1
|
Boix-Montesinos P, Medel M, Malfanti A, Đorđević S, Masiá E, Charbonnier D, Carrascosa-Marco P, Armiñán A, Vicent MJ. Rational design of a poly-L-glutamic acid-based combination conjugate for hormone-responsive breast cancer treatment. J Control Release 2024; 375:193-208. [PMID: 39242032 DOI: 10.1016/j.jconrel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Medel
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Alessio Malfanti
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Snežana Đorđević
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - David Charbonnier
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), IISCIII and CIEMAT, Madrid, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
2
|
Đorđević S, Medel M, Hillaert J, Masiá E, Conejos-Sánchez I, Vicent MJ. Critical Design Strategies Supporting Optimized Drug Release from Polymer-Drug Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303157. [PMID: 37752780 DOI: 10.1002/smll.202303157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/19/2023] [Indexed: 09/28/2023]
Abstract
The importance of an adequate linking moiety design that allows controlled drug(s) release at the desired site of action is extensively studied for polymer-drug conjugates (PDCs). Redox-responsive self-immolative linkers bearing disulfide moieties (SS-SIL) represent a powerful strategy for intracellular drug delivery; however, the influence of drug structural features and linker-associated spacers on release kinetics remains relatively unexplored. The influence of drug/spacer chemical structure and the chemical group available for conjugation on drug release and the biological effect of resultant PDCs is evaluated. A "design of experiments" tool is implemented to develop a liquid chromatography-mass spectrometry method to perform the comprehensive characterization required for this systematic study. The obtained fit-for-purpose analytical protocol enables the quantification of low drug concentrations in drug release studies and the elucidation of metabolite presence. and provides the first data that clarifies how drug structural features influence the drug release from SS-SIL and demonstrates the non-universal nature of the SS-SIL. The importance of rigorous linker characterization in understanding structure-function correlations between linkers, drug chemical functionalities, and in vitro release kinetics from a rationally-designed polymer-drug nanoconjugate, a critical strategic crafting methodology that should remain under consideration when using a reductive environment as an endogenous drug release trigger.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - María Medel
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Justine Hillaert
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Esther Masiá
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Screening Platform, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Screening Platform, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| |
Collapse
|
3
|
Zhou Y, Liang Q, Wu X, Duan S, Ge C, Ye H, Lu J, Zhu R, Chen Y, Meng F, Yin L. siRNA Delivery against Myocardial Ischemia Reperfusion Injury Mediated by Reversibly Camouflaged Biomimetic Nanocomplexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210691. [PMID: 36913720 DOI: 10.1002/adma.202210691] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Indexed: 06/09/2023]
Abstract
siRNA-mediated management of myocardial ischemia reperfusion (IR) injury is greatly hampered by the inefficient myocardial enrichment and cardiomyocyte transfection. Herein, nanocomplexes (NCs) reversibly camouflaged with a platelet-macrophage hybrid membrane (HM) are developed to efficiently deliver Sav1 siRNA (siSav1) into cardiomyocytes, suppressing the Hippo pathway and inducing cardiomyocyte regeneration. The biomimetic BSPC@HM NCs consist of a cationic nanocore assembled from a membrane-penetrating helical polypeptide (P-Ben) and siSav1, a charge-reversal intermediate layer of poly(l-lysine)-cis-aconitic acid (PC), and an outer shell of HM. Due to HM-mediated inflammation homing and microthrombus targeting, intravenously injected BSPC@HM NCs can efficiently accumulate in the IR-injured myocardium, where the acidic inflammatory microenvironment triggers charge reversal of PC to shed off both HM and PC layers and allow the penetration of the exposed P-Ben/siSav1 NCs into cardiomyocytes. In rats and pigs, BSPC@HM NCs remarkably downregulates Sav1 in IR-injured myocardium, promotes myocardium regeneration, suppresses myocardial apoptosis, and recovers cardiac functions. This study reports a bioinspired strategy to overcome the multiple systemic barriers against myocardial siRNA delivery, and holds profound potential for gene therapy against cardiac injuries.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qiujun Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuejie Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shanzhou Duan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Huan Ye
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jianhui Lu
- Department of Vasculocardiology, Haimen Traditional Chinese Medicine Hospital, Haimen, 226100, China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Strasser P, Montsch B, Weiss S, Sami H, Kugler C, Hager S, Schueffl H, Mader R, Brüggemann O, Kowol CR, Ogris M, Heffeter P, Teasdale I. Degradable Bottlebrush Polypeptides and the Impact of their Architecture on Cell Uptake, Pharmacokinetics, and Biodistribution In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300767. [PMID: 36843221 PMCID: PMC11475343 DOI: 10.1002/smll.202300767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/02/2023]
Abstract
Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Silvia Weiss
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Haider Sami
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Christoph Kugler
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Robert Mader
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| |
Collapse
|
5
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
6
|
Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022; 12:500-525. [PMID: 34302274 PMCID: PMC8300981 DOI: 10.1007/s13346-021-01024-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - María Medel Gonzalez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain.
| |
Collapse
|
7
|
Conejos-Sánchez I, Đorđević S, Medel M, Vicent MJ. Polypeptides as building blocks for image-guided nanotherapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Huang G, Chen Q, Hu J, Mao J, He Y, Bai H, Tang G. Chitosan-derived nanoparticles impede signal transduction in T790M lung cancer therapy. Biomater Sci 2021; 9:7412-7419. [PMID: 34751282 DOI: 10.1039/d1bm01133b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treated patients ultimately develop disease progression, about 50% of which are involved in the emergence of a p.Thr790Met (T790M) mutation acquiring drug resistance. In order to solve the aforementioned problem, a therapeutic nanoparticles DGA is developed to overcome EGFR-T790M resistance via downstream anti-apoptotic signal transduction blocking by a combination with persuading mitochondrial dysfunction and inhibiting miRNA expression. As the concept of design, chitosan-derived nanocarrier DCAFP, capable of persuading mitochondrial dysfunction, is demonstrated to convey gefitinib (GFT) and miR21 inhibitor (anti-miR21) to form DGA nanoparticles. The superior accumulation of antitumor therapeutics and synergistic blocking of downstream signal transduction by mitochondrial dysfunction and miRNA regulation lead to high sensitivity of DGA nanoparticles to EGFR-T790M mutated non-small cell lung cancer (NSCLC) cells with significant inhibition of tumor cell growth. The in vivo study demonstrates superior safety and antitumor efficacy of EGFRT790M mutated lung cancer mouse models. These results highlight the promise of DGA nanoparticles for enhancing GFT sensitivity to EGFRT790M NSCLC.
Collapse
Affiliation(s)
- Guojun Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China. .,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China. .,Institute of Translational Medicine, and the Second Affiliated Hospital, Zhejiang University School of medicine, Hangzhou 310009, China
| | - Jiawei Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Jianming Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Yunhong He
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
9
|
Zheng B, Bai T, Tao X, Ling J. An Inspection into Multifarious Ways to Synthesize Poly(Amino Acid)s. Macromol Rapid Commun 2021; 42:e2100453. [PMID: 34562289 DOI: 10.1002/marc.202100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Poly(α-amino acid)s (PAAs) attract growing attention due to their essential role in the application as biomaterials. To synthesize PAAs with desired structures and properties, scientists have developed various synthetic techniques with respective advantages. Here, different approaches to preparing PAAs are inspected. Basic features and recent progresses of these methods are summarized, including polymerizations of amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), as well as other synthetic routes. NCA is the most classical monomer to prepare PAAs with high molecular weights (MWs). NTA polymerizations are promising alternative pathways to produce PAAs, which can tolerate nucleophiles including alcohols, mercaptans, carboxyl acids, and water. By various techniques including choosing appropriate solvents or using organic acids as promoters, NTAs polymerize to produce polypeptoids and polypeptides with narrow dispersities and designed MWs up to 55.0 and 57.0 kg mol-1 , respectively. NPC polymerizations are phosgene-free ways to synthesize polypeptides and polypeptoids. For the future prospects, detail investigations into polymerization mechanisms of NTA and NPC are expected. The synthesis of PAAs with designed topologies and assembly structures is another intriguing topic. The advantages and unsettled problems in various synthetic ways are discussed for readers to choose appropriate approaches for PAAs.
Collapse
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Tejedor S, Dolz‐Pérez I, Decker CG, Hernándiz A, Diez JL, Álvarez R, Castellano D, García NA, Ontoria‐Oviedo I, Nebot VJ, González‐King H, Igual B, Sepúlveda P, Vicent MJ. Polymer Conjugation of Docosahexaenoic Acid Potentiates Cardioprotective Therapy in Preclinical Models of Myocardial Ischemia/Reperfusion Injury. Adv Healthc Mater 2021; 10:e2002121. [PMID: 33720548 DOI: 10.1002/adhm.202002121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Indexed: 01/16/2023]
Abstract
While coronary angioplasty represents an effective treatment option following acute myocardial infarction, the reperfusion of the occluded coronary artery can prompt ischemia-reperfusion (I/R) injury that significantly impacts patient outcomes. As ω-3 polyunsaturated fatty acids (PUFAs) have proven, yet limited cardioprotective abilities, an optimized polymer-conjugation approach is reported that improves PUFAs bioavailability to enhance cardioprotection and recovery in animal models of I/R-induced injury. Poly-l-glutamic acid (PGA) conjugation improves the solubility and stability of di-docosahexaenoic acid (diDHA) under physiological conditions and protects rat neonatal ventricular myocytes from I/R injury by reducing apoptosis, attenuating autophagy, inhibiting reactive oxygen species generation, and restoring mitochondrial membrane potential. Enhanced protective abilities are associated with optimized diDHA loading and evidence is provided for the inherent cardioprotective potential of PGA itself. Pretreatment with PGA-diDHA before reperfusion in a small animal I/R model provides for cardioprotection and limits area at risk (AAR). Furthermore, the preliminary findings suggest that PGA-diDHA administration in a swine I/R model may provide cardioprotection, limit edema and decrease AAR. Overall, the evaluation of PGA-diDHA in relevant preclinical models provides evidence for the potential of polymer-conjugated PUFAs in the mitigation of I/R injury associated with coronary angioplasty.
Collapse
Affiliation(s)
- Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Irene Dolz‐Pérez
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Caitlin G. Decker
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Amparo Hernándiz
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Jose L. Diez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Raquel Álvarez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Delia Castellano
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Nahuel A. García
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Imelda Ontoria‐Oviedo
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Vicent J. Nebot
- Polypeptide Therapeutic Solutions S.L. Av. Benjamin Franklin 19, Paterna Valencia 46980 Spain
| | - Hernán González‐King
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Begoña Igual
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| |
Collapse
|
11
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
12
|
Duro-Castano A, Borrás C, Herranz-Pérez V, Blanco-Gandía MC, Conejos-Sánchez I, Armiñán A, Mas-Bargues C, Inglés M, Miñarro J, Rodríguez-Arias M, García-Verdugo JM, Viña J, Vicent MJ. Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates. SCIENCE ADVANCES 2021; 7:7/13/eabf9180. [PMID: 33771874 PMCID: PMC7997513 DOI: 10.1126/sciadv.abf9180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment.
Collapse
Affiliation(s)
- A Duro-Castano
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Borrás
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Univ. Jaume I, 12071 Castelló de la Plana, Spain
| | - M C Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Univ. Zaragoza, Teruel, Spain
| | - I Conejos-Sánchez
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - A Armiñán
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Mas-Bargues
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M Inglés
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
| | - J Viña
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M J Vicent
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
13
|
Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. J Control Release 2021; 332:10-20. [PMID: 33587988 DOI: 10.1016/j.jconrel.2021.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Treatment of triple negative breast cancer (TNBC)-associated metastasis represents an unmet clinical need, and we lack effective therapeutics for a disease that exhibits high relapse rates and associates with poor patient outcomes. Advanced nanosized drug delivery systems may enhance the efficacy of first-line chemotherapeutics by altering drug pharmacokinetics and enhancing tumor/metastasis targeting to significantly improve efficacy and safety. Herein, we propose the application of injectable poly-amino acid-based nanogels (NGs) as a versatile hydrophilic drug delivery platform for the treatment of TNBC lung metastasis. We prepared biocompatible and biodegradable cross-linked NGs from polyglutamic acid (PGA) loaded with the chemotherapeutic agent doxorubicin (DOX). Our optimized synthetic procedures generated NGs of ~100 nm in size and 25 wt% drug loading content that became rapidly internalized in TNBC cell lines and displayed IC50 values comparable to the free form of DOX. Importantly, PGA-DOX NGs significantly inhibited lung metastases and almost completely suppressed lymph node metastases in a spontaneously metastatic orthotopic mouse TNBC model. Overall, our newly developed PGA-DOX NGs represent a potentially effective therapeutic strategy for the treatment of TNBC metastases.
Collapse
|
14
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
15
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
16
|
Conejos-Sánchez I, Gallon E, Niño-Pariente A, Smith JA, De la Fuente AG, Di Canio L, Pluchino S, Franklin RJM, Vicent MJ. Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. NANOSCALE 2020; 12:6285-6299. [PMID: 31840717 DOI: 10.1039/c9nr06187h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene silencing therapies have successfully suppressed the translation of target proteins, a strategy that holds great promise for the treatment of central nervous system (CNS) disorders. Advances in the current knowledge on multimolecular delivery vehicles are concentrated on overcoming the difficulties in delivery of small interfering (si)RNA to target tissues, which include anatomical accessibility, slow diffusion, safety concerns, and the requirement for specific cell uptake within the unique environment of the CNS. The present work addressed these challenges through the implementation of polyornithine derivatives in the construction of polyplexes used as non-viral siRNA delivery vectors. Physicochemical and biological characterization revealed biodegradability and biocompatibility of our polyornithine-based system and the ability to silence gene expression in primary oligodendrocyte progenitor cells (OPCs) effectively. In summary, the well-defined properties and neurological compatibility of this polypeptide-based platform highlight its potential utility in the treatment of CNS disorders.
Collapse
Affiliation(s)
- I Conejos-Sánchez
- Centro de Investigación Príncipe Felipe. Polymer Therapeutics Laboratory, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ge C, Yang J, Duan S, Liu Y, Meng F, Yin L. Fluorinated α-Helical Polypeptides Synchronize Mucus Permeation and Cell Penetration toward Highly Efficient Pulmonary siRNA Delivery against Acute Lung Injury. NANO LETTERS 2020; 20:1738-1746. [PMID: 32039603 DOI: 10.1021/acs.nanolett.9b04957] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mucus layer and cell membrane are two major barriers against pulmonary siRNA delivery. Commonly used polycationic gene vectors can hardly penetrate the mucus layer due to the adsorption of mucin glycoproteins that trap and destabilize the polyplexes. Herein, guanidinated and fluorinated bifunctional helical polypeptides were developed to synchronizingly overcome these two barriers. The guanidine domain and α-helix facilitated trans-membrane siRNA delivery into macrophages, whereas fluorination of the polypeptides dramatically enhanced the mucus permeation capability by ∼240 folds, because incorporated fluorocarbon segments prevented adsorption of mucin glycoproteins onto polyplexes surfaces. Thus, when delivering TNF-α siRNA intratracheally, the top-performing polypeptide P7F7 provoked highly efficient gene knockdown by ∼96% at 200 μg/kg siRNA and exerted pronounced anti-inflammatory effect against acute lung injury. This study thus provides an effective strategy for transmucosal gene delivery, and it also renders promising utilities for the noninvasive, localized treatment of inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jiandong Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yong Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Córdoba-David G, Duro-Castano A, Castelo-Branco RC, González-Guerrero C, Cannata P, Sanz AB, Vicent MJ, Ortiz A, Ramos AM. Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped Polyglutamate-Curcuminoid Conjugate. Sci Rep 2020; 10:2056. [PMID: 32029842 PMCID: PMC7005021 DOI: 10.1038/s41598-020-58974-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.
Collapse
Affiliation(s)
- Gina Córdoba-David
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Aroa Duro-Castano
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Pablo Cannata
- Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Ana B Sanz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alberto Ortiz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Adrián M Ramos
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain. .,Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
19
|
Zagorodko O, Nebot VJ, Vicent MJ. The generation of stabilized supramolecular nanorods from star-shaped polyglutamates. Polym Chem 2020. [DOI: 10.1039/c9py01442j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new strategy of polyglutamate nanorod preparation based on supramolecular polymers stabilized with hydrophobic drugs.
Collapse
Affiliation(s)
- O. Zagorodko
- Polymer Therapeutics Lab. Prince Felipe Research Center
- 46012 Valencia
- Spain
| | - V. J. Nebot
- Polymer Therapeutics Lab. Prince Felipe Research Center
- 46012 Valencia
- Spain
| | - M. J. Vicent
- Polymer Therapeutics Lab. Prince Felipe Research Center
- 46012 Valencia
- Spain
| |
Collapse
|
20
|
Klein T, Gruschwitz FV, Rogers S, Hoeppener S, Nischang I, Brendel JC. The influence of directed hydrogen bonds on the self-assembly of amphiphilic polymers in water. J Colloid Interface Sci 2019; 557:488-497. [PMID: 31541918 DOI: 10.1016/j.jcis.2019.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Molecules forming directed intermolecular hydrogen bonds, such as the well-known benzene-1,3,5-tricarboxamides (BTA) motif, are known to self-assemble into long fibrous structures. However, only a few of these systems have so far demonstrated the ability to form such anisotropic nanostructures, if they are combined with hydrophilic polymers to create an amphiphilic material. Here, we designed BTA-polymer conjugates to investigate whether the directionality of the hydrogen bonds or the ratio of hydrophobic to hydrophilic parts of the molecule, and thus the packing parameter, is decisive for obtaining anisotropic supramolecular structures in water. EXPERIMENTS Poly(ethylene glycol) was conjugated to BTA moieties with varying lengths of hydrophobic alkyl spacers ranging from two to twelve methylene units. The resulting amphiphilic materials were characterized in aqueous solution by light and small-angle neutron scattering, analytical ultracentrifugation, and cryo-transmission electron microscopy. FINDINGS While spherical micelles were observed for C6 and C10 alkyl spacers, anisotropic structures were only present in case of the C12 spacer. The comparison to an analogous material, which lacks the directed hydrogen bonds, revealed that the BTA motif cannot provide a sufficient driving force to induce anisotropic structures, but increases the packing density in the hydrophobic part. Therefore, the packing parameter governs the appearance of anisotropic aggregates.
Collapse
Affiliation(s)
- Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Sarah Rogers
- ISIS Neutron Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
21
|
Abstract
Super-resolution microscopy, or nanoscopy, revolutionized the field of cell biology, enabling researchers to visualize cellular structures with nanometric resolution, single-molecule sensitivity, and in multiple colors. However, the impact of these techniques goes beyond biology as the fields of nanotechnology and nanomedicine can greatly benefit from them, as well. Nanoscopy can visualize nanostructures in vitro and in cells and can contribute to the characterization of their structures and nano-bio interactions. In this Perspective, we discuss the potential of super-resolution imaging for nanomedicine research, its technical challenges, and the future developments we envision for this technology.
Collapse
Affiliation(s)
- Silvia Pujals
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
- E-mail:
| |
Collapse
|
22
|
Wang H, Hou Y, Hu Y, Dou J, Shen Y, Wang Y, Lu H. Enzyme-Activatable Interferon–Poly(α-amino acid) Conjugates for Tumor Microenvironment Potentiation. Biomacromolecules 2019; 20:3000-3008. [DOI: 10.1021/acs.biomac.9b00560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Jiaxiang Dou
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yucai Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | |
Collapse
|
23
|
Feiner-Gracia N, Olea RA, Fitzner R, El Boujnouni N, van Asbeck AH, Brock R, Albertazzi L. Super-resolution Imaging of Structure, Molecular Composition, and Stability of Single Oligonucleotide Polyplexes. NANO LETTERS 2019; 19:2784-2792. [PMID: 31001985 PMCID: PMC6509642 DOI: 10.1021/acs.nanolett.8b04407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/11/2019] [Indexed: 05/20/2023]
Abstract
The successful application of gene therapy relies on the development of safe and efficient delivery vectors. Cationic polymers such as cell-penetrating peptides (CPPs) can condense genetic material into nanoscale particles, called polyplexes, and induce cellular uptake. With respect to this point, several aspects of the nanoscale structure of polyplexes have remained elusive because of the difficulty in visualizing the molecular arrangement of the two components with nanometer resolution. This limitation has hampered the rational design of polyplexes based on direct structural information. Here, we used super-resolution imaging to study the structure and molecular composition of individual CPP-mRNA polyplexes with nanometer accuracy. We use two-color direct stochastic optical reconstruction microscopy (dSTORM) to unveil the impact of peptide stoichiometry on polyplex structure and composition and to assess their destabilization in blood serum. Our method provides information about the size and composition of individual polyplexes, allowing the study of such properties on a single polyplex basis. Furthermore, the differences in stoichiometry readily explain the differences in cellular uptake behavior. Thus, quantitative dSTORM of polyplexes is complementary to the currently used characterization techniques for understanding the determinants of polyplex activity in vitro and inside cells.
Collapse
Affiliation(s)
- Natalia Feiner-Gracia
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Carrer Baldiri
Reixac 15-21, 08024 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - R. Alis Olea
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Carrer Baldiri
Reixac 15-21, 08024 Barcelona, Spain
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert Fitzner
- Department
of Mathematics and Computer Science, Eindhoven
University of Technology, Post Office
Box 513, 5600 MD Eindhoven, The Netherlands
| | - Najoua El Boujnouni
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander H. van Asbeck
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorenzo Albertazzi
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Carrer Baldiri
Reixac 15-21, 08024 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
24
|
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019. [DOI: 10.1038/s41570-018-0070-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Cheah HY, Gallon E, Dumoulin F, Hoe SZ, Japundžić-Žigon N, Glumac S, Lee HB, Anand P, Chung LY, Vicent MJ, Kiew LV. Near-Infrared Activatable Phthalocyanine–Poly-L-Glutamic Acid Conjugate: Enhanced in Vivo Safety and Antitumor Efficacy toward an Effective Photodynamic Cancer Therapy. Mol Pharm 2018; 15:2594-2605. [DOI: 10.1021/acs.molpharmaceut.8b00132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elena Gallon
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, P.O Box 141, 41400 Gebze, Kocaeli, Turkey
| | | | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | - Sofija Glumac
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | | | - Prem Anand
- Gasing Veterinary Hospital, Gasing Indah, 46000 Petaling Jaya, Selangor, Malaysia
| | | | - Maria Jesus Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain
| | | |
Collapse
|