1
|
Sugawa K, Ono K, Tomii R, Hori Y, Aoki Y, Honma K, Tamada K, Otsuki J. Development of Au Nanoparticle Two-Dimensional Assemblies Dispersed with Au Nanoparticle-Nanostar Complexes and Surface-Enhanced Raman Scattering Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:764. [PMID: 38727358 PMCID: PMC11085563 DOI: 10.3390/nano14090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
We recently found that polyvinylpyrrolidone (PVP)-protected metal nanoparticles dispersed in water/butanol mixture spontaneously float to the air/water interface and form two-dimensional assemblies due to classical surface excess theory and Rayleigh-Bénard-Marangoni convection induced by butanol evaporation. In this study, we found that by leveraging this principle, a unique structure is formed where hetero gold nanospheres (AuNPs)/gold nanostars (AuNSs) complexes are dispersed within AuNP two-dimensional assemblies, obtained from a mixture of polyvinylpyrrolidone-protected AuNPs and AuNSs that interact electrostatically with the AuNPs. These structures were believed to form as a result of AuNPs/AuNSs complexes formed in the water/butanol mixture floating to the air/water interface and being incorporated into the growth of AuNP two-dimensional assemblies. These structures were obtained by optimizing the amount of mixed AuNSs, with excessive addition resulting in the formation of random three-dimensional network structures. The AuNP assemblies dispersed with AuNPs/AuNSs complexes exhibited significantly higher Raman (surface-enhanced resonance Raman scattering: SERRS) activity compared to simple AuNP assemblies, while the three-dimensional network structure did not show significant SERRS activity enhancement. These results demonstrate the excellent SERRS activity of AuNP two-dimensional assemblies dispersed with hetero AuNPs/AuNSs complexes.
Collapse
Affiliation(s)
- Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kaichi Ono
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Ritsurai Tomii
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Yuka Hori
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Yu Aoki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Koki Honma
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| |
Collapse
|
2
|
Kim K, Sherman ZM, Cleri A, Chang WJ, Maria JP, Truskett TM, Milliron DJ. Hierarchically Doped Plasmonic Nanocrystal Metamaterials. NANO LETTERS 2023; 23:7633-7641. [PMID: 37558214 PMCID: PMC10450817 DOI: 10.1021/acs.nanolett.3c02231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Assembling plasmonic nanocrystals in regular superlattices can produce effective optical properties not found in homogeneous materials. However, the range of these metamaterial properties is limited when a single nanocrystal composition is selected for the constituent meta-atoms. Here, we show how continuously varying doping at two length scales, the atomic and nanocrystal scales, enables tuning of both the frequency and bandwidth of the collective plasmon resonance in nanocrystal-based metasurfaces, while these features are inextricably linked in single-component superlattices. Varying the mixing ratio of indium tin oxide nanocrystals with different dopant concentrations, we use large-scale simulations to predict the emergence of a broad infrared spectral region with near-zero permittivity. Experimentally, tunable reflectance and absorption bands are observed, owing to in- and out-of-plane collective resonances. These spectral features and the predicted strong near-field enhancement establish this multiscale doping strategy as a powerful new approach to designing metamaterials for optical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Zachary M. Sherman
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Angela Cleri
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Woo Je Chang
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Jon-Paul Maria
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas M. Truskett
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
- Department
of Physics, The University of Texas at Austin, 204 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Delia J. Milliron
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
- Department
of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
4
|
Yue X, Li J, Yan N, Jiang W. Entropically Driven Fabrication of Binary Superlattices Assembled from Polymer-Tethered Nanocubes and Nanospheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207984. [PMID: 36896998 DOI: 10.1002/smll.202207984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Indexed: 06/15/2023]
Abstract
The spontaneous organization of two types of nanoparticles (NPs) with different shapes or properties into binary nanoparticle superlattices (BNSLs) with different configurations has recently attracted significant attention due to the coupling or synergistic effect of the two types of NPs, providing an efficient and general route for designing new functional materials and devices. Here, this work reports the co-assembly of polystyrene (PS) tethered anisotropic gold nanocubes (AuNCs@PS) and isotropic gold NPs (AuNPs@PS) via an emulsion-interface self-assembly strategy. The distributions and arrangements of the AuNCs and spherical AuNPs in the BNSLs can be precisely controlled by adjusting the effective size ratio (λeff ) of the effective diameter (deff ) of the embedded spherical AuNPs to the polymer gap size (L) between the neighboring AuNCs. λeff determines not only the change of the conformational entropy of the grafted polymer chains (∆Scon ) but also the mixing entropy (∆Smix ) of the two types of NPs. During the co-assembly process, ∆Smix tends to be as high as possible, and the -∆Scon tends to be as low as possible, leading to free energy minimization. As a result, well-defined BNSLs with controllable distributions of spherical and cubic NPs can be obtained by tuning λeff . This strategy can also be applied for other NPs with different shapes and atomic properties, thus largely enriching the BNSL library and enabling the fabrication of multifunctional BNSLs, which have potential applications in photothermal therapy, surface-enhanced Raman scattering, and catalysis.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jinlan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Sherman ZM, Kim K, Kang J, Roman BJ, Crory HSN, Conrad DL, Valenzuela SA, Lin E, Dominguez MN, Gibbs SL, Anslyn EV, Milliron DJ, Truskett TM. Plasmonic Response of Complex Nanoparticle Assemblies. NANO LETTERS 2023; 23:3030-3037. [PMID: 36989531 DOI: 10.1021/acs.nanolett.3c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Optical properties of nanoparticle assemblies reflect distinctive characteristics of their building blocks and spatial organization, giving rise to emergent phenomena. Integrated experimental and computational studies have established design principles connecting the structure to properties for assembled clusters and superlattices. However, conventional electromagnetic simulations are too computationally expensive to treat more complex assemblies. Here we establish a fast, materials agnostic method to simulate the optical response of large nanoparticle assemblies incorporating both structural and compositional complexity. This many-bodied, mutual polarization method resolves limitations of established approaches, achieving rapid, accurate convergence for configurations including thousands of nanoparticles, with some overlapping. We demonstrate these capabilities by reproducing experimental trends and uncovering far- and near-field mechanisms governing the optical response of plasmonic semiconductor nanocrystal assemblies including structurally complex gel networks and compositionally complex mixed binary superlattices. This broadly applicable framework will facilitate the design of complex, hierarchically structured, and dynamic assemblies for desired optical characteristics.
Collapse
Affiliation(s)
- Zachary M Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Kihoon Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Hannah S N Crory
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Diana L Conrad
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Stephanie A Valenzuela
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Emily Lin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Manuel N Dominguez
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Stephen L Gibbs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
- Department of Physics, University of Texas at Austin, Austin, 78712, Texas United States
| |
Collapse
|
6
|
Kang J, Sherman ZM, Crory HSN, Conrad DL, Berry MW, Roman BJ, Anslyn EV, Truskett TM, Milliron DJ. Modular mixing in plasmonic metal oxide nanocrystal gels with thermoreversible links. J Chem Phys 2023; 158:024903. [PMID: 36641404 DOI: 10.1063/5.0130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal-terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures.
Collapse
Affiliation(s)
- Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Zachary M Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hannah S N Crory
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Diana L Conrad
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Marina W Berry
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
7
|
Shin DI, Yoo SS, Park SH, Lee G, Bae WK, Kwon SJ, Yoo PJ, Yi GR. Percolated Plasmonic Superlattices of Nanospheres with 1 nm-Level Gap as High-Index Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203942. [PMID: 35867886 DOI: 10.1002/adma.202203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm-level exquisite control over the interparticle gap, which is challenging in a sub-wavelength NPs. Thus far, a large-area demonstration has been mostly discouraged. Here, heteroligand AuNPs are prepared, which are stable in oil but become Janus particles at the oil-water interface, called "adaptive Janus particles." NPs are bound at the interface and assembled into 2D arrays over square centimeters as toluene evaporates, which distinctively exhibits the RI tunability. In visible and NIR light, the 2D superstructures exhibit the highest-ever RI (≈7.8) with varying the size and interparticle gap of NPs, which is successfully explained by a plasmonic percolation model. Furthermore, fully solution-processable 2D plasmonic superstructures are proved to be advantageous in flexible photonic devices such as distributed Bragg reflectors.
Collapse
Affiliation(s)
- Dong-In Shin
- Sungkyun Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seong Hun Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gaehang Lee
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Wan Ki Bae
- Sungkyun Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Pil Jin Yoo
- Sungkyun Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
Wang L, Wang Q, Wang TQ, Zhao WM, Yin XY, Jiang JX, Zhang SS. Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit. NANOSCALE 2022; 14:6144-6151. [PMID: 35388826 DOI: 10.1039/d1nr08341d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the natural accumulation of radiation losses arising from the localization and random arrangement of nanoparticles, the figure of merit (FOM) of localized surface plasmon resonance (LSPR) sensors is usually very low (the value is usually less than 5 RIU-1). However, radiation losses of individual particles will be offset by adjusting the phase of the scattered field which is dependent on the structure parameters of arrays. Based on this, a two-dimensional periodic crescent nanoarray-based surface lattice resonance (SLR) sensor with a high FOM is proposed in this work. Some significant results have been obtained by mode field analysis and adjustment of structural parameters. On the one hand, the line-shape of the SLR spectrum is divided into a Fano-like line and a separate line. And the former usually has an FOM of 101 magnitude while the latter has an FOM of 103 magnitude. On the other hand, the relative size of the excitation wavelengths between SLR and LSPR is also vital. The FOM is higher but resonance depth decreases faster when the relative size increases. In this work, a full width at half-maximum (FWHM) of less than 0.5 nm and FOM of more than 1000 RIU-1 (the quality factor is more than 3000) are achieved by the proposed crescent nanoarrays. In addition, this structure demonstrates that plasmonic nanoarray-based SLR has enormous potential in trace substance detection.
Collapse
Affiliation(s)
- Lei Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Qi Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
- State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Tie-Qiang Wang
- College of Science, Northeastern University, Shenyang 110819, China
| | - Wan-Ming Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiang-Yu Yin
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Ju-Xin Jiang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Shu-Shuai Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
9
|
Landy KM, Gibson KJ, Urbach ZJ, Park SS, Roth EW, Weigand S, Mirkin CA. Programming "Atomic Substitution" in Alloy Colloidal Crystals Using DNA. NANO LETTERS 2022; 22:280-285. [PMID: 34978818 DOI: 10.1021/acs.nanolett.1c03742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although examples of colloidal crystal analogues to metal alloys have been reported, general routes for preparing 3D analogues to random substitutional alloys do not exist. Here, we use the programmability of DNA (length and sequence) to match nanoparticle component sizes, define parent lattice symmetry and substitutional order, and achieve faceted crystal habits. We synthesized substitutional alloy colloidal crystals with either ordered or random arrangements of two components (Au and Fe3O4 nanoparticles) within an otherwise identical parent lattice and crystal habit, confirmed via scanning electron microscopy and small-angle X-ray scattering. Energy dispersive X-ray spectroscopy reveals information regarding composition and local order, while the magnetic properties of Fe3O4 nanoparticles can direct different structural outcomes for different alloys in an applied magnetic field. This work constitutes a platform for independently defining substitution within multicomponent colloidal crystals, a capability that will expand the scope of functional materials that can be realized through programmable assembly.
Collapse
Affiliation(s)
- Kaitlin M Landy
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kyle J Gibson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Zachary J Urbach
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Sarah S Park
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Eric W Roth
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
10
|
Lin S, Guan H, Liu Y, Huang S, Li J, Hasi W, Xu Y, Zou J, Dong B. Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53289-53299. [PMID: 34704435 DOI: 10.1021/acsami.1c18565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tuning and controlling the plasmon coupling of noble metal nanoparticles are significant for enhancing their near-field and far-field responses. In this work, a novel heterogeneous plasmonic assembly with a controllable hot spot model was proposed by the conjugation of Au nanospheres (NSs) and Au@Ag core-shell nanocube (NC) films. Three hotspot configurations including point-to-point type, point-to-facet type, and facet-to-facet type were fabricated and transformed simply by adjusting the doping ratio of nanoparticles in the co-assembly film. Expectedly, the localized surface plasmon resonance (LSPR) property and surface-enhanced Raman scattering (SERS) performance of the binary assembly film exhibit distinct diversity due to the change in the hotspot conformation. Interestingly, the point-to-facet hotspot in hybrid assembly films can provide the most extraordinary enhancement for SERS behavior compared with single-component Au NS and Au@Ag NC plasmonic assemblies, which is further confirmed by the finite-different time-domain simulation results of dimer nanostructures. In addition, the two-dimensional binary assemblies of Au NS doping in Au@Ag NCs with excellent sensitivity and high reproducibility were successfully applied in the identification of ketamine. This work opens a new avenue toward the fabrication of plasmonic metal materials with collective LSPR properties and sensitive SERS behavior.
Collapse
Affiliation(s)
- Shuang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Haoyu Guan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Yuqi Liu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Shinian Huang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Junming Li
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
| | - Yizhuo Xu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150080, China
| | - Jixin Zou
- The Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
11
|
Yong Z, Yap LW, Fu R, Shi Q, Guo Z, Cheng W. Seagrass-inspired design of soft photocatalytic sheets based on hydrogel-integrated free-standing 2D nanoassemblies of multifunctional nanohexagons. MATERIALS HORIZONS 2021; 8:2533-2540. [PMID: 34870300 DOI: 10.1039/d1mh00753j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural leaves are virtually two-dimensional (2D) flexible photocatalytic system. In particular, seagrass can efficiently harvest low-intensity sunlight to drive photochemical reactions continuously in an aqueous solution. To mimic this process, we present a novel 2D hydrogel-integrated photocatalytic sheet based on free-standing nanoassemblies of multifunctional nanohexagons (mNHs). The mNHs building blocks is made of plasmonic gold nanohexagons (NHs) decorated with Pd nanoparticles in the corners and CdS nanoparticles throughout their exposed surfaces. The mNHs can self-assemble into free-standing 2D nanoassemblies and be integrated with thin hydrogel films, which can catalyze chemical reactions under visible light illumination. Hydrogels are translucent, porous, and soft, allowing for continuous photochemical conversion in an aqueous environment. Using methylene blue (MB) as a model system, we demonstrate a soft seagrass-like photodegradation design, which offers high efficiency, continuous operation without the need of catalyst regeneration, and omnidirectional light-harvesting capability under low-intensity sunlight irradiation, defying their rigid substrate-supported random aggregates and solution-based discrete counterparts.
Collapse
Affiliation(s)
- Zijun Yong
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Lim Wei Yap
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Runfang Fu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Zhirui Guo
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
12
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures. Angew Chem Int Ed Engl 2021; 60:14671-14678. [PMID: 33843119 DOI: 10.1002/anie.202103809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Herein, we show that chiral metal nanoparticle superlattices can be produced through coassembly of achiral metal nanoparticles and porphyrin-based organic molecules. This chirality transfer from molecules to nanoparticle superstructures across three orders of magnitude in length scale is enabled by the hetero chain-chain van der Waals interactions. As far as we know, these are the first chiral nanoparticle assemblies based on chirality transfer through weak van der Waals forces. The dimensionality of the nanoparticle superlattices (1D chiral chains, 2D chiral sheets (cones), and 3D chiral particles) can be controlled based on a same synthetic chiral porphyrin molecule. Metalation of these porphyrin molecules with zinc cations results in the switching of molecular packing from J-type to H-type, which thereby produces 1D chiral nanoparticle chains. Functionalization of these zinc porphyrins with oleylamine can induce the assembly of nanoparticles into 2D chiral nanoparticle sheets.
Collapse
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
13
|
Zhao Y, Jing X, Zheng F, Liu Y, Fan Y. Surface-Enhanced Raman Scattering-Active Plasmonic Metal Nanoparticle-Persistent Luminescence Material Composite Films for Multiple Illegal Dye Detection. Anal Chem 2021; 93:8945-8953. [PMID: 34125523 DOI: 10.1021/acs.analchem.1c01442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Uniform two-dimensional plasmonic nanoparticle (NP)-semiconductor composite films could retard the attenuation of electromagnetic evanescent wave and show intensive Raman activity for the multiplex monitoring of hazards in a practical food matrix. Here, an efficient Raman platform is developed by employing a plasmonic nanoparticle (NP)-persistent luminescence material (PLM) composite film. PLM show upconversion photoluminescence (UCPL) properties. The emitted photons are absorbed by plasmonic NPs, which further boost the surface plasmon resonance for the generation of high polarizability and induce strong electromagnetic strength for surface-enhanced Raman scattering (SERS) enhancement. A UCPL-assisted SERS-enhanced mechanism is proposed and verified. A plasmonic NP-PLM film with superior SERS activity and detection capability becomes an alternative candidate for the sensitive and multiple detection of illegal addition of dyes in a food matrix. The proposed UCPL-assisted SERS-enhanced mechanism provides promising future directions to this end to design a next-generation SERS-active plasmonic NP-PLM composite film for the specific detection in complex samples.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaohui Jing
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fangjie Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yangmei Liu
- Jiangsu Institute of Product Quality Supervision and Inspection, Nanjing, Jiangsu 21007, China
| | - Ying Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
15
|
Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. J Colloid Interface Sci 2020; 575:24-34. [PMID: 32344216 DOI: 10.1016/j.jcis.2020.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
Nanotechnology's rapid development of nanostructured materials with disruptive material properties has inspired research for their use as electrocatalysts to potentially substitute enzymes. Herein, a novel electrocatalytic nanomaterial was constructed by growing gold nanograss (AuNG) on 2D nanoassemblies of gold nanocubes (AuNC). The resulting structure (NG@NC) was used for the detection of H2O2via its electrochemical reduction. The NG@NC electrode displayed a large active surface area, resulting in improved electron transfer efficiency. On the nanoscale, AuNG maintained its structure, providing high stability and reproducibility of the sensing platform. Our nanostructured electrode showed excellent catalytic activity towards H2O2 at an applied potential of -0.5 V vs Ag/AgCl. This facilitated H2O2 detection with excellent selectivity in an environment like human urine, and a linear response from 50 µM to 30 mM, with a sensitivity of 100.66 ± 4.0 μA mM-1 cm-2. The NG@NC-based sensor hence shows great potential in nonenzymatic electrochemical sensing.
Collapse
|
16
|
Dong D, Fu R, Shi Q, Cheng W. Self-assembly and characterization of 2D plasmene nanosheets. Nat Protoc 2019; 14:2691-2706. [PMID: 31420600 DOI: 10.1038/s41596-019-0200-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Freestanding plasmonic nanoparticle (NP) superlattice sheets are novel 2D nanomaterials with tailorable properties that enable their use for broad applications in sensing, anticounterfeit measures, ionic gating, nanophotonics and flat lenses. We recently developed a robust, yet general, two-step drying-mediated approach to produce freestanding monolayer, plasmonic NP superlattice sheets, which are typically held together by holey grids with minimal solid support. Within these superlattices, NP building blocks are closely packed and have strong plasmonic coupling interactions; hence, we termed such freestanding materials 'plasmene nanosheets'. Using the desired NP building blocks as starting material, we describe the detailed fabrication protocol, including NP surface functionalization by thiolated polystyrene and the self-assembly of NPs at the air-water interface. We also discuss various characterization approaches for checking the quality and optical properties of the as-obtained plasmene nanosheets: optical microscopy, spectrophotometry, transmission/scanning electron microscopy (TEM/SEM) and atomic force microscopy (AFM). With regard to different constituent building blocks, the key experimental parameters, including NP concentration and volume, are summarized to guide the successful fabrication of specific types of plasmene nanosheets. This protocol, from initial NP synthesis to the final fabrication and characterization, takes ~33.5 h.
Collapse
Affiliation(s)
- Dashen Dong
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia.,The Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia.,Functional Materials and Microsystems Research Group and Micro Nano Research Facility, RMIT University, Melbourne, Victoria, Australia
| | - Runfang Fu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia.,The Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia
| | - Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia.,The Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia. .,The Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Shi Q, Gómez DE, Dong D, Sikdar D, Fu R, Liu Y, Zhao Y, Smilgies DM, Cheng W. 2D Freestanding Janus Gold Nanocrystal Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900989. [PMID: 31070276 DOI: 10.1002/adma.201900989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Indexed: 06/09/2023]
Abstract
2D freestanding nanocrystal superlattices represent a new class of advanced metamaterials in that they can integrate mechanical flexibility with novel optical, electrical, plasmonic, and magnetic properties into one multifunctional system. The freestanding 2D superlattices reported to date are typically constructed from symmetrical constituent building blocks, which have identical structural and functional properties on both sides. Here, a general ligand symmetry-breaking strategy is reported to grow 2D Janus gold nanocrystal superlattice sheets with nanocube morphology on one side yet with nanostar on the opposite side. Such asymmetric metallic structures lead to distinct wetting and optical properties as well as surface-enhanced Raman scattering (SERS) effects. In particular, the SERS enhancement of the nanocube side is about 20-fold of that of the nanostar side, likely due to the combined "hot spot + lightening-rod" effects. This is nearly 700-fold of SERS enhancement as compared with the symmetric nanocube superlattices without Janus structures.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, 3168, Victoria, Australia
| | | | - Dashen Dong
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, 3168, Victoria, Australia
| | - Debabrata Sikdar
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Imperial College London, MSRH, W12 0BZ, UK
| | - Runfang Fu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, 3168, Victoria, Australia
| | - Yiyi Liu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, 3168, Victoria, Australia
| | - Yumeng Zhao
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, 3168, Victoria, Australia
| | - Detlef-M Smilgies
- Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY, 14853, USA
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, 3800, Victoria, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, 3168, Victoria, Australia
| |
Collapse
|
18
|
Liu Y, Fan B, Shi Q, Dong D, Gong S, Zhu B, Fu R, Thang SH, Cheng W. Covalent-Cross-Linked Plasmene Nanosheets. ACS NANO 2019; 13:6760-6769. [PMID: 31145851 DOI: 10.1021/acsnano.9b01343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thiol-polystyrene (SH-PS)-capped plasmonic nanoparticles can be fabricated into free-standing, one-nanoparticle-thick superlattice sheets (termed plasmene) based on physical entanglement between ligands, which, however, suffer from irreversible dissociation in organic solvents. To address this issue, we introduce coumarin-based photo-cross-linkable moieties to the SH-PS ligands to stabilize gold nanoparticles. Once cross-linked, the obtained plasmene nanosheets consisting of chemically locked nanoparticles can well maintain structural integrity in organic solvents. Particularly, arising from ligand-swelling-induced enlargement of the interparticle spacing, these plasmene nanosheets show significant optical responses to various solvents in a specific as well as reversible manner, which may offer an excellent material for solvent sensing and dynamic plasmonic display.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Bo Fan
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Qianqian Shi
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Dashen Dong
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Shu Gong
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Bowen Zhu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - Runfang Fu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| | - San H Thang
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Wenlong Cheng
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , Clayton , Victoria 3800 , Australia
| |
Collapse
|
19
|
Shi Q, Di W, Dong D, Yap LW, Li L, Zang D, Cheng W. A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly. ACS NANO 2019; 13:5243-5250. [PMID: 30969755 DOI: 10.1021/acsnano.8b09628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Droplets suspended by acoustic levitation provide genuine substrate-free environments for understanding unconventional fluid dynamics, evaporation kinetics, and chemical reactions by circumventing solid surface and boundary effects. Using a fully levitated air-water interface by acoustic levitation in conjunction with drying-mediated nanoparticle self-assembly, here, we demonstrate a general approach to fabricating free-standing nanoassemblies, which can totally avoid solid surface effects during the entire process. This strategy has no limitation for the sizes or shapes of constituent metallic nanoparticle building blocks and can also be applied to fabricate free-standing bilayered and trilayered nanoassemblies or even three-dimensional hollow nanoassemblies. We believe that our strategy may be further extended to quantum dots, magnetic particles, colloids, etc. Hence, it may lead to a myriad of homogeneous or heterogeneous free-standing nanoassemblies with programmable functionalities.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| | - Wenli Di
- Functional Soft Matter & Materials Group, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an , Shanxi 710129 , People's Republic of China
| | - Dashen Dong
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| | - Lim Wei Yap
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| | - Lin Li
- Functional Soft Matter & Materials Group, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an , Shanxi 710129 , People's Republic of China
| | - Duyang Zang
- Functional Soft Matter & Materials Group, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an , Shanxi 710129 , People's Republic of China
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| |
Collapse
|