Genome Institute, Zhongyuanzhigu, Xingyang 450100, China
| | - Jinping Liu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
24
|
Wang D, Zhou A, Yao Z, Xia X, Zhang Y. Confined Polysulfides in N-Doped 3D-CNTs Network for High Performance Lithium-Sulfur Batteries. MATERIALS 2021; 14:ma14206131. [PMID: 34683724 PMCID: PMC8537132 DOI: 10.3390/ma14206131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Improving the utilization efficiency of active materials and suppressing the dissolution of lithium polysulfides into the electrolyte are very critical for development of high-performance lithium-sulfur batteries. Herein, a novel strategy is proposed to construct a three-dimensional (3D) N-doped carbon nanotubes (CNTs) networks to support lithium polysulfides (3D-NCNT-Li2S6) as a binder-free cathode for high-performance lithium-sulfur batteries. The 3D N-doped CNTs networks not only provide a conductive porous 3D architecture for facilitating fast ion and electron transport but also create void spaces and porous channels for accommodating active sulfur. In addition, lithium polysulfides can be effectively confined among the networks through the chemical bond between Li and N. Owing to the synergetic effect of the physical and chemical confinement for the polysulfides dissolution, the 3D-NCNT-Li2S6 cathodes exhibit enhanced charge capacity and cyclic stability with lower polarization and faster redox reaction kinetics. With an initial discharge capacity of 924.8 mAh g-1 at 1 C, the discharge capacity can still maintain 525.1 mAh g-1 after 200 cycles, which is better than that of its counterparts.
Collapse
Affiliation(s)
- Donghuang Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; (D.W.); (A.Z.); (X.X.)
| | - Aijun Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; (D.W.); (A.Z.); (X.X.)
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhujun Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Xinhui Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; (D.W.); (A.Z.); (X.X.)
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongqi Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; (D.W.); (A.Z.); (X.X.)
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Correspondence:
| |
Collapse
|
25
|
Fan FR, Wang R, Zhang H, Wu W. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev 2021; 50:10983-11031. [PMID: 34617521 DOI: 10.1039/c9cs00821g] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental two-dimensional (2D) materials have emerged as promising candidates for energy and catalysis applications due to their unique physical, chemical, and electronic properties. These materials are advantageous in offering massive surface-to-volume ratios, favorable transport properties, intriguing physicochemical properties, and confinement effects resulting from the 2D ultrathin structure. In this review, we focus on the recent advances in emerging energy and catalysis applications based on beyond-graphene elemental 2D materials. First, we briefly introduce the general classification, structure, and properties of elemental 2D materials and the new advances in material preparation. We then discuss various applications in energy harvesting and storage, including solar cells, piezoelectric and triboelectric nanogenerators, thermoelectric devices, batteries, and supercapacitors. We further discuss the explorations of beyond-graphene elemental 2D materials for electrocatalysis, photocatalysis, and heterogeneous catalysis. Finally, the challenges and perspectives for the future development of elemental 2D materials in energy and catalysis are discussed.
Collapse
Affiliation(s)
- Feng Ru Fan
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA. .,Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ruoxing Wang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA. .,Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA. .,Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
26
|
Properties of S-Functionalized Nitrogen-Based MXene (Ti 2NS 2) as a Hosting Material for Lithium-Sulfur Batteries. NANOMATERIALS 2021; 11:nano11102478. [PMID: 34684918 PMCID: PMC8537390 DOI: 10.3390/nano11102478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Lithium-sulfur (Li-S) batteries have received extensive attention due to their high theoretical specific capacity and theoretical energy density. However, their commercialization is hindered by the shuttle effect caused by the dissolution of lithium polysulfide. To solve this problem, a method is proposed to improve the performance of Li-S batteries using Ti2N(Ti2NS2) with S-functional groups as the sulfur cathode host material. The calculation results show that due to the mutual attraction between Li and S atoms, Ti2NS2 has the moderate adsorption energies for Li2Sx species, which is more advantageous than Ti2NO2 and can effectively inhibit the shuttle effect. Therefore, Ti2NS2 is a potential cathode host material, which is helpful to improve the performance of Li-S batteries. This work provides a reference for the design of high-performance sulfur cathode materials.
Collapse
|
27
|
Jayan R, Islam MM. Mechanistic Insights into Interactions of Polysulfides at VS 2 Interfaces in Na-S Batteries: A DFT Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35848-35855. [PMID: 34284574 DOI: 10.1021/acsami.1c10868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Room temperature sodium-sulfur (Na-S) batteries, because of their high theoretical energy density and low cost, are considered as a promising candidate for next-generation energy storage devices. However, the practical utilization of the Na-S batteries is greatly hindered by various deleterious factors such as dissolution of sodium polysulfides (Na2Sn) into the electrolyte commonly termed as "shuttle effect," sluggish decomposition of solid Na2S, and poor electronic conductivity of sulfur. To overcome the challenges, we introduced single-layer vanadium disulfide (VS2) as an anchoring material (AM) to immobilize higher-order polysulfides from the dissolution and also to accelerate the otherwise sluggish kinetics of insoluble short-chain polysulfides. We employ density functional theory (DFT) calculations to elucidate the Na2Sn interactions at the VS2 interfaces. We show that the adsorption strengths of various Na2Sn species on the VS2 basal plane are adequate (1.21-4.3 eV) to suppress the shuttle effect, and the structure of Na2Sn are maintained without any decomposition, which is necessary to mitigate capacity fading. The calculated projected density of states (PDOS) reveals that the metallic character of the pristine VS2 is retained even after Na2Sn adsorption. The calculated Gibbs free energy of each elementary sulfur reduction reaction indicates a significant decrement in the free energy barrier due to the catalytic activity of the VS2 surface. Furthermore, VS2 is found to be an excellent catalyst to significantly reduce the oxidative decomposition barrier of Na2S, which facilitates accelerated electrode kinetics and higher utilization of sulfur. Overall, VS2 with strong adsorption behavior, enhanced electronic conductivity, and improved oxidative decomposition kinetics of polysulfides can be considered as an effective AM to prevent the shuttle effect and to improve the performance of Na-S batteries.
Collapse
Affiliation(s)
- Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Recent applications of black phosphorus and its related composites in electrochemistry and bioelectrochemistry: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Ni L, Yang G, Liu Y, Wu Z, Ma Z, Shen C, Lv Z, Wang Q, Gong X, Xie J, Diao G, Wei Y. Self-Assembled Polyoxometalate Nanodots as Bidirectional Cluster Catalysts for Polysulfide/Sulfide Redox Conversion in Lithium-Sulfur Batteries. ACS NANO 2021; 15:12222-12236. [PMID: 34156812 DOI: 10.1021/acsnano.1c03852] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyoxometalates (POMs) are a class of discrete molecular inorganic metal-oxide clusters with reversible multielectron redox capability. Taking advantage of their redox properties, POMs are thus expected to be directly involved in the lithium-sulfur batteries (Li-S, LSBs) system as a bidirectional molecular catalyst. Herein, we design a three-dimensional porous structure of reduced graphene-carbon nanotube skeleton supported POM catalyst as a high-conductive and high-stability host material. Based on various spectroscopic techniques and in situ electrochemical studies together with computational methods, the catalytic mechanism of POM clusters in Li-S battery was systematically clarified at the molecular level. The constructed POM-based sulfur cathode delivers a reversible capacity 1110 mAh g-1 at 1.0 C and cycling stability up to 1000 cycles at 3.0 C. Furthermore, Li-S pouch/beaker batteries with a POM-based cathode were successfully demonstrated. This work provides essential inputs to promote molecular catalyst design and its application in LSBs.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Guang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zhen Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zhiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Chao Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zengxiang Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Xiangxiang Gong
- Testing Center, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
30
|
Liu Y, Barnscheidt Y, Peng M, Bettels F, Li T, He T, Ding F, Zhang L. A Biomass-Based Integral Approach Enables Li-S Full Pouch Cells with Exceptional Power Density and Energy Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101182. [PMID: 34032382 PMCID: PMC8292852 DOI: 10.1002/advs.202101182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries, as part of the post-lithium-ion batteries (post-LIBs), are expected to deliver significantly higher energy densities. Their power densities, however, are today considerably worse than that of the LIBs, limiting the Li-S batteries to very few specific applications that need low power and long working time. With the rapid development of single cell components (cathode, anode, or electrolyte) in the last few years, it is expected that an integrated approach can maximize the power density without compromising the energy density in a Li-S full cell. Here, this goal is achieved by using a novel biomass porous carbon matrix (PCM) in the anode, as well as N-Co9 S8 nanoparticles and carbon nanotubes (CNTs) in the cathode. The authors' approach unlocks the potential of the electrodes and enables the Li-S full pouch cells with unprecedented power densities and energy densities (325 Wh kg-1 and 1412 W kg-1 , respectively). This work addresses the problem of low power densities in the current Li-S technology, thus making the Li-S batteries a strong candidate in more application scenarios.
Collapse
Affiliation(s)
- Yuping Liu
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Yvo Barnscheidt
- Institute of Electronic Materials and DevicesLeibniz University HannoverSchneiderberg 32Hannover30167Germany
| | - Manhua Peng
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Frederik Bettels
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Taoran Li
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Tao He
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Fei Ding
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Lin Zhang
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| |
Collapse
|
31
|
Lee PLJ, Thangavel V, Guery C, Trautmann C, Toimil-Molares ME, Morcrette M. Etched ion-track membranes as tailored separators in Li-S batteries. NANOTECHNOLOGY 2021; 32:365401. [PMID: 34032219 DOI: 10.1088/1361-6528/ac04a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered a promising next generation alternative to lithium-ion batteries for energy storage systems due to its high energy density. However, several challenges, such as the polysulfide redox shuttle causing self-discharge of the battery, remain unresolved. In this paper, we explore the use of polymer etched ion-track membranes as separators in Li-S batteries to mitigate the redox shuttle effect. Compared to commercial separators, their unique advantages lie in their very narrow pore size distribution, and the possibility to tailor and optimize the density, geometry, and diameter of the nanopores in an independent manner. Various polyethylene terephthalate membranes with diameters between 22 and 198 nm and different porosities were successfully integrated into Li-S coin cells. The reported coulombic efficiency of up to 97% with minor reduction in capacity opens a pathway to potentially address the polysulfide redox shuttle in Li-S batteries using tailored membranes.
Collapse
Affiliation(s)
- Pui Lap Jacob Lee
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
- Material- und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, D-64287 Darmstadt, Germany
| | - Vigneshwaran Thangavel
- Laboratoire de Réactivité et Chimie des Solides UMR CNRS 7314. 15 rue Baudelocque, F-80000 Amiens, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS n°3459, France
| | - Claude Guery
- Laboratoire de Réactivité et Chimie des Solides UMR CNRS 7314. 15 rue Baudelocque, F-80000 Amiens, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS n°3459, France
| | - Christina Trautmann
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
- Material- und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, D-64287 Darmstadt, Germany
| | | | - Mathieu Morcrette
- Laboratoire de Réactivité et Chimie des Solides UMR CNRS 7314. 15 rue Baudelocque, F-80000 Amiens, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS n°3459, France
| |
Collapse
|
32
|
Han B, Zou Y, Ke R, Li T, Zhang Z, Wang C, Gu M, Deng Y, Yao J, Meng H. Stable Lithium Metal Anodes with a GaO x Artificial Solid Electrolyte Interphase in Damp Air. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21467-21473. [PMID: 33938748 DOI: 10.1021/acsami.1c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a promising high energy density electrode material for rechargeable batteries, lithium (Li) metal is still suffering from air/water instability due to its highly reactive nature. In addition, the Li dendrite issue in Li metal batteries needs to be resolved to ensure the safety of batteries and for wide applications. Herein, we demonstrate that a simple compact GaOx layer formed using liquid metal (LM) can act as an artificial solid electrolyte interphase to block moisture and oxygen in the air from corroding the lithium metal. Interestingly, GaOx that covered the electrode effectively inhibits Li dendrite growth in electrochemistry cycling, ensuring the safety of Li metal batteries. The exposed composite Li metal anode (exposed under ambient air with relative humidity (RA) ≈ 75% for 5 h) not only shows a superior stability (symmetrical cell) but also delivers an elevated cycling stability (>500 cycles at 0.5 and 1 C) with a sulfur@C cathode in the full-cell configuration. Our work provides a new pathway for the large-scale applications of the air/water-tolerant Li metal anode in rechargeable batteries.
Collapse
Affiliation(s)
- Bing Han
- School of Advanced Materials, Peking University, Shenzhen 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yucheng Zou
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Ruohong Ke
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Tengteng Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhen Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jianquan Yao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University, Shenzhen 518055, China
| |
Collapse
|
33
|
Geng X, Lin R, Gu X, Su Z, Lai C. Water Reducer: A Highly Dispersing Binder for
High‐Performance Lithium‐Sulfur
Batteries
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xin Geng
- College of Chemistry and Chemical Engineering Xinjiang Normal University, Urumqi Xinjiang 830054 China
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Ruihao Lin
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University Chongqing 400065 China
| | - Xingxing Gu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University Chongqing 400065 China
| | - Zhi Su
- College of Chemistry and Chemical Engineering Xinjiang Normal University, Urumqi Xinjiang 830054 China
| | - Chao Lai
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
34
|
Song X, Qu Y, Zhao L, Zhao M. Monolayer Fe 3GeX 2 (X = S, Se, and Te) as Highly Efficient Electrocatalysts for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11845-11851. [PMID: 33656840 DOI: 10.1021/acsami.0c21136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The high energy density, low cost, and environmental friendliness of lithium-sulfur (Li-S) batteries enable them to be promising next-generation energy storage systems. However, the commercialization of Li-S batteries is presently hindered by the bottlenecks, such as the low conductivity of sulfur species, shuttle effect of polysulfides, and poor conversion efficiency in discharging/charging processes. Here, on the basis of first-principles calculations, we predicted that the two-dimensional magnetic Fe3GeX2 (X = S, Se, and Te) monolayers are quite promising to overcome the aforesaid problems. The Fe3GeX2 monolayer has metallic electronic structures and moderate binding strength to the soluble lithium polysulfides, which are expected to improve the overall electric conductivity of sulfur species and anchor the soluble lithium polysulfides to suppress the shuttle effect. Remarkably, Fe3GeX2 monolayers show bifunctional electrocatalytic activity to the S reduction reaction and the Li2S decomposition reaction, which improves the conversion efficiency in discharging and charging processes. This finding may open up an avenue for the development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Xiaohan Song
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Qu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lanling Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
35
|
Zeng L, Zhu J, Liu M, Zhang P. Sb nanosheet modified separator for Li-S batteries with excellent electrochemical performance. RSC Adv 2021; 11:6798-6803. [PMID: 35423217 PMCID: PMC8694926 DOI: 10.1039/d0ra10100a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/30/2021] [Indexed: 11/21/2022] Open
Abstract
An air-stable antimony (Sb) nanosheet modified separator (SbNs/separator) has been prepared by coating exfoliated Sb nanosheets (SbNs) successfully onto a pristine separator through a vacuum infiltration method. The as-prepared Li-S batteries using SbNs/separators exhibit much improved electrochemical performance compared to the ones using commercial separators. The coulombic efficiency (CE) of the Li-S battery using the SbNs/separator after the initial cycle is close to 100% at a current density of 0.1 A g-1, and 660 mA h g-1 capacity retained after 100 cycles. The rate capability of Li-S battery using SbNs/separator delivers a reversible capacity of 425 mA h g-1 when the current density increases to 1 A g-1. The improved electrochemical performance is mainly attributed to the following reasons. Firstly, the combination of physical adsorption and chemical bonding between SbNs and lithium polysulfides (LiPSs), which efficiently inhibits the shuttle phenomena of LiPSs. Secondly, the good electronic conductivity of SbNs improves the utilization of the adsorbed LiPSs, which benefits the capacity release of active materials. Lastly, the fast conversion kinetics of intermediate LiPSs caused by the catalytic effect from SbNs further suppresses the shuttle effect of LiPSs. The SbNs/separators exhibit a great potential for the future high-performance Li-S batteries.
Collapse
Affiliation(s)
- Linchao Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University Shenzhen 518055 P. R. China
| | - Jianhui Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology Xi'an Shannxi 710055 P. R. China
| | - Minsu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University Shenzhen 518055 P. R. China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
36
|
Naskar P, Chakraborty P, Kundu D, Maiti A, Biswas B, Banerjee A. Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect 2021. [DOI: 10.1002/slct.202100049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pappu Naskar
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Priyanka Chakraborty
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Debojyoti Kundu
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Apurba Maiti
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Biplab Biswas
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Anjan Banerjee
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| |
Collapse
|
37
|
Huang X, Sun J, Wang L, Tong X, Dou SX, Wang ZM. Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004369. [PMID: 33448135 DOI: 10.1002/smll.202004369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Current great progress on potassium-chalcogen (S, Se, Te) batteries within much potential to become promising energy storage systems opens a new avenue for the rapid development of potassium batteries as a complementary option to lithium ion batteries. The discussion mainly concentrates on recent research advances of potassium-chalcogen (S, Se, Te) batteries and their corresponding cathode materials in this review. Initially, the development of cathode materials for four types of batteries is introduced, including: potassium-sulfur (K-S), potassium-selenium (K-Se), potassium-selenium sulfide (K-Sex Sy ), and potassium-tellurium (K-Te) batteries. Next, critical challenges for chalcogen-based electrodes in devices operation are summarized. In addition, some pragmatic strategies are proposed as well to relieve the low electronic conductivity, large volumetric expansion, shuttle effect, and potassium dendrite growth. At last, the perspectives on designing advanced cathode materials for potassium-chalcogen batteries are provided with the goal of developing high-performance potassium storage devices.
Collapse
Affiliation(s)
- Xianglong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiachen Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Liping Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, 2500, Australia
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
38
|
Thurakkal S, Feldstein D, Perea‐Causín R, Malic E, Zhang X. The Art of Constructing Black Phosphorus Nanosheet Based Heterostructures: From 2D to 3D. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005254. [PMID: 33251663 PMCID: PMC11468607 DOI: 10.1002/adma.202005254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Assembling different kinds of 2D nanosheets into heterostructures presents a promising way of designing novel artificial materials with new and improved functionalities by combining the unique properties of each component. In the past few years, black phosphorus nanosheets (BPNSs) have been recognized as a highly feasible 2D material with outstanding electronic properties, a tunable bandgap, and strong in-plane anisotropy, highlighting their suitability as a material for constructing heterostructures. In this study, recent progress in the construction of BPNS-based heterostructures ranging from 2D hybrid structures to 3D networks is discussed, emphasizing the different types of interactions (covalent or noncovalent) between individual layers. The preparation methods, optical and electronic properties, and various applications of these heterostructures-including electronic and optoelectronic devices, energy storage devices, photocatalysis and electrocatalysis, and biological applications-are discussed. Finally, critical challenges and prospective research aspects in BPNS-based heterostructures are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4GöteborgSE‐412 96Sweden
| | - David Feldstein
- Division of Condensed Matter and Materials TheoryDepartment of PhysicsChalmers University of TechnologyKemigården 1GöteborgSE‐412 96Sweden
| | - Raül Perea‐Causín
- Division of Condensed Matter and Materials TheoryDepartment of PhysicsChalmers University of TechnologyKemigården 1GöteborgSE‐412 96Sweden
| | - Ermin Malic
- Division of Condensed Matter and Materials TheoryDepartment of PhysicsChalmers University of TechnologyKemigården 1GöteborgSE‐412 96Sweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4GöteborgSE‐412 96Sweden
| |
Collapse
|
39
|
Yang L, Li H, Li Q, Wang Y, Chen Y, Wu Z, Liu Y, Wang G, Zhong B, Xiang W, Zhong Y, Guo X. Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liwen Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Hongtai Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Qian Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yang Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yanxiao Chen
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007, P. R. China
| | - Benhe Zhong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Wei Xiang
- College of Materials and Chemistry &Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yanjun Zhong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| |
Collapse
|
40
|
Wang Y, Zuo P, Ma S, Xie B, Yu Z, Yin G. DFT and experimental study of nano red phosphorus anchoring on sulfurized polyacrylonitrile for lithium-ion batteries. Chem Commun (Camb) 2020; 56:12857-12860. [PMID: 32969425 DOI: 10.1039/d0cc04870d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulfur atoms can reconstruct the configuration of PAN, which makes the electron transfer more convenient and reduces the energy barriers during Li ion diffusion. The sulfurized polyacrylonitrile plays a crucial role in anchoring the P4 molecule and electron transport simultaneously. Uniform RP nanoparticles (∼200 nm) are obtained using a simple liquid phase method. SPAN-RP shows an initial reversible capacity of 1214 mA h g-1 at 0.2C and retains a capacity of 860 mA h g-1 with a high coulombic efficiency of 99.6% after 200 cycles.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Advanced Chemical Power Source, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | |
Collapse
|
41
|
Aslam MK, Seymour ID, Katyal N, Li S, Yang T, Bao SJ, Henkelman G, Xu M. Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nat Commun 2020; 11:5242. [PMID: 33067473 PMCID: PMC7568557 DOI: 10.1038/s41467-020-19078-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Sodium sulfur batteries require efficient sulfur hosts that can capture soluble polysulfides and enable fast reduction kinetics. Herein, we design hollow, polar and catalytic bipyramid prisms of cobalt sulfide as efficient sulfur host for sodium sulfur batteries. Cobalt sulfide has interwoven surfaces with wide internal spaces that can accommodate sodium polysulfides and withstand volumetric expansion. Furthermore, results from in/ex-situ characterization techniques and density functional theory calculations support the significance of the polar and catalytic properties of cobalt sulfide as hosts for soluble sodium polysulfides that reduce the shuttle effect and display excellent electrochemical performance. The polar catalytic bipyramid prisms sulfur@cobalt sulfide composite exhibits a high capacity of 755 mAh g−1 in the second discharge and 675 mAh g−1 after 800 charge/discharge cycles, with an ultralow capacity decay rate of 0.0126 % at a high current density of 0.5 C. Additionally, at a high mass loading of 9.1 mg cm−2, sulfur@cobalt sulfide shows high capacity of 545 mAh g−1 at a current density of 0.5 C. This study demonstrates a hollow, polar, and catalytic sulfur host with a unique structure that can capture sodium polysulfides and speed up the reduction reaction of long chain sodium polysulfides to solid small chain polysulfides, which results in excellent electrochemical performance for sodium-sulfur batteries. Sodium sulfur batteries require efficient sulfur hosts that can capture soluble polysulfides and enable fast reduction kinetics. Here, authors report hollow catalytic bipyramid prism CoS2/C as efficient sulfur carriers, and investigate the reaction mechanism in the sodium sulfur battery.
Collapse
Affiliation(s)
- Muhammad Kashif Aslam
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Ieuan D Seymour
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sha Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tingting Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Maowen Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
42
|
Comparative Study on the Adsorption Capacities of the Three Black Phosphorus-Based Materials for Methylene Blue in Water. SUSTAINABILITY 2020. [DOI: 10.3390/su12208335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dye effluent has attracted considerable attention from worldwide researchers due to its harm and toxicity in recent years; as a result, the treatment for dye has become one of the focuses in the environmental field. Adsorption has been widely applied in water treatment owing to its various advantages. However, the adsorption behaviors of the new materials, such as the 2D black phosphorus (BP), for pollution were urgently revealed and improved. In this work, BP, black phosphorene (BPR), and sulfonated BPR (BPRS) were prepared by the vapor phase deposition method, liquid-phase exfoliating method, and modification with sulfonation, respectively. The three BP-based materials were characterized and used as adsorbents for the removal of methylene blue (MB) in water. The results showed that the specific surface areas (SSAs) of BP, BPR, and BPRS were only 6.78, 6.92, and 7.72 m2·g−1, respectively. However, the maximum adsorption capacities of BP, BPR, and BPRS for MB could reach up to 84.03, 91.74, and 140.85 mg·g−1, which were higher than other reported materials with large SSAs such as graphene (GP), nanosheet/magnetite, and reduced graphene oxide (rGO). In the process of BP adsorbing MB, wrinkles were generated, and the wrinkles would further induce adsorption. BPR had fewer layers (3–5), more wrinkles, and stronger adsorption capacity (91.74 mg·g−1). The interactions between the BP-based materials and MB might cause the BP-based materials to deform, i.e., to form wrinkles, thereby creating new adsorption sites between layers, and then further inducing adsorption. Although the wrinkles had a certain promotion effect, the adsorption capacity was limited, so the sulfonic acid functional group was introduced to modify BPR to increase its adsorption sites and promote the adsorption effect. These findings could provide a new viewpoint and insight on the adsorption behavior and potential application of the BP-based materials.
Collapse
|
43
|
He J, Bhargav A, Manthiram A. Molybdenum Boride as an Efficient Catalyst for Polysulfide Redox to Enable High-Energy-Density Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004741. [PMID: 32864813 DOI: 10.1002/adma.202004741] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Lithium-sulfur (Li-S) batteries, despite having high theoretical specific energy, possess many practical challenges, including lithium polysulfide (LiPS) shuttling. To address the issues, here, hydrophilic molybdenum boride (MoB) nanoparticles are presented as an efficient catalytic additive for sulfur cathodes. The high conductivity and rich catalytically active sites of MoB nanoparticles allow for a fast kinetics of LiPS redox in high-sulfur-loading electrodes (6.1 mg cm-2 ). Besides, the hydrophilic properties and good wettability toward electrolyte of MoB can facilitate electrolyte penetration and LiPS redox, guaranteeing a high utilization of sulfur under a lean-electrolyte condition. Therefore, the cells with MoB achieve impressive electrochemical performance, including a high capacity (1253 mA h g-1 ) and ultralong lifespan (1000 cycles) with a low capacity fade rate of 0.03% per cycle. Also, pouch cells fabricated with the MoB additive deliver an ultrahigh discharge capacity of 947 mA h g-1 , corresponding to a low electrolyte-to-capacity ratio of about 4.8 µL (mA h)-1 , and remain stable over 55 cycles under practically necessary conditions with a low electrolyte-to-sulfur ratio of 4.5 µL mg-1 .
Collapse
Affiliation(s)
- Jiarui He
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Amruth Bhargav
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
44
|
Zeng P, Liu C, Zhao X, Yuan C, Chen Y, Lin H, Zhang L. Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co 7Fe 3 for High-Performance Lithium-Sulfur Batteries. ACS NANO 2020; 14:11558-11569. [PMID: 32865976 DOI: 10.1021/acsnano.0c04054] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Practical applications of lithium-sulfur (Li-S) batteries have been severely hindered by their low capacity, poor rate performance, and fast capacity degradation, which mainly originate from the notorious polysulfide shuttle effect. Herein, with density functional theory calculations, we show that the alloying of Fe into carbon-coated Co not only provides moderate binding interactions with the polysulfides to hinder their diffusion but also serves as an active catalyst in the spontaneous and successive lithiation of S8 to Li2S. Based on the fast migration of Li ions and the spontaneous lithiation of Li2S2 on the carbon-coated Fe-Co alloy, the entrapping-conversion processes of polysulfides are both thermodynamically and kinetically promoted in redox cycling. Experimentally, rationally designed Co7Fe3@porous graphite carbon-carbon nanotubes (Co7Fe3@PGC-CNT) electrocatalysts are introduced into Li-S batteries through separator functionalization. Consistent with theoretical predictions, Li-S batteries with Co7Fe3@PGC-CNT modified separators exhibit a dramatically enhanced rate capacity (788 and 631 mAh g-1 at 10 and 15 C rates, respectively) and cycling stability (a slow capacity decay of 0.05% per cycle over 1000 cycles at 2.0 C), which are superior to those of most reported Li-S batteries coupled with state-of-the-art separators. Furthermore, it is shown that the excellent hindering of the shuttle effects enables a high areal capacity of 4.7 mAh cm-2 after 90 cycles at a high sulfur loading of 6.7 mg cm-2. Our work provides a feasible method for developing high-energy and long-life Li-S batteries, which might drive the commercialization of Li-S batteries.
Collapse
Affiliation(s)
- Pan Zeng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Cheng Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Xiaofeng Zhao
- State Key Laboratory For Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Cheng Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yungui Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haiping Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Liang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
45
|
Cheng J, Gao L, Li T, Mei S, Wang C, Wen B, Huang W, Li C, Zheng G, Wang H, Zhang H. Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. NANO-MICRO LETTERS 2020; 12:179. [PMID: 34138158 PMCID: PMC7770910 DOI: 10.1007/s40820-020-00510-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/23/2020] [Indexed: 05/19/2023]
Abstract
Two-dimensional black phosphorus (2D BP), well known as phosphorene, has triggered tremendous attention since the first discovery in 2014. The unique puckered monolayer structure endows 2D BP intriguing properties, which facilitate its potential applications in various fields, such as catalyst, energy storage, sensor, etc. Owing to the large surface area, good electric conductivity, and high theoretical specific capacity, 2D BP has been widely studied as electrode materials and significantly enhanced the performance of energy storage devices. With the rapid development of energy storage devices based on 2D BP, a timely review on this topic is in demand to further extend the application of 2D BP in energy storage. In this review, recent advances in experimental and theoretical development of 2D BP are presented along with its structures, properties, and synthetic methods. Particularly, their emerging applications in electrochemical energy storage, including Li-/K-/Mg-/Na-ion, Li-S batteries, and supercapacitors, are systematically summarized with milestones as well as the challenges. Benefited from the fast-growing dynamic investigation of 2D BP, some possible improvements and constructive perspectives are provided to guide the design of 2D BP-based energy storage devices with high performance.
Collapse
Affiliation(s)
- Junye Cheng
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Tian Li
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Cong Wang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bo Wen
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Chao Li
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
46
|
Zhang K, Zhang F, Pan H, Yu J, Wang L, Wang D, Wang L, Hu G, Zhang J, Qian Y. Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium–sulfur battery. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Yang XX, Li XT, Zhao CF, Fu ZH, Zhang QS, Hu C. Promoted Deposition of Three-Dimensional Li 2S on Catalytic Co Phthalocyanine Nanorods for Stable High-Loading Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32752-32763. [PMID: 32609485 DOI: 10.1021/acsami.0c08027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The sulfur redox in Li-S batteries involves a complex sequence of solid-liquid-solid conversions, and reaction catalysis has recently become a focused area for further advancement. The deposition of solid Li2S from liquid Li2S4 contributes to three-quarters of the total theoretical capacity and is therefore of great significance over the entire cathode reaction. This study demonstrates a cathode material composed of carbon nanofibers decorated with catalytic Co phthalocyanine nanorods (CoPc@CNF), which are highly effective in promoting the deposition of Li2S in three-dimensional (3D) fine particles rather than 2D thin films. This significantly alleviates cathode passivation during cell charge and discharge, leading to obviously improved sulfur utilization and cycling stability for high loading cathodes. DFT calculations indicate that the promoted 3D deposition of Li2S is related to the facilitated migration of deposition precursors (Li2S4 and Li-ions) to migrate on the CoPc nanorods. Lithium-sulfur (Li-S) pouch cells were prepared with high specific (954 mAh g-1), areal (4.8 mAh cm-2), and total (235 mAh) capacities achieved at 0.5 C under high sulfur content. As metal phthalocyanines possess a high structural variability, this study provides opportunities to the design of a new class of Li-S cathode materials.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, China
| | - Xu-Ting Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, China
| | - Chang-Feng Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, China
| | - Zhang-Hua Fu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, China
| | - Qing-Shuai Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, China
| | - Cheng Hu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, China
| |
Collapse
|
48
|
Phosphorene: a Potential 2D Material for Highly Efficient Polysulfide Trapping and Conversion. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0180-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Lu C, Chen Y, Yang Y, Chen X. Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium-Sulfur Batteries. NANO LETTERS 2020; 20:5522-5530. [PMID: 32579363 DOI: 10.1021/acs.nanolett.0c02167] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-sulfur batteries with high energy capacity are promising candidates for advanced energy storage. However, their applications are impeded by shuttling of soluble polysulfides and sluggish conversion kinetics with inferior rate performance and short cycling life. Here, single-atom materials are designed to accelerate polysulfide conversion for Li-S batteries. Nitrogen sites in the structure not only anchor polysulfides to alleviate the shuttle effect but also enable high loading of single-atom irons. Density functional theory calculations indicate that single-atom sites reduce the energy barrier of electrochemical reactions and thus improve the rate and cycling performances of batteries. The coin battery shows impressive energy storage properties, including a high reversible capacity of 1379 mAh g-1 at 0.1 C and a high rate capacity of 704 mAh g-1 at 5 C. The ratio of electrolyte dosage/energy density is as low as 5.5 g Ah1-. It exhibits excellent cycling performance with a capacity retention of 90% even after 200 cycles at 0.2 C.
Collapse
Affiliation(s)
- Chao Lu
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Yan Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Yuan Yang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
50
|
Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00072-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|