1
|
Yang Y, Yuan H, Cheng Y, Yang F, Liu M, Huang K, Wang K, Cheng S, Liu R, Li W, Liang F, Zheng K, Liu L, Tu C, Wang X, Qi Y, Liu Z. Fluid-Dynamics-Rectified Chemical Vapor Deposition (CVD) Preparing Graphene-Skinned Glass Fiber Fabric and Its Application in Natural Energy Harvest. J Am Chem Soc 2024; 146:25035-25046. [PMID: 39213649 DOI: 10.1021/jacs.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.
Collapse
Affiliation(s)
- Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Mengxiong Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kangyi Zheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- College of Energy Soochow Institute for Energy and Materials Innovations Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Longfei Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Ce Tu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Xiaobai Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
2
|
Li W, Liang F, Sun X, Zheng K, Liu R, Yuan H, Cheng S, Wang J, Cheng Y, Huang K, Wang K, Yang Y, Yang F, Tu C, Mao X, Yin W, Cai A, Wang X, Qi Y, Liu Z. Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat Commun 2024; 15:6825. [PMID: 39122739 PMCID: PMC11316083 DOI: 10.1038/s41467-024-51118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates. The metalloid-catalytic growth of graphene on AFs/AFFs resulted in reduced growth temperature (~200 °C lower) and accelerated growth rate (~3.4 times faster) compared to that obtained on a representative non-metallic counterpart, quartz fiber. The fabricated GAFF features a wide-range tunable electrical conductivity (1-15000 Ω sq-1), high tensile strength (>1.5 GPa), lightweight, flexibility, and a hierarchical macrostructure. These attributes are inherited from both graphene and AFF, making GAFF promising for various applications including electrical heating and electromagnetic interference shielding. Beyond laboratory level preparation, the stable mass production of large-scale GAFF has been achieved through a home-made roll-to-roll system with capacity of 468-93600 m2/year depending on product specifications, providing foundations for the subsequent industrialization of this material, enabling its widespread adoption in various industries.
Collapse
Affiliation(s)
- Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiucai Sun
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ali Cai
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiaobai Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
3
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
4
|
Wang K, Sun X, Cheng S, Cheng Y, Huang K, Liu R, Yuan H, Li W, Liang F, Yang Y, Yang F, Zheng K, Liang Z, Tu C, Liu M, Ma M, Ge Y, Jian M, Yin W, Qi Y, Liu Z. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat Commun 2024; 15:5040. [PMID: 38866786 PMCID: PMC11169262 DOI: 10.1038/s41467-024-48958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.
Collapse
Affiliation(s)
- Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiucai Sun
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Zhiwei Liang
- Beijing Graphene Institute (BGI), Beijing, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Mengxiong Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Mingyang Ma
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yunsong Ge
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Muqiang Jian
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
5
|
Fang Y, Zhou K, Wei W, Zhang J, Sun J. Recent advances in batch production of transfer-free graphene. NANOSCALE 2024; 16:10522-10532. [PMID: 38739019 DOI: 10.1039/d4nr01339e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Large-area transfer-free graphene films prepared via chemical vapor deposition have proved appealing for various applications, with exciting examples in electronics, photonics, and optoelectronics. To achieve their commercialisation, batch production is a prerequisite. Nevertheless, the prevailing scalable synthesis strategies that have been reported are still obstructed by production inefficiencies and non-uniformity. There has also been a lack of reviews in this realm. We present herein a comprehensive and timely summary of recent advances in the batch production of transfer-free graphene. Primary issues and promising approaches for improving the graphene growth rate are first addressed, followed by a discussion of the strategies to guarantee in-plane and batch uniformity for graphene grown on planar plates and wafer-scale substrates, with the design of the target equipment to meet productivity requirements. Finally, potential research directions are outlined, aiming to offer insights into guiding the scalable production of transfer-free graphene.
Collapse
Affiliation(s)
- Ye Fang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Kaixuan Zhou
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Wenze Wei
- Beijing Graphene Institute, Beijing 100095, China
| | - Jincan Zhang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
| | - Jingyu Sun
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
6
|
Huang K, Liang F, Sun J, Zhang Q, Li Z, Cheng S, Li W, Yuan H, Liu R, Ge Y, Cheng Y, Wang K, Jiang J, Yang Y, Ma M, Yang F, Tu C, Xie Q, Yin W, Wang X, Qi Y, Liu Z. Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313752. [PMID: 38576272 DOI: 10.1002/adma.202313752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Collapse
Affiliation(s)
- Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jianbo Sun
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Qinchi Zhang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhihao Li
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yunsong Ge
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jun Jiang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Mingyang Ma
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ce Tu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Qin Xie
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wanjian Yin
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xiaobai Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yue Qi
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
7
|
Zhu Y, Shi Z, Zhao Y, Bu S, Hu Z, Liao J, Lu Q, Zhou C, Guo B, Shang M, Li F, Xu Z, Zhang J, Xie Q, Li C, Sun P, Mao B, Zhang X, Liu Z, Lin L. Recent trends in the transfer of graphene films. NANOSCALE 2024; 16:7862-7873. [PMID: 38568087 DOI: 10.1039/d3nr05626k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent years have witnessed advances in chemical vapor deposition growth of graphene films on metal foils with fine scalability and thickness controllability. However, challenges for obtaining wrinkle-free, defect-free and large-area uniformity remain to be tackled. In addition, the real commercial applications of graphene films still require industrially compatible transfer techniques with reliable performance of transferred graphene, excellent production capacity, and suitable cost. Transferred graphene films, particularly with a large area, still suffer from the presence of transfer-related cracks, wrinkles and contaminants, which would strongly deteriorate the quality and uniformity of transferred graphene films. Potential applications of graphene films include moisture barrier films, transparent conductive films, electromagnetic shielding films, and optical communications; such applications call different requirements for the performance of transferred graphene, which, in turn, determine the suitable transfer techniques. Besides the reliable transfer process, automatic machines should be well developed for the future batch transfer of graphene films, ensuring the repeatability and scalability. This mini-review provides a summary of recent advances in the transfer of graphene films and offers a perspective for future directions of transfer techniques that are compatible for industrial batch transfer.
Collapse
Affiliation(s)
- Yaqi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Zhuofeng Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Yixuan Zhao
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Saiyu Bu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| | - Zhaoning Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Junhao Liao
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Lu
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Chaofan Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Bingbing Guo
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Mingpeng Shang
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Fangfang Li
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Zhiying Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Jialin Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Qin Xie
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Chunhu Li
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials, Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, U.K
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
| | - Zhongfan Liu
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
8
|
Pirabul K, Zhao Q, Pan ZZ, Liu H, Itoh M, Izawa K, Kawai M, Crespo-Otero R, Di Tommaso D, Nishihara H. Silicon Radical-Induced CH 4 Dissociation for Uniform Graphene Coating on Silica Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306325. [PMID: 38032161 DOI: 10.1002/smll.202306325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2. This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1. Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.
Collapse
Affiliation(s)
- Kritin Pirabul
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Qi Zhao
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hongyu Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Mutsuhiro Itoh
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Kenichi Izawa
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Makoto Kawai
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Rachel Crespo-Otero
- Department of Chemistry, University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
9
|
Lv W, Wang L, Lu Y, Wang D, Wang H, Hao Y, Zhang Y, Sun Z, Tang Y. A Study on the Field Emission Characteristics of High-Quality Wrinkled Multilayer Graphene Cathodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:613. [PMID: 38607147 PMCID: PMC11013809 DOI: 10.3390/nano14070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Field emission (FE) necessitates cathode materials with low work function and high thermal and electrical conductivity and stability. To meet these requirements, we developed FE cathodes based on high-quality wrinkled multilayer graphene (MLG) prepared using the bubble-assisted chemical vapor deposition (B-CVD) method and investigated their emission characteristics. The result showed that MLG cathodes prepared using the spin-coating method exhibited a high field emission current density (~7.9 mA/cm2), indicating the excellent intrinsic emission performance of the MLG. However, the weak adhesion between the MLG and the substrate led to the poor stability of the cathode. Screen printing was employed to prepare the cathode to improve stability, and the influence of a silver buffer layer was explored on the cathode's performance. The results demonstrated that these cathodes exhibited better emission stability, and the silver buffer layer further enhanced the comprehensive field emission performance. The optimized cathode possesses low turn-on field strength (~1.5 V/μm), low threshold field strength (~2.65 V/μm), high current density (~10.5 mA/cm2), and good emission uniformity. Moreover, the cathode also exhibits excellent emission stability, with a current fluctuation of only 6.28% during a 4-h test at 1530 V.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongliang Tang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China; (W.L.); (L.W.); (Y.L.); (D.W.); (H.W.); (Y.H.); (Y.Z.); (Z.S.)
| |
Collapse
|
10
|
Whelan PR, De Fazio D, Pasternak I, Thomsen JD, Zelzer S, Mikkelsen MO, Booth TJ, Diekhöner L, Sassi U, Johnstone D, Midgley PA, Strupinski W, Jepsen PU, Ferrari AC, Bøggild P. Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy. Sci Rep 2024; 14:3163. [PMID: 38326379 PMCID: PMC10850153 DOI: 10.1038/s41598-024-51548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/06/2024] [Indexed: 02/09/2024] Open
Abstract
Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. We compare the charge carrier mean free path determined by THz-TDS with the average defect distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by transmission electron microscopy. The results indicate that even small angle orientation variations below 5° within graphene grains influence the scattering behavior, consistent with significant backscattering contributions from grain boundaries.
Collapse
Affiliation(s)
- Patrick R Whelan
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Domenico De Fazio
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy
| | - Iwona Pasternak
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- Vigo System S.A., 129/133 Poznanska Str, 05-850, Ozarow Mazowiecki, Poland
| | - Joachim D Thomsen
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark
| | - Steffen Zelzer
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Martin O Mikkelsen
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Timothy J Booth
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, 2800, Kongens Lyngby, Denmark
| | - Lars Diekhöner
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Ugo Sassi
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Duncan Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Wlodek Strupinski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- Vigo System S.A., 129/133 Poznanska Str, 05-850, Ozarow Mazowiecki, Poland
| | - Peter U Jepsen
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, 2800, Kongens Lyngby, Denmark
- DTU Fotonik, Technical University of Denmark, Ørsteds Plads 343, 2800, Kongens Lyngby, Denmark
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Peter Bøggild
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark.
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Li Y, Zhou K, Ci H, Sun J. Recent Advances in Transfer-Free Synthesis of High-Quality Graphene. CHEMSUSCHEM 2023; 16:e202300865. [PMID: 37491687 DOI: 10.1002/cssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
High-quality graphene obtained by chemical vapor deposition (CVD) technique holds significant importance in constructing innovative electronic and optoelectronic devices. Direct growth of graphene over target substrates readily eliminates cumbersome transfer processes, offering compatibility with practical application scenarios. Recent years have witnessed growing strategic endeavors in the preparation of transfer-free graphene with favorable quality. Nevertheless, timely review articles on this topic are still scarce. In this contribution, a systematic summary of recent advances in transfer-free synthesis of high-quality graphene on insulating substrates, with a focus on discussing synthetic strategies designed by elevating reaction temperature, confining gas flow, introducing growth promotor and regulating substrate surface is presented.
Collapse
Affiliation(s)
- Yinghan Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaixuan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haina Ci
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
12
|
Sahoo S, Khan Z, Mannan S, Tiwari U, Ye Z, Krishnan NMA, Gosvami NN. Superlubricity and Stress-Shielding of Graphene Enables Ultra Scratch-Resistant Glasses. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37886825 DOI: 10.1021/acsami.3c09653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Glasses, when subjected to scratch loading, incur damages affecting their optical and mechanical integrity. Here, it is demonstrated that silica glasses protected with mechanically exfoliated few-layer graphene sheets can exhibit remarkable improvement in scratch resistance. To this extent, the friction and wear characteristics of silica glasses with exfoliated graphene using atomic force microscopy (AFM) are explored. The friction forces recorded during AFM scratch tests of the graphene-glass surfaces at multiple loads exhibit ∼98% reduction compared to that of the bare silica glass, with the friction coefficient falling in the superlubricity regime. This dramatic reduction in friction achieved by the graphene sheets results in significantly lower wear of the graphene-glass surfaces postscratching. Further investigations employing atomistic simulations reveal that the stress-shielding mechanism is due to the reduced deformation of graphene-glass surfaces, thereby curtailing the overall damage. Altogether, the present work provides a new fillip toward the development of glasses with enhanced scratch resistance exploiting two-dimensional coatings.
Collapse
Affiliation(s)
- Sourav Sahoo
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Zuhaa Khan
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Srinagar 190006, India
| | - Sajid Mannan
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Utkarsh Tiwari
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056, United States
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitya Nand Gosvami
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Zeng F, Wang R, Wei W, Feng Z, Guo Q, Ren Y, Cui G, Zou D, Zhang Z, Liu S, Liu K, Fu Y, Kou J, Wang L, Zhou X, Tang Z, Ding F, Yu D, Liu K, Xu X. Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates. Nat Commun 2023; 14:6421. [PMID: 37828069 PMCID: PMC10570391 DOI: 10.1038/s41467-023-42270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.
Collapse
Affiliation(s)
- Fankai Zeng
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Ran Wang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Wenya Wei
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zuo Feng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China
| | - Quanlin Guo
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China
| | - Yunlong Ren
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Guoliang Cui
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Dingxin Zou
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Zhensheng Zhang
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Song Liu
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Kehai Liu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Ying Fu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Jinzong Kou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Li Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xu Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhilie Tang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Feng Ding
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dapeng Yu
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China.
| | - Xiaozhi Xu
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Zhang TT, Lv BH, Fan CC, Shi BY, Cao QJ, Wang W, Tao FF, Dou WD. Controllable Fabrication of Vertical Graphene with Tunable Growth Nature by Remote Plasma-Enhanced Chemical Vapor Deposition. ACS OMEGA 2023; 8:36245-36252. [PMID: 37810641 PMCID: PMC10552111 DOI: 10.1021/acsomega.3c04784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
As an important member of the graphene family, vertical graphene (VG) has broad applications like field emission, energy storage, and sensors owing to its fascinating physical and chemical properties. Among various fabrication methods for VG, plasma enhanced chemical vapor deposition (PECVD) is most employed because of the fast growth rate at relatively low temperature for the high-quality VG. However, to date, relations between growth manner of VG and growth parameters such as growth temperature, dosage of gaseous carbon source, and electric power to generate plasma are still less known, which in turn hinder the massive production of VG for further applications. In this study, the growth behavior of VG was studied as functions of temperature, plasma power, and gas composition (or chamber pressure). It was found that the growth behavior of VG is sensitive to the growth conditions mentioned above. Although conditions with high growth temperature, large flow rate of mixed gas of methane and carrier gases, and high plasma power may be helpful for the fast growth of VG, brunching of VG is simultaneously enhanced, which in turn decreases the vertical growth nature of VG. High-quality VG can be achieved by optimizing the growth parameters. It was revealed that the vertical growth nature of VG is governed by the electric field at the interfacial layer between VG and the substrate, for which its strength is influenced by the density of plasma. These findings are important for the general understanding of the VG growth and provided a feasible way for the controllable fabrication of VG using the remote PECVD method which is usually believed to be unsuitable for the fabrication of VG.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- Laboratory
of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China
| | - Bing-Hao Lv
- Laboratory
of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China
| | - Chen-Chen Fan
- Laboratory
of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China
| | - Bi-Yun Shi
- Laboratory
of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China
| | - Qiao-Jun Cao
- Laboratory
of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China
| | - Wei Wang
- School
of Civil Engineering, Shaoxing University, Shaoxing 312000, China
| | - Fei-Fei Tao
- Department
of Chemistry and Chemical Engineering, Shaoxing
University, Shaoxing 312000, China
| | - Wei-Dong Dou
- Laboratory
of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
15
|
Kong H, Yao H, Li Y, Wang Q, Qiu X, Yan J, Zhu J, Wang Y. Mixed-Dimensional van der Waals Heterostructures for Boosting Electricity Generation. ACS NANO 2023; 17:18456-18469. [PMID: 37698581 DOI: 10.1021/acsnano.3c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The emerging technology of harvesting environmental energy using hydrovoltaic devices enriches the conversion forms of renewable energy. It provides more concepts for power supply in micro/nano systems, and hydrovoltaic technology with high performance, usability, and integration is essential for achieving sustainable green energy. Comparing the discovery of multiscale nanomaterials, working layers with innovative microstructures have gradually become the dominant trend in the construction of graphene-based hydrovoltaic devices. However, reports on promoting ion/electron redistribution at the solid-liquid interface through the substrate effect of graphene are accompanied by tedious procedures, nondiverse substrates, and monolithic regulation of enhancement mechanisms. Here, the electrophoretic deposition (EPD)-driven SiC whiskers (SiCw)-assisted graphene transfer process is adopted to alleviate the complexity of the device fabrication caused by graphene transfer. The resulting output performance of the graphene/SiCw (GS) mesh films is significantly boosted. The high integrity of graphene and prominent negative surface charge near the graphene-droplet interface are derived from the overlayer and underlayer inside the graphene-based mixed-dimensional van der Waals (vdW) heterostructures, respectively. Additionally, a self-powered desalination-monitoring system is designed based on integrated hydrovoltaic devices. Electricity harvested from the ionic solutions is reused for deionization, representing an efficient strategy for energy conversion and utilization.
Collapse
Affiliation(s)
- Haoran Kong
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huiying Yao
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, P. R. China
| | - Yuting Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinhuan Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaopan Qiu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jin Yan
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Zhou F, Lan R, Li Z, Liu B, Xie Q, Bao J, Liu J, Gao P, Yang H, Zhang Y, Liu Z. Graphene/Cholesteric Liquid-Crystal-Based Electro-Driven Thermochromic Light Modulators toward Wide-Gamut Dynamic Light Color-Tuning-Related Applications. NANO LETTERS 2023; 23:4617-4626. [PMID: 37161990 DOI: 10.1021/acs.nanolett.3c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light filters are ubiquitous in projection and display techniques, illumination engineering, image sensing, photography, etc., while those enabling wide-gamut dynamic light color tuning are still lacking. Herein, by combining the electro-heating capability of graphene and unique optical properties (thermochromism and circular dichroism) of small-molecule-weight cholesteric liquid crystal (ChLC), a brand-new thermochromic light modulator is constructed as actively tunable color filter. Transparent graphene/glass hybrid with reasonably high conductivity serves both as a high-performance heater for actuating the thermochromism of temperature-responsive ChLC and as neutral light attenuator for brightness control. Thanks to the temperature- and polarization-dependent spectral properties of the ChLC, widely tunable hue and saturation properties of transmission light color are achieved, respectively. Several intriguing applications, e.g., color-variable smart windows for backlight color tuning and color-variable filters for photography, are also demonstrated. This work hereby provides new paradigms for promoting the applications of graphene/ChLC-based light modulators in next-generation light-management-related scenarios.
Collapse
Affiliation(s)
- Fan Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
- Institute of Advanced Materials, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhi Li
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Bingyao Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Qin Xie
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| | - Junling Liu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Peng Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| | - Yanfeng Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Zhongfan Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Qian F, Deng J, Ma X, Fu G, Xu C. Direct Growth of Patterned Vertical Graphene Using Thermal Stress Mismatch between Barrier Layer and Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1242. [PMID: 37049337 PMCID: PMC10097022 DOI: 10.3390/nano13071242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Vertical graphene (VG) combines the excellent properties of conventional graphene with a unique vertical nanosheet structure, and has shown tremendous promise in the field of electronics and composites. However, its complex surface morphology brings great difficulties to micro-nano fabrication, especially regarding photolithography induced nanosheet collapse and remaining chemical residues. Here, we demonstrate an innovative method for directly growing patterned VG on a SiO2/Si substrate. A patterned Cr film was deposited on the substrate as a barrier layer. The VG was synthesized by PECVD on both the patterned Cr film and the exposed SiO2/Si substrate. During the cooling process, the patterned Cr film covered by VG naturally peeled off from the substrate due to the thermal stress mismatch, while the VG directly grown on the SiO2/Si substrate was remained. The temperature-dependent thermal stress distribution in each layer was analyzed using finite element simulations, and the separation mechanism of the Cr film from the substrate was explained. This method avoids the contamination and damage caused by the VG photolithography process. Our work is expected to provide a convenient and reliable solution for the manufacture of VG-based electronic devices.
Collapse
Affiliation(s)
- Fengsong Qian
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Jun Deng
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Xiaochen Ma
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Guosheng Fu
- Fert Beijing Institute, School of Microelectronics, Beihang University, Beijing 100191, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Shirsat SM, Chiang CH, Bodkhe GA, Shirsat MD, Tsai ML. High sensitivity carbon monoxide detector using iron tetraphenyl porphyrin functionalized reduced graphene oxide. NANOSCALE RESEARCH LETTERS 2023; 18:34. [PMID: 36881264 DOI: 10.1186/s11671-023-03813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
The detection of pollutant and toxic gases has attracted extensive attention due to the growing environmental issues. In the present investigation, free-based tetraphenyl porphyrin (TPP) and iron tetraphenyl porphyrin (FeTPP) are used to functionalize thermally reduced graphene oxide (rGO) and further used for the detection of carbon monoxide (CO). TPP and FeTPP functionalized rGO (FeTPP@rGO) sensors are fabricated on a glass substrate with thermally coated copper electrodes. The materials are characterized with X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, Raman spectroscopy, UV-visible spectroscopy, atomic force microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The current-voltage (I-V) characteristics have also been studied to demonstrate the operation of the device. In addition, the FeTPP@rGO device shows high sensitivity toward the detection of CO. By testing in the chemiresistive sensing modality, the as-fabricated device shows good response and recovery of 60 s and 120 s, respectively, with a low detection limit of 2.5 ppm.
Collapse
Affiliation(s)
- Sumedh M Shirsat
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Chih-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Gajanan A Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Mahendra D Shirsat
- Department of Physics, RUSA Center for Advanced Sensor Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS, 431004, India
| | - Meng-Lin Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan.
| |
Collapse
|
19
|
Zhao T, Guo J, Li T, Wang Z, Peng M, Zhong F, Chen Y, Yu Y, Xu T, Xie R, Gao P, Wang X, Hu W. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev 2023; 52:1650-1671. [PMID: 36744507 DOI: 10.1039/d2cs00657j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.
Collapse
Affiliation(s)
- Tiange Zhao
- School of Materials, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China. .,State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Taotao Li
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Meng Peng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Fang Zhong
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Yue Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Yiye Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Pingqi Gao
- School of Materials, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,School of Integrated Circuits, Nanjing University, Suzhou, China.,Suzhou Laboratory, Suzhou, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| |
Collapse
|
20
|
Bahri M, Gebre SH, Elaguech MA, Dajan FT, Sendeku MG, Tlili C, Wang D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Alipour S, Hassani M, Hosseini SMH, Mousavi-Khoshdel SM. Facile preparation of covalently functionalized graphene with 2,4-dinitrophenylhydrazine and investigation of its characteristics. RSC Adv 2022; 13:558-569. [PMID: 36605623 PMCID: PMC9772862 DOI: 10.1039/d2ra06343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This article reports a fast and easy method for simultaneously in situ reducing and functionalizing graphene oxide. 2,4-Dinitrophenylhydrazine hydrate salt molecules are reduced by graphene oxide by reacting with oxide groups on the surface and removing these groups, and 2,4-dinitrophenylhydrazone groups are replaced with oxide groups. The synthesized materials have been investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and UV absorption. Also, the morphology has been examined with a scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analysis. The result of the photocurrent response and electrochemical behavior of the samples through cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) have been analyzed to investigate the effect of physical and chemical changes compared to graphene.
Collapse
Affiliation(s)
- S Alipour
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - M Hassani
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - S M H Hosseini
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - S M Mousavi-Khoshdel
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| |
Collapse
|
22
|
Ci H, Chen J, Ma H, Sun X, Jiang X, Liu K, Shan J, Lian X, Jiang B, Liu R, Liu B, Yang G, Yin W, Zhao W, Huang L, Gao T, Sun J, Liu Z. Transfer-Free Quasi-Suspended Graphene Grown on a Si Wafer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206389. [PMID: 36208081 DOI: 10.1002/adma.202206389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The direct growth of graphene affording wafer-scale uniformity on insulators is paramount to electronic and optoelectronic applications; however, it remains a challenge to date, because it entails an entirely different growth mode than that over metals. Herein, the metal-catalyst-free growth of quasi-suspended graphene on a Si wafer is demonstrated using an interface-decoupling chemical vapor deposition strategy. The employment of lower-than-conventional H2 dosage and concurrent introduction of methanol during growth can effectively weaken the interaction between the synthesized graphene and the underlying substrate. The growth mode can be thus fine-tuned, producing a predominantly monolayer graphene film with wafer-level homogeneity. Graphene thus grown on a 4 inch Si wafer enables the transfer-free fabrication of high-performance graphene-based field-effect transistor arrays that exhibit almost no shift in the charge neutral point, indicating a quasi-suspended feature of the graphene. Moreover, a carrier mobility up to 15 000 cm2 V-1 s-1 can be attained. This study is anticipated to offer meaningful insights into the synthesis of wafer-scale high-quality graphene on dielectrics for practical graphene devices.
Collapse
Affiliation(s)
- Haina Ci
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Jingtao Chen
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaoli Sun
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Xingyu Jiang
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Kaicong Liu
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingyuan Shan
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xueyu Lian
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Bei Jiang
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ruojuan Liu
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bingzhi Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Guiqi Yang
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wanjian Yin
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Teng Gao
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
23
|
Wang S, Li Y, Xu Q, Fu Q, Guo X, Zheng Y, Zhang W, Cao Z, Li R, Ren J. Facile preparation of graphene@polyaniline nanofiber network/oxidized carbon cloth composites for high-performance flexible solid-state supercapacitors. NANOSCALE 2022; 14:15908-15917. [PMID: 36268823 DOI: 10.1039/d2nr04723c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complicated preparation process and low energy density of polyaniline (PANI)-based electrodes limit their wide applications in flexible energy storage devices. In this work, a reduced graphene (rGO)-wrapped polyaniline nanofiber network (PANI-NFN)/oxidized carbon cloth (OCC) (rGO@PANI-NFN/OCC) composite was prepared by a facile impregnation method using reactive templates of MnO2 on the surface of OCC. The as-prepared rGO@PANI-NFN/OCC composite exhibited a high area specific capacitance of 4438 mF cm-2 and maintained an initial capacitance of 88.2% after 3000 GCD cycles. It can be used as an independent electrode to construct flexible solid-state supercapacitors (FSSCs), and the FSSCs based on rGO@PANI-NFN/OCC also exhibit a high energy density of 117.9 μW h cm-2 and 88.39% retention after 500 bending cycles, which shows a great prospect for flexible energy storage device applications. The enhanced performance of rGO@PANI-NFN/OCC composites is mainly attributed to the synergistic effect of PANI-NFN structures with a large specific surface area and a rGO wrap layer to reduce the swelling and shrinking of PANI.
Collapse
Affiliation(s)
- Shaohua Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yuying Li
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Qiang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Qiuping Fu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Xinli Guo
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yanmei Zheng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Weijie Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Zhen Cao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Ruiting Li
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Jingxuan Ren
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
24
|
Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022; 23:10838. [PMID: 36142748 PMCID: PMC9500660 DOI: 10.3390/ijms231810838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.
Collapse
Affiliation(s)
- Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yu Feng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
25
|
Chen Y, Wang B. Effect of Diatomite on the Thermal Degradation Behavior of Polypropylene and Formation of Graphene Products. Polymers (Basel) 2022; 14:polym14183764. [PMID: 36145906 PMCID: PMC9501155 DOI: 10.3390/polym14183764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
In this work, the thermogravimetry–Fourier transform infrared spectroscopy (TG–FTIR) and gas chromatography–mass spectrometry (GC–MS) techniques are used to investigate the thermal degradation behavior of polypropylene (PP) with 20 wt.% diatomite (DM). The initial decomposition temperature of these blends was 17 °C lower than that of pristine PP, and more olefin degradation products were formed during the pyrolysis process under Ar atmosphere. These results could be attributed to the catalytic effects of DM on the degradation of PP and the changes of PP chain scission pathways around the particles (more β scission happened via the secondary radical transfer). These olefins could be caught by DM through the Si–O–C bond formed during the heat–treatment around 400~500 °C. The formation of the cross–linked structure could facilitate the growth of graphene during a high–temperature graphitization process.
Collapse
Affiliation(s)
| | - Biao Wang
- Correspondence: ; Tel.: +86-21-6779-2731
| |
Collapse
|
26
|
Bian S, Liu Q, Zhang X, Ma C, Zhang Y, Cheng Z, Kang Y, Lu W, Chu PK, Yu XF, Wang J. Fabricating Black-Phosphorus/Iron-Tetraphosphide Heterostructure via a Solid-Phase Solution-Precipitation Method for High-Performance Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203284. [PMID: 35971184 DOI: 10.1002/smll.202203284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Although constructing heterostructures is considered as one of the most successful strategies to improve the activity of a catalyst, the heterostructures usually suffer from the cumbersome preparation treatments and low-yield. Inspired by a solid-phase solution-precipitation (SPSP) process, an approach for interface intensive heterostructures with high yield is developed. Herein, a black-phosphorus/iron-tetraphosphide (BP/FeP4 ) heterostructure is prepared mechanochemically with high transient pressure by the solid-phase ball milling approach. The BP/FeP4 heterostructure delivers excellent catalytic performance in the nitrogen reduction reaction (NRR) as exemplified by an NH3 yield of 77.6 µg h-1 mg cat . - 1 \[{\rm{mg}}_{{\rm{cat}}{\rm{.}}}^{{\bm{ - }}1}\] and Faradic efficiency of 62.9% (-0.2 V), which are superior to that of most NRR catalysts recently reported. Experimental investigation and density-functional theory calculation indicate the importance of excess phosphorus in the heterostructures on the NRR activity, which assists the Fe atom to activate N2 via adsorbing the H atom. The results demonstrate the great potential of this new type of heterostructures prepared by the SPSP approach. Benefiting from the simple preparation process and low cost, the heterostructures offer a new insight into the development of highly efficient catalysts.
Collapse
Affiliation(s)
- Shi Bian
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qian Liu
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Xue Zhang
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanli Zhang
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ziqiang Cheng
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yihong Kang
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wei Lu
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xue-Feng Yu
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Hubei Three Gorges Laboratory, Yichang, 443007, P. R. China
| | - Jiahong Wang
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Hubei Three Gorges Laboratory, Yichang, 443007, P. R. China
| |
Collapse
|
27
|
Shi Z, Ci H, Yang X, Liu Z, Sun J. Direct-Chemical Vapor Deposition-Enabled Graphene for Emerging Energy Storage: Versatility, Essentiality, and Possibility. ACS NANO 2022; 16:11646-11675. [PMID: 35926221 DOI: 10.1021/acsnano.2c05745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct chemical vapor deposition (CVD) technique has stimulated an enormous scientific and industrial interest to enable the conformal growth of graphene over multifarious substrates, which readily bypasses tedious transfer procedure and empowers innovative materials paradigm. Compared to the prevailing graphene materials (i.e., reduced graphene oxide and liquid-phase exfoliated graphene), the direct-CVD-enabled graphene harnesses appealing structural advantages and physicochemical properties, accordingly playing a pivotal role in the realm of electrochemical energy storage. Despite conspicuous progress achieved in this frontier, a comprehensive overview is still lacking by far and the synthesis-structure-property-application nexus of direct-CVD-enabled graphene remains elusive. In this topical review, rather than simply compiling the state-of-the-art advancements, the versatile roles of direct-CVD-enabled graphene are itemized as (i) modificator, (ii) cultivator, (iii) defender, and (iv) decider. Furthermore, essential effects on the performance optimization are elucidated, with an emphasis on fundamental properties and underlying mechanisms. At the end, perspectives with respect to the material production and device fabrication are sketched, aiming to navigate the future development of direct-CVD-enabled graphene en-route toward pragmatic energy applications and beyond.
Collapse
Affiliation(s)
- Zixiong Shi
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Light Industry Institute of Electrochemical Power Sources, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Haina Ci
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, P. R. China
| | - Xianzhong Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Light Industry Institute of Electrochemical Power Sources, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Zhongfan Liu
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Light Industry Institute of Electrochemical Power Sources, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
- Beijing Graphene Institute, Beijing 100095, P. R. China
- Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Light Industry Institute of Electrochemical Power Sources, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
- Beijing Graphene Institute, Beijing 100095, P. R. China
| |
Collapse
|
28
|
Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. MICROMACHINES 2022; 13:mi13081257. [PMID: 36014179 PMCID: PMC9412642 DOI: 10.3390/mi13081257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022]
Abstract
As the scaling technology in the silicon-based semiconductor industry is approaching physical limits, it is necessary to search for proper materials to be utilized as alternatives for nanoscale devices and technologies. On the other hand, carbon-related nanomaterials have attracted so much attention from a vast variety of research and industry groups due to the outstanding electrical, optical, mechanical and thermal characteristics. Such materials have been used in a variety of devices in microelectronics. In particular, graphene and carbon nanotubes are extraordinarily favorable substances in the literature. Hence, investigation of carbon-related nanomaterials and nanostructures in different ranges of applications in science, technology and engineering is mandatory. This paper reviews the basics, advantages, drawbacks and investigates the recent progress and advances of such materials in micro and nanoelectronics, optoelectronics and biotechnology.
Collapse
|
29
|
Shan J, Fang S, Wang W, Zhao W, Zhang R, Liu B, Lin L, Jiang B, Ci H, Liu R, Wang W, Yang X, Guo W, Rümmeli MH, Guo W, Sun J, Liu Z. Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. Natl Sci Rev 2022; 9:nwab169. [PMID: 35967588 PMCID: PMC9370374 DOI: 10.1093/nsr/nwab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023] Open
Abstract
Direct synthesis of high-quality graphene on dielectric substrates without a transfer process is of vital importance for a variety of applications. Current strategies for boosting high-quality graphene growth, such as remote metal catalyzation, are limited by poor performance with respect to the release of metal catalysts and hence suffer from a problem with metal residues. Herein, we report an effective approach that utilizes a metal-containing species, copper acetate, to continuously supply copper clusters in a gaseous form to aid transfer-free growth of graphene over a wafer scale. The thus-derived graphene films were found to show reduced multilayer density and improved electrical performance and exhibited a carrier mobility of 8500 cm2 V-1 s-1. Furthermore, droplet-based hydrovoltaic electricity generator devices based on directly grown graphene were found to exhibit robust voltage output and long cyclic stability, in stark contrast to their counterparts based on transferred graphene, demonstrating the potential for emerging energy harvesting applications. The work presented here offers a promising solution to organize the metal catalytic booster toward transfer-free synthesis of high-quality graphene and enable smart energy generation.
Collapse
Affiliation(s)
- Jingyuan Shan
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sunmiao Fang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wendong Wang
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Rui Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Bingzhi Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Li Lin
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Bei Jiang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haina Ci
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ruojuan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen Wang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiaoqin Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mark H Rümmeli
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
30
|
Liu R, Yuan H, Li J, Huang K, Wang K, Cheng Y, Cheng S, Li W, Jiang J, Tu C, Qi Y, Liu Z. Complementary Chemical Vapor Deposition Fabrication for Large-Area Uniform Graphene Glass Fiber Fabric. SMALL METHODS 2022; 6:e2200499. [PMID: 35610184 DOI: 10.1002/smtd.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The lightweight, flexible, high-performance electrothermal material is in high demand in object thermal management. Graphene glass fiber fabric (GGFF) is characterized by excellent electrical conductivity, light weight, and high flexibility, showing superiorities as an electrothermal material. However, the traditional single-carbon-precursor chemical vapor deposition (CVD) graphene growth strategy commonly suffers from the severe thickness nonuniformity of the large-sized graphene film along the gas-flowing direction. Herein, a complementary CVD graphene growth strategy based on the simultaneous introduction of high- and low-decomposition-energy-barrier mixed carbon precursors is developed. In this way, the large-area uniform GGFF with a dramatically decreased nonuniformity coefficient is fabricated (0.260 in 40 cm × 4 cm). GGFF-based heater presents a widely tunable temperature range (20-170 °C) at low working voltage (<10 V) and uniform large-area heating temperature (171.4 ± 3.6 °C in 20 cm × 15 cm), which realizes remarkable anti/deicing performances under the low energy consumption (fast ice melting rate of 79 s mm-1 under a low energy consumption of 0.066 kWh mm-1 m-2 ). The large-area uniform GGFF possesses substantial advantages for applications in thermal management, and the complementary CVD fabrication strategy shows reliable scalability and universality, which can be extended to the synthesis of various materials.
Collapse
Affiliation(s)
- Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Junliang Li
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Jun Jiang
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| |
Collapse
|
31
|
Jiang J, Cheng Y, Sun X, Huang K, Wang K, Cheng S, Yuan H, Liu R, Li W, Zhang H, Li J, Tu C, Qi Y, Liu Z. Flexible Full-Surface Conformal Encapsulation for Each Fiber in Graphene Glass Fiber Fabric against Thermal Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19889-19896. [PMID: 35437993 DOI: 10.1021/acsami.2c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Encapsulation for carbon-based electronic devices against oxidation can enhance their long-term working stability. Graphene glass fiber fabric (GGFF), as an advanced flexible electrothermal material, also struggles with graphene oxidation. The flexible, full-surface, conformal encapsulation for each fiber in the large-area fabric puts forward high requirements for encapsulating materials and techniques. Herein, the nanometer-thick h-BN layer was in situ grown on cambered surfaces of each fiber in GGFF with the chemical vapor deposition method. Stable heating duration (500 °C) of h-BN-encapsulated GGFF (h-BN/GGFF) was increased by 1 order of magnitude without compromising the electrothermal performances and flexibility. Theoretical simulations revealed that the enhanced oxidation resistance of h-BN/GGFF was attributed to the decreased interaction and adsorption life of oxygen. The proposed flexible, full-surface, conformal encapsulation technique targeting the fiber-shaped graphene electrothermal device is scalable and can be extended to the other carbon materials, even devices with intricate shapes, which will promote the development of flexible electronics.
Collapse
Affiliation(s)
- Jun Jiang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiucai Sun
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Shuting Cheng
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Hui Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Junliang Li
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhongfan Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
32
|
Chang CJ, Tsai PC, Su WY, Huang CY, Lee PT, Lin SY. Layered Graphene Growth Directly on Sapphire Substrates for Applications. ACS OMEGA 2022; 7:13128-13133. [PMID: 35474834 PMCID: PMC9026027 DOI: 10.1021/acsomega.2c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Layer-by-layer graphene growth is demonstrated by repeating CVD growth cycles directly on sapphire substrates. Improved field-effect mobility values are observed for the bottom-gate transistors fabricated by using the bilayer graphene channel, which indicates an improved crystallinity is obtained after the second CVD growth cycle. Despite the poor wettability of copper on graphene surfaces, graphene may act as a thin and effective diffusion barrier for copper atoms. The low resistivity values of thin copper films deposited on thin monolayer MoS2/monolayer graphene heterostructures have demonstrated its potential to replace current thick liner/barrier stacks in back-end interconnects. The unique van der Waals epitaxy growth mode will be helpful for both homo- and heteroepitaxy on 2D material surfaces.
Collapse
Affiliation(s)
- Che-Jia Chang
- Department
of Photonics, National Yang Ming Chiao Tung
University, No. 1001, Daxue Road, Hsinchu City 300093, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Po-Cheng Tsai
- Research
Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
- Graduate
Institute of Electronics Engineering, National
Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Ya Su
- Department
of Applied Science, National Taitung University, 369, Sec. 2, University Road, Taitung 950, Taiwan
| | - Chun-Yuan Huang
- Department
of Applied Science, National Taitung University, 369, Sec. 2, University Road, Taitung 950, Taiwan
| | - Po-Tsung Lee
- Department
of Photonics, National Yang Ming Chiao Tung
University, No. 1001, Daxue Road, Hsinchu City 300093, Taiwan
| | - Shih-Yen Lin
- Research
Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
- Graduate
Institute of Electronics Engineering, National
Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Department
of Applied Science, National Taitung University, 369, Sec. 2, University Road, Taitung 950, Taiwan
| |
Collapse
|
33
|
Yuan H, Zhang H, Huang K, Cheng Y, Wang K, Cheng S, Li W, Jiang J, Li J, Tu C, Wang X, Qi Y, Liu Z. Dual-Emitter Graphene Glass Fiber Fabric for Radiant Heating. ACS NANO 2022; 16:2577-2584. [PMID: 35107258 DOI: 10.1021/acsnano.1c09269] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radiant heating, as a significant thermal management technique, is best known for its high thermal effect, media-free operation, good penetration, and compatibility for different heated shapes. To promote sustainable development in this area, developing advanced infrared radiation material is in high demand. In this work, a lightweight, flexible dual-emitter infrared electrothermal material, graphene glass fiber (GGF), is developed by chemical vapor deposition (CVD) method, with both graphene and glass fiber as the radiation elements. Large-area GGF fabric (GGFF) exhibits wavelength-independent high infrared emissivity (0.92) and thermal radiation efficiency (79.4%), as well as ultrafast electrothermal response (190.7 °C s-1 at 9.30 W cm-2) and uniform heating temperature. The superior radiant heating capability of GGFF to traditional alloy heating wires can achieve 33.3% energy saving. GGF can promote the development of efficient and energy-saving heat management technology.
Collapse
Affiliation(s)
- Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuting Cheng
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Jiang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Junliang Li
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
34
|
Cui G, Peng Z, Chen X, Cheng Y, Lu L, Cao S, Ji S, Qu G, Zhao L, Wang S, Wang S, Li Y, Ci H, Li M, Liu Z. Freestanding Graphene Fabric Film for Flexible Infrared Camouflage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105004. [PMID: 34914865 PMCID: PMC8844486 DOI: 10.1002/advs.202105004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Graphene films, fabricated by chemical vapor deposition (CVD) method, have exhibited superiorities in high crystallinity, thickness controllability, and large-scale uniformity. However, most synthesized graphene films are substrate-dependent, and usually fragile for practical application. Herein, a freestanding graphene film is prepared based on the CVD route. By using the etchable fabric substrate, a large-scale papyraceous freestanding graphene fabric film (FS-GFF) is obtained. The electrical conductivity of FS-GFF can be modulated from 50 to 2800 Ω sq-1 by tailoring the graphene layer thickness. Moreover, the FS-GFF can be further attached to various shaped objects by a simple rewetting manipulation with negligible changes of electric conductivity. Based on the advanced fabric structure, excellent electrical property, and high infrared emissivity, the FS-GFF is thus assembled into a flexible device with tunable infrared emissivity, which can achieve the adaptive camouflage ability in complicated backgrounds. This work provides an infusive insight into the fabrication of large-scale freestanding graphene fabric films, while promoting the exploration on the flexible infrared camouflage textiles.
Collapse
Affiliation(s)
- Guang Cui
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
| | - Zhe Peng
- Shandong Academy of Agricultural SciencesJinan250100P. R. China
| | - Xiaoyan Chen
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Yi Cheng
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
| | - Lin Lu
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Shubo Cao
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Sudong Ji
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Guoxin Qu
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Lu Zhao
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Shaokai Wang
- Ningbo Innovation Research InstituteBeihang UniversityNingbo315800China
| | - Shida Wang
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Yizhen Li
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Haina Ci
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- College of EnergySoochow Institute for Energy and Materials InnovationS (SIEMIS)Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006P. R. China
- School of Mechanical and Electrical EngineeringQingdao University of Science and TechnologyQingdao266061P. R. China
| | - Maoyuan Li
- Beijing System Design Institute of Mechanical‐Electrical EngineeringBeijing100871P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
| |
Collapse
|
35
|
Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
37
|
Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J, Wang X, Hong M, Lin L, Huang L, Lin X, Yang S, Gao X, Zhang Y, Gao P, Novoselov KS, Sun J, Liu Z. Direct growth of wafer-scale highly oriented graphene on sapphire. SCIENCE ADVANCES 2021; 7:eabk0115. [PMID: 34797705 PMCID: PMC8604399 DOI: 10.1126/sciadv.abk0115] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Direct chemical vapor deposition (CVD) growth of wafer-scale high-quality graphene on dielectrics is of paramount importance for versatile applications. Nevertheless, the synthesized graphene is typically a polycrystalline film with high density of uncontrolled defects, resulting in a low carrier mobility and high sheet resistance. Here, we report the direct growth of highly oriented monolayer graphene films on sapphire wafers. Our growth strategy is achieved by designing an electromagnetic induction heating CVD operated at elevated temperature, where the high pyrolysis and migration barriers of carbon species are easily overcome. Meanwhile, the embryonic graphene domains are guided into good alignment by minimizing its configuration energy. The thus obtained graphene film accordingly manifests a markedly improved carrier mobility (~14,700 square centimeters per volt per second at 4 kelvin) and reduced sheet resistance (~587 ohms per square), which compare favorably with those from catalytic growth on polycrystalline metal foils and epitaxial growth on silicon carbide.
Collapse
Affiliation(s)
- Zhaolong Chen
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
| | - Chunyu Xie
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wendong Wang
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Jinpei Zhao
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Bingyao Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jingyuan Shan
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xueyan Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Hong
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Lin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
| | - Li Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Lin
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenyuan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Xuan Gao
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Peng Gao
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871,China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
- Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing 400714, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Jingyu Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| |
Collapse
|
38
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
39
|
Shan J, Wang S, Zhou F, Hu J, Liu Q, Lin S, Zhang Y, Liu Z. Designing New-Generation Piezoelectric Transducers by Embedding Superior Graphene-Based Thermal Regulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103141. [PMID: 34453346 DOI: 10.1002/adma.202103141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Cascaded-piezoelectric-transducers (CPETs) is a key component in modern energy-conversion fields, possessing versatile applications in ultrasonic scalpels, acoustic levitation, and sonar. However, serious self-heating inevitably occurs inside high-power CPETs, severely limiting their practical applications in broader fields. To tackle this, multidirectional heat-escape channels of multidimensional (multi-D, 3D/2D) graphene films are introduced in designing new-type thermal regulators. A porous AlN-ceramic thermal-sink is creatively selected as a template for directly synthesizing graphene via a two-step chemical vapor deposition strategy. This perfect combination of 3D/2D-graphene and the AlN ceramic can integrate their complementary advantages in uniformizing, transmitting, and releasing heat. Amazingly, in the new-generation CPETs embedded with these graphene-based thermal regulators, the self-heating-induced temperature rise can be substantially reduced by ≈60% (far exceeding actual demand standard). As another kernel parameter, electroacoustic-energy-conversion efficiency is dramatically improved in the new-generation CPETs. Briefly, this research realizes the first synthesis of a novel multi-D-graphene/AlN-ceramic hybrid, and propels its brand-new application directions in new-generation energy-conversion- and thermal-management-related territories.
Collapse
Affiliation(s)
- Junjie Shan
- Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Sha Wang
- Shannxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shannxi Normal University, Xian, Shaanxi, 710119, P. R. China
| | - Fan Zhou
- Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Hu
- Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Qingqing Liu
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Shuyu Lin
- Shannxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shannxi Normal University, Xian, Shaanxi, 710119, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- College of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| |
Collapse
|
40
|
Toko K, Murata H. Layer exchange synthesis of multilayer graphene. NANOTECHNOLOGY 2021; 32:472005. [PMID: 34384058 DOI: 10.1088/1361-6528/ac1d05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Low-temperature synthesis of multilayer graphene (MLG) on arbitrary substrates is the key to incorporating MLG-based functional thin films, including transparent electrodes, low-resistance wiring, heat spreaders, and battery anodes in advanced electronic devices. This paper reviews the synthesis of MLG via the layer exchange (LE) phenomenon between carbon and metal from its mechanism to the possibility of device applications. The mechanism of LE is completely different from that of conventional MLG precipitation methods using metals, and the resulting MLG exhibits unique features. Modulation of metal species and growth conditions enables synthesis of high-quality MLG over a wide range of growth temperatures (350 °C-1000 °C) and MLG thicknesses (5-500 nm). Device applications are discussed based on the high electrical conductivity (2700 S cm-1) of MLG and anode operation in Li-ion batteries. Finally, we discuss the future challenges of LE for MLG and its application to flexible devices.
Collapse
Affiliation(s)
- Kaoru Toko
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiromasa Murata
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
41
|
Karunanithi B, Kumar KS, Balakrishnan K, Muralidharan S, Suresh S, Viswanathan V, Angamuthu M. Characteristic study of exfoliated graphene particles from waste batteries. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Zhou F, Liu B, Li Z, Zhou J, Shan J, Cui L, Hu J, Quan W, Cui K, Gao P, Zhang Y. Adhesion-Enhanced Vertically Oriented Graphene on Titanium-Covered Quartz Glass toward High-Stability Light-Dimming-Related Applications. ACS NANO 2021; 15:10514-10524. [PMID: 34038079 DOI: 10.1021/acsnano.1c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Improving the adhesion property of graphene directly grown on an insulating substrate is essential for promoting the reliability and durability of the related applications. However, effective approaches have rarely been reported, especially for vertically oriented graphene (VG) films grown on insulating templates. To tackle this, we have developed a facile synthetic strategy by introducing an ultrathin (10 nm-thick) titanium (Ti) film on a quartz glass substrate as the adhesion layer, for plasma-enhanced chemical vapor deposition (PECVD) growth of VG films. This synthetic process induces the formation of Ti, oxygen (O), carbon (C)-containing adhesion layer (Ti (O, C)), offering improved interfacial adhesion due to the formation of chemical bonds among Ti and C atoms. Dramatically improved surface and interface stabilities have been achieved, with regard to its counterpart without a Ti adhesion layer. Moreover, we have also realized precise controls of the transparent/conductive property, surface roughness, and hydrophobicity, etc., by varying the VG film growth time. We have also demonstrated the very intriguing application potentials of the hybrids in light-dimming related fields, that is, electro-heating defogging lenses and neutral density filters toward medical endoscope defogging and camera photography.
Collapse
Affiliation(s)
- Fan Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Bingyao Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Zhi Li
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
| | - Jinghui Zhou
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
| | - Junjie Shan
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
| | - Lingzhi Cui
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Kejian Cui
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P.R. China
| |
Collapse
|
43
|
Jeong G, Seo J, Kim Y, Seo DH, Baik JM, Jeon EC, Lee G, Park H. Graphene Antiadhesion Layer for the Effective Peel-and-Pick Transfer of Metallic Electrodes toward Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22000-22008. [PMID: 33904704 DOI: 10.1021/acsami.1c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to its exceptional physicochemical properties, graphene has demonstrated unprecedented potential in a wide array of scientific and industrial applications. By exploiting its chemically inert surface endowed with unique barrier functionalities, we herein demonstrate antiadhesive monolayer graphene films for realizing a peel-and-pick transfer process of target materials from the donor substrate. When the graphene antiadhesion layer (AAL) is inserted at the interface between the metal and the arbitrary donor substrate, the interfacial interactions can be effectively weakened by the weak interplanar van der Waals forces of graphene, enabling the effective release of the metallic electrode from the donor substrate. The flexible embedded metallic electrode with graphene AAL exhibited excellent electrical conductivity, mechanical durability, and chemical resistance, as well as excellent performance in flexible heater applications. This study afforded an effective strategy for fabricating high-performance and ultraflexible embedded metallic electrodes for applications in the field of highly functional flexible electronics.
Collapse
Affiliation(s)
- Gyujeong Jeong
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihyung Seo
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Center for Superfunctional Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong-Hyun Seo
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jeong Min Baik
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eun-Chae Jeon
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Center for Superfunctional Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
44
|
Xu L, Sun J, Tang T, Zhang H, Sun M, Zhang J, Li J, Huang B, Wang Z, Xie Z, Wong WY. Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angew Chem Int Ed Engl 2021; 60:11326-11334. [PMID: 33626224 DOI: 10.1002/anie.202014835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/31/2021] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) nanomaterials are attracting much attention due to their excellent electronic and optical properties. Here, we report the first experimental preparation of two free-standing mercurated graphyne nanosheets via the interface-assisted bottom-up method, which integrates both the advantages of metal center and graphyne. The continuous large-area nanosheets derived from the chemical growth show the layered molecular structural arrangement, controllable thickness and enhanced π-conjugation, which result in their stable and outstanding broadband nonlinear saturable absorption (SA) properties (at both 532 and 1064 nm). The passively Q-switched (PQS) performances of these two nanosheets as the saturable absorbers are comparable to or higher than those of the state-of-the-art 2D nanomaterials (such as graphene, black phosphorus, MoS2 , γ-graphyne, etc.). Our results illustrate that the two metallated graphynes could act not only as a new class of 2D carbon-rich materials, but also as inexpensive and easily available optoelectronic materials for device fabrication.
Collapse
Affiliation(s)
- Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jibin Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Tianhong Tang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiahua Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhengping Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
45
|
Xu L, Sun J, Tang T, Zhang H, Sun M, Zhang J, Li J, Huang B, Wang Z, Xie Z, Wong W. Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Jibin Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences 29 Zhongguancun East Road, Haidian District Beijing 100190 P. R. China
| | - Tianhong Tang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Jiahua Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Zhengping Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences 29 Zhongguancun East Road, Haidian District Beijing 100190 P. R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
46
|
Liu L, Dong R, Ye D, Lu Y, Xia P, Deng L, Duan Y, Cao K, Chen S. Phosphomolybdic Acid-Modified Monolayer Graphene Anode for Efficient Organic and Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12268-12277. [PMID: 33656843 DOI: 10.1021/acsami.0c22456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene is a promising flexible transparent electrode, and significant progress in graphene-based optoelectronic devices has been accomplished by reducing the sheet resistance and tuning the work function. Herein, phosphomolybdic acid (PMA) is proposed as a novel p-type chemical dopant for graphene, and the optical and electrical properties of graphene are investigated systematically. As a result, the monolayer graphene electrode with lower sheet resistance and work function are obtained while maintaining a high transmittance. The Raman spectrum proves the p-type doping effect of PMA on graphene, and the X-ray photoelectron spectroscopy results reveal the mechanism, which is that the electrons transfer from graphene to PMA through the Mo-O-C bond. Furthermore, using the PMA-doped graphene anode, organic and perovskite light-emitting diodes obtained the maximum efficiencies of 129.3 and 15.6 cd/A with an increase of 50.8 and 36.8% compared with the pristine counterparts, respectively. This work confirms that PMA is a potential p-type chemical dopant to achieve an ideal graphene electrode and demonstrates the feasibility of PMA-doped graphene in the practical application of next-generation displays and solid-state lighting.
Collapse
Affiliation(s)
- Lihui Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Ruimin Dong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Danqing Ye
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Yao Lu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Pengfei Xia
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Lingling Deng
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Yu Duan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Kun Cao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| |
Collapse
|
47
|
|
48
|
Moschetta M, Lee J, Rodrigues J, Podestà A, Varvicchio O, Son J, Lee Y, Kim K, Lee G, Benfenati F, Bramini M, Capasso A. Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission. Adv Biol (Weinh) 2021; 5:e2000177. [DOI: 10.1002/adbi.202000177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/27/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia L.go Rosanna Benzi 10 Genova 16132 Italy
- Department of Experimental Medicine University of Genova Viale Benedetto XV Genova 16132 Italy
| | - Jong‐Young Lee
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Korea
| | - João Rodrigues
- International Iberian Nanotechnology Laboratory Braga 4715‐330 Portugal
| | - Alice Podestà
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia L.go Rosanna Benzi 10 Genova 16132 Italy
- Department of Experimental Medicine University of Genova Viale Benedetto XV Genova 16132 Italy
| | - Omar Varvicchio
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia L.go Rosanna Benzi 10 Genova 16132 Italy
- Department of Experimental Medicine University of Genova Viale Benedetto XV Genova 16132 Italy
| | - Jangyup Son
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Korea
- Functional Composite Materials Research Center Korea Institute of Science and Technology (KIST) Jeollabuk‐do 55324 Korea
| | - Yangjin Lee
- Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 Korea
- Department of Physics Yonsei University Seoul 03722 Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Seoul 03722 Korea
| | - Kwanpyo Kim
- Department of Physics Yonsei University Seoul 03722 Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Seoul 03722 Korea
| | - Gwan‐Hyoung Lee
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Korea
- Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 Korea
- Institute of Engineering Research Seoul National University Seoul 08826 Korea
- Institute of Applied Physics Seoul National University Seoul 08826 Korea
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia L.go Rosanna Benzi 10 Genova 16132 Italy
- IRCSS Ospedale Policlinico San Martino L.go Rosanna Benzi 10 Genova 16132 Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia L.go Rosanna Benzi 10 Genova 16132 Italy
- Department of Applied Physics Faculty of Science University of Granada Granada 18071 Spain
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory Braga 4715‐330 Portugal
| |
Collapse
|
49
|
Gudaitis R, Lazauskas A, Jankauskas Š, Meškinis Š. Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5630. [PMID: 33321771 PMCID: PMC7763619 DOI: 10.3390/ma13245630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
In this study, graphene was synthesized on the Si(100) substrates via the use of direct microwave plasma-enhanced chemical vapor deposition (PECVD). Protective enclosures were applied to prevent excessive plasma etching of the growing graphene. The properties of synthesized graphene were investigated using Raman scattering spectroscopy and atomic force microscopy. Synthesis time, methane and hydrogen gas flow ratio, temperature, and plasma power effects were considered. The synthesized graphene exhibited n-type self-doping due to the charge transfer from Si(100). The presence of compressive stress was revealed in the synthesized graphene. It was presumed that induction of thermal stress took place during the synthesis process due to the large lattice mismatch between the growing graphene and the substrate. Importantly, it was demonstrated that continuous horizontal graphene layers can be directly grown on the Si(100) substrates if appropriate configuration of the protective enclosure is used in the microwave PECVD process.
Collapse
Affiliation(s)
| | | | | | - Šarūnas Meškinis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (R.G.); (A.L.); (Š.J.)
| |
Collapse
|
50
|
Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The realization of high-speed and high-power gallium nitride (GaN)-based devices using high-quality GaN/Aluminum nitride (AlN) materials has become a hot topic. Raman spectroscopy has proven to be very useful in analyzing the characteristics of wide band gap materials, which reveals the information interaction of sample and phonon dynamics. Four GaN samples grown on different types of buffer layers were fabricated and the influence of graphene and sputtered AlN on GaN epitaxial layers were analyzed through the E2 (high) and A1 (LO) phonon. The relationship between the frequency shift of E2 (high) phonons and the biaxial stress indicated that the GaN grown on the graphene/sputtered AlN buffer layer was stress-free. Furthermore, the phonon lifetimes of A1 (LO) mode in GaN grown on graphene/sputtered AlN buffer layer suggested that carrier migration of GaN received minimal interference. Finally, the Raman spectra of graphene with the sputtered AlN interlayer has more disorder and the monolayer graphene was also more conducive to nucleation of GaN films. These results will have significant impact on the heteroepitaxy of high-quality thin GaN films embedded with a graphene/sputtered AlN buffer, and will facilitate the preparation of high-speed GaN-based optoelectronic devices.
Collapse
|