1
|
Zhang T, Wozniak S, Syed GS, Mannocci P, Farronato M, Ielmini D, Sebastian A, Yang Y. Emerging Materials and Computing Paradigms for Temporal Signal Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2408566. [PMID: 39935172 DOI: 10.1002/adma.202408566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/19/2024] [Indexed: 02/13/2025]
Abstract
In the era of relentless data generation and dynamic information streams, the demand for efficient and robust temporal signal analysis has intensified across diverse domains such as healthcare, finance, and telecommunications. This perspective study explores the unfolding landscape of emerging materials and computing paradigms that are reshaping the way temporal signals are analyzed and interpreted. Traditional signal processing techniques often fall short when confronted with the intricacies of time-varying data, prompting the exploration of innovative approaches. The rise of emerging materials and devices empowers real-time analysis by processing temporal signals in situ, mitigating latency concerns. Through this perspective, the untapped potential of emerging materials and computing paradigms for temporal signal analysis is highlighted, offering valuable insights into both challenges and opportunities. Standing on the cusp of a new era in computing, understanding and harnessing these paradigms is pivotal for unraveling the complexities embedded within the temporal dimensions of data, propelling signal analysis into realms previously deemed inaccessible.
Collapse
Affiliation(s)
- Teng Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | | | | | - Piergiulio Mannocci
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Matteo Farronato
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Daniele Ielmini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Abu Sebastian
- IBM Research - Europe, Rüschlikon, 8803, Switzerland
| | - Yuchao Yang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Guangdong Provincial Key Laboratory of In-Memory Computing Chips, School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
- Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Peng Z, Li X, Feng H, Zhang X, Ren D, Yang Q, Yang H, Chen J, Xi Y. Based on Silicon-Gel Polymer Electrolyte Dielectric of Low Impedance Tribovoltaic Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39898527 DOI: 10.1021/acsami.4c16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
As an innovative renewable energy harvester, the tribovoltaic nanogenerator (TVNG) with lower impedance and DC characteristics has attracted much attention. To alleviate the issues of severe wear for hard-hard semiconductor materials, here, a soft ion dielectric material and semiconductor TVNG based on n-Si/gel polymer electrolyte (GPE) (GPE-TVNG) is proposed. A solid ionic electric double layer (i-EDL) model is established to systematically explore the generation mechanism as well. Moreover, the proposed i-EDL model is verified by subsequent experiments, and the results manifest that the ion directed migration can improve the output performance of GPE-TVNG. The optimized GPE-TVNG has a short-circuit current of 26.5 μA and a low matched impedance of 60 kΩ, which is far lower than the previous reported internal resistance of Si-based TVNG (>100 kΩ). This study broadens the selection of TVNG materials and realizes the effective control of TVNG output.
Collapse
Affiliation(s)
- Zheng Peng
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaochuan Li
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Haiyang Feng
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Xuemei Zhang
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Dahu Ren
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Qianxi Yang
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| | - Hongmei Yang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Jie Chen
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Yi Xi
- Chongqing Key Laboratory of Materials Physics, Department of Applied Physics, Analytical and Testing Center, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
3
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
4
|
Langner P, Chiabrera F, Alayo N, Nizet P, Morrone L, Bozal-Ginesta C, Morata A, Tarancón A. Solid-State Oxide-Ion Synaptic Transistor for Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415743. [PMID: 39722152 DOI: 10.1002/adma.202415743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature. Microfabricated electrochemical synapses offer a promising approach by functioning as an analog programmable resistor based on deterministic ion-insertion mechanisms. Here, an all-solid-state oxide-ion synaptic transistor is developed, employing Bi2V0.9Cu0.1O5.35 as a superior oxide-ion conductor electrolyte and La0.5Sr0.5FeO3-δ as a variable-resistance channel able to efficiently operate at temperatures compatible with conventional electronics. This transistor exhibits essential synaptic behaviors such as long- and short-term potentiation, paired-pulse facilitation, and post-tetanic potentiation, mimicking fundamental properties of biological neural networks. Key criteria for efficient neuromorphic computing are satisfied, including excellent linear and symmetric synaptic plasticity, low energy consumption per programming pulse, and high endurance with minimal cycle-to-cycle variation. Integrated into an artificial neural network (ANN) simulation for handwritten digit recognition, the presented synaptic transistor achieved a 96% accuracy on the Modified National Institute of Standards and Technology (MNIST) dataset, illustrating the effective implementation of the device in ANNs. These findings demonstrate the potential of oxide-ion based synaptic transistors for effective implementation in analog neuromorphic computing based on iontronics.
Collapse
Affiliation(s)
- Philipp Langner
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Francesco Chiabrera
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Nerea Alayo
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Paul Nizet
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Luigi Morrone
- Institut de Ciència de Materials de Barcelona (CSIC-ICMAB), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Carlota Bozal-Ginesta
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Alex Morata
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
| | - Albert Tarancón
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
5
|
Li P, Feder‐Kubis J, Kunigkeit J, Zielińska‐Błajet M, Brunner E, Grothe J, Kaskel S. Bioactive Ion-Confined Ultracapacitive Memristors with Neuromorphic Functions. Angew Chem Int Ed Engl 2024; 63:e202412674. [PMID: 39292967 PMCID: PMC11627131 DOI: 10.1002/anie.202412674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
The field of bioinspired iontronics, bridging electronic devices and ionic systems, has multiple biological applications. Carbon-based ultracapacitive devices hold promise for controlling bioactive ions via electric double layers due to their high-surface-area and biocompatible porous carbon electrodes. However, the interplay between complex bioactive ions and porous carbons remains unclear due to the variety of structures of bioactive ions present in biological systems. Herein, we investigate the adsorption behavior of a series of bioactive ammonium-based cations with varying alkyl chain lengths in nanoporous carbons. We find that strong physisorption results from the synergistic hydrophobic interaction and electrostatic attraction between porous carbons (with a negative zeta potential) and bioactive cations. Bioactive cations with varying alkyl chain lengths can be irreversibly physically adsorbed and confined within nanoporous carbons resulting in anion enrichment and depletion during electric polarization. This situation, in turn, results in a characteristic memristive behavior in all-carbon capacitive ionic memristor devices. Our findings highlight the relationship between the resistance state of the memristor and ion adsorption mechanisms in all-carbon capacitive devices, which hold potential for future transmitter delivery, biointerfacing, and neuromorphic devices.
Collapse
Affiliation(s)
- Panlong Li
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Joanna Feder‐Kubis
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
- Faculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 27Wrocław50-370Poland
| | - Jonas Kunigkeit
- Bioanalytical ChemistryTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Mariola Zielińska‐Błajet
- Faculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 27Wrocław50-370Poland
| | - Eike Brunner
- Bioanalytical ChemistryTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Julia Grothe
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Stefan Kaskel
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
- Fraunhofer IWSWinterbergstrasse 2801277DresdenGermany
| |
Collapse
|
6
|
Shimizu S, Shioya H, Hatano T, Miwa K, Oiwa A, Ono S. Electrically induced insulator-to-metal transition in InP-based ion-gated transistor. Sci Rep 2024; 14:30364. [PMID: 39638846 PMCID: PMC11621117 DOI: 10.1038/s41598-024-81685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
With the growing awareness of energy savings and consumption for a sustainable ecosystem, the concept of iontronics, that is, controlling electronic devices with ions, has become critically important. Composite devices made of ions and solid materials have been investigated for diverse applications, ranging from energy storage to power generation, memory, biomimetics, and neuromorphic devices. In these studies, three terminal transistor configurations with liquid electrolytes have often been utilized because of their simple device structures and relatively easy fabrication processes. To date, oxide semiconductors and layered materials have mainly been used as active materials. However, inorganic compound semiconductors, which have a long history of basic and applied research, hardly function as channel materials in ion-gated transistors, partly because of the Schottky barrier at the electrode interface. Herein, we show that a typical group III-V compound semiconductor, InP, is available as a high-performance channel for ion-gated transistors with an on/off current ratio of ≈ 105 and a subthreshold swing as small as 93 mV/dec at room temperature. We fabricated AuGe/Ni contact electrodes via annealing to obtain the Ohmic contacts over a wide temperature range. The electrical resistance of InP was drastically decreased by the ionic liquid gating, which led to an electrically induced insulator-to-metal transition. Bulk compound semiconductors are well characterized and have relatively high carrier mobilities; thus, devices combined with electrolytes should prompt the development of iontronics research for novel device functionalities.
Collapse
Affiliation(s)
- Sunao Shimizu
- Fucalty of Engineering, Toyama Prefectural University, Toyama, 939-0398, Japan.
| | - Hiroki Shioya
- R3 Institute for Newly-Emerging Science Design, Osaka University, Osaka, 560-8531, Japan
| | - Takafumi Hatano
- Department of Materials Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazumoto Miwa
- Materials Science Division, Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa, 240-0196, Japan
| | - Akira Oiwa
- SANKEN, Osaka University, Osaka, 567-0047, Japan
| | - Shimpei Ono
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Miyagi, 980-8572, Japan
| |
Collapse
|
7
|
Tanguy NR, Rajabi‐Abhari A, Williams‐Linera E, Miao Z, Tratnik N, Zhang X, Hao C, Virya A, Yan N, Lagadec RL. Highly Conducting and Ultra-Stretchable Wearable Ionic Liquid-Free Transducer for Wireless Monitoring of Physical Motions. Macromol Rapid Commun 2024; 45:e2400418. [PMID: 39475166 PMCID: PMC11628364 DOI: 10.1002/marc.202400418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Indexed: 12/11/2024]
Abstract
Wearable strain transducers are poised to transform the field of healthcare owing to the promise of personalized devices capable of real-time collection of human physiological health indicators. For instance, monitoring patients' progress following injury and/or surgery during physiotherapy is crucial but rarely performed outside clinics. Herein, multifunctional liquid-free ionic elastomers are designed through the volume effect and the formation of dynamic hydrogen bond networks between polyvinyl alcohol (PVA) and weak acids (phosphoric acid, phytic acid, formic acid, citric acid). An ultra-stretchable (4600% strain), highly conducting (10 mS cm-1), self-repairable (77% of initial strain), and adhesive ionic elastomer is obtained at high loadings of phytic acid (4:1 weight to PVA). Moreover, the elastomer displayed durable performances, with intact mechanical properties after a year of storage. The elastomer is used as a transducer to monitor human motions in a device comprising an ESP32-based development board. The device detected walking and/or running biomechanics and communicated motion-sensing data (i.e., amplitude, frequency) wirelessly. The reported technology can also be applied to other body parts to monitor recovery after injury and/or surgery and inform practitioners of motion biomechanics remotely and in real time to increase convalescence effectiveness, reduce clinic appointments, and prevent injuries.
Collapse
Affiliation(s)
- Nicolas R. Tanguy
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
- Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaro, Querétaro76230México
| | - Araz Rajabi‐Abhari
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | | | - Zheyuan Miao
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Nicole Tratnik
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Xiao Zhang
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Cheng Hao
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Alvin Virya
- Department of Materials Science and EngineeringUniversity of TorontoTorontoOntarioM5S 3E4Canada
| | - Ning Yan
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Ronan Le Lagadec
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
| |
Collapse
|
8
|
Hu W, Shen J, Wang T, Li Z, Xu Z, Lou Z, Qi H, Yan J, Wang J, Le T, Zheng X, Lu Y, Lin X. Lithium Ion Intercalation-Induced Metal-Insulator Transition in Inclined-Standing Grown 2D Non-Layered Cr 2S 3 Nanosheets. SMALL METHODS 2024; 8:e2400312. [PMID: 38654560 DOI: 10.1002/smtd.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Gate-controlled ionic intercalation in the van der Waals gap of 2D layered materials can induce novel phases and unlock new properties. However, this strategy is often unsuitable for densely packed 2D non-layered materials. The non-layered rhombohedral Cr2S3 is an intrinsic heterodimensional superlattice with alternating layers of 2D CrS2 and 0D Cr1/3. Here an innovative chemical vapor deposition method is reported, utilizing strategically modified metal precursors to initiate entirely new seed layers, yields ultrathin inclined-standing grown 2D Cr2S3 nanosheets with edge instead of face contact with substrate surfaces, enabling rapid all-dry transfer to other substrates while ensuring high crystal quality. The unconventional ordered vacancy channels within the 0D Cr1/3 layers, as revealed by cross-sectional scanning transmission electron microscope, permitting the insertion of Li+ ions. An unprecedented metal-insulator transition, with a resistance modulation of up to six orders of magnitude at 300 K, is observed in Cr2S3-based ionic field-effect transistors. Theoretical calculations corroborate the metallization induced by Li-ion intercalation. This work sheds light on the understanding of growth mechanism, structure-property correlation and highlights the diverse potential applications of 2D non-layered Cr2S3 superlattice.
Collapse
Affiliation(s)
- Wanghua Hu
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Jinbo Shen
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Zishun Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zhuokai Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Zhefeng Lou
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Qi
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Junjie Yan
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Jialu Wang
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Tian Le
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yunhao Lu
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
9
|
Liu F, Yang Z, Abramovitch D, Guo S, Mkhoyan KA, Bernardi M, Jalan B. Deep-ultraviolet transparent conducting SrSnO 3 via heterostructure design. SCIENCE ADVANCES 2024; 10:eadq7892. [PMID: 39485839 PMCID: PMC11529712 DOI: 10.1126/sciadv.adq7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Exploration and advancements in ultrawide bandgap (UWBG) semiconductors are pivotal for next-generation high-power electronics and deep-ultraviolet (DUV) optoelectronics. Here, we used a thin heterostructure design to facilitate high conductivity due to the low electron mass and relatively weak electron-phonon coupling, while the atomically thin films ensured high transparency. We used a heterostructure comprising SrSnO3/La:SrSnO3/GdScO3 (110), and applied electrostatic gating, which allow us to effectively separate charge carriers in SrSnO3 from dopants and achieve phonon-limited transport behavior in strain-stabilized tetragonal SrSnO3. This led to a modulation of carrier density from 1018 to 1020 cm-3, with room temperature mobilities ranging from 40 to 140 cm2 V-1 s-1. The phonon-limited mobility, calculated from first principles, closely matched experimental results, suggesting that room temperature mobility could be further increased with higher electron density. In addition, the sample exhibited 85% optical transparency at a 300-nm wavelength. These findings highlight the potential of heterostructure design for transparent UWBG semiconductor applications, especially in DUV regime.
Collapse
Affiliation(s)
- Fengdeng Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Zhifei Yang
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- School of Physics and Astronomy, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - David Abramovitch
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Silu Guo
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - K. Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Marco Bernardi
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Irham MA, Baskoro FHT, Ghiffari AA, Rodiansyah DR, Wibowo A, Muttaqien F, Iskandar F. Unveiling the role of dopants in boosting CuS supercapacitor performance: insights from first-principles calculations. Phys Chem Chem Phys 2024; 26:24577-24584. [PMID: 39268714 DOI: 10.1039/d4cp02097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Transition metal sulfides have become famous in high energy density supercapacitor materials owing to their rich redox and high conductivity. While their development has achieved a breakthrough in terms of capacitance, there is little knowledge from the theoretical perspective on how dopants play a role in enhancing their capacitances. In this work, pseudocapacitance and quantum capacitance were evaluated through first-principles calculation to describe their role in transition metal sulfide, which here is represented by copper sulfide (CuS). The resulting quantum capacitance (CQ) was calculated in both the bulk and surface of CuS to determine which structure has a greater effect on the capacitance of the system. It was observed that the dopant increased CQ in the bulk system, which is different from the CQ of surface structures. Meanwhile, K+ ions were introduced on the surface structure to calculate transfer charge and work function shift, thus determining pseudocapacitance. All dopant types were able to increase the pseudocapacitance value, with Fe doping showing the highest capacitance of 111 F g-1, which is higher than that of the pristine structure (47 F g-1). The role of the dopant is discussed in detail in this work. Our results suggest that the increased capacitance of doped TMS materials was originated not only from the geometrical perspective but also from the higher pseudocapacitance value. Quantum capacitance, alternatively, could also contribute to the system when the dopant occurs in the bulk rather than only in the surface structure. This work may open a new perspective on how dopants play a role in increasing supercapacitor performance.
Collapse
Affiliation(s)
- Muhammad Alief Irham
- Electronic Material Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
- Research Collaboration Center for Advanced Energy Materials, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Fakhrian Hanif Tejo Baskoro
- Electronic Material Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Ahmad Al Ghiffari
- Electronic Material Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Darul Roni Rodiansyah
- Electronic Material Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Fahdzi Muttaqien
- Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Jawa Barat, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Ferry Iskandar
- Electronic Material Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
- Research Collaboration Center for Advanced Energy Materials, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
11
|
Han H, Sharma A, Yoon J, Wang Z, Körner C, Deniz H, Sharma AK, Li F, Sturm C, Woltersdorf G, Parkin SSP. All-Oxide Metasurfaces Formed by Synchronized Local Ionic Gating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401064. [PMID: 38739090 DOI: 10.1002/adma.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Indexed: 05/14/2024]
Abstract
Ionic gating of oxide thin films has emerged as a novel way of manipulating the properties of thin films. Most studies are carried out on single devices with a three-terminal configuration, but, by exploring the electrokinetics during the ionic gating, such a configuration with initially insulating films leads to a highly non-uniform gating response of individual devices within large arrays of the devices. It is shown that such an issue can be circumvented by the formation of a uniform charge potential by the use of a thin conducting underlayer. This synchronized local ionic gating allows for the simultaneous manipulation of the electrical, magnetic, and/or optical properties of large arrays of devices. Designer metasurfaces formed in this way from SrCoO2.5 thin films display an anomalous optical reflection of light that relies on the uniform and coherent response of all the devices. Beyond oxides, almost any material whose properties can be controlled by the addition or removal of ions via gating can form novel metasurfaces using this technique. These findings provide insights into the electrokinetics of ionic gating and a wide range of applications using synchronized local ionic gating.
Collapse
Affiliation(s)
- Hyeon Han
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Arpit Sharma
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Jiho Yoon
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Zhong Wang
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Chris Körner
- Institute of Physics, Martin-Luther Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Hakan Deniz
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Ankit K Sharma
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Fan Li
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Chris Sturm
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Georg Woltersdorf
- Institute of Physics, Martin-Luther Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Stuart S P Parkin
- Nano Systems from Ions, Spins, and Electrons (NISE), Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| |
Collapse
|
12
|
Lee YJ, Kim YH, Lee EK. PEDOT:PSS-Based Prolonged Long-Term Decay Synaptic OECT with Proton-Permeable Material, Nafion. Macromol Rapid Commun 2024; 45:e2400165. [PMID: 38924243 DOI: 10.1002/marc.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a conductive polymer, has gained popularity as the channel layer in organic electrochemical transistors (OECTs) due to its high conductivity and straightforward processing. However, difficulties arise in controlling its conductivity through gate voltage, presenting a challenge. To address this issue, aromatic amidine base, diazabicyclo[4.3.0]non-5-ene (DBN), is used to stabilize the doping state of the PEDOT chain through a reliable chemical de-doping process. Furthermore, the addition of the proton-penetrable material Nafion to the PEDOT:PSS channel layer induces phase separation between the substances. By utilizing a solution containing both PEDOT:PSS and Nafion as the channel layer of OECTs, the efficiency of ion movement into the channel from the electrolyte is enhanced, resulting in improved OECT performance. The inclusion of Nafion in the OECTs' channel layer modifies ion movement dynamics, allowing for the adjustment of synaptic properties such as pulse-paired facilitation, memory level, short-term plasticity, and long-term plasticity. This research aims to introduce new possibilities in the field of neuromorphic computing and contribute to biomimetic technology through the enhancement of electronic component performance.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yong Hyun Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- School of Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
13
|
Li S, Gao L, Liu C, Guo H, Yu J. Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4915. [PMID: 39123962 PMCID: PMC11314768 DOI: 10.3390/s24154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.
Collapse
Affiliation(s)
| | | | | | | | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
14
|
Pinna J, Pili E, Mehrabi Koushki R, Gavhane DS, Carlà F, Kooi BJ, Portale G, Loi MA. PbI 2 Passivation of Three Dimensional PbS Quantum Dot Superlattices Toward Optoelectronic Metamaterials. ACS NANO 2024; 18:19124-19136. [PMID: 38954751 PMCID: PMC11271184 DOI: 10.1021/acsnano.4c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Lead chalcogenide colloidal quantum dots are one of the most promising materials to revolutionize the field of short-wavelength infrared optoelectronics due to their bandgap tunability and strong absorption. By self-assembling these quantum dots into ordered superlattices, mobilities approaching those of the bulk counterparts can be achieved while still retaining their original optical properties. The recent literature focused mostly on PbSe-based superlattices, but PbS quantum dots have several advantages, including higher stability. In this work, we demonstrate highly ordered 3D superlattices of PbS quantum dots with tunable thickness up to 200 nm and high coherent ordering, both in-plane and along the thickness. We show that we can successfully exchange the ligands throughout the film without compromising the ordering. The superlattices as the active material of an ion gel-gated field-effect transistor achieve electron mobilities up to 220 cm2 V-1 s-1. To further improve the device performance, we performed a postdeposition passivation with PbI2, which noticeably reduced the subthreshold swing making it reach the Boltzmann limit. We believe this is an important proof of concept showing that it is possible to overcome the problem of high trap densities in quantum dot superlattices enabling their application in optoelectronic devices.
Collapse
Affiliation(s)
- Jacopo Pinna
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Elisa Pili
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Razieh Mehrabi Koushki
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Dnyaneshwar S. Gavhane
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Francesco Carlà
- Diamond
House, Harwell Science and Innovation Campus, Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Bart J. Kooi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Giuseppe Portale
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Maria Antonietta Loi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
15
|
Xu G, Zhang M, Mei T, Liu W, Wang L, Xiao K. Nanofluidic Ionic Memristors. ACS NANO 2024. [PMID: 39022809 DOI: 10.1021/acsnano.4c06467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Living organisms use ions and small molecules as information carriers to communicate with the external environment at ultralow power consumption. Inspired by biological systems, artificial ion-based devices have emerged in recent years to try to realize efficient information-processing paradigms. Nanofluidic ionic memristors, memory resistors based on confined fluidic systems whose internal ionic conductance states depend on the historical voltage, have attracted broad attention and are used as neuromorphic devices for computing. Despite their high exposure, nanofluidic ionic memristors are still in the initial stage. Therefore, systematic guidance for developing and reasonably designing ionic memristors is necessary. This review systematically summarizes the history, mechanisms, and potential applications of nanofluidic ionic memristors. The essential challenges in the field and the outlook for the future potential applications of nanofluidic ionic memristors are also discussed.
Collapse
Affiliation(s)
- Guoheng Xu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Miliang Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Wenchao Liu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Li Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| |
Collapse
|
16
|
Mayawad K, Gogoi R, Raidongia K. Stimuli-Responsive Delivery of Ions through Layered Materials-Based Triangular Nanofluidic Device. NANO LETTERS 2024; 24:8268-8276. [PMID: 38940535 DOI: 10.1021/acs.nanolett.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The elegance and accuracy of biological ion channels inspire the fabrication of artificial devices with similar properties. Here, we report the fabrication of iontronic devices capable of delivering ions at the nanomolar (nmol) level of accuracy. The triangular nanofluidic device prepared with reconstructed vanadium pentoxide (VO) membranes of thickness 45 ± 5.5 μm can continuously deliver K+, Na+, and Ca2+ ions at the rate of 0.44 ± 0.24, 0.35 ± 0.06, and 0.03 nmol/min, respectively. The ionic flow rate can be further tuned by modulating the membrane thickness and salt concentration at the source reservoir. The triangular VO device can also deliver ions in minuscule doses (∼132 ± 9.7 nmol) by electrothermally heating (33 °C) with a nichrome wire (NW) or applying light of specific intensities. The simplicity of the fabrication process of reconstructed layered material-based nanofluidic devices allows the design of complicated iontronic devices such as the three-terminal-Ni-VO (3T-Ni-VO) devices.
Collapse
Affiliation(s)
- Kiran Mayawad
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Raktim Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kalyan Raidongia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
17
|
Meng Y, Cheng G. Human somatosensory systems based on sensor-memory-integrated technology. NANOSCALE 2024; 16:11928-11958. [PMID: 38847091 DOI: 10.1039/d3nr06521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
As a representative artificial neural network (ANN) for incorporating sensing functions and memory functions into one system to achieve highly miniaturized and highly integrated devices or systems, artificial sensory systems (ASSs) can have a far-reaching influence on precise instrumentation, sensing, and automation engineering. Artificial sensory systems have enjoyed considerable progress in recent years, from low degree integrations to highly advanced sophisticated integrations, from single-modal perceptions to multimode-fused perceptions. However, there are issues around the large hardware area, power consumption, and communication bandwidth needed during the processes where multimodal sensing signals are converted into a digital mode before they can be processed by a digital processor. Therefore, deepening the research into sensory integration is of great importance. In this review, we briefly introduce fundamental knowledge about the memristor mechanism, describe some representative human somatosensory systems, and elucidate the relationship between the properties of memristor devices and the structure. The electronic character of the sensors, future prospects, and key challenges surrounding sensor-memory integrated technologies are also discussed.
Collapse
Affiliation(s)
- Yanfang Meng
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
18
|
Zhang B, Xiang L, Yan C, Jiang Z, Zhao H, Li C, Zhang F. Morphology-Controlled Ion Transport in Mixed-Orientation Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32456-32465. [PMID: 38862274 DOI: 10.1021/acsami.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Advancing iontronics with precisely controlled ion transport is fundamentally important to bridge external organic electronics with the biosystem. This long-standing goal, however, is thus far limited by the trade-off between the active ion electromigration and idle diffusion leakage in the (semi)crystalline film. Here, we presented a mixed-orientation strategy by blending a conjugated polymer, allowing for simultaneously high ion electromigration efficiency and low leakage. Our studies revealed that edge-on aggregation with a significant percolative pathway exhibits much higher ion permeability than that of the face-on counterpart but encounters pronounced leakage diffusion. Through carefully engineering the mixed orientations, the polymer composite demonstrated an ideal switchable ion-transport behavior, achieving a remarkably high electromigration efficiency exceeding one quadrillion ions per milliliter per minute and negligible idle leakage. This proof of concept, validated by drug release in a skin-conformable organic electronic ion pump (OEIP), offers a rational approach for the development of multifunctional iontronic devices.
Collapse
Affiliation(s)
- Boya Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Lanyi Xiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chaoyi Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Haozhen Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chenyang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
19
|
Deng X, Liu YX, Yang ZZ, Zhao YF, Xu YT, Fu MY, Shen Y, Qu K, Guan Z, Tong WY, Zhang YY, Chen BB, Zhong N, Xiang PH, Duan CG. Spatial evolution of the proton-coupled Mott transition in correlated oxides for neuromorphic computing. SCIENCE ADVANCES 2024; 10:eadk9928. [PMID: 38820158 PMCID: PMC11141630 DOI: 10.1126/sciadv.adk9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.
Collapse
Affiliation(s)
- Xing Deng
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yu-Xiang Liu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Zhen-Zhong Yang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yi-Feng Zhao
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ya-Ting Xu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Meng-Yao Fu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yu Shen
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ke Qu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Zhao Guan
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Wen-Yi Tong
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yuan-Yuan Zhang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Bin-Bin Chen
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
20
|
He C, Tao S, Liu R, Zhi Y, Jiang D. Covalent Organic Frameworks: Linkage Chemistry and Its Critical Role in The Evolution of π Electronic Structures and Functions. Angew Chem Int Ed Engl 2024; 63:e202403472. [PMID: 38502777 DOI: 10.1002/anie.202403472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Covalent organic frameworks (COFs) provide a molecular platform for designing a novel class of functional materials with well-defined structures. A crucial structural parameter is the linkage, which dictates how knot and linker units are connected to form two-dimensional polymers and layer frameworks, shaping ordered π-array and porous architectures. However, the roles of linkage in the development of ordered π electronic structures and functions remain fundamental yet unresolved issues. Here we report the designed synthesis of COFs featuring four representative linkages: hydrazone, imine, azine, and C=C bonds, to elucidate their impacts on the evolution of π electronic structures and functions. Our observations revealed that the hydrazone linkage provides a non-conjugated connection, while imine and azine allow partial π conjugation, and the C=C bond permits full π-conjugation. Importantly, the linkage profoundly influences the control of π electronic structures and functions, unraveling its pivotal role in determining key electronic properties such as band gap, frontier energy levels, light absorption, luminescence, carrier density and mobility, and magnetic permeability. These findings highlight the significance of linkage chemistry in COFs and offer a general and transformative guidance for designing framework materials to achieve electronic functions.
Collapse
Affiliation(s)
- Chunyu He
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
21
|
Ma N, Kosasang S, Berdichevsky EK, Nishiguchi T, Horike S. Functional metal-organic liquids. Chem Sci 2024; 15:7474-7501. [PMID: 38784744 PMCID: PMC11110139 DOI: 10.1039/d4sc01793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
For decades, the study of coordination polymers (CPs) and metal-organic frameworks (MOFs) has been limited primarily to their behavior as crystalline solids. In recent years, there has been increasing evidence that they can undergo reversible crystal-to-liquid transitions. However, their "liquid" states have primarily been considered intermediate states, and their diverse properties and applications of the liquid itself have been overlooked. As we learn from organic polymers, ceramics, and metals, understanding the structures and properties of liquid states is essential for exploring new properties and functions that are not achievable in their crystalline state. This review presents state-of-the-art research on the liquid states of CPs and MOFs while discussing the fundamental concepts involved in controlling them. We consider the different types of crystal-to-liquid transitions found in CPs and MOFs while extending the interpretation toward other functional metal-organic liquids, such as metal-containing ionic liquids and porous liquids, and try to suggest the unique features of CP/MOF liquids. We highlight their potential applications and present an outlook for future opportunities.
Collapse
Affiliation(s)
- Nattapol Ma
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ellan K Berdichevsky
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
22
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Zhang H, Zhu M, Zheng Y. Influence of Lifshitz Transition on the Intrinsic Resistivity of Cu 2N Monolayer. J Phys Chem Lett 2024:5143-5149. [PMID: 38710012 DOI: 10.1021/acs.jpclett.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The Lifshitz transition (LT), a topological structure transition of Fermi surfaces, can induce various intricate physical properties in metallic materials. In this study, through first-principles calculations, we explore the nontrivial effect of the LT on the intrinsic resistivity of the Cu2N monolayer arising from electron-phonon (el-ph) scattering. We find that when the LT is induced by electron doping, the multibranch Fermi surface simplifies into a single-band profile. Such an LT leads to a decoupling of low-frequency flexural phonons from el-ph scattering due to mirror symmetry. Consequently, the resistivity of the Cu2N monolayer at room temperature significantly decreases, approaching that of slightly doped graphene, and highlighting the Cu2N monolayer as a highly conductive two-dimensional metal. Moreover, this LT can bring about a nonlinear temperature dependence of the intrinsic resistivity at a high temperature.
Collapse
Affiliation(s)
- Huiwen Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Mingfeng Zhu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yisong Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Irham MA, Septianto RD, Wulandari RD, Majima Y, Iskandar F, Iwasa Y, Bisri SZ. High Volumetric Energy Density Supercapacitor of Additive-Free Quantum Dot Hierarchical Nanopore Structure. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38700233 DOI: 10.1021/acsami.4c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The high surface-area-to-volume ratio of colloidal quantum dots (QDs) positions them as promising materials for high-performance supercapacitor electrodes. However, the challenge lies in achieving a highly accessible surface area, while maintaining good electrical conductivity. An efficient supercapacitor demands a dense yet highly porous structure that facilitates efficient ion-surface interactions and supports fast charge mobility. Here we demonstrate the successful development of additive-free ultrahigh energy density electric double-layer capacitors based on quantum dot hierarchical nanopore (QDHN) structures. Lead sulfide QDs are assembled into QDHN structures that strike a balance between electrical conductivity and efficient ion diffusion by employing meticulous control over inter-QD distances without any additives. Using ionic liquid as the electrolyte, the high-voltage ultrathin-film microsupercapacitors achieve a remarkable combination of volumetric energy density (95.6 mWh cm-3) and power density (13.5 W cm-3). This achievement is attributed to the intrinsic capability of QDHN structures to accumulate charge carriers efficiently. These findings introduce innovative concepts for leveraging colloidal nanomaterials in the advancement of high-performance energy storage devices.
Collapse
Affiliation(s)
- Muhammad Alief Irham
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Faculty of Mathematics and Natural Sciences, Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, West Java 40132, Indonesia
| | - Ricky Dwi Septianto
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, Tokyo 184-8588, Japan
| | - Retno Dwi Wulandari
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, Tokyo 184-8588, Japan
| | - Yutaka Majima
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Ferry Iskandar
- Faculty of Mathematics and Natural Sciences, Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, West Java 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology and Research Collaboration Center for Advanced Energy Materials, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132, Indonesia
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Quantum Phase Electronic Center and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Tokyo 113-8656, Japan
| | - Satria Zulkarnaen Bisri
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, Tokyo 184-8588, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Tokyo 152-8550, Japan
| |
Collapse
|
25
|
Postiglione WM, Yu G, Chaturvedi V, Zhou H, Heltemes K, Jacobson A, Greven M, Leighton C. Mechanisms of Hysteresis and Reversibility across the Voltage-Driven Perovskite-Brownmillerite Transformation in Electrolyte-Gated Ultrathin La 0.5Sr 0.5CoO 3-δ. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19184-19197. [PMID: 38564510 DOI: 10.1021/acsami.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolyte-gate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3-δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal-insulator-metal and ferromagnet-nonferromagnet-ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices.
Collapse
Affiliation(s)
- William M Postiglione
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guichuan Yu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vipul Chaturvedi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kei Heltemes
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andrew Jacobson
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Martin Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Li P, Zhang M, Zhou Q, Zhang Q, Xie D, Li G, Liu Z, Wang Z, Guo E, He M, Wang C, Gu L, Yang G, Jin K, Ge C. Reconfigurable optoelectronic transistors for multimodal recognition. Nat Commun 2024; 15:3257. [PMID: 38627413 PMCID: PMC11021444 DOI: 10.1038/s41467-024-47580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device, are important for creating compact and efficient neuromorphic computing networks, but their design remains challenging due to the need for opposing physical mechanisms to achieve different functions. Here we report a neuromorphic electrolyte-gated transistor that can be reconfigured to perform physical reservoir and synaptic functions. The device exhibits dynamics with tunable time-scales under optical and electrical stimuli. The nonlinear volatile property is suitable for reservoir computing, which can be used for multimodal pre-processing. The nonvolatility and programmability of the device through ion insertion/extraction achieved via electrolyte gating, which are required to realize synaptic functions, are verified. The device's superior performance in mimicking human perception of dynamic and static multisensory information based on the reconfigurable neuromorphic functions is also demonstrated. The present study provides an exciting paradigm for the realization of multimodal reconfigurable devices and opens an avenue for mimicking biological multisensory fusion.
Collapse
Affiliation(s)
- Pengzhan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing, China
| | - Mingzhen Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Qingli Zhou
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Yangtze River Delta Physics Research Center Co. Ltd., Liyang, China
| | - Donggang Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Zhuohui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Erjia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Meng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China.
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China.
| |
Collapse
|
27
|
Ouyang Y, Li X, Li S, Wang ZL, Wei D. Ionic Rectification by Dynamic Regulation of the Electric Double Layer at the Hydrogel Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18236-18244. [PMID: 38536118 DOI: 10.1021/acsami.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Hydrogels play a pivotal role in the realm of iontronics, contributing to the realization of futuristic human-machine interactions. The electric double layer (EDL) between the hydrogel and electrode provides an essential ionic-electronic coupling interface. While prior investigations primarily delved into elucidating the formation mechanism of the EDL, our study shifts the focus to showcasing the current generation through the mechanical modulation of the EDL at the hydrogel-metal interfaces. The dynamic EDL was constructed by the mechano-driven contact-separation process between the polyacrylamide (PAAm) hydrogel and Au. Influencing factors on the dynamic regulation of the EDL such as ion concentration, types of salt, contact-separation frequency, and deformation degree were investigated. Dehydration usually limits the practical applications of hydrogels, and it is a long-standing and difficult problem. However, it seemed to be able to slow the EDL formation process here, resulting in a sustained continuous direct current signal output. Such hydrogel iontronics could rectify the displacement electronic current of a triboelectric nanogenerator by the ionic current. The directional migration of ions could be further enhanced by using charge-collecting metals with different work functions, for example, Au and Al. It offers a paradigm to enable ionic rectification that could be seamlessly incorporated into electronic systems, ushering in a new era for efficient energy harvesting and biomimetic nervous systems.
Collapse
Affiliation(s)
- Yaowen Ouyang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoxin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou 510555, China
| | - Di Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Luo X, Chen C, He Z, Wang M, Pan K, Dong X, Li Z, Liu B, Zhang Z, Wu Y, Ban C, Chen R, Zhang D, Wang K, Wang Q, Li J, Lu G, Liu J, Liu Z, Huang W. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat Commun 2024; 15:3086. [PMID: 38600063 PMCID: PMC11006927 DOI: 10.1038/s41467-024-47374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.
Collapse
Affiliation(s)
- Xu Luo
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chen Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Min Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Bin Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zicheng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chaoyi Ban
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Junyue Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
29
|
Lee JH, Cho K, Kim JK. Age of Flexible Electronics: Emerging Trends in Soft Multifunctional Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310505. [PMID: 38258951 DOI: 10.1002/adma.202310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Indexed: 01/24/2024]
Abstract
With the commercialization of first-generation flexible mobiles and displays in the late 2010s, humanity has stepped into the age of flexible electronics. Inevitably, soft multifunctional sensors, as essential components of next-generation flexible electronics, have attracted tremendous research interest like never before. This review is dedicated to offering an overview of the latest emerging trends in soft multifunctional sensors and their accordant future research and development (R&D) directions for the coming decade. First, key characteristics and the predominant target stimuli for soft multifunctional sensors are highlighted. Second, important selection criteria for soft multifunctional sensors are introduced. Next, emerging materials/structures and trends for soft multifunctional sensors are identified. Specifically, the future R&D directions of these sensors are envisaged based on their emerging trends, namely i) decoupling of multiple stimuli, ii) data processing, iii) skin conformability, and iv) energy sources. Finally, the challenges and potential opportunities for these sensors in future are discussed, offering new insights into prospects in the fast-emerging technology.
Collapse
Affiliation(s)
- Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jang-Kyo Kim
- Department of Mechanical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
30
|
Zhang L, Liu C, Cao H, Erwin AJ, Fong DD, Bhattacharya A, Yu L, Stan L, Zou C, Tirrell MV, Zhou H, Chen W. Redox Gating for Colossal Carrier Modulation and Unique Phase Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308871. [PMID: 38183328 DOI: 10.1002/adma.202308871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Redox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power-efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 1016 cm-2, sustainable over thousands of cycles, all within the sub-volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal-insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n- or p-type). This inclusivity encompasses functional heterostructures and low-dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.
Collapse
Affiliation(s)
- Le Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Changjiang Liu
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Hui Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrew J Erwin
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Luping Yu
- Department of Chemistry and the James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Liliana Stan
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Matthew V Tirrell
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Wei Chen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
31
|
Arndt ND, Hershkovitz E, Shah L, Kjærnes K, Yang CY, Balakrishnan PP, Shariff MS, Tauro S, Gopman DB, Kirby BJ, Grutter AJ, Tybell T, Kim H, Need RF. Reduction-Induced Magnetic Behavior in LaFeO 3-δ Thin Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1188. [PMID: 38473659 DOI: 10.3390/ma17051188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The effect of oxygen reduction on the magnetic properties of LaFeO3-δ (LFO) thin films was studied to better understand the viability of LFO as a candidate for magnetoionic memory. Differences in the amount of oxygen lost by LFO and its magnetic behavior were observed in nominally identical LFO films grown on substrates prepared using different common methods. In an LFO film grown on as-received SrTiO3 (STO) substrate, the original perovskite film structure was preserved following reduction, and remnant magnetization was only seen at low temperatures. In a LFO film grown on annealed STO, the LFO lost significantly more oxygen and the microstructure decomposed into La- and Fe-rich regions with remnant magnetization that persisted up to room temperature. These results demonstrate an ability to access multiple, distinct magnetic states via oxygen reduction in the same starting material and suggest LFO may be a suitable materials platform for nonvolatile multistate memory.
Collapse
Affiliation(s)
- Nathan D Arndt
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Eitan Hershkovitz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Labdhi Shah
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kristoffer Kjærnes
- Department of Electronic Systems, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chao-Yao Yang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Purnima P Balakrishnan
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MA 20899, USA
| | - Mohammed S Shariff
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Shaun Tauro
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Daniel B Gopman
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MA 20899, USA
| | - Brian J Kirby
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MA 20899, USA
| | - Alexander J Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MA 20899, USA
| | - Thomas Tybell
- Department of Electronic Systems, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Honggyu Kim
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ryan F Need
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Ahmadi R, Abnavi A, Hasani A, Ghanbari H, Mohammadzadeh MR, Fawzy M, Kabir F, Adachi MM. Pseudocapacitance-Induced Synaptic Plasticity of Tribo-Phototronic Effect Between Ionic Liquid and 2D MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304988. [PMID: 37939305 DOI: 10.1002/smll.202304988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Contact-induced electrification, commonly referred to as triboelectrification, is the subject of extensive investigation at liquid-solid interfaces due to its wide range of applications in electrochemistry, energy harvesting, and sensors. This study examines the triboelectric between an ionic liquid and 2D MoS2 under light illumination. Notably, when a liquid droplet slides across the MoS2 surface, an increase in the generated current and voltage is observed in the forward direction, while a decrease is observed in the reverse direction. This suggests a memory-like tribo-phototronic effect between ionic liquid and 2D MoS2 . The underlying mechanism behind this tribo-phototronic synaptic plasticity is proposed to be ion adsorption/desorption processes resulting from pseudocapacitive deionization/ionization at the liquid-MoS2 interface. This explanation is supported by the equivalent electrical circuit modeling, contact angle measurements, and electronic band diagrams. Furthermore, the influence of various factors such as velocity, step size, light wavelength and intensity, ion concentration, and bias voltage is thoroughly investigated. The artificial synaptic plasticity arising from this phenomenon exhibits significant synaptic features, including potentiation/inhibition, paired-pulse facilitation/depression, and short-term memory (STM) to long-term memory (LTM) transition. This research opens up promising avenues for the development of synaptic memory systems and intelligent sensing applications based on liquid-solid interfaces.
Collapse
Affiliation(s)
- Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Amin Abnavi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Hamidreza Ghanbari
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mohammad Reza Mohammadzadeh
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
33
|
An Y, Yang Z, Yang Y, Li X, Zheng X, Chen Z, Wu X, Xu B, Wang Y, He Y. Stretchable, Programmable and Magnet-Insensitive Protonic Display Based on Integrated Ionic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308875. [PMID: 37880900 DOI: 10.1002/smll.202308875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Indexed: 10/27/2023]
Abstract
As a new approach to "More than Moore", integrated ionic circuits serve as a possible alternative to traditional electronic circuits, yet the integrated ionic circuit composed of functional ionic elements and ionic connections is still challenging. Herein, a stretchable and transparent ionic display module of the integrated ionic circuit has been successfully prepared and demonstrated by pixelating a proton-responsive hydrogel. It is programmed to excite the hydrogel color change by a Faraday process occurring at the electrode at the specific pixel points, which enables the display of digital information and even color information. Importantly, the display module exhibits stable performance under strong magnetic field conditions (1.7 T). The transparent and stretchable nature of such ionic modules also allows them to be utilized in a broad range of scenarios, which paves the way for integrated ionic circuits.
Collapse
Affiliation(s)
- Yao An
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhaoxiang Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yongjia Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinlei Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinjia Zheng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhiwu Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xun Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Beihang Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
34
|
Cheng H, Tian H, Liu JM, Yang Y. Structure and stability of La- and hole-doped hafnia with/without epitaxial strain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:205401. [PMID: 38335551 DOI: 10.1088/1361-648x/ad2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The significance of hafnia in the semiconductor industry has been amplified following the unearthing of its ferroelectric properties. We investigated the structure and electrical properties of La- and hole-doped HfO2with/without epitaxial strain by first-principles calculations. It is found that the charge compensated defect with oxygen vacancy (LaHfVO) and uncompensated defect (LaHf), compared to the undoped case, make the ferroelectric orthorhombicPca21phase (ophase) more stable. Conversely, the electrons compensated defect (LaHf+e) makes the nonpolar monoclinicP21/cphase (mphase) more stable. Furthermore, both pure hole doping (without ions substituent) and compressive strain can stabilize theophase. Our work offers a new perspective on enhancing the ferroelectricity of hafnia.
Collapse
Affiliation(s)
- Hao Cheng
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hao Tian
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, People's Republic of China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yurong Yang
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
35
|
Li Z, Zhang R, Shan J, Alahmed L, Xu A, Chen Y, Yuan J, Cheng X, Miao X, Wen J, Mokrousov Y, Lee YS, Zhang L, Li P. Electrostatic Gating of Spin Dynamics of a Quasi-2D Kagome Magnet. NANO LETTERS 2024; 24:2415-2420. [PMID: 38323579 DOI: 10.1021/acs.nanolett.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Electrostatic gating has emerged as a powerful technique for tailoring the magnetic properties of two-dimensional (2D) magnets, offering exciting prospects including enhancement of magnetic anisotropy, boosting Curie temperature, and strengthening exchange coupling effects. Here, we focus on electrical control of the ferromagnetic resonance of the quasi-2D Kagome magnet Cu(1,3-bdc). By harnessing an electrostatic field through ionic liquid gating, significant shifts are observed in the ferromagnetic resonance field in both out-of-plane and in-plane measurements. Moreover, the effective magnetization and gyromagnetic ratios display voltage-dependent variations. A closer examination reveals that the voltage-induced changes can modulate magnetocrystalline anisotropy by several hundred gauss, while the impact on orbital magnetization remains relatively subtle. Density functional theory (DFT) calculations reveal varying d-orbital hybridizations at different voltages. This research unveils intricate physics within the Kagome lattice magnet and further underscores the potential of electrostatic manipulation in steering magnetism with promising implications for the development of spintronic devices.
Collapse
Affiliation(s)
- Zhidong Li
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Ruifu Zhang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Shan
- Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Laith Alahmed
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Ailing Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanping Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaren Yuan
- Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaomin Cheng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiajia Wen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Yuriy Mokrousov
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, D-55099 Mainz, Germany
| | - Young S Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Lichuan Zhang
- Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Li
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Xu Y, Liu D, Dai S, Zhang J, Guo Z, Liu X, Xiong L, Huang J. Stretchable and neuromorphic transistors for pain perception and sensitization emulation. MATERIALS HORIZONS 2024; 11:958-968. [PMID: 38099601 DOI: 10.1039/d3mh01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Pain perception nociceptors (PPN), an important type of sensory neuron, are capable of sending out alarm signals when the human body is exposed to destructive stimuli. Simulating the human ability to perceive the external environment and spontaneously avoid injury is a critical function of neural sensing of artificial intelligence devices. The demand for developing artificial PPN has subsequently increased. However, due to the application scenarios of bionic electronic devices such as human skin, electronic prostheses, and robot bodies, where a certain degree of surface deformation constantly occurs, the ideal artificial PPN should have the stretchability to adapt to real scenarios. Here, an organic semiconductor nanofiber artificial pain perception nociceptor (NAPPN) based on a pre-stretching strategy is demonstrated to achieve key pain aspects such as threshold, sensitization, and desensitization. Remarkably, while stretching up to 50%, the synaptic behaviors and injury warning ability of NAPPN can be retained. To verify the wearability of the device, NAPPN was attached to a curved human finger joint, on which PPN behaviors were successfully mimicked. This provides a promising strategy for realizing neural sensing function on either deformed or mobile electronic devices.
Collapse
Affiliation(s)
- Yutong Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Dapeng Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Shilei Dai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China.
| | - Jia Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China.
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| |
Collapse
|
37
|
Mei T, Liu W, Xu G, Chen Y, Wu M, Wang L, Xiao K. Ionic Transistors. ACS NANO 2024. [PMID: 38285731 DOI: 10.1021/acsnano.3c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Biological voltage-gated ion channels, which behave as life's transistors, regulate ion transport precisely and selectively through atomic-scale selectivity filters to sustain important life activities. By this inspiration, voltage-adaptable ionic transistors that use ions as signal carriers may provide an alternative information processing unit beyond solid-state electronic devices. This review provides a comprehensive overview of the first generation of biomimetic ionic transistors, including their operating mechanisms, device architecture development, and property characterizations. Despite its infancy, significant progress has been made in the applications of ionic transistors in fields such as DNA detection, drug delivery, and ionic circuits. Challenges and prospects of full exploitation of ionic transistors for a broad spectrum of practical applications are also discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
38
|
Xu T, Mori M, Hirakata H, Kitamura T, Shimada T. Emergent ultrasmall multiferroics in paraelectric perovskite oxide by hole polarons. Phys Chem Chem Phys 2024; 26:842-847. [PMID: 38108227 DOI: 10.1039/d3cp05364d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ultimately small multiferroics with coupled ferroelectric and ferromagnetic order parameters have drawn considerable attention for their tremendous technological potential. Nevertheless, these ferroic orders inevitably disappear below the critical size of several nanometers in conventional ferroelectrics or multiferroics. Here, based on first-principles calculations, we propose a new strategy to overcome this limitation and create ultrasmall multiferroic elements in otherwise nonferroelectric CaTiO3 by engineering the interplay of oxygen octahedral rotations and hole polarons, though both of them are generally believed to be detrimental to ferroelectricity. It is found that the hole doped in CaTiO3 spontaneously forms a localized polaronic state. The lattice distortions associated with a hole polaron interacting with the intrinsic oxygen octahedral rotations in CaTiO3 effectively break the inversion symmetry and create atomic-scale ferroelectricity beyond the critical size limitation. The hole polaron also causes highly localized magnetism attributed to the associated spin-polarized electric state and thus manifests as a multiferroic polaron. Moreover, the hole polaron exhibits high hopping mobility accompanied by rich switching of polarization and magnetic directions, indicating strong magnetoelectric coupling with a mechanism dissimilar from that of conventional multiferroics. The present work provides a new mechanism to engineer inversion symmetry and opens avenues for designing unusual multifunctional materials.
Collapse
Affiliation(s)
- Tao Xu
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Masataka Mori
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Hiroyuki Hirakata
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Takayuki Kitamura
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
39
|
Li Y, Zhang F, Ha VA, Lin YC, Dong C, Gao Q, Liu Z, Liu X, Ryu SH, Kim H, Jozwiak C, Bostwick A, Watanabe K, Taniguchi T, Kousa B, Li X, Rotenberg E, Khalaf E, Robinson JA, Giustino F, Shih CK. Tuning commensurability in twisted van der Waals bilayers. Nature 2024; 625:494-499. [PMID: 38233619 DOI: 10.1038/s41586-023-06904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.
Collapse
Affiliation(s)
- Yanxing Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Viet-Anh Ha
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chengye Dong
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Qiang Gao
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Zhida Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaohui Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Sae Hee Ryu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsue Kim
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Bishoy Kousa
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoqin Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eslam Khalaf
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Joshua A Robinson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Feliciano Giustino
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
40
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
41
|
Bou Tannous L, Simoes Santos M, Gong Z, Haumesser PH, Benayad A, Padua AAH, Steinberger A. Effect of Surface Chemistry on the Electrical Double Layer in a Long-Chain Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16785-16796. [PMID: 37970757 DOI: 10.1021/acs.langmuir.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.
Collapse
Affiliation(s)
- Layla Bou Tannous
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
- CEA, Leti, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | | | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | | | - Anass Benayad
- CEA, Liten, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Agilio A H Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | - Audrey Steinberger
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
42
|
Davletkhanov A, Mkrtchyan A, Bunkov A, Chermoshentsev D, Shashkov M, Ilatovskii D, Krasnikov D, Nasibulin A, Gladush Y. Reconfigurable nonlinear losses of nanomaterial covered waveguides. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4229-4238. [PMID: 39634229 PMCID: PMC11501370 DOI: 10.1515/nanoph-2023-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2024]
Abstract
Optical waveguides covered with thin films, which transmittance can be controlled by external action, are widely used in various applications from optical modulators to saturable absorbers. It is natural to suggest that the losses through such a waveguide will be proportional to the absorption coefficient of the covering material. In this letter, we demonstrate that under certain conditions, this simple assumption fails. Instead, we observe that the reduction of the material loss of the film can lead to an increase in the propagation losses through the waveguide. For this, we use a side polished fiber covered with a single-walled carbon nanotube thin film whose absorption can be attenuated either by a short pulse illumination (due to absorption saturation) or with electrochemical gating. For the films thicker than 50 nm, we observe saturable absorption to turn into optical limiting with nonmonotonic dependence on the incident power. With a numerical simulation, we identify that this nontrivial behavior comes from mode reshaping due to changes in the absorption coefficient of the covering film. We demonstrate the applicability of the observed effect by fabricating the device which nonlinear optical response can be controllably switched between saturable absorbing and optical limiting. Finally, we utilize an analytical approach to predict the required parameters and corresponding nontrivial shapes of the nonlinear absorbance curves. These results provide new perspectives for engineering complex reconfigurable nonlinear optical responses and transmittance dependences of nanomaterial covered waveguides.
Collapse
Affiliation(s)
| | - Aram Mkrtchyan
- Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Alexey Bunkov
- Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Dmitry Chermoshentsev
- Skolkovo Institute of Science and Technology, Moscow121205, Russia
- Russian Quantum Center, Skolkovo, Moscow121205, Russia
| | - Mikhail Shashkov
- Boreskov Institute of Catalysis SB RAS, Novosibirsk630090, Russia
| | | | - Dmitry Krasnikov
- Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Albert Nasibulin
- Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Yuriy Gladush
- Skolkovo Institute of Science and Technology, Moscow121205, Russia
| |
Collapse
|
43
|
Ramach U, Lee J, Altmann F, Schussek M, Olgiati M, Dziadkowiec J, Mears LLE, Celebi AT, Lee DW, Valtiner M. Real-time visualisation of ion exchange in molecularly confined spaces where electric double layers overlap. Faraday Discuss 2023; 246:487-507. [PMID: 37436123 PMCID: PMC10568259 DOI: 10.1039/d3fd00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/28/2023] [Indexed: 10/13/2023]
Abstract
Ion interactions with interfaces and transport in confined spaces, where electric double layers overlap, are essential in many areas, ranging from crevice corrosion to understanding and creating nano-fluidic devices at the sub 10 nm scale. Tracking the spatial and temporal evolution of ion exchange, as well as local surface potentials, in such extreme confinement situations is both experimentally and theoretically challenging. Here, we track in real-time the transport processes of ionic species (LiClO4) confined between a negatively charged mica surface and an electrochemically modulated gold surface using a high-speed in situ sensing Surface Forces Apparatus. With millisecond temporal and sub-micrometer spatial resolution we capture the force and distance equilibration of ions in the confinement of D ≈ 2-3 nm in an overlapping electric double layer (EDL) during ion exchange. Our data indicate that an equilibrated ion concentration front progresses with a velocity of 100-200 μm s-1 into a confined nano-slit. This is in the same order of magnitude and in agreement with continuum estimates from diffusive mass transport calculations. We also compare the ion structuring using high resolution imaging, molecular dynamics simulations, and calculations based on a continuum model for the EDL. With this data we can predict the amount of ion exchange, as well as the force between the two surfaces due to overlapping EDLs, and critically discuss experimental and theoretical limitations and possibilities.
Collapse
Affiliation(s)
- Ulrich Ramach
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
- CEST (Centre for Electrochemical Surface Technology), Viktor-Kaplan-Strasse 2, Wiener Neustadt, Austria
| | - Jinhoon Lee
- Ulsan National Institute of Science & Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea.
| | - Florian Altmann
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
| | - Martin Schussek
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
| | - Matteo Olgiati
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
- CEST (Centre for Electrochemical Surface Technology), Viktor-Kaplan-Strasse 2, Wiener Neustadt, Austria
| | - Joanna Dziadkowiec
- NJORD Centre, Department of Physics, University of Oslo, Oslo 0371, Norway
| | - Laura L E Mears
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
| | - Alper T Celebi
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
| | - Dong Woog Lee
- Ulsan National Institute of Science & Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea.
| | - Markus Valtiner
- Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria.
- CEST (Centre for Electrochemical Surface Technology), Viktor-Kaplan-Strasse 2, Wiener Neustadt, Austria
| |
Collapse
|
44
|
Sabbagh B, Zhang Z, Yossifon G. Logic gating of low-abundance molecules using polyelectrolyte-based diodes. Faraday Discuss 2023; 246:141-156. [PMID: 37528688 DOI: 10.1039/d3fd00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Bioinspired artificial ionic components are extensively utilized to mimic biological systems, as the vast majority of biological signaling is mediated by ions and molecules. Particular attention is given to nanoscale fluidic components where the ion transport can be regulated by the induced ion permselectivity. As a step from fundamentals toward ion-controlled devices, this study presents the use of ionic diodes made of oppositely charged polyelectrolytes, as a gate for low-abundance molecules. The use of ionic diodes that exhibited nonlinear current-voltage responses enabled realization of a basic Boolean operation of an ionic OR logic gate. Aside from the electrical response, the asymmetric ion transport through the diode was shown to affect the transport of low-abundance molecules across the diode, only allowing crossing when the diode was forward-biased. Integration of multiple diodes enabled implementation of an OR logic operation on both the voltage and the molecule transport, while obtaining electrical and optical output readouts that were associated with low and high logic levels. Similarly to electronics, implementation of logic gates opens up new functionalities of on-chip ionic computation via integrated circuits consisting of multiple basic logic gates.
Collapse
Affiliation(s)
- Barak Sabbagh
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Israel
| | - Zhenyu Zhang
- School of Mechanical Engineering, Southeast University, China
- School of Mechanical Engineering, Tel-Aviv University, Israel.
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Israel
- School of Mechanical Engineering, Tel-Aviv University, Israel.
| |
Collapse
|
45
|
Noda H, Sakaguchi S, Fujita R, Minami S, Hirakata H, Shimada T. Electronic strengthening mechanism of covalent Si via excess electron/hole doping. Sci Rep 2023; 13:16546. [PMID: 37783753 PMCID: PMC10545711 DOI: 10.1038/s41598-023-42676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Brittle fracture of a covalent material is ultimately governed by the strength of the electronic bonds. Recently, attempts have been made to alter the mechanical properties including fracture strength by excess electron/hole doping. However, the underlying mechanics/mechanism of how these doped electrons/holes interact with the bond and changes its strength is yet to be revealed. Here, we perform first-principles density-functional theory calculations to clarify the effect of excess electrons/holes on the bonding strength of covalent Si. We demonstrate that the bond strength of Si decreases or increases monotonically in correspondence with the doping concentration. Surprisingly, change to the extent of 30-40% at the maximum feasible doping concentration could be observed. Furthermore, we demonstrated that the change in the covalent bond strength is determined by the bonding/antibonding state of the doped excess electrons/holes. In summary, this work explains the electronic strengthening mechanism of covalent Si from a quantum mechanical point of view and provides valuable insights into the electronic-level design of strength in covalent materials.
Collapse
Affiliation(s)
- Hiroki Noda
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan.
| | - Shumpei Sakaguchi
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan
| | - Ryoga Fujita
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan
| | - Susumu Minami
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan
| | - Hiroyuki Hirakata
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan
| | - Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan.
| |
Collapse
|
46
|
Hu X, Jiang H, Lu LX, Zhao SX, Li Y, Zhen L, Xu CY. Revisiting the Hetero-Interface of Electrolyte/2D Materials in an Electric Double Layer Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301798. [PMID: 37357158 DOI: 10.1002/smll.202301798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas-Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton-exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2 Al2 SiP2 TiO13 ) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.
Collapse
Affiliation(s)
- Xin Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Hao Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang-Xing Lu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shou-Xin Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
47
|
Da Y, Tian Z, Jiang R, Chen G, Liu Y, Xiao Y, Zhang J, Xi S, Chen W, Han X, Hu W. Single-Atom Pt Doping Induced p-Type to n-Type Transition in NiO Nanosheets toward Self-Gating Modulated Electrocatalytic Hydrogen Evolution Reaction. ACS NANO 2023; 17:18539-18547. [PMID: 37676083 DOI: 10.1021/acsnano.3c06595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Exploring highly efficient single atom catalysts with defined active centers and tunable electronic structures is highly desirable. Herein, we developed an efficient hydrogen evolution reaction (HER) electrocatalyst through a self-gating phenomenon induced by Pt single atoms (SAs) supported on ultrathin NiO nanosheets (PtSA-NiO). The Ni atoms in NiO are partially replaced by the atomically dispersed Pt atoms, leading to a transition from p-type NiO into n-type PtSA-NiO. When the n-type PtSA-NiO serves as HER electrocatalyst, the self-gating phenomenon occurs in the ultrathin nanosheets, resulting in a mixture of leakage ("active") and metal-insulator-semiconductor ("inert") regions. The "inert" region induced by the ionic gating and reverse potential is capable of accumulating relatively high surface charge carrier concentration with an ultrahigh electric field, making the PtSA-NiO highly conductive; meanwhile, the HER process occurs at the Pt SAs sites (active region) in the PtSA-NiO nanosheets. As a result, the PtSA-NiO requires only 55 mV to deliver 10 mA/cm2 in an alkaline solution with good stability.
Collapse
Affiliation(s)
- Yumin Da
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Zhangliu Tian
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Rui Jiang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ganwen Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Yuan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Yukun Xiao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, 1 Pesek Road, 627833, Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
48
|
Saidov K, Razzokov J, Parpiev O, Yüzbasi NS, Kovalska N, Blugan G, Ruzimuradov O. Formation of Highly Conductive Interfaces in Crystalline Ionic Liquid-Gated Unipolar MoTe 2/h-BN Field-Effect Transistor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2559. [PMID: 37764588 PMCID: PMC10536122 DOI: 10.3390/nano13182559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
2H MoTe2 (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal boron nitride (h-BN) in lateral heterostructures offers a unique platform for designing and engineering novel electronic devices. We report the fabrication of highly conductive interfaces in crystalline ionic liquid-gated (ILG) field-effect transistors (FETs) consisting of a few layers of MoTe2/h-BN heterojunctions. In our initial exploration of tellurium-based semiconducting TMDs, we directed our attention to MoTe2 crystals with thicknesses exceeding 12 nm. Our primary focus centered on investigating the transport characteristics and quantitatively assessing the surface interface heterostructure. Our transconductance (gm) measurements indicate that the very efficient carrier modulation with an ILG FET is two times larger than standard back gating, and it demonstrates unipolarity of the device. The ILG FET exhibited highly unipolar p-type behavior with a high on/off ratio, and it significantly increased the mobility in MoTe2/h-BN heterochannels, achieving improvement as one of the highest recorded mobility increments. Specifically, we observed hole and electron mobility values ranging from 345 cm2 V-1 s-1 to 285 cm2 V-1 s-1 at 80 K. We predict that our ability to observe the intrinsic, heterointerface conduction in the channels was due to a drastic reduction of the Schottky barriers, and electrostatic gating is suggested as a method for controlling the phase transitions in the few layers of TMDC FETs. Moreover, the simultaneous structural phase transitions throughout the sample, achieved through electrostatic doping control, presents new opportunities for developing phase change devices using atomically thin membranes.
Collapse
Affiliation(s)
- Kamoladdin Saidov
- Department of Electronics and Radio Engineering, Tashkent University of Information Technologies, Tashkent 100200, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Tashkent 100207, Uzbekistan
- Department of Electrical and Computer Engineering, Ajou University in Tashkent, Tashkent 100204, Uzbekistan
| | - Jamoliddin Razzokov
- R&D Center, New Uzbekistan University, Tashkent 100007, Uzbekistan;
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
| | - Odilkhuja Parpiev
- Material Sciences Institute, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100084, Uzbekistan;
| | - Nur Sena Yüzbasi
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; (N.S.Y.); (N.K.)
| | - Natalia Kovalska
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; (N.S.Y.); (N.K.)
| | - Gurdial Blugan
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; (N.S.Y.); (N.K.)
| | - Olim Ruzimuradov
- Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Tashkent 100095, Uzbekistan
| |
Collapse
|
49
|
Dai S, Liu X, Liu Y, Xu Y, Zhang J, Wu Y, Cheng P, Xiong L, Huang J. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300329. [PMID: 36891745 DOI: 10.1002/adma.202300329] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Living organisms have a very mysterious and powerful sensory computing system based on ion activity. Interestingly, studies on iontronic devices in the past few years have proposed a promising platform for simulating the sensing and computing functions of living organisms, because: 1) iontronic devices can generate, store, and transmit a variety of signals by adjusting the concentration and spatiotemporal distribution of ions, which analogs to how the brain performs intelligent functions by alternating ion flux and polarization; 2) through ionic-electronic coupling, iontronic devices can bridge the biosystem with electronics and offer profound implications for soft electronics; 3) with the diversity of ions, iontronic devices can be designed to recognize specific ions or molecules by customizing the charge selectivity, and the ionic conductivity and capacitance can be adjusted to respond to external stimuli for a variety of sensing schemes, which can be more difficult for electron-based devices. This review provides a comprehensive overview of emerging neuromorphic sensory computing by iontronic devices, highlighting representative concepts of both low-level and high-level sensory computing and introducing important material and device breakthroughs. Moreover, iontronic devices as a means of neuromorphic sensing and computing are discussed regarding the pending challenges and future directions.
Collapse
Affiliation(s)
- Shilei Dai
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Xu Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Yutong Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
50
|
Ono S. Recent Advanced Applications of Ionic Liquid for Future Iontronics. CHEM REC 2023; 23:e202300045. [PMID: 37098877 DOI: 10.1002/tcr.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Indexed: 04/27/2023]
Abstract
Recently, electronic devices that make use of a state called the electric double layers (EDL) of ion have opened up a wide range of research opportunities, from novel physical phenomena in solid-state materials to next-generation low-power consumption devices. They are considered to be the future iontronics devices. EDLs behave as nanogap capacitors, resulting the high density of charge carriers is induced at semiconductor/electrolyte by applying only a few volts of the bias voltage. This enables the low-power operation of electronic devices as well as new functional devices. Furthermore, by controlling the motion of ions, ions can be used as semi-permanent charge to form electrets. In this article, we are going to introduce the recent advanced application of iontronics devices as well as energy harvesters making use of ion-based electrets, leading to the future iontronics research.
Collapse
Affiliation(s)
- Shimpei Ono
- Energy Transformation Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa, 240-0196, Japan
| |
Collapse
|