1
|
Niu P, Li R, Gan K, Fan Z, Yuan T, Han C. Manipulating Stacking Fault Energy to Achieve Crack Inhibition and Superior Strength-Ductility Synergy in an Additively Manufactured High-Entropy Alloy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310160. [PMID: 38489830 DOI: 10.1002/adma.202310160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Additive manufacturing (AM) is a revolutionary technology that heralds a new era in metal processing, yet the quality of AM-produced parts is inevitably compromised by cracking induced by severe residual stress. In this study, a novel approach is presented to inhibit cracks and enhance the mechanical performances of AM-produced alloys by manipulating stacking fault energy (SFE). A high-entropy alloy (HEA) based on an equimolar FeCoCrNi composition is selected as the prototype material due to the presence of microcracks during laser powder bed fusion (LPBF) AM process. Introducing a small amount (≈2.4 at%) of Al doping can effectively lower SFE and yield the formation of multiscale microstructures that efficiently dissipate thermal stress during LPBF processing. Distinct from the Al-free HEA containing visible microcracks, the Al-doped HEA (Al0.1CoCrFeNi) is crack free and demonstrates ≈55% improvement in elongation without compromising tensile strength. Additionally, the lowered SFE enhances the resistance to crack propagation, thereby improving the durability of AM-printed products. By manipulating SFE, the thermal cycle-induced stress during the printing process can be effectively consumed via stacking faults formation, and the proposed strategy offers novel insights into the development of crack-free alloys with superior strength-ductility synergy for intricate structural applications.
Collapse
Affiliation(s)
- Pengda Niu
- National Key Laboratory of Science and Technology for High-Strength Structural Materials, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Ruidi Li
- National Key Laboratory of Science and Technology for High-Strength Structural Materials, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Kefu Gan
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiqi Fan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiechui Yuan
- National Key Laboratory of Science and Technology for High-Strength Structural Materials, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Changjun Han
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
2
|
Shao L, Jiang J, Yuan C, Zhang X, Gu L, Wang X. Omnidirectional anisotropic embedded 3D bioprinting. Mater Today Bio 2024; 27:101160. [PMID: 39155942 PMCID: PMC11326905 DOI: 10.1016/j.mtbio.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Anisotropic microstructures resulting from a well-ordered arrangement of filamentous extracellular matrix (ECM) components or cells can be found throughout the human body, including skeletal muscle, corneal stroma, and meniscus, which play a crucial role in carrying out specialized physiological functions. At present, due to the isotropic characteristics of conventional hydrogels, the construction of freeform cell-laden anisotropic structures with high-bioactive hydrogels is still a great challenge. Here, we proposed a method for direct embedded 3D cell-printing of freeform anisotropic structure with shear-oriented bioink (GelMA/PEO). This study focuses on the establishment of an anisotropic embedded 3D bioprinting system, which effectively utilizes the shear stress generated during the extrusion process to create cells encapsulating tissues with distinct anisotropy. In conjunction with the water-solubility of PEO and the in-situ encapsulation effect provided by the carrageenan support bath, high-precise cell-laden bioprinting of intricate anisotropic and porous bionic artificial tissues can be effectively implemented in one-step. Additionally, anisotropic permeable blood vessel has been taken as a representation to validate the effectiveness of the shear-oriented bioink system in fabricating intricate structures with distinct directional characteristics. Lastly, the successful preparation of muscle patches with anisotropic properties and their guiding role for cell cytoskeleton extension have provided a significant research foundation for the application of the anisotropic embedded 3D bioprinting system in the ex-vivo production and in-vivo application of anisotropic artificial tissues.
Collapse
Affiliation(s)
- Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xinyu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
3
|
Poudrel AS, Gattin M, Rosi G, Rébillat M, Peixinho J, Bochud N, Margerit P. Identification of viscoelastic material properties by ultrasonic angular measurements in double through-transmission. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:463-474. [PMID: 39013040 DOI: 10.1121/10.0026518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Recent advances in additive manufacturing (AM) of viscoelastic materials have paved the way toward the design of increasingly complex structures. In particular, emerging biomedical applications in acoustics involve structures with periodic micro-architectures, which require a precise knowledge of longitudinal and transverse bulk properties of the constituent materials. However, the identification of the transverse properties of highly soft and attenuating materials remains particularly challenging. Thereby, the present work provides a methodological framework to identify the frequency-dependent ultrasound characteristics (i.e., phase velocity and attenuation) of viscoelastic materials. The proposed approach relies on an inverse procedure based on angular measurements achieved in double through-transmission, referred as θ-scan. Toward this goal, a forward modeling of the double transmitted waves through a homogeneous solid is proposed for any incidence angle based on the global matrix formalism. The experimental validation is conducted by performing ultrasound measurements on two types of photopolymers that are commonly employed for AM purposes: a soft elastomer (ElasticoTM Black) and a glassy polymer (VeroUltraTM White). As a result, the inferred dispersive ultrasound characteristics are of interest for the computational calibration and validation of models involving complex multi-material structures in the MHz regime.
Collapse
Affiliation(s)
- Anne-Sophie Poudrel
- Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, PIMM, Arts et Métiers ParisTech, UMR 8006, CNRS, CNAM, HESAM université, 151 boulevard de l'hôpital, 75013 Paris, France
| | - Max Gattin
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Marc Rébillat
- Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, PIMM, Arts et Métiers ParisTech, UMR 8006, CNRS, CNAM, HESAM université, 151 boulevard de l'hôpital, 75013 Paris, France
| | - Jorge Peixinho
- Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, PIMM, Arts et Métiers ParisTech, UMR 8006, CNRS, CNAM, HESAM université, 151 boulevard de l'hôpital, 75013 Paris, France
| | - Nicolas Bochud
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Pierre Margerit
- Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, PIMM, Arts et Métiers ParisTech, UMR 8006, CNRS, CNAM, HESAM université, 151 boulevard de l'hôpital, 75013 Paris, France
| |
Collapse
|
4
|
Ratajski J, Bałasz B, Mydłowska K, Pancielejko M, Szparaga Ł. The Effect of Ageing on Phase Transformations and Mechanical Behaviour in Ni-Rich NiTi Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2420. [PMID: 38793486 PMCID: PMC11123298 DOI: 10.3390/ma17102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In this article, the results of research on a NiTi alloy with a high nickel content (51.7 at.%), produced using the additive technology SLM method and subjected to isothermal ageing after solution annealing, are presented. The study involved the determination of the sequence of phase transformations occurring using differential scanning calorimetry (DSC) and the determination of the temperature range of these transformations. In parallel, the phase composition was determined using the XRD method; the hardness and the Young's modulus were also determined. The analysis of the DSC results obtained indicates the following characteristic features of the NiTi alloy, which change with ageing time: (1) During cooling (from +150 °C to -50 °C), the type of transformation changes from a one-step transformation after solution annealing to a two-step transformation after the ageing process over 1, 20, and 100 h at 500 °C; (2) during heating (from -50 °C to +150 °C) for all the samples, regardless of the ageing time, only a one-step transformation from martensite M(B19') to austenite A(B2) is observed; (3) the temperature at which the transformation starts increases with the ageing time; (4) the width of the total temperature range of the transformation M(B19') → A(B2) during heating changes from large (ΔT = 49.7 °C), after solution annealing, to narrow (ΔT = 19.3 °C and ΔT = 17.9 °C after 20 h and 100 h of ageing); and, most importantly, (5) a comparison with the literature data shows that, irrespective of the composition of the NiTi alloy and the manufacturing technology of the alloy samples (regardless of whether this was traditional or additive technology), a sufficiently long ageing process period leads to the occurrence of the martensite → austenite transformation in the same temperature range.
Collapse
Affiliation(s)
- Jerzy Ratajski
- Department of Biomedical Engineering, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
| | - Błażej Bałasz
- Rapid Prototyping Center, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
| | - Katarzyna Mydłowska
- Department of Biomedical Engineering, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
| | - Mieczysław Pancielejko
- Department of Technical Physics and Nanotechnology, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
| | - Łukasz Szparaga
- Department of Biomedical Engineering, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
| |
Collapse
|
5
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
6
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
7
|
Kumar R, Rezapourian M, Rahmani R, Maurya HS, Kamboj N, Hussainova I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics (Basel) 2024; 9:209. [PMID: 38667221 PMCID: PMC11048303 DOI: 10.3390/biomimetics9040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Ramin Rahmani
- CiTin–Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus–Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Himanshu S. Maurya
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Mechanical and Materials Engineering, University of Turku, 20500 Turku, Finland
- TCBC–Turku Clinical Biomaterials Centre, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| |
Collapse
|
8
|
Chen SM, Zhang ZB, Gao HL, Yu SH. Bottom-Up Film-to-Bulk Assembly Toward Bioinspired Bulk Structural Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313443. [PMID: 38414173 DOI: 10.1002/adma.202313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Biological materials, although composed of meager minerals and biopolymers, often exhibit amazing mechanical properties far beyond their components due to hierarchically ordered structures. Understanding their structure-properties relationships and replicating them into artificial materials would boost the development of bulk structural nanocomposites. Layered microstructure widely exists in biological materials, serving as the fundamental structure in nanosheet-based nacres and nanofiber-based Bouligand tissues, and implying superior mechanical properties. High-efficient and scalable fabrication of bioinspired bulk structural nanocomposites with precise layered microstructure is therefore important yet remains difficult. Here, one straightforward bottom-up film-to-bulk assembly strategy is focused for fabricating bioinspired layered bulk structural nanocomposites. The bottom-up assembly strategy inherently offers a methodology for precise construction of bioinspired layered microstructure in bulk form, availability for fabrication of bioinspired bulk structural nanocomposites with large sizes and complex shapes, possibility for design of multiscale interfaces, feasibility for manipulation of diverse heterogeneities. Not limited to discussing what has been achieved by using the current bottom-up film-to-bulk assembly strategy, it is also envisioned how to promote such an assembly strategy to better benefit the development of bioinspired bulk structural nanocomposites. Compared to other assembly strategies, the highlighted strategy provides great opportunities for creating bioinspired bulk structural nanocomposites on demand.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
10
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
11
|
Mao A, Chen J, Bu X, Tian L, Gao W, Saiz E, Bai H. Bamboo-Inspired Structurally Efficient Materials with a Large Continuous Gradient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301144. [PMID: 37186449 DOI: 10.1002/smll.202301144] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Because of its light weight and high strength, bamboo is used in many applications around the world. Natural bamboo is built from fiber-reinforced material and exhibits a porous graded architecture that provides its remarkable mechanical performance. This porosity gradient is generated through the unique distribution of densified vascular bundles. Scientists and engineers have been trying to mimic this architecture for a very long time with much of the work focusing on the effect of fiber reinforcement. However, there still lacks quantitative studies on the role of pore gradient design on mechanical properties, in part because the fabrication of bamboo-inspired graded materials is challenging. Here, the steep and continuous porosity gradient through an ingenious cellular design in Moso bamboo is revealed. The effect of gradient design on the mechanical performance is systematically studied by using 3D-printed models. The results show that not only the magnitude of gradient but also its continuity have a significant effect. By introducing a continuous and large gradient, the maximum flexural load and energy absorption capability can be increased by 40% and 110% when comparing to the structure without gradient. These bamboo-inspired cellular architectures can offer efficient solutions for the design of damage tolerant engineering structures.
Collapse
Affiliation(s)
- Anran Mao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiewei Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaochen Bu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Tian
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Gao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Eduardo Saiz
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College of London, London, SW7 2AZ, UK
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
12
|
Dai H, Dai W, Hu Z, Zhang W, Zhang G, Guo R. Advanced Composites Inspired by Biological Structures and Functions in Nature: Architecture Design, Strengthening Mechanisms, and Mechanical-Functional Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207192. [PMID: 36935371 PMCID: PMC10190572 DOI: 10.1002/advs.202207192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The natural design and coupling of biological structures are the root of realizing the high strength, toughness, and unique functional properties of biomaterials. Advanced architecture design is applied to many materials, including metal materials, inorganic nonmetallic materials, polymer materials, and so on. To improve the performance of advanced materials, the designed architecture can be enhanced by bionics of biological structure, optimization of structural parameters, and coupling of multiple types of structures. Herein, the progress of structural materials is reviewed, the strengthening mechanisms of different types of structures are highlighted, and the impact of architecture design on the performance of advanced materials is discussed. Architecture design can improve the properties of materials at the micro level, such as mechanical, electrical, and thermal conductivity. The synergistic effect of structure makes traditional materials move toward advanced functional materials, thus enriching the macroproperties of materials. Finally, the challenges and opportunities of structural innovation of advanced materials in improving material properties are discussed.
Collapse
Affiliation(s)
- Hanqing Dai
- Academy for Engineering and TechnologyInstitute for Electric Light SourcesFudan UniversityShanghai200433China
| | - Wenqing Dai
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Zhe Hu
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Wanlu Zhang
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Guoqi Zhang
- Department of MicroelectronicsDelft University of TechnologyDelftCD 2628Netherlands
| | - Ruiqian Guo
- Academy for Engineering and TechnologyInstitute for Electric Light SourcesFudan UniversityShanghai200433China
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| |
Collapse
|
13
|
Feng B, Zhang M, Qin C, Zhai D, Wang Y, Zhou Y, Chang J, Zhu Y, Wu C. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth. Bioact Mater 2023; 22:127-140. [PMID: 36203957 PMCID: PMC9525999 DOI: 10.1016/j.bioactmat.2022.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Regeneration of severe bone defects remains an enormous challenge in clinic. Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle. Conch, an interesting creature widely spreading in ocean, has tough spiral shell that can continuously grow along the spiral direction. Herein, inspired by the physiological features of conches, a conch-like (CL) scaffold based on β-TCP bioceramic material was successfully prepared for guiding directional bone growth via digital light processing (DLP)-based 3D printing. Benefiting from the spiral structure, the CL scaffolds significantly improved cell adhesion, proliferation and osteogenic differentiation in vitro compared to the conventional 3D scaffolds. Particularly, the spiral structure in the scaffolds could efficiently induce cells to migrate from the bottom to the top of the scaffolds, which was like “cells climbing stairs”. Furthermore, the capability of guiding directional bone growth for the CL scaffolds was demonstrated by a special half-embedded femoral defects model in rabbits. The new bone tissue could consecutively grow into the protruded part of the scaffolds along the spiral cavities. This work provides a promising strategy to construct biomimetic biomaterials for guiding directional bone tissue growth, which offers a new treatment concept for severe bone defects, and even limb regeneration. A conch-like scaffold was firstly developed for guiding directional bone growth. The CL scaffolds efficiently induced cells “climbing stairs”- like-migrating. The CL scaffolds showed improved bioactivities benefited from the spiral structure. This work provided a new treatment concept for severe bone defects.
Collapse
|
14
|
Das M, Jana A, Mishra R, Maity S, Maiti P, Panda SK, Mitra R, Arora A, Owuor PS, Tiwary CS. 3D Printing of a Biocompatible Nanoink Derived from Waste Animal Bones. ACS APPLIED BIO MATERIALS 2023; 6:1566-1576. [PMID: 36947679 DOI: 10.1021/acsabm.2c01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Direct ink writing (DIW) additive manufacturing is a versatile 3D printing technique for a broad range of materials. DIW can print a variety of materials provided that the ink is well-engineered with appropriate rheological properties. DIW could be an ideal technique in tissue engineering to repair and regenerate deformed or missing organs or tissues, for example, bone and tooth fracture that is a common problem that needs surgeon attention. A critical criterion in tissue engineering is that inserts must be compatible with their surrounding environment. Chemically produced calcium-rich materials are dominant in this application, especially for bone-related applications. These materials may be toxic leading to a rejection by the body that may need secondary surgery to repair. On the other hand, there is an abundance of biowaste building blocks that can be used for grafting with little adverse effect on the body. In this work, we report a bioderived ink made entirely of calcium derived from waste animal bones using a benign process. Calcium nanoparticles are extracted from the bones and the ink prepared by mixing with different biocompatible binders. The ink is used to print scaffolds with controlled porosity that allows better growth of cells. DIW printed parts show better mechanical properties and biocompatibility that are important for the grafting application. Degradation tests and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay study were done to examine the biocompatibility of the extracted materials. In addition, discrete element modeling and computational fluid dynamics numerical methods are used in Rocky and Ansys software programs. This work shows that biowaste materials if well-engineered can be a never-ending source of raw materials for advanced application in orthopedic grafting.
Collapse
Affiliation(s)
- Manojit Das
- Department of Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Arijit Jana
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajat Mishra
- Advanced Materials Processing Research Group, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Swapan Maity
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sushanta Kumar Panda
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rahul Mitra
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Arora
- Advanced Materials Processing Research Group, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Peter Samora Owuor
- Carbon Science Centre of Excellence, Morgan Advanced Materials, State College, Pennsylvania 16803, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
15
|
Tajik S, Garcia CN, Gillooley S, Tayebi L. 3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023; 9:29-41. [PMID: 37193257 PMCID: PMC10181842 DOI: 10.1007/s40883-022-00267-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Purpose Key natural polymers, known as hydrogels, are an important group of materials in design of tissue-engineered constructs that can provide suitable habitat for cell attachment and proliferation. However, in comparison to tissues within the body, these hydrogels display poor mechanical properties. Such properties cause challenges in 3D printing of hydrogel scaffolds as well as their surgical handling after fabrication. For this reason, the purpose of this study is to critically review the 3D printing processes of hydrogels and their characteristics for tissue engineering application. Methods A search of Google Scholar and PubMed has been performed from 2003 to February 2022 using a combination of keywords. A review of the types of 3D printing is presented. Additionally, different types of hydrogels and nano-biocomposite materials for 3D printing application are critically reviewed. The rheological properties and crosslinking mechanisms for the hydrogels are assessed. Results Extrusion-based 3D printing is the most common practice for constructing hydrogel-based scaffolds, and it allows for the use of varying types of polymers to enhance the properties and printability of the hydrogel-based scaffolds. Rheology has been found to be exceedingly important in the 3D printing process; however, shear-thinning and thixotropic characteristics should also be present in the hydrogel. Despite these features of extrusion-based 3D printing, there are limitations to its printing resolution and scale. Conclusion Combining natural and synthetic polymers and a variety of nanomaterials, such as metal, metal oxide, non-metal, and polymeric, can enhance the properties of hydrogel and provide additional functionality to their 3D-printed constructs.
Collapse
Affiliation(s)
- Sanaz Tajik
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | | | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|
16
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Li QW, Sun BH. Optimization of a lattice structure inspired by glass sponge. BIOINSPIRATION & BIOMIMETICS 2022; 18:016005. [PMID: 36322985 DOI: 10.1088/1748-3190/ac9fb2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The biomimetic design of engineering structures is based on biological structures with excellent mechanical properties, which are the result of billions of years of evolution. However, current biomimetic structures, such as ordered lattice materials, are still inferior to many biomaterials in terms of structural complexity and mechanical properties. For example, the structure ofEuplectella aspergillum, a type of deep-sea glass sponge, is an eye-catching source of inspiration for biomimetic design, many researches have introduced similar architecture in cellular solids. However, guided by scientific theory, how to surpass the mechanical properties ofE. aspergillumremains an unsolved problem. We proposed the lattice structure which firstly surpass theE. aspergillummechanically. The lattice structure of the skeleton ofE. aspergillumconsists of vertically, horizontally, and diagonally oriented struts, which provide superior strength and flexural resistance compared with the conventional square lattice structure. Herein, the structure ofE. aspergillumwas investigated in detail, and by using the theory of elasticity, a lattice structure inspired by the biomimetic structure was proposed. The mechanical properties of the sponge-inspired lattice structure surpassed the sponge structure under a variety of loading conditions, and the excellent performance of this configuration was verified experimentally. The proposed lattice structure can greatly improve the mechanical properties of engineering structures, and it improves strength without much redundancy of material. This study achieved the first surpassing of the mechanical properties of an existing sponge-mimicking design. This design can be applied to lattice structures, truss systems, and metamaterial cells.
Collapse
Affiliation(s)
- Quan-Wei Li
- School of Civil Engineering & Institute of Mechanics and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Bo-Hua Sun
- School of Civil Engineering & Institute of Mechanics and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| |
Collapse
|
18
|
Chen G, Lin T, Guo C, Richter L, Dai N. Bending Study of Six Biological Models for Design of High Strength and Tough Structures. Biomimetics (Basel) 2022; 7:176. [PMID: 36412704 PMCID: PMC9680280 DOI: 10.3390/biomimetics7040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
High strength and tough structures are beneficial to increasing engineering components service span. Nonetheless, improving structure strength and, simultaneously, toughness is difficult, since these two properties are generally mutually exclusive. Biological organisms exhibit both excellent strength and toughness. Using bionic structures from these biological organisms can be solutions for improving these properties of engineering components. To effectively apply biological models to design biomimetic structures, this paper analyses strengthening and toughening mechanisms of six fundamentally biological models obtained from biological organisms. Numerical models of three-point bending test are established to predict crack propagation behaviors of the six biological models. Furthermore, the strength and toughness of six biomimetic composites are experimentally evaluated. It is identified that the helical model possesses the highest toughness and satisfying strength. This work provides more detailed evidence for engineers to designate bionic models to the design of biomimetic composites with high strength and toughness.
Collapse
Affiliation(s)
- Guangming Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tao Lin
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ce Guo
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Lutz Richter
- Large Space Structures GmbH, Hauptstr. 1e, D-85386 Eching, Germany
| | - Ning Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
19
|
Valle R, Pincheira G, Tuninetti V, Garrido C, Treviño C, Morales J. Evaluation of the Orthotropic Behavior in an Auxetic Structure Based on a Novel Design Parameter of a Square Cell with Re-Entrant Struts. Polymers (Basel) 2022; 14:polym14204325. [PMID: 36297905 PMCID: PMC9607124 DOI: 10.3390/polym14204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022] Open
Abstract
In this research, a three-dimensional auxetic configuration based on a known re-entrant cell is proposed. The 3D auxetic cell is configured from a new design parameter that produces an internal rotation angle to its re-entrant elements to study elastic properties in its three orthogonal directions. Through a topological analysis using Timoshenko beam theory, the bending of its re-entrant struts is modeled as a function of the new design parameter to manipulate Poisson's ratio and Young's modulus. Experimental samples were fabricated using a fused filament fabrication system using ABS and subsequently tested under quasi-static compression and bending tests. Additionally, an orthotropy factor is applied that allows for measuring the deviation between the mechanical properties of each structure. The experimental results validate the theoretical design and show that this new unit cell can transmit an orthotropic mechanical behavior to the macrostructure. In addition, the proposed structure can provide a different bending stiffness behavior in up to three working directions, which allows the application under different conditions of external forces, such as a prosthetic ankle.
Collapse
Affiliation(s)
- Rodrigo Valle
- Faculty of Engineering, University of Talca, Talca 353 0000, Maule, Chile
| | - Gonzalo Pincheira
- Department of Industrial Technologies, University of Talca, Talca 353 0000, Maule, Chile
- Correspondence:
| | - Víctor Tuninetti
- Department of Mechanical Engineering, Universidad de La Frontera, Temuco 478 0000, Araucania, Chile
| | - Cesar Garrido
- Department of Mechanical Engineering, University of the Bío-Bío, Concepción 403 0000, Bío Bío, Chile
| | - Cecilia Treviño
- School of Engineering and Science, Tecnológico de Monterrey, Queretaro 76146, Mexico
| | - Jorge Morales
- Department of Industrial Technologies, University of Talca, Talca 353 0000, Maule, Chile
| |
Collapse
|
20
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Biomimetic Design for Adaptive Building Façades: A Paradigm Shift towards Environmentally Conscious Architecture. ENERGIES 2022. [DOI: 10.3390/en15155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A change in thinking has been ongoing in the architecture and building industry in response to growing concern over the role of the building industry in the excessive consumption of energy and its devastating effects on the natural environment. This shift changed the thinking of architects, engineers, and designers in the initial phases of a building’s design, with a change from the importance of geometry and form to assessing a building’s performance, from structure to a building’s skin, and from abstract aesthetics to bio-climatic aesthetics. In this context, sustainable, intelligent, and adaptive building façades were extensively researched and developed. Consequently, several typologies, strategies, and conceptual design frameworks for adaptive façades were developed with the aim of performing certain functions. This study focuses on the biomimetic methodologies developed to design adaptive façades because of their efficiency compared to other typologies. A comprehensive literature review is performed to review the design approaches toward those façades at the early stage of design. Then, the theoretical bases for three biomimetic frameworks are presented to gain an overall understanding of the concepts, opportunities, and limitations.
Collapse
|
22
|
Amukarimi S, Rezvani Z, Eghtesadi N, Mozafari M. Smart biomaterials: From 3D printing to 4D bioprinting. Methods 2022; 205:191-199. [PMID: 35810960 DOI: 10.1016/j.ymeth.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
This century is blessed with enhanced medical facilities on the grounds of the development of smart biomaterials. The rise of the four-dimensional (4D) bioprinting technology is a shining example. Using inert biomaterials as the bioinks for the three-dimensional (3D) printing process, static objects that might not be able to mimic the dynamic nature of tissues would be fabricated; by contrast, 4D bioprinting can be used for the fabrication of stimuli-responsive cell-laden structures that can evolve with time and enable engineered tissues to undergo morphological changes in a pre-planned way. For all the aptitude of 4D bioprinting technology in tissue engineering, it is imperative to select suitable stimuli-responsive biomaterials with cell-supporting functionalities and responsiveness; as a result, in this article, recent advances and challenges in smart biomaterials for 4D bioprinting are briefly discussed. An overview perspective concerning the latest developments in 4D-bioprinting is also provided.
Collapse
Affiliation(s)
- Shukufe Amukarimi
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezvani
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milano, Italy
| | - Neda Eghtesadi
- Inorganic Chemistry Group, University of Turku, Turku, Finland
| | - Masoud Mozafari
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Zhang M, Zhao N, Yu Q, Liu Z, Qu R, Zhang J, Li S, Ren D, Berto F, Zhang Z, Ritchie RO. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nat Commun 2022; 13:3247. [PMID: 35668100 PMCID: PMC9170714 DOI: 10.1038/s41467-022-30873-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Bioinspired architectures are effective in enhancing the mechanical properties of materials, yet are difficult to construct in metallic systems. The structure-property relationships of bioinspired metallic composites also remain unclear. Here, Mg-Ti composites were fabricated by pressureless infiltrating pure Mg melt into three-dimensional (3-D) printed Ti-6Al-4V scaffolds. The result was composite materials where the constituents are continuous, mutually interpenetrated in 3-D space and exhibit specific spatial arrangements with bioinspired brick-and-mortar, Bouligand, and crossed-lamellar architectures. These architectures promote effective stress transfer, delocalize damage and arrest cracking, thereby bestowing improved strength and ductility than composites with discrete reinforcements. Additionally, they activate a series of extrinsic toughening mechanisms, including crack deflection/twist and uncracked-ligament bridging, which enable crack-tip shielding from the applied stress and lead to “Γ”-shaped rising fracture resistance R-curves. Quantitative relationships were established for the stiffness and strengths of the composites by adapting classical laminate theory to incorporate their architectural characteristics. Bioinspired architectures are desired to achieve improved mechanical properties, but challenging to achieve in metallic systems. Here the authors fabricate a Mg-Ti interpenetrating phase composite with brick-and-mortar, Bouligand, and crossed-lamellar architectures by pressureless infiltrating method.
Collapse
Affiliation(s)
- Mingyang Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Ning Zhao
- School of Materials Science and Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Qin Yu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zengqian Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China. .,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Ruitao Qu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Jian Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Shujun Li
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dechun Ren
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Richard Birkelands vei 2B, Trondheim, 7034, Norway
| | - Zhefeng Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China. .,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Wang S, Rivera-Tarazona LK, Abdelrahman MK, Ware TH. Digitally Programmable Manufacturing of Living Materials Grown from Biowaste. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20062-20072. [PMID: 35442018 DOI: 10.1021/acsami.2c03109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Material manufacturing strategies that use little energy, valorize waste, and result in degradable products are urgently needed. Strategies that transform abundant biomass into functional materials form one approach to these emerging manufacturing techniques. From a biological standpoint, morphogenesis of biological tissues is a "manufacturing" mode without energy-intensive processes, large carbon footprints, and toxic wastes. Inspired by biological morphogenesis, we propose a manufacturing strategy by embedding living Saccharomyces cerevisiae (Baker's yeast) within a synthetic acrylic hydrogel matrix. By culturing the living materials in media derived from bread waste, encapsulated yeast cells can proliferate, resulting in a dramatic dry mass and volume increase of the whole living material. After growth, the final material is up to 96 wt % biomass and 590% larger in volume than the initial object. By digitally programming the cell viability through UV irradiation or photodynamic inactivation, the living materials can form complex user-defined relief surfaces or 3D objects during growth. Ultimately, the grown structures can also be designed to be degradable. The proposed living material manufacturing strategy cultured from biowaste may pave the way for future ecologically friendly manufacturing of materials.
Collapse
Affiliation(s)
- Suitu Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Mustafa K Abdelrahman
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Taylor H Ware
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Jia Z, Deng Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106259. [PMID: 35085421 DOI: 10.1002/adma.202106259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Biomineralized materials are sophisticated material systems with hierarchical 3D material architectures, which are broadly used as model systems for fundamental mechanical, materials science, and biomimetic studies. The current knowledge of the structure of biological materials is mainly based on 2D imaging, which often impedes comprehensive and accurate understanding of the materials' intricate 3D microstructure and consequently their mechanics, functions, and bioinspired designs. The development of 3D techniques such as tomography, additive manufacturing, and 4D testing has opened pathways to study biological materials fully in 3D. This review discusses how applying 3D techniques can provide new insights into biomineralized materials that are either well known or possess complex microstructures that are challenging to understand in the 2D framework. The diverse structures of biomineralized materials are characterized based on four universal structural motifs. Nacre is selected as an example to demonstrate how the progression of knowledge from 2D to 3D can bring substantial improvements to understanding the growth mechanism, biomechanics, and bioinspired designs. State-of-the-art multiscale 3D tomographic techniques are discussed with a focus on their integration with 3D geometric quantification, 4D in situ experiments, and multiscale modeling. Outlook is given on the emerging approaches to investigate the synthesis-structure-function-biomimetics relationship.
Collapse
Affiliation(s)
- Zian Jia
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
26
|
Deng Z, Jia Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103524. [PMID: 35315243 PMCID: PMC9108615 DOI: 10.1002/advs.202103524] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Indexed: 05/02/2023]
Abstract
Biomineralized composites, which are usually composed of microscopic mineral building blocks organized in 3D intercrystalline organic matrices, have evolved unique structural designs to fulfill mechanical and other biological functionalities. While it has been well recognized that the intricate architectural designs of biomineralized composites contribute to their remarkable mechanical performance, the structural features within and corresponding mechanical properties of individual mineral building blocks are often less appreciated in the context of bio-inspired structural composites. The mineral building blocks in biomineralized composites exhibit a variety of salient intracrystalline structural features, such as, organic inclusions, inorganic impurities (or trace elements), crystalline features (e.g., amorphous phases, single crystals, splitting crystals, polycrystals, and nanograins), residual stress/strain, and twinning, which significantly modify the mechanical properties of biogenic minerals. In this review, recent progress in elucidating the intracrystalline structural features of three most common biomineral systems (calcite, aragonite, and hydroxyapatite) and their corresponding mechanical significance are discussed. Future research directions and corresponding challenges are proposed and discussed, such as the advanced structural characterizations and formation mechanisms of intracrystalline structures in biominerals, amorphous biominerals, and bio-inspired synthesis.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Zian Jia
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Ling Li
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| |
Collapse
|
27
|
Das R, Gershon S, Bar-On B, Tadayon M, Ayali A, Pinchasik BE. The biomechanics of the locust ovipositor valves: a unique digging apparatus. J R Soc Interface 2022; 19:20210955. [PMID: 35291831 PMCID: PMC8923821 DOI: 10.1098/rsif.2021.0955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The female locust has a unique mechanism for digging in order to deposit its eggs deep in the ground. It uses two pairs of sclerotized valves to displace the granular matter, while extending its abdomen as it propagates underground. This ensures optimal conditions for the eggs to incubate and provides them with protection from predators. Here, the direction-dependent biomechanics of the locust's major, dorsal digging valves are quantified and analysed under forces in the physiological range and beyond, considering the hydration level as well as the females' sexual maturation state. Our findings reveal that the responses of the valves to compression forces in the digging and propagation directions change upon sexual maturation to follow their function and depend on environmental conditions. In addition, mature females, which lay eggs, have stiffer valves, up to approximately 19 times the stiffness of the pre-mature locusts. The valves are stiffer in the major working direction, corresponding to soil shuffling and compression, compared with the direction of propagation. Hydration of the valves reduces their stiffness but increases their resilience against failure. These findings provide mechanical and materials guidelines for the design of novel non-drilling burrowing tools, including three-dimensionally printed anisotropic materials based on composites
Collapse
Affiliation(s)
- Rakesh Das
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shmuel Gershon
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Maryam Tadayon
- Technische Universität Dresden, B CUBE-Center for Molecular Bioengineering, Dresden 01307, Germany.,Department of Biomaterials, Germany Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Amir Ayali
- School of Zoology, Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Vu H, Woodcock JW, Krishnamurthy A, Obrzut J, Gilman JW, Coughlin EB. Visualization of Polymer Dynamics in Cellulose Nanocrystal Matrices Using Fluorescence Lifetime Measurements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10793-10804. [PMID: 35179343 DOI: 10.1021/acsami.1c21906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer nanocomposites containing self-assembled cellulose nanocrystals (CNCs) are ideal for advanced applications requiring both strength and toughness as the helicoidal structure of the CNCs deflects crack propagation and the polymer matrix dissipates impact energy. However, any adsorbed water layer surrounding the CNCs may compromise the interfacial adhesion between the polymer matrix and the CNCs, thus impacting stress transfer at that interface. Therefore, it is critical to study the role of water at the interface in connecting the polymer dynamics and the resulting mechanical performance of the nanocomposite. Here, we explore the effect of polymer confinement and water content on polymer dynamics in CNC nanocomposites by covalently attaching a fluorogenic water-sensitive dye to poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), to provide insights into the observed mechanical performance. Utilizing fluorescence lifetime imaging microscopy (FLIM), the lifetime of dye fluorescence decay was measured to probe the polymer chain dynamics of PMEO2MA in CNC nanocomposite films. The PMEO2MA chains experienced distinct regions of differing dynamics within Bouligand structures. A correlation was observed between the average fluorescence lifetime and the mechanical performance of CNC films, indicating that polymer chains with high mobility improved the strain and toughness. These studies demonstrated FLIM as a method to investigate polymer dynamics at the nanosecond timescale that can readily be applied to other composite systems.
Collapse
Affiliation(s)
- Huyen Vu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jeremiah W Woodcock
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Ajay Krishnamurthy
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Jan Obrzut
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Jeffrey W Gilman
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - E Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Aghaei A, Bochud N, Rosi G, Grossman Q, Ruffoni D, Naili S. Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1490. [PMID: 35364905 DOI: 10.1121/10.0009630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Functional grading is a distinctive feature adopted by nature to improve the transition between tissues that present a strong mismatch in mechanical properties, a relevant example being the tendon-to-bone attachment. Recent progress in multi-material additive manufacturing now allows for the design and fabrication of bioinspired functionally graded soft-to-hard composites. Nevertheless, this emerging technology depends on several design variables, including both material and mechanistic ingredients, that are likely to affect the mechanical performance of such composites. In this paper, a model-based approach is developed to describe the interaction of ultrasound waves with homogeneous and heterogeneous additively manufactured samples, which respectively display a variation either of the material ingredients (e.g., ratio of the elementary constituents) or of their spatial arrangement (e.g., functional gradients, damage). Measurements are performed using longitudinal bulk waves, which are launched and detected using a linear transducer array. First, model is calibrated by exploiting the signals measured on the homogeneous samples, which allow identifying relationships between the model parameters and the material composition. Second, the model is validated by comparing the signals measured on the heterogeneous samples with those predicted numerically. Overall, the reported results pave the way for characterizing and optimizing multi-material systems that display complex bioinspired features.
Collapse
Affiliation(s)
- Ali Aghaei
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Nicolas Bochud
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Quentin Grossman
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, B-4000 Liège, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, B-4000 Liège, Belgium
| | - Salah Naili
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| |
Collapse
|
30
|
Zhao H, Cheng X, Wu C, Liu TL, Zhao Q, Li S, Ni X, Yao S, Han M, Huang Y, Zhang Y, Rogers JA. Mechanically Guided Hierarchical Assembly of 3D Mesostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109416. [PMID: 35067974 DOI: 10.1002/adma.202109416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/01/2022] [Indexed: 06/14/2023]
Abstract
3D, hierarchical micro/nanostructures formed with advanced functional materials are of growing interest due to their broad potential utility in electronics, robotics, battery technology, and biomedical engineering. Among various strategies in 3D micro/nanofabrication, a set of methods based on compressive buckling offers wide-ranging material compatibility, fabrication scalability, and precise process control. Previously reports on this type of approach rely on a single, planar prestretched elastomeric platform to transform thin-film precursors with 2D layouts into 3D architectures. The simple planar configuration of bonding sites between these precursors and their assembly substrates prevents the realization of certain types of complex 3D geometries. In this paper, a set of hierarchical assembly concepts is reported that leverage multiple layers of prestretched elastomeric substrates to induce not only compressive buckling of 2D precursors bonded to them but also of themselves, thereby creating 3D mesostructures mounted at multiple levels of 3D frameworks with complex, elaborate configurations. Control over strains used in these processes provides reversible access to multiple different 3D layouts in a given structure. Examples to demonstrate these ideas through both experimental and computational results span vertically aligned helices to closed 3D cages, selected for their relevance to 3D conformal bio-interfaces and multifunctional microsystems.
Collapse
Affiliation(s)
- Hangbo Zhao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qinai Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Shenglian Yao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
31
|
Valle R, Pincheira G, Tuninetti V, Fernandez E, Uribe-Lam E. Design and Characterization of Asymmetric Cell Structure of Auxetic Material for Predictable Directional Mechanical Response. MATERIALS 2022; 15:ma15051841. [PMID: 35269072 PMCID: PMC8911980 DOI: 10.3390/ma15051841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
A three-dimensional auxetic structure based on a known planar configuration including a design parameter producing asymmetry is proposed in this study. The auxetic cell is designed by topology analysis using classical Timoshenko beam theory in order to obtain the required orthotropic elastic properties. Samples of the structure are fabricated using the ABSplus fused filament technique and subsequently tested under quasi-static compression to statistically determine the Poisson’s ratio and Young’s modulus. The experimental results show good agreement with the topological analysis and reveal that the proposed structure can adequately provide different elastic properties in its three orthogonal directions. In addition, three point bending tests were carried out to determine the mechanical behavior of this cellular structure. The results show that this auxetic cell influences the macrostructure to exhibit different stiffness behavior in three working directions.
Collapse
Affiliation(s)
- Rodrigo Valle
- Faculty of Engineering, University of Talca, Talca 3340000, Chile;
| | - Gonzalo Pincheira
- Department of Industrial Technologies, Faculty of Engineering, University of Talca, Talca 3340000, Chile
- Correspondence:
| | - Víctor Tuninetti
- Department of Mechanical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Eduardo Fernandez
- Department of Aerospace and Mechanical Engineering, University of Liege, 4000 Liege, Belgium;
| | - Esmeralda Uribe-Lam
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro 76130, Mexico;
| |
Collapse
|
32
|
Chen J, Liu X, Tian Y, Zhu W, Yan C, Shi Y, Kong LB, Qi HJ, Zhou K. 3D-Printed Anisotropic Polymer Materials for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102877. [PMID: 34699637 DOI: 10.1002/adma.202102877] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Anisotropy is the characteristic of a material to exhibit variations in its mechanical, electrical, thermal, optical properties, etc. along different directions. Anisotropic materials have attracted great research interest because of their wide applications in aerospace, sensing, soft robotics, and tissue engineering. 3D printing provides exceptional advantages in achieving controlled compositions and complex architecture, thereby enabling the manufacture of 3D objects with anisotropic functionalities. Here, a comprehensive review of the recent progress on 3D printing of anisotropic polymer materials based on different techniques including material extrusion, vat photopolymerization, powder bed fusion, and sheet lamination is presented. The state-of-the-art strategies implemented in manipulating anisotropic structures are highlighted with the discussion of material categories, functionalities, and potential applications. This review is concluded with analyzing the current challenges and providing perspectives for further development in this field.
Collapse
Affiliation(s)
- Jiayao Chen
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaojiang Liu
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Zhu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ling Bing Kong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hang Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
33
|
A framework for the sustainability implications of 3D bioprinting through nature-inspired materials and structures. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Gancheva T, Li Y, Pilon D, Gauthier M, Akbarzadeh A, Favis BD. Post‐extrusion process for the robust preparation of highly uniform multiphase polymeric
3D
printing filaments. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Teodora Gancheva
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| | - Youjian Li
- AM3L Laboratory, Department of Bioresource Engineering McGill University Montréal Québec Canada
| | - Daniel Pilon
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| | - Matthieu Gauthier
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| | - Abdolhamid Akbarzadeh
- AM3L Laboratory, Department of Bioresource Engineering McGill University Montréal Québec Canada
- Department of Mechanical Engineering McGill University Montreal Québec Canada
| | - Basil D. Favis
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| |
Collapse
|
35
|
Li J, Wu M, Chen W, Liu H, Tan D, Shen S, Lei Y, Xue L. 3D printing of bioinspired compartmentalized capsular structure for controlled drug release. J Zhejiang Univ Sci B 2021; 22:1022-1033. [PMID: 34904414 DOI: 10.1631/jzus.b2100644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Drug delivery with customized combinations of drugs, controllable drug dosage, and on-demand release kinetics is critical for personalized medicine. In this study, inspired by successive opening of layered structures and compartmentalized structures in plants, we designed a multiple compartmentalized capsular structure for controlled drug delivery. The structure was designed as a series of compartments, defined by the gradient thickness of their external walls and internal divisions. Based on the careful choice and optimization of bioinks composed of gelatin, starch, and alginate, the capsular structures were successfully manufactured by fused deposition modeling three-dimensional (3D) printing. The capsules showed fusion and firm contact between printed layers, forming complete structures without significant defects on the external walls and internal joints. Internal cavities with different volumes were achieved for different drug loading as designed. In vitro swelling demonstrated a successive dissolving and opening of external walls of different capsule compartments, allowing successive drug pulses from the capsules, resulting in the sustained release for about 410 min. The drug release was significantly prolonged compared to a single burst release from a traditional capsular design. The bioinspired design and manufacture of multiple compartmentalized capsules enable customized drug release in a controllable fashion with combinations of different drugs, drug doses, and release kinetics, and have potential for use in personalized medicine.
Collapse
Affiliation(s)
- Jingwen Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Mingxin Wu
- The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Wenhui Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Haiyang Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Di Tan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Shengnan Shen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. ,
| | - Yifeng Lei
- The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.,The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Raheem AA, Hameed P, Whenish R, Elsen RS, G A, Jaiswal AK, Prashanth KG, Manivasagam G. A Review on Development of Bio-Inspired Implants Using 3D Printing. Biomimetics (Basel) 2021; 6:65. [PMID: 34842628 PMCID: PMC8628669 DOI: 10.3390/biomimetics6040065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.
Collapse
Affiliation(s)
- Ansheed A. Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Pearlin Hameed
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Ruban Whenish
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Renold S. Elsen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Aswin G
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Science, Jahnstrasse 12, 8700 Leoben, Austria
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| |
Collapse
|
37
|
Mohammadi P, Gandier J, Nonappa, Wagermaier W, Miserez A, Penttilä M. Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102658. [PMID: 34467572 PMCID: PMC11469223 DOI: 10.1002/adma.202102658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact-resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self-assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self-assembly and engineering of its constitutive protein building blocks.
Collapse
Affiliation(s)
| | - Julie‐Anne Gandier
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16100EspooFI‐16100Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 6TampereFI‐33720Finland
| | - Wolfgang Wagermaier
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat)School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore639798Singapore
- School of Biological Sciences60 Nanyang Drive, NTUSingapore637551Singapore
| | - Merja Penttilä
- VTT Technical Research Centre of Finland LtdVTTEspooFI‐02044Finland
| |
Collapse
|
38
|
Wang C, Lv Z, Mohan MP, Cui Z, Liu Z, Jiang Y, Li J, Wang C, Pan S, Karim MF, Liu AQ, Chen X. Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102131. [PMID: 34431137 DOI: 10.1002/adma.202102131] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Microwave-invisible devices are emerging as a valuable technology in various applications, including soft robotics, shape-morphing structures, and textural camouflages, especially in electronic countermeasures. Unfortunately, conventional microwave-absorbing metastructures and bulk absorbers are stretching confined, limiting their application in deformable or special-shaped targets. To overcome such limitations, a conceptually novel soft-rigid-connection strategy, inspired by the pangolin, is proposed. Pangolin-inspired metascale (PIMS), which is a kind of stretchable metamaterial consisting of an electromagnetic dissipative scale (EMD-scale) and elastomer, is rationally designed. Such a device exhibits robust microwave-absorbing capacity under the interference of 50% stretching. Besides, profiting from the covering effect and size-confined effect of EMD-scale, the out-of-plane indentation failure force of PIMS is at least 5 times larger than conventional device. As a proof of concept, the proposed device is conformally pasted on nondevelopable surfaces. For a spherical dome surface, the maximum radar cross-section (RCS) reduction of PIMS is 6.3 dB larger than that of a conventional device, while for a saddle surface, the bandwidth of 10 dB RCS reduction exhibits an increase of 83%. In short, this work provides a conceptually novel platform to develop stretchable, nondevelopable surface conformable functional devices.
Collapse
Affiliation(s)
- Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhisheng Lv
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Manoj Prabhakar Mohan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhihua Liu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiaofu Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Cong Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaowu Pan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Muhammad Faeyz Karim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
39
|
Modeling Bioinspired Fish Scale Designs via a Geometric and Numerical Approach. MATERIALS 2021; 14:ma14185378. [PMID: 34576605 PMCID: PMC8467489 DOI: 10.3390/ma14185378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Fish scales serve as a natural dermal armor with remarkable flexibility and puncture resistance. Through studying fish scales, researchers can replicate these properties and tune them by adjusting their design parameters to create biomimetic scales. Overlapping scales, as seen in elasmoid scales, can lead to complex interactions between each scale. These interactions are able to maintain the stiffness of the fish's structure with improved flexibility. Hence, it is important to understand these interactions in order to design biomimetic fish scales. Modeling the flexibility of fish scales, when subject to shear loading across a substrate, requires accounting for nonlinear relations. Current studies focus on characterizing these kinematic linear and nonlinear regions but fall short in modeling the kinematic phase shift. Here, we propose an approach that will predict when the linear-to-nonlinear transition will occur, allowing for more control of the overall behavior of the fish scale structure. Using a geometric analysis of the interacting scales, we can model the flexibility at the transition point where the scales start to engage in a nonlinear manner. The validity of these geometric predictions is investigated through finite element analysis. This investigation will allow for efficient optimization of scale-like designs and can be applied to various applications.
Collapse
|
40
|
Grewal MG, Highley CB. Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomater Sci 2021; 9:4228-4245. [PMID: 33522527 PMCID: PMC8205946 DOI: 10.1039/d0bm01588a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The extracellular matrix (ECM) is a water-swollen, tissue-specific material environment in which biophysiochemical signals are organized and influence cell behaviors. Electrospun nanofibrous substrates have been pursued as platforms for tissue engineering and cell studies that recapitulate features of the native ECM, in particular its fibrous nature. In recent years, progress in the design of electrospun hydrogel systems has demonstrated that molecular design also enables unique studies of cellular behaviors. In comparison to the use of hydrophobic polymeric materials, electrospinning hydrophilic materials that crosslink to form hydrogels offer the potential to achieve the water-swollen, nanofibrous characteristics of endogenous ECM. Although electrospun hydrogels require an additional crosslinking step to stabilize the fibers (allowing fibers to swell with water instead of dissolving) in comparison to their hydrophobic counterparts, researchers have made significant advances in leveraging hydrogel chemistries to incorporate biochemical and dynamic functionalities within the fibers. Consequently, dynamic biophysical and biochemical properties can be engineered into hydrophilic nanofibers that would be difficult to engineer in hydrophobic systems without strategic and sometimes intensive post-processing techniques. This Review describes common methodologies to control biophysical and biochemical properties of both electrospun hydrophobic and hydrogel nanofibers, with an emphasis on highlighting recent progress using hydrogel nanofibers with engineered dynamic complexities to develop culture systems for the study of biological function, dysfunction, development, and regeneration.
Collapse
Affiliation(s)
- M Gregory Grewal
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | | |
Collapse
|
41
|
Grewal MG, Gray VP, Letteri RA, Highley CB. User-defined, temporal presentation of bioactive molecules on hydrogel substrates using supramolecular coiled coil complexes. Biomater Sci 2021; 9:4374-4387. [PMID: 34076655 DOI: 10.1039/d1bm00016k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to spatiotemporally control the presentation of relevant biomolecules in synthetic culture systems has gained significant attention as researchers strive to recapitulate the endogenous extracellular matrix (ECM) in vitro. With the biochemical composition of the ECM constantly in flux, the development of platforms that allow for user-defined control of bioactivity is desired. Here, we reversibly conjugate bioactive molecules to hydrogel-based substrates through supramolecular coiled coil complexes that form between complementary peptides. Our system employs a thiolated peptide for tethering to hydrogel surfaces (T-peptide) through a spatially-controlled photomediated click reaction. The complementary association peptide (A-peptide), containing the bioactive domain, forms a heterodimeric coiled coil complex with the T-peptide. Addition of a disruptor peptide (D-peptide) engineered specifically to target the A-peptide outcompetes the T-peptide for binding, and removes the A-peptide and the attached bioactive motif from the scaffold. We use this platform to demonstrate spatiotemporal control of biomolecule presentation within hydrogel systems in a repeatable process that can be extended to adhesive motifs for cell culture. NIH 3T3 fibroblasts seeded on hyaluronic acid hydrogels and polyethylene glycol-based fibrous substrates supramolecularly functionalized with an RGD motif demonstrated significant cell spreading over their nonfunctionalized counterparts. Upon displacement of the RGD motif, fibroblasts occupied less area and clustured on the substrates. Taken together, this platform enables facile user-defined incorporation and removal of biomolecules in a repeatable process for controlled presentation of bioactivity in engineered culture systems.
Collapse
Affiliation(s)
- M Gregory Grewal
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | - Vincent P Gray
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | - Christopher B Highley
- Department of Chemical Engineering, University of Virginia, VA 22903, USA. and Department of Biomedical Engineering, University of Virginia, VA 22903, USA
| |
Collapse
|
42
|
Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021; 372:372/6545/eabg1487. [PMID: 34045326 DOI: 10.1126/science.abg1487] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Laser-metal additive manufacturing capabilities have advanced from single-material printing to multimaterial/multifunctional design and manufacturing. Material-structure-performance integrated additive manufacturing (MSPI-AM) represents a path toward the integral manufacturing of end-use components with innovative structures and multimaterial layouts to meet the increasing demand from industries such as aviation, aerospace, automobile manufacturing, and energy production. We highlight two methodological ideas for MSPI-AM-"the right materials printed in the right positions" and "unique structures printed for unique functions"-to realize major improvements in performance and function. We establish how cross-scale mechanisms to coordinate nano/microscale material development, mesoscale process monitoring, and macroscale structure and performance control can be used proactively to achieve high performance with multifunctionality. MSPI-AM exemplifies the revolution of design and manufacturing strategies for AM and its technological enhancement and sustainable development.
Collapse
Affiliation(s)
- Dongdong Gu
- Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Xinyu Shi
- Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Reinhart Poprawe
- Chair for Laser Technology LLT, RWTH Aachen/Fraunhofer Institute for Laser Technology ILT, D-52074 Aachen, Germany
| | - David L Bourell
- Laboratory for Freeform Fabrication, Mechanical Engineering Department, University of Texas, Austin, TX 78712, USA
| | - Rossitza Setchi
- High-Value Manufacturing, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Jihong Zhu
- State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xian 710072, China
| |
Collapse
|
43
|
Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel) 2021; 13:1852. [PMID: 34199641 PMCID: PMC8199729 DOI: 10.3390/polym13111852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate (ALG), a polysaccharide derived from brown seaweed, has been extensively investigated as a biomaterial not only in tissue engineering but also for numerous biomedical sciences owing to its wide availability, good compatibility, weak cytotoxicity, low cost, and ease of gelation. Nevertheless, alginate lacks cell-binding sites, limiting long-term cell survival and viability in 3D culture. Collagen (Col), a major component protein found in the extracellular matrix (ECM), exhibits excellent biocompatibility and weak immunogenicity. Furthermore, collagen contains cell-binding motifs, which facilitate cell attachment, interaction, and spreading, consequently maintaining cell viability and promoting cell proliferation. Recently, there has been a growing body of investigations into collagen-based hydrogel trying to overcome the poor mechanical properties of collagen. In particular, collagen-alginate composite (CAC) hydrogel has attracted much attention due to its excellent biocompatibility, gelling under mild conditions, low cytotoxicity, controllable mechanic properties, wider availability as well as ease of incorporation of other biomaterials and bioactive agents. This review aims to provide an overview of the properties of alginate and collagen. Moreover, the application of CAC hydrogel in tissue engineering and biomedical sciences is also discussed.
Collapse
Affiliation(s)
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
44
|
Ingrole A, Aguirre TG, Fuller L, Donahue SW. Bioinspired energy absorbing material designs using additive manufacturing. J Mech Behav Biomed Mater 2021; 119:104518. [PMID: 33882409 DOI: 10.1016/j.jmbbm.2021.104518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/28/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Nature provides many biological materials and structures with exceptional energy absorption capabilities. Few, relatively simple molecular building blocks (e.g., calcium carbonate), which have unremarkable intrinsic mechanical properties individually, are used to produce biopolymer-bioceramic composites with unique hierarchical architectures, thus producing biomaterial-architectures with extraordinary mechanical properties. Several biomaterials have inspired the design and manufacture of novel material architectures to address various engineering problems requiring high energy absorption capabilities. For example, the microarchitecture of seashell nacre has inspired multi-material 3D printed architectures that outperform the energy absorption capabilities of monolithic materials. Using the hierarchical architectural features of biological materials, iterative design approaches using simulation and experimentation are advancing the field of bioinspired material design. However, bioinspired architectures are still challenging to manufacture because of the size scale and architectural hierarchical complexity. Notwithstanding, additive manufacturing technologies are advancing rapidly, continually providing researchers improved abilities to fabricate sophisticated bioinspired, hierarchical designs using multiple materials. This review describes the use of additive manufacturing for producing innovative synthetic materials specifically for energy absorption applications inspired by nacre, conch shell, shrimp shell, horns, hooves, and beetle wings. Potential applications include athletic prosthetics, protective head gear, and automobile crush zones.
Collapse
Affiliation(s)
- Aniket Ingrole
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Trevor G Aguirre
- Manufacturing Science Division, Energy Science and Technology Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luca Fuller
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Vallejos Baier R, Contreras Raggio JI, Toro Arancibia C, Bustamante M, Pérez L, Burda I, Aiyangar A, Vivanco JF. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111945. [PMID: 33812577 DOI: 10.1016/j.msec.2021.111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3D-scaffolds, which are utilized for tissue regeneration purposes. The objective of this study is to assess a low-cost/open-source 3D printer (In-House), by manufacturing both solid and porous samples with relevant microarchitecture in the physiological range (100-500 μm pore size), using an equivalent commercial counterpart for comparison. For this, compressive tests in solid and porous scaffolds manufactured in both printers were performed, comparing the results with finite element analysis (FEA) models. Additionally, a microarchitectural analysis was done in samples from both printers, comparing the measurements of both pore size and porosity to their corresponding computer-aided design (CAD) models. Moreover, a preliminary biological assessment was performed using scaffolds from our In-House printer, measuring cell adhesion efficiency. Finally, Fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR) was performed to evaluate chemical changes in the material (polylactic acid) after fabrication in each printer. The results show that the In-House printer achieved generally better mechanical behavior and resolution capacity than its commercial counterpart, by comparing with their FEA and CAD models, respectively. Moreover, a preliminary biological assessment indicates the feasibility of the In-House printer to be used in tissue engineering applications. The results also show the influence of pore geometry on mechanical properties of 3D-scaffolds and demonstrate that properties such as the apparent elastic modulus (Eapp) can be controlled in 3D-printed scaffolds.
Collapse
Affiliation(s)
- Raúl Vallejos Baier
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile.
| | | | | | - Miguel Bustamante
- Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile.
| | - Luis Pérez
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Iurii Burda
- Mechanical Systems Engineering, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Ameet Aiyangar
- Mechanical Systems Engineering, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland; Department of Orthopaedic Surgery, University of Pittsburgh, USA.
| | - Juan F Vivanco
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile.
| |
Collapse
|
46
|
Hu Y. Recent progress in field-assisted additive manufacturing: materials, methodologies, and applications. MATERIALS HORIZONS 2021; 8:885-911. [PMID: 34821320 DOI: 10.1039/d0mh01322f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to its advantages of freedom to design, improved material utilization, and shortened lead time, additive manufacturing (AM) has the potential to redefine manufacturing after years of evolvement and opens new avenues to produce customized and complex-shaped products. Despite these benefits, AM still suffers problems stemmed from limited material selection, anisotropic material property, low production speed, coarse resolution, etc. In response to these problems, extensive attention has been drawn on integrating AM with fields, which mainly include magnetic field (MF), electric field (EF), and acoustic field (AF). These fields have been proved to be effective in tailoring microstructures, enhancing mechanical properties, focusing and sorting cells, serving as stimuli, etc., thus providing new opportunities to address existing problems and enable new functionalities of AM technologies. This paper presents a review on recent developments and major advances in MF-, EF-, and AF-assisted AM technologies and 4D printing method from aspects of materials, methodologies, and applications. In addition, current challenges and future trends of field-assisted AM technologies and 4D printing method are also outlined and discussed.
Collapse
Affiliation(s)
- Yingbin Hu
- Mechanical and Manufacturing Engineering Department, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
47
|
The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach. Polymers (Basel) 2021; 13:polym13040545. [PMID: 33673299 PMCID: PMC7917676 DOI: 10.3390/polym13040545] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.
Collapse
|
48
|
Wang F, Du Y, Jiao D, Zhang J, Zhang Y, Liu Z, Zhang Z. Wood-Inspired Cement with High Strength and Multifunctionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2000096. [PMID: 33552847 PMCID: PMC7856898 DOI: 10.1002/advs.202000096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/23/2020] [Indexed: 05/29/2023]
Abstract
Taking lessons from nature offers an increasing promise toward improved performance in man-made materials. Here new cement materials with unidirectionally porous architectures are developed by replicating the designs of natural wood using a simplified ice-templating technique in light of the retention of ice-templated architectures by utilizing the self-hardening nature of cement. The wood-like cement exhibits higher strengths at equal densities than other porous cement-based materials along with unique multifunctional properties, including effective thermal insulation at the transverse profile, controllable water permeability along the vertical direction, and the easy adjustment to be water repulsive by hydrophobic treatment. The strengths are quantitatively interpreted by discerning the effects of differing types of pores using an equivalent element approach. The simultaneous achievement of high strength and multifunctionality makes the wood-like cement promising for applications as new building materials, and verifies the effectiveness of wood-mimetic designs in creating new high-performance materials. The simple fabrication procedure by omitting the freeze-drying treatment can also promote a better efficiency of ice-templating technique for the mass production in engineering and may be extended to other material systems.
Collapse
Affiliation(s)
- Faheng Wang
- Shi‐Changxu Innovation Center for Advanced MaterialsInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
- Jihua LaboratoryFoshan528200China
| | - Yuanbo Du
- School of Transportation Science and EngineeringHarbin Institute of TechnologyHarbin150090China
| | - Da Jiao
- Shi‐Changxu Innovation Center for Advanced MaterialsInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Jian Zhang
- Shi‐Changxu Innovation Center for Advanced MaterialsInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Yuan Zhang
- Shi‐Changxu Innovation Center for Advanced MaterialsInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Zengqian Liu
- Shi‐Changxu Innovation Center for Advanced MaterialsInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhefeng Zhang
- Shi‐Changxu Innovation Center for Advanced MaterialsInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
49
|
Huang L, An Q, Geng L, Wang S, Jiang S, Cui X, Zhang R, Sun F, Jiao Y, Chen X, Wang C. Multiscale Architecture and Superior High-Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000688. [PMID: 32705727 DOI: 10.1002/adma.202000688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Discontinuously reinforced titanium matrix composites (DRTMCs), as one of the most important metal matrix composites (MMCs), are expected to exhibit high strength, elastic modulus, high-temperature endurability, wear resistance, isotropic property, and formability. Recent innovative research shows that tailoring the reinforcement network distribution totally differently from the conventional homogeneous distribution can not only improve the strengthening effect but also resolve the dilemma of DRTMCs with poor tensile ductility. Based on the network architecture, multiscale architecture, for example, two-scale network and laminate-network microstructure can further inspire superior strength, creep, and oxidation resistance at elevated temperatures. Herein, the most recent developments, which include the design, fabrication, microstructure, high-temperature performance, strengthening mechanisms, and future research opportunities for DRTMCs with multiscale architecture, are captured. In this regard, the service temperature can be increased by 200 °C, and the creep rupture time by 59-fold compared with those of conventional titanium alloys, which can meet the urgent demands of lightweight nickel-based structural materials and potentially replace nickel base superalloys at 600-800 °C to reduce weight by 45%. In fact, multiscale architecture design strategy will also favorably open a new era in the research of extensive metallic materials for improved performances.
Collapse
Affiliation(s)
- Lujun Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, P.O. Box 433, Harbin, 150001, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qi An
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lin Geng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, P.O. Box 433, Harbin, 150001, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shuai Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shan Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiping Cui
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Rui Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fengbo Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yang Jiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cunyu Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
50
|
Zorzetto L, Andena L, Briatico-Vangosa F, De Noni L, Thomassin JM, Jérôme C, Grossman Q, Mertens A, Weinkamer R, Rink M, Ruffoni D. Properties and role of interfaces in multimaterial 3D printed composites. Sci Rep 2020; 10:22285. [PMID: 33335195 PMCID: PMC7747733 DOI: 10.1038/s41598-020-79230-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In polyjet printing photopolymer droplets are deposited on a build tray, leveled off by a roller and cured by UV light. This technique is attractive to fabricate heterogeneous architectures combining compliant and stiff constituents. Considering the layer-by-layer nature, interfaces between different photopolymers can be formed either before or after UV curing. We analyzed the properties of interfaces in 3D printed composites combining experiments with computer simulations. To investigate photopolymer blending, we characterized the mechanical properties of the so-called digital materials, obtained by mixing compliant and stiff voxels according to different volume fractions. We then used nanoindentation to measure the spatial variation in mechanical properties across bimaterial interfaces at the micrometer level. Finally, to characterize the impact of finite-size interfaces, we fabricated and tested composites having compliant and stiff layers alternating along different directions. We found that interfaces formed by deposition after curing were sharp whereas those formed before curing showed blending of the two materials over a length scale bigger than individual droplet size. We found structural and functional differences of the layered composites depending on the printing orientation and corresponding interface characteristics, which influenced deformation mechanisms. With the wide dissemination of 3D printing techniques, our results should be considered in the development of architectured materials with tailored interfaces between building blocks.
Collapse
Affiliation(s)
- Laura Zorzetto
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, 4000, Liège, Belgium
| | - Luca Andena
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico Di Milano, Milan, Italy
| | | | - Lorenzo De Noni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico Di Milano, Milan, Italy
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules, University of Liège, Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, University of Liège, Liège, Belgium
| | - Quentin Grossman
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, 4000, Liège, Belgium
| | - Anne Mertens
- Metallic Materials Science Unit, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Marta Rink
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico Di Milano, Milan, Italy
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, 4000, Liège, Belgium.
| |
Collapse
|