1
|
Kamimura S, Saito M, Teshima Y, Yamanaka K, Ichikawa H, Sugie A, Yoshida H, Jeon J, Kim HD, Ohkita H, Mikie T, Osaka I. Manipulating the functionality and structures of π-conjugated polymers utilizing intramolecular noncovalent interactions towards efficient organic photovoltaics. Chem Sci 2024; 15:6349-6362. [PMID: 38699251 PMCID: PMC11062120 DOI: 10.1039/d4sc00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Careful control of electronic properties, structural order, and solubility of π-conjugated polymers is central to the improvement of organic photovoltaic (OPV) performance. In this work, we designed and synthesized a series of naphthobisthiadiazole-quaterthiophene copolymers by systematically replacing the alkyl groups with ester groups and changing the position of the fluorine groups in the quaterthiophene moiety. These alterations lowered the HOMO and LUMO energy levels and systematically varied the combination of intramolecular noncovalent interactions such as O⋯S and F⋯S interactions in the backbone. More importantly, although the introduction of such noncovalent interactions often lowers the solubility owing to the interlocking of backbone linkages, we found that careful design of the noncovalent interactions afforded polymers with relatively high solubility and high crystallinity at the same time. As a result, the power conversion efficiency of OPV cells that used fullerene (PC61BM) and nonfullerene (Y12) as the acceptor was improved. Our work offers important information for the development of high-performance π-conjugated polymers for OPVs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Masahiko Saito
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Yoshikazu Teshima
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Kodai Yamanaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Hiroyuki Ichikawa
- Department of Materials Science, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Ai Sugie
- Department of Materials Science, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Hiroyuki Yoshida
- Department of Materials Science, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Molecular Chirality Research Center, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Jihun Jeon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Hyung Do Kim
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Tsubasa Mikie
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima Hiroshima 739-8527 Japan
| |
Collapse
|
2
|
Yang X, Shao Y, Wang S, Chen M, Xiao B, Sun R, Min J. Processability Considerations for Next-Generation Organic Photovoltaic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307863. [PMID: 38048536 DOI: 10.1002/adma.202307863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Indexed: 12/06/2023]
Abstract
The evolution of organic semiconductors for organic photovoltaics (OPVs) has resulted in unforeseen outcomes. This has provided substitute choices of photoactive layer materials, which effectively convert sunlight into electricity. Recently developed OPV materials have narrowed down the gaps in efficiency, stability, and cost in devices. Records now show power conversion efficiency in single-junction devices closing to 20%. Despite this, there is still a gap between the currently developed OPV materials and those that meet the requirements of practical applications, especially the solution processability issue widely concerned in the field of OPVs. Based on the general rule that structure determines properties, methodologies to enhance the processability of OPV materials are reviewed and explored from the perspective of material design and views on the further development of processable OPV materials are presented. Considering the current dilemma that the existing evaluation indicators cannot reflect the industrial processability of OPV materials, a more complete set of key performance indicators are proposed for their processability considerations. The purpose of this perspective is to raise awareness of the boundary conditions that exist in industrial OPV manufacturing and to provide guidance for academic research that aspires to contribute to technological advancements.
Collapse
Affiliation(s)
- Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Mingxia Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bo Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Camaioni N, Carbonera C, Ciammaruchi L, Corso G, Mwaura J, Po R, Tinti F. Polymer Solar Cells with Active Layer Thickness Compatible with Scalable Fabrication Processes: A Meta-Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210146. [PMID: 36609981 DOI: 10.1002/adma.202210146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Organic photovoltaics (OPV) has been considered for a long time a promising emerging solar technology. Currently, however, market shares of OPV are practically non-existent. A detailed meta-analysis of the literature published until mid-2021 is presented, focusing on one of the remaining issues that need to be addressed to translate the recent remarkable progress, obtained in devices' performance at lab-scale level, into the requirements able to boost the manufacturing-scale production. Namely, the active layer's thickness is referred to, which, together with device efficiency and stability, represents one of the biggest challenges of this technological research field. Papers describing solar cells containing non-fullerene acceptor (NFA) binary and ternary blends, as well as NFA plus fullerene acceptor (FA) ternary blends are reviewed. The common ground of all analyzed devices is their high-thickness active layers, compatible with large-area deposition techniques. By defining a new figure of merit to discuss the OPV thickness (thickness tolerance, TT), it is found that this parameter is not affected by the chemical family's nature of the active blend components. On the other hand, the analysis suggests that there are promising strategies to improve the TT, which are discussed in the conclusion section.
Collapse
Affiliation(s)
- Nadia Camaioni
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| | - Chiara Carbonera
- New Energies, Renewable Energies and Material Science Research Center, Eni S.p.A., Via G. Fauser 4, Novara, 28100, Italy
| | - Laura Ciammaruchi
- New Energies, Renewable Energies and Material Science Research Center, Eni S.p.A., Via G. Fauser 4, Novara, 28100, Italy
| | - Gianni Corso
- New Energies, Renewable Energies and Material Science Research Center, Eni S.p.A., Via G. Fauser 4, Novara, 28100, Italy
| | - Jeremiah Mwaura
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Riccardo Po
- New Energies, Renewable Energies and Material Science Research Center, Eni S.p.A., Via G. Fauser 4, Novara, 28100, Italy
| | - Francesca Tinti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
4
|
Modification of the Surface Composition of PTB7-Th: ITIC Blend Using an Additive. Molecules 2022; 27:molecules27196358. [PMID: 36234895 PMCID: PMC9573251 DOI: 10.3390/molecules27196358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the effect of adding p-anisaldehyde (AA) solvent to the ink containing poly[[2,60-4,8-di(5-ethylhexylthienyl)benzo[1,2-b:3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7-Th) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:20,30-d0]-s-indaceno[1,2-b:5,6-b0]-dithiophene(ITIC) on the morphology of the active layer. The present study focuses on determining the effect of the additive on the compositions at the surface of the PTB7-Th: ITIC composite and its morphology, forming one side of the interface of the blend with the MoOX electrode, and the influence of the structural change on the performance of devices. Studies of device performance show that the addition of the additive AA leads to an improvement in device performance. Upon the addition of AA, the concentration of PTB7-Th at the surface of the bulk heterojunction (BHJ) increases, causing an increase in surface roughness of the surface of the BHJ. This finding contributes to an understanding of the interaction between the donor material and high work function electrode/interface material. The implications for the interface are discussed.
Collapse
|
5
|
Development of non-fullerene electron acceptors for efficient organic photovoltaics. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractCompared to fullerene based electron acceptors, n-type organic semiconductors, so-called non-fullerene acceptors (NFAs), possess some distinct advantages, such as readily tuning of optical absorption and electronic energy levels, strong absorption in the visible region and good morphological stability for flexible electronic devices. The design and synthesis of new NFAs have enabled the power conversion efficiencies (PCEs) of organic photovoltaic (OPV) devices to increase to around 19%. This review summarises the important breakthroughs that have contributed to this progress, focusing on three classes of NFAs, i.e. perylene diimide (PDI), diketopyrrolopyrrole (DPP) and acceptor–donor–acceptor (A-D-A) based NFAs. Specifically, the PCEs of PDI, DPP, and A-D-A series based non-fullerene OPVs have been reported up to 11%, 13% and 19%, respectively. Structure–property relationships of representative NFAs and their impact on OPV performances are discussed. Finally, we consider the remaining challenges and promising directions for achieving high-performing NFAs.
Collapse
|
6
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
7
|
Liu S, Li H, Wu X, Chen D, Zhang L, Meng X, Tan L, Hu X, Chen Y. Pseudo-Planar Heterojunction Organic Photovoltaics with Optimized Light Utilization for Printable Solar Windows. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201604. [PMID: 35365928 DOI: 10.1002/adma.202201604] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The existing conformation of the active layer is defective for employment of semitransparent organic solar cells (ST-OSCs) in solar windows. Herein, scalable solar windows are successfully printed by introducing a pseudo-planar heterojunction (PPHJ) structure. The PPHJ structure can effectively improve the average visible transmittance (AVT) value while boosting the power conversion efficiency (PCE) of semitransparent devices due to the reduced optical loss. The universality of the PPHJ structure in the preparation of ST-OSCs is proved. Furthermore, an inset of a superhydrophobic patterned soft insertion layer (PSIL) in the encapsulated window improves the waterproof performance without losing transparency. Accordingly, the semitransparent devices based on the 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6) system afford a maximal efficiency of 14.62%, with a considerable AVT of 20.42%, and the resultant solar windows achieve a stabilized efficiency of 13.34% with excellent waterproof performance. Moreover, the PCE of the unilateral broken solar windows retains 70.6% of the initial efficiency after being placed under simulated rainfall conditions for 1200 h at room temperature.
Collapse
Affiliation(s)
- Siqi Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Haojie Li
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xueting Wu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dong Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Advanced Scientific Research (iASR)/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Lin Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process/School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Xiangchuan Meng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Yangtze Delta Institute of Optoelectronics, Peking University, No.60 Chongzhou Road, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Advanced Scientific Research (iASR)/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- Yangtze Delta Institute of Optoelectronics, Peking University, No.60 Chongzhou Road, Nantong, 226010, China
| |
Collapse
|
8
|
The effects of electronic structures of two non-fullerene systems on their photovoltaic performances. J Mol Model 2022; 28:172. [PMID: 35633407 DOI: 10.1007/s00894-022-05163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
In this contribution, the electronic structures of two polymer donors (PBDB-T and PBDB-T-SF) and two non-fullerene acceptors (ITIC and IT-4F) are researched by density functional theory and time-dependent density functional theory, respectively. The research purpose is to rationalize the relationship between observed experimental performances and structural properties and obtain the effects of structures on their photovoltaic performances. The investigated properties involve in the structure characteristics, absorption spectra, carrier mobilities, and exciton dissociation properties at interfaces to locate the essences of different power conversion efficiency between PBDB-T/ITIC and PBDB-T-SF/IT-4F. The results suggest that both PBDB-T/ITIC and PBDB-T-SF/IT-4F systems have stable structures and relatively high HOMO levels, which benefits to relatively large VOC values. In addition, the larger PCE of PBDB-T-SF/IT-4F system originates from PBDB-T-SF's large hole transport properties and better exciton dissociation ability. Furthermore, the F and S incorporations enhance hole mobilities and exciton dissociation ability. Consequently, the theoretical results coincide well with the experimental ones.
Collapse
|
9
|
Ke CX, Lai X, Wang HT, Pu MR, Rehman T, Zhu YL, He F. Subtle Effect of Alkyl Substituted π-Bridges on Dibenzo[a,c]phenazine Based Polymer Donors towards Enhanced Photovoltaic Performance. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhong W, Zhang M, Freychet G, Su GM, Ying L, Huang F, Cao Y, Zhang Y, Wang C, Liu F. Decoupling Complex Multi-Length-Scale Morphology in Non-Fullerene Photovoltaics with Nitrogen K-Edge Resonant Soft X-ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107316. [PMID: 34750871 DOI: 10.1002/adma.202107316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Complex morphology in organic photovoltaics (OPVs) and other functional soft materials commonly dictates performance. Such complexity in OPVs originates from the mesoscale kinetically trapped non-equilibrium state, which governs device charge generation and transport. Resonant soft X-ray scattering (RSoXS) has been revolutionary in the exploration of OPV morphology in the past decade due to its chemical and orientation sensitivity. However, for non-fullerene OPVs, RSoXS analysis near the carbon K-edge is challenging, due to the chemical similarity of the materials used in active layers. An innovative approach is provided by nitrogen K-edge RSoXS (NK-RSoXS), utilizing the spatial and orientational contrasts from the cyano groups in the acceptor materials, which allows for determination of phase separation. NK-RSoXS clearly visualizes the combined feature sizes in PM6:Y6 blends from crystallization and liquid-liquid demixing, while PM6:Y6:Y6-BO ternary blends with reduced phase-separation size and enhanced material crystallization can lead to current amplification in devices. Nitrogen is common in organic semiconductors and other soft materials, and the strong and directional N 1s → π* resonances make NK-RSoXS a powerful tool to uncover the mesoscale complexity and open opportunities to understand heterogeneous systems.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Gregory M Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Kini GP, Parashar M, Jahandar M, Lee J, Chung S, Cho K, Shukla VK, Singh R. Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two DPP-based hole-transporting materials with different aromatic π-bridges have been synthesized and tested for perovskite solar cells. Improved power conversion efficiency and stability were achieved by employing DPP-TT.
Collapse
Affiliation(s)
- Gururaj P. Kini
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Mritunjaya Parashar
- Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Muhammad Jahandar
- Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Vivek Kumar Shukla
- Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Ranbir Singh
- School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
12
|
Alqahtani O, Hosseini SM, Ferron T, Murcia V, McAfee T, Vixie K, Huang F, Armin A, Shoaee S, Collins BA. Evidence That Sharp Interfaces Suppress Recombination in Thick Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56394-56403. [PMID: 34787408 DOI: 10.1021/acsami.1c15570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Commercialization and scale-up of organic solar cells (OSCs) using industrial solution printing require maintaining maximum performance at active-layer thicknesses >400 nm─a characteristic still not generally achieved in non-fullerene acceptor OSCs. NT812/PC71BM is a rare system, whose performance increases up to these thicknesses due to highly suppressed charge recombination relative to the classic Langevin model. The suppression in this system, however, uniquely depends on device processing, pointing toward the role of nanomorphology. We investigate the morphological origins of this suppressed recombination by combining results from a suite of X-ray techniques. We are surprised to find that while all investigated devices are composed of pure, similarly aggregated nanodomains, Langevin reduction factors can still be tuned from ∼2 to >1000. This indicates that pure aggregated phases are insufficient for non-Langevin (reduced) recombination. Instead, we find that large well-ordered conduits and, in particular, sharp interfaces between domains appear to help to keep opposite charges separated and percolation pathways clear for enhanced charge collection in thick active layers. To our knowledge, this is the first quantitative study to isolate the donor/acceptor interfacial width correlated with non-Langevin charge recombination. This new structure-property relationship will be key to successful commercialization of printed OSCs at scale.
Collapse
Affiliation(s)
- Obaid Alqahtani
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Department of Physics, Prince Sattam Bin Abdulaziz University, Alkharj 11942, KSA
| | - Seyed Mehrdad Hosseini
- Optoelectronics of Organic Semiconductors Institute, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Thomas Ferron
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Victor Murcia
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Vixie
- Department of Mathematics, Washington State University, Pullman, Washington 99164, United States
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ardalan Armin
- Department of Physics, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, U.K
| | - Safa Shoaee
- Optoelectronics of Organic Semiconductors Institute, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Brian A Collins
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
13
|
Xu H, Zou H, Zhou D, Zhang L, Liao X, Chen L, Chen Y. Thickness-Insensitive Anode Interface Layer for High-Efficiency Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39844-39853. [PMID: 34387986 DOI: 10.1021/acsami.1c09474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thickness-insensitive anode interface layer materials are extremely crucial for commercial applications of organic solar cells (OSCs). Here, we have demonstrated a solution-processed and thickness-insensitive anode interfacial layer PCPDT-2Ph-H and employed it in large-area OSCs. The power conversion efficiency (PCE) of a PM6:Y6 device with a 0.04 cm2 area using PCPDT-2Ph-H as the anode interface layer can reach 16.5%. More importantly, when the thickness of PCPDT-2Ph-H reaches 100 nm, a device with a 1.0 cm2 effective area can still achieve a high efficiency of 10.3%, which is highly favorable to large-area printing of OSCs. Due to its advantages of thickness insensitivity and solution processing, PCPDT-2Ph-H would be a promising anode interface layer for large-area OSCs.
Collapse
Affiliation(s)
- Haitao Xu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, Jiangxi, China
- College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
| | - Helong Zou
- College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
| | - Dan Zhou
- College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
| | - Lifu Zhang
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xunfan Liao
- Institute of Advanced Scientific Research (iASR), Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yiwang Chen
- Institute of Advanced Scientific Research (iASR), Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
14
|
Yao C, Yang Y, Li L, Bo M, Peng C, Huang Z, Wang J. Replacing the cyano (-C[triple bond, length as m-dash]N) group to design environmentally friendly fused-ring electron acceptors. Phys Chem Chem Phys 2021; 23:18085-18092. [PMID: 34397073 DOI: 10.1039/d1cp02566j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyano-group (-C[triple bond, length as m-dash]N) is an electron-withdrawing group, which has been widely used to construct high-performance fused-ring electron acceptors (FREAs). Benefiting from these FREAs, the power conversion efficiency of organic solar cells has recently exceeded 18%. However, malononitrile is a highly toxic substance used to introduce -C[triple bond, length as m-dash]N during the synthesis of these FREAs. Therefore, the synthesis processes of most high-performance FREAs are typically harmful to the environment. Our previous work demonstrated that the electron-withdrawing ability of -C[triple bond, length as m-dash]N is necessary for FREAs. Thus, the use of other electron-withdrawing groups instead of -C[triple bond, length as m-dash]N to design environmentally friendly FREAs is feasible. We utilized seven electron-withdrawing groups, namely, -C[double bond, length as m-dash]NH, -N[double bond, length as m-dash]O, -CH[double bond, length as m-dash]O, -CO-CH3, -CO-OH, -CO-Cl, and -CO-Br, to replace -C[triple bond, length as m-dash]N in the commonly used acceptor Y6 to design new FREAs (Y6-CNH, Y6-NO, Y6-CHO, Y6-COCH3, Y6-COOH, Y6-COCl, and Y6-COBr). Multi-scale theoretical calculation methods were used to investigate the photoelectronic properties of these new FREAs, including energy level, absorption spectrum, exciton binding energy, and electron mobility. The results showed that Y6-CNH, Y6-COCH3 and Y6-COOH are unsuitable for use as acceptor materials because of their high frontier molecular orbital energy level and weak electron affinity. The strong absorption intensity and weak exciton binding energy of Y6-CHO, Y6-COCl, and Y6-COBr indicated that they can absorb more solar energy than Y6 and excitons are easier to separate into free charges. The electron mobility of Y6-CHO (3.53 × 10-4 cm2 V-1 s-1) was found to be approximately 28 times that of Y6-COCl (1.24 × 10-5 cm2 V-1 s-1) and Y6-COBr (1.28 × 10-5 cm2 V-1 s-1). The possible synthetic routes to Y6-CHO are environmentally friendly. Therefore, -CH[double bond, length as m-dash]O is the most suitable electron-withdrawing group for constructing high-performance environmentally friendly FREAs. This work can provide a new molecular design perspective in experimental science for developing high-performance environmentally friendly FREAs.
Collapse
Affiliation(s)
- Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Vohra V, Matsunaga Y, Takada T, Kiyokawa A, Barba L, Porzio W. Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004168. [PMID: 33325643 DOI: 10.1002/smll.202004168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
Collapse
Affiliation(s)
- Varun Vohra
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yumi Matsunaga
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tomoaki Takada
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Ayumu Kiyokawa
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Luisa Barba
- Istituto di Cristallografia del CNR - c/o Sincrotrone Elettra, Strada Statale 14-Km, 163, 5 Area Science Park, Basovizza, Trieste, 34142, Italy
| | - William Porzio
- Institute of Chemical Sciences and Technologies "G.Natta" Consiglio Nazionale delle Ricerche (SCI-TEC), via A. Corti 12, Milano, 20133, Italy
| |
Collapse
|
17
|
Zarrabi N, Sandberg OJ, Kaiser C, Subbiah J, Jones DJ, Meredith P, Armin A. Experimental Evidence Relating Charge-Transfer-State Kinetics and Strongly Reduced Bimolecular Recombination in Organic Solar Cells. J Phys Chem Lett 2020; 11:10519-10525. [PMID: 33289568 DOI: 10.1021/acs.jpclett.0c02905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Significantly reduced bimolecular recombination relative to the Langevin recombination rate has been observed in a limited number of donor-acceptor organic semiconductor blends. The strongly reduced recombination has been previously attributed to a high probability for the interfacial charge-transfer (CT) states (formed upon charge encounter) to dissociate back to free charges. However, whether the reduced recombination is due to a suppressed CT-state decay rate or an improved dissociation rate has remained a matter of conjecture. Here we investigate a donor-acceptor material system that exhibits significantly reduced recombination upon solvent annealing. On the basis of detailed balance analysis and the accurate characterization of CT-state parameters, we provide experimental evidence that an increase in the dissociation rate of CT states upon solvent annealing is responsible for the reduced recombination. We attribute this to the presence of purer and more percolated domains in the solvent-annealed system, which may, therefore, have a stronger entropic driving force for CT dissociation.
Collapse
Affiliation(s)
- Nasim Zarrabi
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Oskar J Sandberg
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Christina Kaiser
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Jegadesan Subbiah
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville 3010, Australia
| | - David J Jones
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville 3010, Australia
| | - Paul Meredith
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Ardalan Armin
- Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
18
|
Qin J, Zhang L, Xiao Z, Chen S, Sun K, Zang Z, Yi C, Yuan Y, Jin Z, Hao F, Cheng Y, Bao Q, Ding L. Over 16% efficiency from thick-film organic solar cells. Sci Bull (Beijing) 2020; 65:1979-1982. [PMID: 36659055 DOI: 10.1016/j.scib.2020.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Jianqiang Qin
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (MoE), School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China; Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lixiu Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Shanshan Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (MoE), School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Kuan Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (MoE), School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Zhigang Zang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (MoE), School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Chenyi Yi
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongbo Yuan
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Zhiwen Jin
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Feng Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuanhang Cheng
- Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574, Singapore.
| | - Qinye Bao
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
19
|
Park S, Kim T, Yoon S, Koh CW, Woo HY, Son HJ. Progress in Materials, Solution Processes, and Long-Term Stability for Large-Area Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002217. [PMID: 33020976 DOI: 10.1002/adma.202002217] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/09/2020] [Indexed: 05/20/2023]
Abstract
Organic solar cells based on bulk heterojunctions (BHJs) are attractive energy-conversion devices that can generate electricity from absorbed sunlight by dissociating excitons and collecting charge carriers. Recent breakthroughs attained by development of nonfullerene acceptors result in significant enhancement in power conversion efficiency (PCEs) exceeding 17%. However, most of researches have focused on pursuing high efficiency of small-area (<1 cm2 ) unit cells fabricated usually with spin coating. For practical application of organic photovoltaics (OPVs) from lab-scale unit cells to industrial products, it is essential to develop efficient technologies that can extend active area of devices with minimized loss of performance and ensured operational stability. In this progress report, an overview of recent advancements in materials and processing technologies is provided for transitioning from small-area laboratory-scale devices to large-area industrial scale modules. First, development of materials that satisfy requirements of high tolerability in active layer thickness and large-area adaptability is introduced. Second, morphology control using various coating techniques in a large active area is discussed. Third, the recent research progress is also underlined for understanding mechanisms of OPV degradation and studies for improving device long-term stability along with reliable evaluation procedures.
Collapse
Affiliation(s)
- Sungmin Park
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taehee Kim
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongwon Yoon
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hae Jung Son
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
20
|
Feng S, Lu H, Liu Y, Xue W, Zhang C, Zhang H, Ma W, Huang W, Bo Z. Enhancing the Photovoltaic Performance of a Benzo[ c][1,2,5]thiadiazole-Based Polymer Donor via a Non-Fullerene Acceptor Pairing Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53021-53028. [PMID: 33170610 DOI: 10.1021/acsami.0c17571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a well-known electron-withdrawing group, benzo[c][1,2,5]thiadiazole (BT) has been intensively studied and adopted to construct polymer donors with tunable band gaps. However, polymer solar cells (PSCs) with BT-based polymer donors, limited by the weak absorption and inflexible energy level of fullerene derivatives, usually suffer mediocre power conversion efficiencies (PCEs). Here, through subtly tailoring a BT unit with asymmetric fluoro and alkyloxy groups and judiciously pairing a BT-based polymer donor with three narrow band gap non-fullerene acceptors (e.g., IEICO-4F, ITOIC-2F, and IDTCN-O), active layers with complementary absorption spectra, small lowest unoccupied molecular orbital (LUMO) offsets, and preferred morphologies have been achieved. Consequently, PSCs with excellent Jsc values (over 20 mA/cm2) and high PCEs up to 12.33% have been obtained. To the best of our knowledge, the value of 12.33% is among the highest PCEs for BT-based polymers in binary PSCs so far. This work demonstrates that the cooperative effect of energy levels, absorption spectra, and morphologies between the donors and acceptors is crucial for governing the performance of organic photovoltaics.
Collapse
Affiliation(s)
- Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, P. R. China
| | - Hao Lu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yahui Liu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenyue Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cai'e Zhang
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Huanxiang Zhang
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, P. R. China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
21
|
Lee S, Jeong D, Kim C, Lee C, Kang H, Woo HY, Kim BJ. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS NANO 2020; 14:14493-14527. [PMID: 33103903 DOI: 10.1021/acsnano.0c07488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the recent breakthroughs of polymer solar cells (PSCs) exhibiting a power conversion efficiency of over 17%, toxic and hazardous organic solvents such as chloroform and chlorobenzene are still commonly used in their fabrication, which impedes the practical application of PSCs. Thus, the development of eco-friendly processing methods suitable for industrial-scale production is now considered an imperative research focus. This Review provides a roadmap for the design of efficient photoactive materials that are compatible with non-halogenated green solvents (e.g., xylenes, toluene, and tetrahydrofuran). We summarize the recent development of green processing solvents and the processing methods to match with the efficient photoactive materials used in non-fullerene solar cells. We further review progress in the use of more eco-friendly solvents (i.e., water or alcohol) for achieving truly sustainable and eco-friendly PSC fabrication. For example, the concept of water- or alcohol-dispersed nanoparticles made of conjugated materials is introduced. Also, recent important progress and strategies to develop water/alcohol-soluble photoactive materials that completely eliminate the use of conventional toxic solvents are discussed. Finally, we provide our perspectives on the challenges facing the current green processing methods and materials, such as large-area coating techniques and long-term stability. We believe this Review will inform the development of PSCs that are truly clean and renewable energy sources.
Collapse
Affiliation(s)
- Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changkyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
22
|
Ha JW, Park JB, Park HJ, Hwang DH. Novel Conjugated Polymers Containing 3-(2-Octyldodecyl)thieno[3,2- b]thiophene as a π-Bridge for Organic Photovoltaic Applications. Polymers (Basel) 2020; 12:polym12092121. [PMID: 32957590 PMCID: PMC7570215 DOI: 10.3390/polym12092121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, (PT-ODTTBT or PTT-ODTTBT respectively) through Stille polymerization. Inverted OPV devices with a structure of ITO/ZnO/polymer:PC71BM/MoO3/Ag were fabricated by spin-coating in ambient atmosphere or N2 within a glovebox to evaluate the photovoltaic performance of the synthesized polymers (effective active area: 0.09 cm2). The PTT-ODTTBT:PC71BM-based structure exhibited the highest organic photovoltaic (OPV) device performance, with a maximum power conversion efficiency (PCE) of 7.05 (6.88 ± 0.12)%, a high short-circuit current (Jsc) of 13.96 mA/cm2, and a fill factor (FF) of 66.94 (66.47 ± 0.63)%; whereas the PT-ODTTBT:PC71BM-based device achieved overall lower device performance. According to GIWAXS analysis, both neat and blend films of PTT-ODTTBT exhibited well-organized lamellar stacking, leading to a higher charge carrier mobility than that of PT-ODTTBT. Compared to PT-ODTTBT containing a thiophene donor unit, PTT-ODTTBT containing a thienothiophene donor unit exhibited higher crystallinity, preferential face-on orientation, and a bicontinuous interpenetrating network in the film, which are responsible for the improved OPV performance in terms of high Jsc, FF, and PCE.
Collapse
|
23
|
Mikie T, Teshima Y, Okamoto K, Osaka I. Effect of Spacer Length in Naphthobispyrazine-Based π-Conjugated Polymers on Properties, Thin Film Structures, and Photovoltaic Performances. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsubasa Mikie
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yoshikazu Teshima
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kenta Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
24
|
Xie X, Liu X, Zeng D, Zhao L. The Potentials in Solar Cells for
MEH‐PPV
Derivatives: Molecular Design and Performance Prediction. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaohua Xie
- Environmental School of Green and IntelligenceYangtze Normal University Chongqing 408100 People's Republic of China
| | - Xu Liu
- Environmental School of Green and IntelligenceYangtze Normal University Chongqing 408100 People's Republic of China
| | - Dan Zeng
- Environmental School of Green and IntelligenceYangtze Normal University Chongqing 408100 People's Republic of China
| | - Longfeng Zhao
- Environmental School of Green and IntelligenceYangtze Normal University Chongqing 408100 People's Republic of China
| |
Collapse
|
25
|
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat Commun 2020; 11:2871. [PMID: 32514001 PMCID: PMC7280211 DOI: 10.1038/s41467-020-16675-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 12/04/2022] Open
Abstract
The high binding energy and low diffusion length of photogenerated Frenkel excitons have long been viewed as major drawbacks of organic semiconductors. Therefore, bulk heterojunction structure has been widely adopted to assist exciton dissociation in organic photon-electron conversion devices. Here, we demonstrate that these intrinsically “poor” properties of Frenkel excitons, in fact, offer great opportunities to achieve self-filtering narrowband organic photodetectors with the help of a hierarchical device structure to intentionally manipulate the dissociation of Frenkel excitons. With this strategy, filter-free narrowband organic photodetector centered at 860 nm with full-width-at-half-maximum of around 50 nm, peak external quantum efficiency around 65% and peak specific detectivity over 1013 Jones are obtained, which is one the best performed no-gain type narrowband organic photodetectors ever reported and comparable to commercialized silicon photodetectors. This novel device structure along with its design concept may help create low cost and reliable narrowband organic photodetectors for practical applications. Narrowband organic photodetectors (OPDs) are attractive for emerging applications. Here, the authors report a simple strategy to produce filter-free narrowband OPDs with outstanding performances by manipulating exciton dissociation with a hierarchical device structure.
Collapse
Affiliation(s)
- Boming Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Ruihao Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Kai Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China.
| | - Qingwu Yin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Zhicheng Hu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Gang Yu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China.
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| |
Collapse
|
26
|
|
27
|
Li G, Xu C, Luo Z, Ning W, Liu X, Gong S, Zou Y, Zhang F, Yang C. Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13068-13076. [PMID: 32106672 DOI: 10.1021/acsami.9b22093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Novel cores for high performance nonfullerene acceptors (NFAs) remain to be developed. In this work, two new n-type nitrogen-containing organic heterocyclic NFAs, namely, BDTN-BF and BDTN-Th, were designed and synthesized based on a new seven fused-ring core (BDTN) with two different end-capping groups. As a result, BDTN-BF possessed similar absorption spectra in solution and solid state to BDTN-Th, but a slightly higher maximum molar extinction coefficient. Manufacturing the polymer solar cells with PM6 as the donor, the photovoltaic performance of BDTN-BF and BDTN-Th was investigated. The PM6:BDTN-BF-based device achieved the highest power conversion efficiency (PCE) of 11.54% with a high Jsc of 20.20 mA cm-2, a fill factor (FF) of 61.46%, and a large Voc of 0.93 V, and the energy loss (Eloss) was calculated to be 0.48 eV. Comparatively, the PM6:BDTN-Th-based device achieved the maximum PCE value of only 3.53% because of inadequate Jsc and FF. The higher Jsc and FF for the PM6:BDTN-BF-based device was mainly due to the effective electron transfer from PM6 to BDTN-BF, more balanced μh/μe, higher electron mobility of the neat film, better charge collection and dissociation efficiency, and more favorable morphology. These results demonstrate that the acceptors with nearly identical absorption spectra could result in a significant difference in photovoltaic performance, which stress the importance of end-capping units. Furthermore, few NFA-based devices achieve large Voc and high Jsc simultaneously as one based on PM6:BDTN-BF, indicating that nitrogen hybridization of NFAs may be an efficient strategy to realize high and balanced Voc and Jsc.
Collapse
Affiliation(s)
- Guanghao Li
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chunyu Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhenghui Luo
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Weimin Ning
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiaohui Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shaolong Gong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Chuluo Yang
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
28
|
Kini GP, Jeon SJ, Moon DK. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906175. [PMID: 32020712 DOI: 10.1002/adma.201906175] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Indexed: 05/20/2023]
Abstract
The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
29
|
Keshtov ML, Kuklin SA, Konstantinov IO, Khokhlov AR, Xie Z, Dou C, Koukaras EN, Suthar R, Sharma GD. Synthesis and Photovoltaic Properties of New Conjugated D‐A Polymers Based on the Same Fluoro‐Benzothiadiazole Acceptor Unit and Different Donor Units. ChemistrySelect 2020. [DOI: 10.1002/slct.201904353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mukhaned L Keshtov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Serge. A. Kuklin
- Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Igor O. Konstantinov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Alexei R. Khokhlov
- Department of Physics of Polymers and Crystals, Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Zhiyuan Xie
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Chuandong Dou
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Emmanuel N. Koukaras
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry Aristotle University of Thessaloniki, GR- 54124 Thessaloniki Greece
| | - Rakesh Suthar
- Department of Physics The LNM Institute for Information Technology, Jamdoli, Jaipur 302031, India
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute for Information Technology, Jamdoli, Jaipur 302031, India
| |
Collapse
|
30
|
Yang Y, Yao C, Li L, Bo M, Zhang J, Peng C, Wang J. Functionalizing triptycene to create 3D high-performance non-fullerene acceptors. RSC Adv 2020; 10:12004-12012. [PMID: 35496598 PMCID: PMC9050877 DOI: 10.1039/d0ra00921k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023] Open
Abstract
A 3D fused-ring core, combined with three electron-withdrawing end groups, is used to construct novel three-bladed propeller-shaped FREAs.
Collapse
Affiliation(s)
- Yezi Yang
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing
- School of Materials Science and Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing
- School of Materials Science and Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Lei Li
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing
- School of Materials Science and Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Maolin Bo
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing
- School of Materials Science and Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Jianfeng Zhang
- College of Physics and Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Cheng Peng
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing
- School of Materials Science and Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Jinshan Wang
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| |
Collapse
|
31
|
Kang X, Zhou D, Wang Q, Zhu D, Bao X, Yuan X, Liu F, Li Y, Qiao S, Yang R. Rational Design of Low Band Gap Polymers for Efficient Solar Cells with High Open-Circuit Voltage: The Profound Effect of Me and Cl Substituents with a Similar van Der Waals Radius. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48155-48161. [PMID: 31777242 DOI: 10.1021/acsami.9b18278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Generally, low band gap material-based photovoltaic devices have reduced open circuit voltage (VOC), and realizing the trade-off between the low band gap (Eg < 1.6 eV) and high VOC (>0.9 V) could be critical to give efficient polymer solar cells, especially for high-performance semitransparent PSCs and tandem solar cells. Although lots of efforts have been made to address the issue, most results have not been gratifying. In this work, the polymer PTBTz-Cl based on the chlorination method and efficient thiazole-induced strategy was designed and synthesized, aiming at the deep HOMO energy level, and the enhanced backbone planarity caused by the weak noncovalent Cl···S interaction. In addition, the methyl-substituted polymer PTBTz-Me was constructed as the reference due to the similar van der Waals radius of the side chain (CH3: 0.20 nm vs Cl: 0.18 nm). Encouragingly, in comparison with that of PTBTz-2, the newly synthesized polymers exhibit the red-shifted absorption spectra ranging from 300 to 770 nm, with an obviously reduced Eg of ∼1.6 eV. However, the function of Cl and Me substituents is different. Compared to the polymer PTBTz-Me, PTBTz-Cl exhibits a lower HOMO value, stronger crystallinity, and more compact intramolecular interactions. Consequently, the polymer PTBTz-Cl exhibits excellent photovoltaic performance with a notable VOC of 0.94 V and a power conversion efficiency of 10.35%, which is ∼11% higher than the 9.12% efficiency based on PTBTz-Me, and is also one of the highest values among polymer/fullerene solar cells. Moreover, a smaller photo energy loss (Eloss) of 0.64 eV is achieved, which is rare among the current high-performance polymer systems.
Collapse
Affiliation(s)
- Xiao Kang
- College of Chemistry and Pharmaceutical Engineering , Hebei University of Science and Technology , Shijiazhuang 050018 , China
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Di Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qian Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Dangqiang Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao 266071 , China
| | - Xiyue Yuan
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Fushuai Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Yonghai Li
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering , Hebei University of Science and Technology , Shijiazhuang 050018 , China
| | - Renqiang Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao 266071 , China
| |
Collapse
|
32
|
Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2356-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
An L, Tong J, Yang C, Zhao X, Wang X, Xia Y. Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2‐
b
]thiophene‐
alt
‐naphtho[1,2‐
c
:5,6‐
c
′]bis[1,2,5]thiadiazole medium bandgap copolymers. POLYM INT 2019. [DOI: 10.1002/pi.5936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lili An
- School of Chemical Engineering, Northwest Minzu UniversityKey Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province Lanzhou P. R. China
| | - Junfeng Tong
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| | - Chunyan Yang
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| | - Xu Zhao
- Institute of Soil, Fertilizer and Water‐saving AgricultureGansu Academy of Agricultural Sciences Lanzhou P. R. China
| | - Xunchang Wang
- CAS Key Laboratory of Bio‐based Materials, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao P. R. China
| | - Yangjun Xia
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| |
Collapse
|
34
|
Wang G, Adil MA, Zhang J, Wei Z. Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805089. [PMID: 30506830 DOI: 10.1002/adma.201805089] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/10/2018] [Indexed: 05/20/2023]
Abstract
The printing of large-area organic solar cells (OSCs) has become a frontier for organic electronics and is also regarded as a critical step in their industrial applications. With the rapid progress in the field of OSCs, the highest power conversion efficiency (PCE) for small-area devices is approaching 15%, whereas the PCE for large-area devices has also surpassed 10% in a single cell with an area of ≈1 cm2 . Here, the progress of this fast developing area is reviewed, mainly focusing on: 1) material requirements (materials that are able to form efficient thick active layer films for large-area printing); 2) modular designs (effective designs that can suppress electrical, geometric, optical, and additional losses, leading to a reduction in the PCE of the devices, as a consequence of substrate area expansion); and 3) printing methods (various scalable fabrication techniques that are employed for large-area fabrication, including knife coating, slot-die coating, screen printing, inkjet printing, gravure printing, flexographic printing, pad printing, and brush coating). By combining thick-film material systems with efficient modular designs exhibiting low-efficiency losses and employing the right printing methods, the fabrication of large-area OSCs will be successfully realized in the near future.
Collapse
Affiliation(s)
- Guodong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Muhammad Abdullah Adil
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Synthesis of medium bandgap copolymers based on benzotriazole for non-fullerene organic solar cells. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Zhu P, Fan B, Ying L, Huang F, Cao Y. Recent Progress in All‐Polymer Solar Cells Based on Wide‐Bandgap p‐Type Polymers. Chem Asian J 2019; 14:3109-3118. [DOI: 10.1002/asia.201900827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhu
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Baobing Fan
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
37
|
Huang L, Zhang G, Zhang K, Peng Q, Wong MS. Temperature-Modulated Optimization of High-Performance Polymer Solar Cells Based on Benzodithiophene–Difluorodialkylthienyl–Benzothiadiazole Copolymers: Aggregation Effect. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lanqi Huang
- Institute of Molecular Functional Materials, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Guangjun Zhang
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
| | - Kai Zhang
- Institute of Molecular Functional Materials, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiang Peng
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
| | - Man Shing Wong
- Institute of Molecular Functional Materials, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
38
|
Wang N, Yang W, Li S, Shi M, Lau TK, Lu X, Shikler R, Li CZ, Chen H. A non-fullerene acceptor enables efficient P3HT-based organic solar cells with small voltage loss and thickness insensitivity. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Liu S, Chen D, Zhou W, Yu Z, Chen L, Liu F, Chen Y. Vertical Distribution to Optimize Active Layer Morphology for Efficient All-Polymer Solar Cells by J71 as a Compatibilizer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | | | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | | |
Collapse
|
40
|
Mikie T, Osaka I. Ester-Functionalized Naphthobispyrazine as an Acceptor Building Unit for Semiconducting Polymers: Synthesis, Properties, and Photovoltaic Performance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tsubasa Mikie
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
41
|
Facile synthesized benzo[1,2-b:4,5-b']difuran based copolymer for both fullerene and non-fullerene organic solar cells. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Dang D, Yu D, Wang E. Conjugated Donor-Acceptor Terpolymers Toward High-Efficiency Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807019. [PMID: 30701605 DOI: 10.1002/adma.201807019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The development of conjugated alternating donor-acceptor (D-A) copolymers with various electron-rich and electron-deficient units in polymer backbones has boosted the power conversion efficiency (PCE) over 17% for polymer solar cells (PSCs) over the past two decades. However, further enhancements in PCEs for PSCs are still imperative to compensate their imperfect stability for fulfilling practical applications. Meanwhile development of these alternating D-A copolymers is highly demanding in creative design and syntheses of novel D and/or A monomers. In this regard, when being possible to adopt an existing monomer unit as a third component from its libraries, either a D' unit or an A' moiety, to the parent D-A type polymer backbones to afford conjugated D-A terpolymers, it will give a facile and cost-effective method to improve their light absorption and tune energy levels and also interchain packing synergistically. Moreover, the rationally controlled stoichiometry for these components in such terpolymers also provides access for further fine-tuning these factors, thus resulting in high-performance PSCs. Herein, based on their unique features, the recent progress of conjugated D-A terpolymers for efficient PSCs is reviewed and it is discussed how these factors influence their photovoltaic performance, for providing useful guidelines to design new terpolymers toward high-efficiency PSCs.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
- Sino-Danish Center for Education and Research (SDC), Aarhus, DK-8000, Denmark
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
43
|
Yang MH, Jin HC, Kim JH, Chang DW. Synthesis of Cyano-Substituted Conjugated Polymers for Photovoltaic Applications. Polymers (Basel) 2019; 11:E746. [PMID: 31027365 PMCID: PMC6571826 DOI: 10.3390/polym11050746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
Three conjugated polymers, in which the electron-donating (D) 5-alkylthiophene-2-yl-substitued benzodithiophene was linked to three different electron-accepting (A) moieties, i.e., benzothiadiazole (BT), diphenylquinoxaline (DPQ), and dibenzophenazine (DBP) derivative via thiophene bridge, were synthesized using the Stille coupling reaction. In particular, the strong electron-withdrawing cyano (CN) group was incorporated into the A units BT, DPQ, and DBP to afford three D-A type target polymers PB-BTCN, PB-DPQCN, and PB-DBPCN, respectively. Owing to the significant contribution of the CN-substituent, these polymers exhibit not only low-lying energy levels of both the highest occupied molecular orbital and the lowest unoccupied molecular orbital, but also reduced bandgaps. Furthermore, to investigate the photovoltaic properties of polymers, inverted-type devices with the structure of ITO/ZnO/Polymer:PC71BM/MoO3/Ag were fabricated and analyzed. All the polymer solar cells based on the three cyano-substituted conjugated polymers showed high open-circuit voltages (Voc) greater than 0.89 V, and the highest power conversion efficiency of 4.59% was obtained from the device based on PB-BtCN with a Voc of 0.93 V, short-circuit current of 7.36 mA cm-2, and fill factor of 67.1%.
Collapse
Affiliation(s)
- Mun Ho Yang
- Department of Industrial Chemistry, Pukyong National University, Pusan 48513, Korea.
| | - Ho Cheol Jin
- Department of Polymer Engineering, Pukyong National University, Pusan 48513, Korea.
| | - Joo Hyun Kim
- Department of Polymer Engineering, Pukyong National University, Pusan 48513, Korea.
| | - Dong Wook Chang
- Department of Industrial Chemistry, Pukyong National University, Pusan 48513, Korea.
| |
Collapse
|
44
|
Zhong Z, Li K, Zhang J, Ying L, Xie R, Yu G, Huang F, Cao Y. High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14208-14214. [PMID: 30908001 DOI: 10.1021/acsami.9b02092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To achieve high detectivity in all-polymer photodetectors (all-PPDs), a thick-film photoactive layer is favored because it can effectively suppress the dark current density. However, if the photoactive layer of the film is too thick, it leads to reduced responsivity owing to increased recombination loss. We developed high-performance all-PPDs by using a narrowband-gap p-type polymer NT40 and an n-type polymer poly{[ N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'-(2,2'bithiophene)} as the photoactive layer. The high charge carrier mobility of both copolymers enabled a photoactive layer thickness of 300 nm, leading to an ultralow dark current density of 4.85 × 10-10 A cm-2, a detectivity of 2.61 × 1013 Jones, a high responsivity of 0.33 A W-1 at 720 nm, and a bias of -0.1 V. The detectivity achieved >1013 Jones in a wide range from 360 to 850 nm, which is among the highest values so far reported for all-PPDs without extra gains. More importantly, the resultant all-PPDs exhibited a high working frequency over 10 kHz associated with a large linear dynamic range. These findings demonstrate great potential for practical applications of the all-PPDs developed in this work.
Collapse
Affiliation(s)
- Zhiming Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Kang Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Jiaxin Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Ruihao Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Gang Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
45
|
Zhao ZW, Duan YC, Pan QQ, Gao Y, Wu Y, Geng Y, Zhao L, Zhang M, Su ZM. A probe into underlying factors affecting utrafast charge transfer at Donor/IDIC interface of all-small-molecule nonfullerene organic solar cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Cao FY, Lin FY, Tseng CC, Hung KE, Hsu JY, Su YC, Cheng YJ. Naphthobisthiadiazole-Based Selenophene-Incorporated Quarterchalcogenophene Copolymers for Field-Effect Transistors and Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11674-11683. [PMID: 30816049 DOI: 10.1021/acsami.9b00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this research, we developed six new selenophene-incorporated naphthobisthiadiazole-based donor-acceptor polymers PNT2Th2Se-OD, PNT2Se2Th-OD, PNT4Se-OD, PNT2Th2Se-DT, PNT2Se2Th-DT, and PNT4Se-DT. The structure-property relationships have been systematically established through the comparison of their structural variations: (1) isomeric biselenophene/bithiophene arrangement between PNT2Th2Se and PNT2Se2Th polymers, (2) biselenophene/bithiophene and quarterselenophene donor units between PNT2Th2Se/PNT2Se2Th and PNT4Se polymers, and (3) side-chain modification between the 2-octyldodecylthiophene (OD)- and 2-decyltetradecyl (DT)-series polymers. The incorporation of selenophene units in the copolymers induces stronger charge transfer to improve the light-harvesting capability while maintaining the strong intermolecular interactions to preserve the intrinsic crystallinity for high carrier mobility. The organic field-effect transistor device using PNT2Th2Se-OD achieved a high hole mobility of 0.36 cm2 V-1 s-1 with an on/off ratio of 1.9 × 105. The solar cells with PNT2Th2Se-OD:PC71BM exhibited a power conversion efficiency of 9.47% with a Voc of 0.68 V, an fill factor of 67%, and an impressive Jsc of 20.69 mA cm-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yen-Ju Cheng
- Center for Emergent Functional Matter Science , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| |
Collapse
|
47
|
Duan C, Peng Z, Colberts FJM, Pang S, Ye L, Awartani OM, Hendriks KH, Ade H, Wienk MM, Janssen RAJ. Efficient Thick-Film Polymer Solar Cells with Enhanced Fill Factors via Increased Fullerene Loading. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10794-10800. [PMID: 30799598 PMCID: PMC6429423 DOI: 10.1021/acsami.9b00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Developing effective methods to make efficient bulk-heterojunction polymer solar cells at roll-to-roll relevant active layer thickness is of significant importance. We investigate the effect of fullerene content in polymer:fullerene blends on the fill factor (FF) and on the performance of thick-film solar cells for four different donor polymers PTB7-Th, PDPP-TPT, BDT-FBT-2T, and poly[5,5'-bis(2-butyloctyl)-(2,2'-bithiophene)-4,4'-dicarboxylate- alt-5,5'-2,2'-bithiophene] (PDCBT). At a few hundreds of nanometers thickness, increased FFs are observed in all cases and improved overall device performances are obtained except for PDCBT upon increasing fullerene content in blend films. This fullerene content effect was studied in more detail by electrical and morphological characterization. The results suggest enhanced electron mobility and suppressed bimolecular recombination upon increasing fullerene content in thick polymer:fullerene blend films, which are the result of larger fullerene aggregates and improved interconnectivity of the fullerene phases that provide continuous percolating pathways for electron transport in thick films. These findings are important because an effective and straightforward method that enables fabricating efficient thick-film polymer solar cells is desirable for large-scale manufacturing via roll-to-roll processing and for multijunction devices.
Collapse
Affiliation(s)
- Chunhui Duan
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, P. R. China
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Zhengxing Peng
- Department
of Physics and ORaCEL, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Fallon J. M. Colberts
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Shuting Pang
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory
of Luminescent Materials and Devices, South
China University of Technology, Guangzhou 510640, P. R. China
| | - Long Ye
- Department
of Physics and ORaCEL, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Omar M. Awartani
- Department
of Physics and ORaCEL, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Koen H. Hendriks
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, Eindhoven 5612 AJ, The Netherlands
| | - Harald Ade
- Department
of Physics and ORaCEL, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Martijn M. Wienk
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, Eindhoven 5612 AJ, The Netherlands
| |
Collapse
|
48
|
Jeon SJ, Han YW, Moon DK. Drastic Changes in Properties of Donor-Acceptor Polymers Induced by Asymmetric Structural Isomers for Application to Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9239-9250. [PMID: 30761905 DOI: 10.1021/acsami.8b19449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Appropriate design of donor-acceptor (D-A) conjugated polymers is important for enhancing their physical, optical, and electrochemical properties. The rapid development of D-A conjugated polymers based on fullerene and nonfullerene derivatives in the past decade has led to an improvement in the performance of polymer solar cells (PSCs). In this study, we designed and synthesized two donor polymers based on the DTffBT acceptor unit, with matching optical absorption range and energy levels with fullerene (PC71BM) and nonfullerene acceptors (ITIC and IDIC), by introducing asymmetric structural isomers of donor units. We demonstrated that materials design by structural modification dramatically affects the physical, optical, and electrochemical properties as well as the crystallinity and photovoltaic performance of the polymers. The results provide valuable insights into materials design for efficient PSCs.
Collapse
Affiliation(s)
- Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemistry Engineering , Konkuk University , 120, Neungdong-ro , Gwangjin-gu, Seoul 05029 , Republic of Korea
| | - Yong Woon Han
- Nano and Information Materials (NIMs) Laboratory, Department of Chemistry Engineering , Konkuk University , 120, Neungdong-ro , Gwangjin-gu, Seoul 05029 , Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemistry Engineering , Konkuk University , 120, Neungdong-ro , Gwangjin-gu, Seoul 05029 , Republic of Korea
| |
Collapse
|
49
|
Jeon SJ, Yu JE, Han YW, Suh IS, Moon DK. Structural optimization in the same polymer backbones for efficient polymer solar cells: Relationship between steric hindrance and molecular weight. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Lee H, Oh S, Song CE, Lee HK, Lee SK, Shin WS, So WW, Moon SJ, Lee JC. Stable P3HT: amorphous non-fullerene solar cells with a high open-circuit voltage of 1 V and efficiency of 4%. RSC Adv 2019; 9:20733-20741. [PMID: 35515564 PMCID: PMC9065772 DOI: 10.1039/c9ra03188j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
A non-fullerene small molecule acceptor, SF-HR composed of 3D-shaped spirobifluorene and hexyl rhodanine, was synthesized for use in bulk heterojunction organic solar cells (OSCs). It possesses harmonious molecular aggregation between the donor and acceptor, due to the interesting diagonal molecular shape of SF-HR. Furthermore, the energy level of SF-HR matches well with that of the donor polymer, poly(3-hexyl thiophene) (P3HT) in this system which can affect efficient charge transfer and transport properties. As a result, OSCs made from a P3HT:SF-HR photoactive layer exhibited a power conversion efficiency rate of 4.01% with a high VOC of 1.00 V, a JSC value of 8.23 mA cm−2, and a FF value of 49%. Moreover, the P3HT:SF-HR film showed superior thermal and photo-stability to P3HT:PC71BM. These results indicate that SF-HR is specialized as a non-fullerene acceptor for use in high-performance OSCs. A 3D-shaped SF-HR was designed and synthesized for use in non-fullerene organic solar cells. Owing to the aligned energy levels, the P3HT:SF-HR system exhibited a high efficiency of 4.01% with good thermal stability and photostability.![]()
Collapse
Affiliation(s)
- HyunKyung Lee
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
| | - Sora Oh
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Chang Eun Song
- Energy Materials Research Center
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Hang Ken Lee
- Energy Materials Research Center
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
| | - Sang Kyu Lee
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Won Suk Shin
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Won-Wook So
- Energy Materials Research Center
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
| | - Sang-Jin Moon
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Jong-Cheol Lee
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| |
Collapse
|