1
|
Shu Z, Liu E, Huang Y, Luo Q, Wang T, Li X, Mequanint K, Yang S, Xing M, Fan C. Analyzing Mushroom Structural Patterns of a Highly Compressible and Expandable Hemostatic Foam for Gastric Perforation Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306917. [PMID: 38439601 DOI: 10.1002/advs.202306917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Indexed: 03/06/2024]
Abstract
Nature presents the most beautiful patterns through evolving. Here, a layered porous pattern in golden ratio (0.618) is reported from a type of mushroom -Dictyophora Rubrovalvata stipe (DRS). The hierarchical structure shows a mathematical correlation with the golden ratio. This unique structure leads to superior mechanical properties. The gradient porous structure from outside to innermost endows it with asymmetrical hydrophilicity. A mathematical model is then developed to predict and apply to 3D printed structures. The mushroom is then explored to repair gastric perforation because the stomach is a continuous peristaltic organ, and the perforated site is subject to repeated mechanical movements and pressure changes. At present, endoscopic clipping is ineffective in treating ulcerative perforation with fragile surrounding tissues. Although endoscopic implant occlusion provides a new direction for the treatment of gastric ulcers, but the metal or plastic occluder needs to be removed, requiring a second intervention. Decellularized DRS (DDRS) is found with asymmetric water absorption rate, super-compressive elasticity, shape memory, and biocompatibility, making it a suitable occluder for the gastric perforation. The efficacy in blocking gastric perforation and promoting healing is confirmed by endoscopic observation and tissue analysis during a 2-month study.
Collapse
Affiliation(s)
- Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Tongchuan Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Xin Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, and School of Biomedical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, NO.183, Xinqiao Street, Chongqing, 400037, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China
| |
Collapse
|
2
|
Vaziri AS, Alizadeh M, Vasheghani-Farahani E, Karakaya E, Detsch R, Boccaccini AR. Polyethylenimine Inclusion to Develop Aqueous Alginate-Based Core-Shell Capsules for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25652-25664. [PMID: 38739871 DOI: 10.1021/acsami.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aqueous core-shell structures can serve as an efficient approach that allows cells to generate 3D spheroids with in vivo-like cell-to-cell contacts. Here, a novel strategy for fabricating liquid-core-shell capsules is proposed by inverse gelation of alginate (ALG) and layer-by-layer (LbL) coating. We hypothesized that the unique properties of polyethylenimine (PEI) could be utilized to overcome the low structural stability and the limited cell recognition motifs of ALG. In the next step, alginate dialdehyde (ADA) enabled the Schiff-base reaction with free amine groups of PEI to reduce its possible toxic effects. Scanning electron microscopy and light microscopy images proved the formation of spherical hollow capsules with outer diameters of 3.0 ± 0.1 mm for ALG, 3.2 ± 0.1 mm for ALG/PEI, and 4.0 ± 0.2 mm for ALG/PEI/ADA capsules. The effective modulus increased by 3-fold and 5-fold when comparing ALG/PEI/ADA and ALG/PEI to ALG capsules, respectively. Moreover, PEI-coated capsules showed potential antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an apparent inhibition zone. The cell viability results showed that all capsules were cytocompatible (above 75.5%). Cells could proliferate and form spheroids when encapsulated within the ALG/PEI/ADA capsules. Monitoring the spheroid thickness over 5 days of incubation indicated an increasing trend from 39.50 μm after 1 day to 66.86 μm after 5 days. The proposed encapsulation protocol represents a new in vitro platform for developing 3D cell cultivation and can be adapted to fulfill the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Maryam Alizadeh
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Emine Karakaya
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| |
Collapse
|
3
|
Cheon SY, Park JS, Lee Y, Lee C, Jeon H, Lee D, Kim SH, Lim SG, Koo H. Injectable and Self-Curing Single-Component Hydrogel for Stem Cell Encapsulation and In Vivo Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304861. [PMID: 38355304 DOI: 10.1002/advs.202304861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/28/2024] [Indexed: 02/16/2024]
Abstract
An ideal hydrogel for stem cell therapy would be injectable and efficiently promote stem cell proliferation and differentiation in body. Herein, an injectable, single-component hydrogel with hyaluronic acid (HA) modified with phenylboronic acid (PBA) and spermidine (SM) is introduced. The resulting HAps (HA-PBA-SM) hydrogel is based on the reversible crosslinking between the diol and the ionized PBA, which is stabilized by the SM. It has a shear-thinning property, enabling its injection through a syringe to form a stable hydrogel inside the body. In addition, HAps hydrogel undergoes a post-injection "self-curing," which stiffens the hydrogel over time. This property allows the HAps hydrogel to meet the physical requirements for stem cell therapy in rigid tissues, such as bone, while maintaining injectability. The hydrogel enabled favorable proliferation of human mesenchymal stem cells (hMSCs) and promoted their differentiation and mineralization. After the injection of hMSCs-containing HAps into a rat femoral defect model, efficient osteogenic differentiation of hMSCs and bone regeneration is observed. The study demonstrates that simple cationic modification of PBA-based hydrogel enabled efficient gelation with shear-thinning and self-curing properties, and it would be highly useful for stem cell therapy and in vivo bone regeneration.
Collapse
Affiliation(s)
- Seo Young Cheon
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ji Sun Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yeeun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chaehyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hayoung Jeon
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Se Hee Kim
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seong Gi Lim
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
4
|
Gwon Y, Park S, Kim W, Park S, Sharma H, Jeong HE, Kong H, Kim J. Graphene Hybrid Tough Hydrogels with Nanostructures for Tissue Regeneration. NANO LETTERS 2024; 24:2188-2195. [PMID: 38324001 DOI: 10.1021/acs.nanolett.3c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Over the past few decades, hydrogels have attracted considerable attention as promising biomedical materials. However, conventional hydrogels require improved mechanical properties, such as brittleness, which significantly limits their widespread use. Recently, hydrogels with remarkably improved toughness have been developed; however, their low biocompatibility must be addressed. In this study, we developed a tough graphene hybrid hydrogel with nanostructures. The resultant hydrogel exhibited remarkable mechanical properties while representing an aligned nanostructure that resembled the extracellular matrix of soft tissue. Owing to the synergistic effect of the topographical properties, and the enhanced biochemical properties, the graphene hybrid hydrogel had excellent stretchability, resilience, toughness, and biocompatibility. Furthermore, the hydrogel displayed outstanding tissue regeneration capabilities (e.g., skin and tendons). Overall, the proposed graphene hybrid tough hydrogel may provide significant insights into the application of tough hydrogels in tissue regeneration.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61011, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61011, Republic of Korea
| |
Collapse
|
5
|
Tang N, Jiang Y, Wei K, Zheng Z, Zhang H, Hu J. Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309576. [PMID: 37939373 DOI: 10.1002/adma.202309576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Gel materials are appealing due to their diverse applications in biomedicine, soft electronics, sensors, and actuators. Nevertheless, the existing synthetic gels are often plagued by feeble network structures and inherent defects associated with solvents, which compromise their mechanical load-bearing capacity and cast persistent doubts about their reliability. Herein, combined with attractive deep eutectic solvent (DES), a stepwise-enhanced strategy is presented to fabricate ultrarobust eutectogels. It focuses on the continuous modulation and optimization of polymer networks through complementary annealing and solvent exchange processes, which drives a progressive increase in both quantity and mass of the interconnected polymer chains at microscopic scale, hence contributing to the evolutionary enhancement of network structure. The resultant eutectogel exhibits superb mechanical properties, including record-breaking strength (31.8 MPa), toughness (76.0 MJ m-3 ), and Young's modulus (25.6 MPa), together with exceptional resistance ability to tear and crack propagation. Moreover, this eutectogel is able to be further programmed through photolithography to in situ create patterned eutectogel for imparting specific functionalities. Enhanced by its broad applicability to various DES combinations, this stepwise-enhanced strategy is poised to serve as a crucial template and methodology for the future development of robust gels.
Collapse
Affiliation(s)
- Ning Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yujia Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Kailun Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Hao Zhang
- Department of Mechanical Engineering, Tsinghua University, Shuangqing Road 30, Haidian District, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
6
|
Jeon J, Lee KZ, Zhang X, Jaeger J, Kim E, Li J, Belaygorod L, Arif B, Genin GM, Foston MB, Zayed MA, Zhang F. Genetically Engineered Protein-Based Bioadhesives with Programmable Material Properties. ACS APPLIED MATERIALS & INTERFACES 2023:10.1021/acsami.3c12919. [PMID: 38039085 PMCID: PMC11421886 DOI: 10.1021/acsami.3c12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Silk-amyloid-mussel foot protein (SAM) hydrogels made from recombinant fusion proteins containing β-amyloid peptide, spider silk domain, and mussel foot protein (Mfp) are attractive bioadhesives as they display a unique combination of tunability, biocompatibility, bioabsorbability, strong cohesion, and underwater adhesion to a wide range of biological surfaces. To design tunable SAM hydrogels for tailored surgical repair applications, an understanding of the relationships between protein sequence and hydrogel properties is imperative. Here, we fabricated SAM hydrogels using fusion proteins of varying lengths of silk-amyloid repeats and Mfps to characterize their structure and properties. We found that increasing silk-amyloid repeats enhanced the hydrogel's β-sheet content (r = 0.74), leading to higher cohesive strength and toughness. Additionally, increasing the Mfp length beyond the half-length of the full Mfp sequence (1/2 Mfp) decreased the β-sheet content (r = -0.47), but increased hydrogel surface adhesion. Among different variants, the hydrogel made of 16xKLV-2Mfp displayed a high ultimate strength of 3.0 ± 0.3 MPa, an ultimate strain of 664 ± 119%, and an attractive underwater adhesivity of 416 ± 20 kPa to porcine skin. Collectively, the sequence-structure-property relationships learned from this study will be useful to guide the design of future protein adhesives with tunable characteristics for tailored surgical applications.
Collapse
Affiliation(s)
- Juya Jeon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Kok Zhi Lee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaolu Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - John Jaeger
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Eugene Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Jingyao Li
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Larisa Belaygorod
- Department of Surgery, Section of Vascular Surgery, Washington University of Medicine in St. Louis, Saint Louis, Missouri 63110, United States
| | - Batool Arif
- Department of Surgery, Section of Vascular Surgery, Washington University of Medicine in St. Louis, Saint Louis, Missouri 63110, United States
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering MechanoBiology, Department of Mechanical Engineering & Materials Science, Institute of Materials Science and Engineering, and Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Marcus B. Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Mohamed A. Zayed
- Department of Surgery, Section of Vascular Surgery, Department of Radiology, Division of Molecular Cell Biology, and Division of Molecular Cell Biology, Washington University of Medicine in St. Louis, Saint Louis, Missouri 63110, United States; Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106, United States
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Institute of Materials Science and Engineering, and Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Abstract
Conditions, accidents, and aging processes have brought with them the need to develop implants with higher technology that allow not only the replacement of missing tissue but also the formation of tissue and the recovery of its function. The development of implants is due to advances in different areas such as molecular-biochemistry (which allows the understanding of the molecular/cellular processes during tissue repair), materials engineering, tissue regeneration (which has contributed advances in the knowledge of the properties of the materials used for their manufacture), and the so-called intelligent biomaterials (which promote tissue regeneration through inductive effects of cell signaling in response to stimuli from the microenvironment to generate adhesion, migration, and cell differentiation processes). The implants currently used are combinations of biopolymers with properties that allow the formation of scaffolds with the capacity to mimic the characteristics of the tissue to be repaired. This review describes the advances of intelligent biomaterials in implants applied in different dental and orthopedic problems; by means of these advances, it is expected to overcome limitations such as additional surgeries, rejections and infections in implants, implant duration, pain mitigation, and mainly, tissue regeneration.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Luz E Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| |
Collapse
|
8
|
Wang J, Wang X, Liang Z, Lan W, Wei Y, Hu Y, Wang L, Lei Q, Huang D. Injectable antibacterial Ag-HA/ GelMA hydrogel for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1219460. [PMID: 37388768 PMCID: PMC10300446 DOI: 10.3389/fbioe.2023.1219460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Fracture or bone defect caused by accidental trauma or disease is a growing medical problem that threats to human health.Currently, most orthopedic implant materials must be removed via follow-up surgery, which requires a lengthy recovery period and may result in bacterial infection. Building bone tissue engineering scaffolds with hydrogel as a an efficient therapeutic strategy has outstanding bionic efficiency.By combining some bionic inorganic particles and hydrogels to imitate the organic-inorganic characteristics of natural bone extracellular matrix, developing injectable multifunctional hydrogels with bone tissue repair effects and also displaying excellent antibacterial activity possesses attractive advantages in the field of minimally invasive therapy in clinical. Methods: In the present work, a multifunctional injectable hydrogel formed by photocrosslinking was developed by introducing hydroxyapatite (HA) microspheres to Gelatin Methacryloyl (GelMA) hydrogel. Results: The composite hydrogels exhibited good adhesion and bending resistance properties due to the existence of HA. In addition, when the concentration of GelMA is 10% and the concentration of HA microspheres is 3%, HA/GelMA hydrogel system displayed increased microstructure stability, lower swelling rate, increased viscosity, and improved mechanical properties. Furthermore, the Ag-HA/GelMA demonstrated good antibacterial activity against Staphylococcus aureus and Escherichia coli, which could signifificantly lower the risk of bacterial infection following implantation. According to cell experiment, the Ag-HA/GelMA hydrogel is capable of cytocompatibility and has low toxicity to MC3T3 cell. Conclusion: Therefore, the new photothermal injectable antibacterial hydrogel materials proposed in this study will provide a promising clinical bone repair strategy and is expected to as a minimally invasive treatment biomaterial in bone repair fields.
Collapse
Affiliation(s)
- Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Xuefeng Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| |
Collapse
|
9
|
Yang X, Yang B, Deng Y, Xie X, Qi Y, Yan G, Peng X, Zhao P, Bian L. Coacervation-Mediated Cytocompatible Formation of Supramolecular Hydrogels with Self-Evolving Macropores for 3D Multicellular Spheroid Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300636. [PMID: 36908012 DOI: 10.1002/adma.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Indexed: 06/16/2023]
Abstract
Coacervation driven liquid-liquid phase separation of biopolymers has aroused considerable attention for diverse applications, especially for the construction of microstructured polymeric materials. Herein, a coacervate-to-hydrogel transition strategy is developed to create macroporous hydrogels (MPH), which are formed via the coacervation process of supramolecular assemblies (SA) built by the host-guest complexation between γ-cyclodextrin and anthracene dimer. The weak and reversible supramolecular crosslinks endow the SA with liquid-like rheological properties, which facilitate the formation of SA-derived macroporous coacervates and the subsequent transition to MPH (pore size ≈ 100 µm). The excellent structural dynamics (derived from SA) and the cytocompatible void-forming process of MPH can better accommodate the dramatic volumetric expansion associated with colony growth of encapsulated multicellular spheroids compared with the non-porous static hydrogel with similar initial mechanical properties. The findings of this work not only provide valuable guidance to the design of biomaterials with self-evolving structures but also present a promising strategy for 3D multicellular spheroid culture and other diverse biomedical applications.
Collapse
Affiliation(s)
- Xuefeng Yang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yanwei Qi
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Guoqing Yan
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Xin Peng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
11
|
De Angelis G, Lutz-Bueno V, Amstad E. Rheological Properties of Ionically Crosslinked Viscoelastic 2D Films vs. Corresponding 3D Bulk Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23758-23764. [PMID: 37142546 DOI: 10.1021/acsami.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ionically crosslinked hydrogels containing metal coordination motifs have piqued the interest of researchers in recent decades due to their self-healing and adhesive properties. In particular, catechol-functionalized bulk hydrogels have received a lot of attention because of their bioinspired nature. By contrast, very little is known about thin viscoelastic membranes made using similar chelator-ion pair motifs. This shortcoming is surprising because the unique interfacial properties of these membranes, namely, their self-healing and adhesion, would be ideal for capsule shells, adhesives, or for drug delivery purposes. We recently demonstrated the feasibility to fabricate 10 nm thick viscoelastic membranes from catechol-functionalized surfactants that are ionically crosslinked at the liquid/liquid interface. However, it is unclear if the vast know-how existing on the influence of the chelator-ion pair on the mechanical properties of ionically crosslinked three-dimensional (3D) hydrogels can be translated to two-dimensional (2D) systems. To address this question, we compare the dynamic mechanical properties of ionically crosslinked pyrogallol functionalized hydrogels with those of viscoelastic membranes that are crosslinked using the same chelator-ion pairs. We demonstrate that the storage and loss moduli of viscoelastic membranes follow a trend similar to that of the hydrogels, with the membrane becoming stronger as the ion-chelator affinity increases. Yet, membranes relax significantly faster than bulk equivalents. These insights enable the targeted design of viscoelastic, adhesive, self-healing membranes possessing tunable mechanical properties. Such capsules can potentially be used, for example, in cosmetics, as granular inks, or with additional work that includes replacing the fluorinated block by a hydrocarbon-based one in drug delivery and food applications.
Collapse
Affiliation(s)
- Gaia De Angelis
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Viviane Lutz-Bueno
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
13
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
14
|
Fu Z, Xiao S, Wang P, Zhao J, Ling Z, An Z, Shao J, Fu W. Injectable, stretchable, toughened, bioadhesive composite hydrogel for bladder injury repair †. RSC Adv 2023; 13:10903-10913. [PMID: 37033438 PMCID: PMC10076968 DOI: 10.1039/d3ra00402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
The bladder is exposed to constant internal and external mechanical forces due to its deformation and the dynamic environment in which it is placed, which can hamper its repair after an injury. Traditional hydrogel materials have limitations regarding their use in the bladder owing to their poor mechanical and tissue adhesion properties. In this study, a composite hydrogel composed of methacrylate gelatine, methacrylated silk fibroin, and Pluronic F127 diacrylate was developed, which combines the characteristics of natural and synthetic polymers. The mechanical properties of the novel hydrogel, such as stretchability, viscoelasticity, and toughness, were improved by virtue of a particular molecular design strategy whereby covalent and non-covalent bond interactions create a cross-linking effect. In addition, the composite hydrogel has important usability properties; it can be injected in liquid format and rapidly transformed into a gel via photo-initiated crosslinking. This was demonstrated on an isolated porcine bladder where the hydrogel closed arbitrarily-shaped tissue defects within 90 s of its application, verifying its effective bioadhesive and sealing properties. This composite hydrogel has great potential for application in bladder injury repair as a tissue-engineering scaffold. An injectable, stretchable, toughened, bioadhesive composite hydrogel offers a new application strategy for sutureless repair and tissue regeneration of injured bladders.![]()
Collapse
Affiliation(s)
- Zhouyang Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Shuwei Xiao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Department of Urology, Air Force Medical CenterBeijing100142China
| | - Pengchao Wang
- Medical School of Chinese PLABeijing100853China
- Department of Urology, Hainan Hospital of PLA General HospitalHainan572013China
| | - Jian Zhao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Ziyan An
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Jinpeng Shao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Weijun Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
| |
Collapse
|
15
|
Sithole MN, Mndlovu H, du Toit LC, Choonara YE. Advances in Stimuli-responsive Hydrogels for Tissue Engineering and Regenerative Medicine Applications: A Review Towards Improving Structural Design for 3D Printing. Curr Pharm Des 2023; 29:3187-3205. [PMID: 37779402 DOI: 10.2174/0113816128246888230920060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 10/03/2023]
Abstract
The physicochemical properties of polymeric hydrogels render them attractive for the development of 3D printed prototypes for tissue engineering in regenerative medicine. Significant effort has been made to design hydrogels with desirable attributes that facilitate 3D printability. In addition, there is significant interest in exploring stimuli-responsive hydrogels to support automated 3D printing into more structurally organised prototypes such as customizable bio-scaffolds for regenerative medicine applications. Synthesizing stimuli-responsive hydrogels is dependent on the type of design and modulation of various polymeric materials to open novel opportunities for applications in biomedicine and bio-engineering. In this review, the salient advances made in the design of stimuli-responsive polymeric hydrogels for 3D printing in tissue engineering are discussed with a specific focus on the different methods of manipulation to develop 3D printed stimuli-responsive polymeric hydrogels. Polymeric functionalisation, nano-enabling and crosslinking are amongst the most common manipulative attributes that affect the assembly and structure of 3D printed bio-scaffolds and their stimuli- responsiveness. The review also provides a concise incursion into the various applications of stimuli to enhance the automated production of structurally organized 3D printed medical prototypes.
Collapse
Affiliation(s)
- Mduduzi Nkosinathi Sithole
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Hillary Mndlovu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| |
Collapse
|
16
|
Zhang H, Xu D, Zhang Y, Li M, Chai R. Silk fibroin hydrogels for biomedical applications. SMART MEDICINE 2022; 1:e20220011. [PMID: 39188746 PMCID: PMC11235963 DOI: 10.1002/smmd.20220011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 08/28/2024]
Abstract
Silk fibroin hydrogels occupy an essential position in the biomedical field due to their remarkable biological properties, excellent mechanical properties, flexible processing properties, as well as abundant sources and low cost. Herein, we introduce the unique structures and physicochemical characteristics of silk fibroin, including mechanical properties, biocompatibility, and biodegradability. Then, various preparation strategies of silk fibroin hydrogels are summarized, which can be divided into physical cross-linking and chemical cross-linking. Emphatically, the applications of silk fibroin hydrogel biomaterials in various biomedical fields, including tissue engineering, drug delivery, and wearable sensors, are systematically summarized. At last, the challenges and future prospects of silk fibroin hydrogels in biomedical applications are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yong Zhang
- School of PhysicsSoutheast UniversityNanjingChina
| | - Minli Li
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otorhinolaryngology‐Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
18
|
Hospodiuk-Karwowski M, Chi K, Pritchard J, Catchmark JM. Vascularized pancreas-on-a-chip device produced using a printable simulated extracellular matrix. Biomed Mater 2022; 17. [PMID: 36001993 DOI: 10.1088/1748-605x/ac8c74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
The extracellular matrix (ECM) influences cellular behavior, function, and fate. The ECM surrounding Langerhans islets has not been investigated in detail to explain its role in the development and maturation of pancreatic β-cells. Herein, a complex combination of the simulated ECM (sECM) has been examined with a comprehensive analysis of cell response and a variety of controls. The most promising results were obtained from group containing fibrin, collagen type I, Matrigel®, hyaluronic acid, methylcellulose, and two compounds of functionalized, ionically crosslinking bacterial cellulose (sECMbc). Even though the cell viability was not significantly impacted, the performance of group of sECMbc showed 2 to 4x higher sprouting number and length, 2 to 4x higher insulin secretion in static conditions, and 2 to 10x higher gene expression of VEGF-A, Endothelin-1, and NOS3 than the control group of fibrin matrix (sECMf). Each material was tested in a hydrogel-based, perfusable, pancreas-on-a-chip device and the best group - sECMbc has been tested with the drug Sunitinib to show the extended possibilities of the device for both diabetes-like screening as well as PDAC chemotherapeutics screening for potential personal medicine approach. It proved its functionality in 7 days dynamic culture and is suitable as a physiological tissue model. Moreover, the device with the pancreatic-like spheroids was 3D bioprintable and perfusable.
Collapse
Affiliation(s)
- Monika Hospodiuk-Karwowski
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Kai Chi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Justin Pritchard
- Biomedical Engineering Department, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Jeffrey M Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| |
Collapse
|
19
|
Liu W, Wang X, Zhou D, Fan X, Zhu J, Liu X. A Dioscorea opposita Thunb Polysaccharide-Based Dual-Responsive Hydrogel for Insulin Controlled Release. Int J Mol Sci 2022; 23:ijms23169081. [PMID: 36012342 PMCID: PMC9409491 DOI: 10.3390/ijms23169081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
A novel hydrogel (DOP/PEI-PBA) based on the “three-component” reaction of 2-formylphenylboric acid (2-FPBA), the primary amine group of polyethyleneimine (PEI) and the cis-o-dihydroxy groups of Dioscorea opposita Thunb polysaccharide (DOP) was designed in this work. The hydrogel can be easily prepared by simply mixing the three reactants at room temperature. The hydrogel had dual responsiveness to glucose and pH, and can realize the controllable release of insulin. Moreover, the hydrogel combining insulin and DOP can inhibit the reactive oxygen species (ROS) level and malondialdehyde (MDA) content, and promote glucose consumption as well as the level of superoxide dismutase (SOD), in high-glucose-induced injury in HL-7702 cells, which reflects the synergistic effect of insulin and DOP to protect hepatocytes from oxidative stress at the same time. Further in vitro cytotoxicity studies showed that the hydrogel had good biocompatibility and no obvious toxicity to cells. These indicate that the prepared hydrogel (DOP/PEI-PBA) can be expected to be applied in the clinical treatment of insulin deficiency in diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jinhua Zhu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| | - Xiuhua Liu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| |
Collapse
|
20
|
Cui T, Yu J, Wang C, Chen S, Li Q, Guo K, Qing R, Wang G, Ren J. Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201254. [PMID: 35596608 PMCID: PMC9353480 DOI: 10.1002/advs.202201254] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Indexed: 05/17/2023]
Abstract
The pH value in the wound milieu plays a key role in cellular processes and cell cycle processes involved in the process of wound healing. Here, a microfluidic assembly technique is employed to fabricate micro-gel ensembles that can precisely tune the pH value of wound surface and accelerate wound healing. The micro-gel ensembles consist of poly (hydroxypropyl acrylate-co-acrylic acid)-magnesium ions (poly-(HPA-co-AA)-Mg2+ ) gel and carboxymethyl chitosan (CMCS) gel, which can release and absorb hydrogen ion (H+ ) separately at different stages of healing in response to the evolution of wound microenvironment. By regulating the wound pH to affect the proliferation and migration of cell on the wound and the activity of various biological factors in the wound, the physiological processes are greatly facilitated which results in much accelerated healing of chronic wound. This work presents an effective strategy in designing wound healing materials with vast potentials for chronic wound management.
Collapse
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Jiafei Yu
- Department of General SurgeryJinling HospitalNanjing Medical UniversityNanjing210002China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Kun Guo
- Department of General SurgeryJinling HospitalNanjing Medical UniversityNanjing210002China
| | - Renkun Qing
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Gefei Wang
- Department of General SurgeryJinling HospitalNanjing Medical UniversityNanjing210002China
| | - Jianan Ren
- Department of General SurgeryJinling HospitalNanjing Medical UniversityNanjing210002China
| |
Collapse
|
21
|
Torabizadeh F, Fadaie M, Mirzaei E, Sadeghi S, Nejabat GR. Tailoring structural properties, mechanical behavior and cellular performance of collagen hydrogel through incorporation of cellulose manofibrils and cellulose nanocrystals: A comparative study. Int J Biol Macromol 2022; 219:438-451. [DOI: 10.1016/j.ijbiomac.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
|
22
|
Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioact Mater 2022; 12:314-326. [PMID: 35128179 PMCID: PMC8783102 DOI: 10.1016/j.bioactmat.2021.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
|
23
|
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem Rev 2022; 122:5604-5640. [PMID: 35023737 DOI: 10.1021/acs.chemrev.1c00815] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Collapse
Affiliation(s)
- Yue Zhao
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.,State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shanliang Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
24
|
Dynamic regulable sodium alginate/poly(γ-glutamic acid) hybrid hydrogels promoted chondrogenic differentiation of stem cells. Carbohydr Polym 2022; 275:118692. [PMID: 34742419 DOI: 10.1016/j.carbpol.2021.118692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023]
Abstract
Traditional hydrogels often fail to match the dynamic interactions between mechanical and cellular behaviors exhibited by the natural cartilage extracellular matrix. In this research, we constructed a novel hybrid hydrogels system based on sodium alginate and polyglutamic acid. By controlling the grafting rate and concentration of polymer, the gelation time and mechanical strength can be adjusted between range of 8-28 s and 60-144 kPa. By adding microcrystalline cellulose into the system, so that the degradation time was prolonged (125%) and the swelling rate was reduced (470%). Additionally, the presence of hydrazone bonds gives the system some dynamic response characteristics, and the hydrogel exhibits excellent self healing and injectable ability. It was found that the system had positive cytocompatibility (80%), which accelerated regulatory gene expression in cartilage tissue. In conclusion, this injectable hydrogel with self-healing and customizable mechanical strength will have broad application prospects in future biomedical engineering.
Collapse
|
25
|
Huang Y, Huang Z, Tang Z, Chen Y, Huang M, Liu H, Huang W, Ye Q, Jia B. Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Front Cell Dev Biol 2021; 9:740574. [PMID: 34869324 PMCID: PMC8635113 DOI: 10.3389/fcell.2021.740574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Traditional cell lines and xenograft models have been widely recognized and used in research. As a new research model, organoids have made significant progress and development in the past 10 years. Compared with traditional models, organoids have more advantages and have been applied in cancer research, genetic diseases, infectious diseases, and regenerative medicine. This review presented the advantages and disadvantages of organoids in physiological development, pathological mechanism, drug screening, and organ transplantation. Further, this review summarized the current situation of vascularization, immune microenvironment, and hydrogel, which are the main influencing factors of organoids, and pointed out the future directions of development.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Huang
- Department of stomatology, Guangdong Provincial Corps Hospital, Chinese People's Armed Police Force, Guangzhou, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Züger F, Marsano A, Poggio M, Gullo MR. Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli‐Responsive Constructs Mimicking Electrically Sensitive Tissue. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Fabian Züger
- Institute for Medical Engineering and Medical Informatics University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH 4312 Switzerland
- Swiss Nanoscience Institute University of Basel Klingelbergstrasse 82 Basel CH 4056 Switzerland
| | - Anna Marsano
- Cardiac Surgery and Engineering Department of Biomedicine University Hospital Basel Basel CH 4031 Switzerland
| | - Martino Poggio
- Nanomechanics and Nanomagnetism Department of Physics University of Basel Basel CH 4056 Switzerland
| | - Maurizio R. Gullo
- 3D bioprinting and biohybrid microsystems University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH 4312 Switzerland
| |
Collapse
|
27
|
Hou Y, Xie W, Fan X, Tang P, Yu L, Haag R. "Raspberry" Hierarchical Topographic Features Regulate Human Mesenchymal Stem Cell Adhesion and Differentiation via Enhanced Mechanosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54840-54849. [PMID: 34756008 DOI: 10.1021/acsami.1c18722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An understanding of cellular mechanoresponses to well-defined synthetic topographic features is crucial for the fundamental research and biomedical applications of stem cells. Structured biointerfaces, in particular the ones with nanometer and/or micrometer surficial features, have drawn more attention in the past few decades. However, it is still difficult to integrate nanostructures and microstructures onto the synthesized biointerfaces to mimic the hierarchical architecture of the native extracellular matrix (ECM). Herein, a series of "raspberry"-like hierarchical surfaces with well-defined nanofeatures and tunable nano/microfeatures have been achieved via a catecholic polymer coating technique. Cellular responses to these hierarchical interfaces were systemically studied, indicating that the nanofeatures on the raspberry surfaces significantly enhanced the mechanosensing of human mesenchymal stem cells (hMSCs) to interfacial physical cues. Cell mechanotransduction was further investigated by analyzing focal adhesion assembling, cytoskeleton organization, cell nuclear mechanics, and transcriptional activity. The results suggest that nanosize surficial features could increase cellular mechanosensing to environment physical cues. The mechanotransduction and cell fate specification were greatly enhanced by the ECM mimicking nano/microhierarchical biointerfaces but the features should be in an optimized size.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Xin Fan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Peng Tang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
28
|
Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells Int 2021; 2021:9477332. [PMID: 34671401 PMCID: PMC8523294 DOI: 10.1155/2021/9477332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.
Collapse
|
29
|
Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. Int J Mol Sci 2021; 22:10098. [PMID: 34576261 PMCID: PMC8472581 DOI: 10.3390/ijms221810098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
From the development of self-aggregating, scaffold-free multicellular spheroids to the inclusion of scaffold systems, 3D models have progressively increased in complexity to better mimic native tissues. The inclusion of a third dimension in cancer models allows researchers to zoom out from a significant but limited cancer cell research approach to a wider investigation of the tumor microenvironment. This model can include multiple cell types and many elements from the extracellular matrix (ECM), which provides mechanical support for the tissue, mediates cell-microenvironment interactions, and plays a key role in cancer cell invasion. Both biochemical and biophysical signals from the extracellular space strongly influence cell fate, the epigenetic landscape, and gene expression. Specifically, a detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, is lacking. In this review, we focus on the latest achievements in the study of ECM biomechanics and mechanosensing in cancer on 3D scaffold-based and scaffold-free models, focusing on each platform's level of complexity, up-to-date mechanical tests performed, limitations, and potential for further improvements.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - Lewis W. Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
30
|
Li H, Lyu Y, Chen X, Li B, Hua Q, Ji F, Yin Y, Li H. Layers of interstitial fluid flow along a "slit-shaped" vascular adventitia. J Zhejiang Univ Sci B 2021; 22:647-663. [PMID: 34414700 DOI: 10.1631/jzus.b2000590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interstitial fluid (ISF) flow through vascular adventitia has been discovered recently. However, its kinetic pattern was unclear. We used histological and topographical identification to observe ISF flow along venous vessels in rabbits. By magnetic resonance imaging (MRI) in live subjects, the inherent pathways of ISF flow from the ankle dermis through the legs, abdomen, and thorax were enhanced by paramagnetic contrast. By fluorescence stereomicroscopy and layer-by-layer dissection after the rabbits were sacrificed, the perivascular and adventitial connective tissues (PACTs) along the saphenous veins and inferior vena cava were found to be stained by sodium fluorescein from the ankle dermis, which coincided with the findings by MRI. The direction of ISF transport in a venous PACT pathway was the same as that of venous blood flow. By confocal microscopy and histological analysis, the stained PACT pathways were verified to be the fibrous connective tissues, consisting of longitudinally assembled fibers. Real-time observations by fluorescence stereomicroscopy revealed at least two types of spaces for ISF flow: one along adventitial fibers and another one between the vascular adventitia and its covering fascia. Using nanoparticles and surfactants, a PACT pathway was found to be accessible by a nanoparticle of <100 nm and contained two parts: a transport channel and an absorptive part. The calculated velocity of continuous ISF flow along fibers of the PACT pathway was 3.6‒15.6 mm/s. These data revealed that a PACT pathway was a "slit-shaped" porous biomaterial, comprising a longitudinal transport channel and an absorptive part for imbibition. The use of surfactants suggested that interfacial tension might play an essential role in layers of continuous ISF flow along vascular vessels. A hypothetical "gel pump" is proposed based on interfacial tension and interactions to regulate ISF flow. These experimental findings may inspire future studies to explore the physiological and pathophysiological functions of vascular ISF or interfacial fluid flow among interstitial connective tissues throughout the body.
Collapse
Affiliation(s)
- Hongyi Li
- Cardiology Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. .,Cardiology Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - You Lyu
- Cardiology Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoliang Chen
- Radiology Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Li
- Cardiology Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qi Hua
- Cardiology Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. ,
| | - Fusui Ji
- Cardiology Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yajun Yin
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hua Li
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Wang D, Zhu Y, Huang Y, Zhu J, Zhu B, Zhao Y, Lu Y, Wang Z, Guo Y. Pancreatic Extracellular Matrix/Alginate Hydrogels Provide a Supportive Microenvironment for Insulin-Producing Cells. ACS Biomater Sci Eng 2021; 7:3793-3805. [PMID: 34251797 DOI: 10.1021/acsbiomaterials.1c00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM), as an autoimmune deficiency disease, is associated with an absolute deficiency of insulin subject to islet β-cell destruction. Insulin-producing cells (IPCs) differentiated from induced pluripotent stem cells are an ideal replacement origin of β-cells, which can be applied for cell transplantation therapies in T1DM. At present, more strategies focus on inducing and differentiating to obtain IPCs; however, the unsatisfactory differentiation efficiency and the lack of ideal carriers for in vivo transplantation limited their application. It is necessary to consider the cell microenvironment by constructing a biomimetic niche to improve the differentiation and transplantation efficiency. The main components of the extracellular matrix derived from pancreatic (the niche of β-cells) decellularization were retained, which could provide the ideal extracellular microenvironment for IPCs. In this research, a hydrogel prepared with alginate (Alg) and the pancreatic extracellular matrix (pECM) was assessed for the beneficial outcomes on encapsulated IPCs. The results showed that pECM/Alg improved the differentiation efficiency and promoted insulin secretion and the expression of insulin-related genes as well. Besides, pECM/Alg-encapsulated IPCs exhibited obvious biocompatibility in vivo, which can prolong the transplantation effect and hypoglycemic function by reducing the inflammatory reaction. RNA-seq indicated that the PI3K/Akt pathway may be related to the improvement of the differentiation efficiency and function of IPCs. In general, the pECM/Alg hydrogel provides an ideal biomimetic microenvironment for IPCs and is suitable for in vivo transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yi Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Jiachen Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Biwen Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| |
Collapse
|
32
|
Yu L, Tang P, Nie C, Hou Y, Haag R. Well-Defined Nanostructured Biointerfaces: Strengthened Cellular Interaction for Circulating Tumor Cells Isolation. Adv Healthc Mater 2021; 10:e2002202. [PMID: 33943037 PMCID: PMC11468763 DOI: 10.1002/adhm.202002202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/27/2021] [Indexed: 12/11/2022]
Abstract
The topographic features at the cell-material biointerface are critical for cellular sensing of the extracellular environment (ECM) and have gradually been recognized as key factors that regulate cell adhesion behavior. Herein, a well-defined nanostructured biointerface is fabricated via a new generation of mussel-inspired polymer coating to mimic the native ECM structures. Upon the bioinert background presence and biospecific ligands conjugation, the affinity of cancer cells to the resulting biofunctional surfaces, which integrate topographic features and biochemical cues, is greatly strengthened. Both the conjugated bioligand density, filopodia formation, and focal adhesion expression are significantly enhanced by the surficial nano-features with an optimized size-scale. Thus, this nanostructured biointerface exhibits high capture efficiency for circulating tumor cells (CTCs) with high sensitivity, high biospecificity, and high purity. Benefiting from the unique bioligands conjugation chemistry herein, the captured cancer cells can be responsively detached from the biointerfaces without damage for downstream analysis. The present biofunctional nanostructured interfaces offer a good solution to address current challenges to efficiently isolate rare CTCs from blood samples for earlier cancer diagnosis.
Collapse
Affiliation(s)
- Leixiao Yu
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Peng Tang
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Chuanxiong Nie
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Yong Hou
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 3Berlin14195Germany
| |
Collapse
|
33
|
Liu B, Li F, Niu P, Li H. Tough Adhesion of Freezing- and Drying-Tolerant Transparent Nanocomposite Organohydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21822-21830. [PMID: 33913687 DOI: 10.1021/acsami.1c04758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tough hydrogels with strong wet adhesion have drawn extensive attention for various applications. However, it is still challenging to achieve both excellent wet adhesion and freezing- and drying-tolerance in hydrogels. In this study, we present tough transparent nanocomposite organohydrogels based on the glycerol-water binary solvent system in the presence of Al(OH)3 nanoparticles as a cross-linker. The resultant organohydrogels exhibited excellent tensile strength (∼0.9 MPa), high transparency (97%), superior anti-drying and anti-freezing properties, and good ionic conductivity. In particular, polyacrylic acid (PAA) was chosen as the bridging polymer to endow the organohydrogels with strong wet adhesion. The interfacial adhesion energy exceeded 2200 J m-2, which was ascribed to the synergy of ionic coordination and hydrogen bonds between the nanoparticles and carboxyl groups in PAA chains. Interestingly, based on the strong wet adhesion, the transparent organohydrogels can be assembled into hydraulically driven soft variable-focus lenses with long-term ambient stability. This work will provide a new insight into controlled wet adhesion ̵of hydrogel and have great potential for hydrogel-based functional devices with long-term ambient stability.
Collapse
Affiliation(s)
- Beibei Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feibo Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengying Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Huanjun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
34
|
Azar MG, Dodda JM, Bělský P, Šlouf M, Vavruňková V, Kadlec J, Remiš T. Tough and flexible conductive triple network hydrogels based on agarose/polyacrylamide/polyvinyl alcohol and
poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. POLYM INT 2021. [DOI: 10.1002/pi.6232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mina Ghafouri Azar
- New Technologies – Research Centre (NTC) University of West Bohemia Pilsen Czech Republic
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC) University of West Bohemia Pilsen Czech Republic
| | - Petr Bělský
- New Technologies – Research Centre (NTC) University of West Bohemia Pilsen Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry CAS Prague Czech Republic
| | - Veronika Vavruňková
- New Technologies – Research Centre (NTC) University of West Bohemia Pilsen Czech Republic
| | - Jaroslav Kadlec
- New Technologies – Research Centre (NTC) University of West Bohemia Pilsen Czech Republic
| | - Tomáš Remiš
- New Technologies – Research Centre (NTC) University of West Bohemia Pilsen Czech Republic
| |
Collapse
|
35
|
Zhang H, Zheng S, Chen C, Zhang D. A graphene hybrid supramolecular hydrogel with high stretchability, self-healable and photothermally responsive properties for wound healing. RSC Adv 2021; 11:6367-6373. [PMID: 35423140 PMCID: PMC8694836 DOI: 10.1039/d0ra09106e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/22/2021] [Indexed: 12/28/2022] Open
Abstract
Wound healing is a ubiquitous healthcare problem in clinical wound management. In this paper, the fabrication of a graphene hybrid supramolecular hydrogel (GS hydrogel) for wound dressing applications is demonstrated. The hydrogel is composed of two components, including N-acryloyl glycinamide (NAGA) as the scaffold and graphene as the photothermally responsive active site for photothermal therapy. Based on the multiple hydrogen bonds between the dual amide motifs in the side chain of N-acryloyl glycinamide, the hydrogel exhibits high tensile strength (≈1.7 MPa), good stretchability (≈400%) and self-recoverability. In addition, the GS hydrogel shows excellent antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), benefiting from the addition of graphene that possesses great photothermal transition activity (≈85%). Significantly, in vivo animal experiments also demonstrated that the GS hydrogel effectively accelerates the wound healing processes by eradicating microbes, promoting collagen deposition and angiogenesis. In summary, this GS hydrogel demonstrates excellent mechanical performance, photothermal antimicrobial activity, and promotes skin tissue regeneration, and so has great application potential as a promising wound dressing material in clinical use.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Surgery, Nanjing Center Hospital Nanjing 210000 China
| | - Shiya Zheng
- Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China
| | - Canwen Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University Nanjing 210002 China
| | - Dagan Zhang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University Nanjing 210008 China
| |
Collapse
|
36
|
Liu Z, Zhang H, Zhan Z, Nan H, Huang N, Xu T, Gong X, Hu C. Mild formation of core-shell hydrogel microcapsules for cell encapsulation. Biofabrication 2020; 13. [PMID: 33271516 DOI: 10.1088/1758-5090/abd076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Internal gelation has been an important sol-gel route for the preparation of spherical microgel for drug delivery, cell therapy, or tissue regeneration. Despite high homogeneity and permeability, the internal gelated microgels often result in weak mechanical stability, unregular interface morphology and low cell survival rate. In this work, we have extensively improved the existing internal gelation approach and core-shell hydrogel microcapsules (200-600 μm) with a smooth surface, high mechanical stability and cell survival rate, are successfully prepared by using internal gelation. A coaxial flow-focusing capillary-assembled microfluidic (CFCM) device was developed for the gelation. Rapid gelling behavior of alginate in the internal gelation makes it suitable for producing well-defined and homogenous alginate hydrogel microstructures that serve as the shell of the microcapsules. 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) was used in the shell stream during the internal gelation. Thus, a high concentration of acid in the oil solution can be used for better crosslinking the alginate while maintaining high cell viability. We further demonstrated that the gelation conditions in our approach were mild enough for encapsulating HepG2 cells and 3T3 fibroblasts without losing their viability and functionality in a co-culture environment.
Collapse
Affiliation(s)
- Zeyang Liu
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, China., Shenzhen, Beijing, 518000, CHINA
| | - Hongyong Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, China., Shenzhen, Guangdong, 518000, CHINA
| | - Zhen Zhan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, China., Shenzhen, Guangdong, 518000, CHINA
| | - Haochen Nan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, China., Shenzhen, Guangdong, 518000, CHINA
| | - Nan Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, China., Shenzhen, Guangdong, 518000, CHINA
| | - Tao Xu
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, China., Shenzhen, Beijing, 518000, CHINA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, 380 Minor Ln, Berkeley, CA 94720, USA, Berkeley, California, CA 94720, UNITED STATES
| | - Chengzhi Hu
- Mechanical and Energy Eningeering, Southern University of Science and Technology, NoNo. 1088 Xueyuan Avenue, Nanshan District, China., Shenzhen, 518000, CHINA
| |
Collapse
|
37
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
38
|
Li K, Zhu Y, Zhang Q, Shi X, Liang F, Han D. A Self-Healing Hierarchical Fiber Hydrogel That Mimics ECM Structure. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5277. [PMID: 33233475 PMCID: PMC7700118 DOI: 10.3390/ma13225277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Although there have been many studies on using hydrogels as substitutes for natural extracellular matrices (ECMs), hydrogels that mimic the structure and properties of ECM remain a contentious topic in current research. Herein, a hierarchical biomimetic fiber hydrogel was prepared using a simple strategy, with a structure highly similar to that of the ECM. Cell viability experiments showed that the hydrogel not only has good biocompatibility but also promotes cell proliferation and growth. It was also observed that cells adhere to the fibers in the hydrogel, mimicking the state of cells in the ECM. Lastly, through a rat skin wound repair experiment, we demonstrated that this hydrogel has a good effect on promoting rat skin healing. Its high structural similarity to the ECM and good biocompatibility make this hydrogel a good candidate for prospective applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Kai Li
- The State Key Laboratory for Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Yuting Zhu
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
| | - Qiang Zhang
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Shi
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Dong Han
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Shin S, Eom Y, Lee ES, Hwang SY, Oh DX, Park J. Malleable Hydrogel Embedded with Micellar Cargo-Expellers as a Prompt Transdermal Patch. Adv Healthc Mater 2020; 9:e2000876. [PMID: 32902150 DOI: 10.1002/adhm.202000876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 11/08/2022]
Abstract
Although hydrogels are promising transdermal patches, they face spatiotemporal problems related to controlled drug release. From the "spatio" perspective, hydrogels are not malleable, therefore they do not fully contact curved skin, such as that found on the nose and fingers. From the "temporal" perspective, the internal network of a hydrogel retards cargo release. Herein, a malleable and rapid-cargo-releasing poly(vinyl alcohol)-borax hydrogel that embeds freely mobile poly(hydroxyethyl methacrylate) (PHEMA) micelles is prepared. The in situ polymerization of PHEMA within the matrix produces large compound micelle particles that are not bound by the matrix. The micelles act as expellers by sweeping out cargo upon exposure to wet conditions through a concentration gradient. The hydrogel embedded with the micellar cargo-expellers delivers a 25-fold larger 3-min release quantity of Nile Red (a model cargo) than the control hydrogel. The particles absorb mechanical shocks and the dynamic borate-diol bonds engender the hydrogel with self-healing properties, which results in a hydrogel that tightly contacts highly curved skin. Moreover, the hydrogel shows no toxicity in in vivo and skin irritation tests. This malleable hydrogel will inspire novel prompt skin-patch systems for pharmaceutical and cosmetics purposes.
Collapse
Affiliation(s)
- Sung‐Ho Shin
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Youngho Eom
- Department of Polymer Engineering Pukyong National University Busan 48513 Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology The Catholic University of Korea Bucheon Gyeonggi‐do 14662 Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
- Advanced Materials and Chemical Engineering University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
- Advanced Materials and Chemical Engineering University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| | - Jeyoung Park
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
- Advanced Materials and Chemical Engineering University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| |
Collapse
|
40
|
Abdul Sisak MA, Louis F, Hyeok Lee S, Chang YT, Matsusaki M. Fabrication of Blood Capillary Models for Live Imaging Microarray Analysis. MICROMACHINES 2020; 11:E727. [PMID: 32727054 PMCID: PMC7464508 DOI: 10.3390/mi11080727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/29/2023]
Abstract
Conventional microarray analysis usually deals with the monolayer or two-dimensional (2D) assays for the high-throughput screening applications. Even though these cell-based assays are effective for preliminary screening at least to have information on cytotoxicity, they do not adequately re-create the in vivo complexity of three-dimensional (3D) tissues. In this study, 3D-blood capillary models were constructed by using physiological collagen microfibers (CMF), which provide the extracellular matrix in the complex tissue. Micro-droplets of fibrin gels containing CMF, endothelial cells, and fibroblasts were cultured for five days in 48-wells plate to provide a medium-throughput system for screening applications. Blood capillaries networks were formed by optimizing the concentration of CMF used and the number of cells. Finally, this screening method was a powerful assay for the application on the selection of not only a specific chemical probe for blood capillary live-imaging, but also a drug, aptamer, and peptide with potential blood vessel targeting property.
Collapse
Affiliation(s)
- Muhammad Asri Abdul Sisak
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Sun Hyeok Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Korea; (S.H.L.); (Y.-T.C.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Korea; (S.H.L.); (Y.-T.C.)
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
41
|
Ribeiro JS, Bordini EAF, Ferreira JA, Mei L, Dubey N, Fenno JC, Piva E, Lund RG, Schwendeman A, Bottino MC. Injectable MMP-Responsive Nanotube-Modified Gelatin Hydrogel for Dental Infection Ablation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16006-16017. [PMID: 32180395 PMCID: PMC7370252 DOI: 10.1021/acsami.9b22964] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A photocrosslinkable gelatin methacryloyl (GelMA) hydrogel has been widely examined in regenerative engineering because of its good cell-tissue affinity and degradability in the presence of matrix metalloproteinases. A halloysite aluminosilicate nanotube (HNT) is a known reservoir for the loading and sustained delivery of therapeutics. Here, we formulate injectable chlorhexidine (CHX)-loaded nanotube-modified GelMA hydrogel that is cytocompatible and biodegradable and provides sustained release of CHX for infection ablation while displaying good biocompatibility. The effects of HNTs and CHX on hydrogel degradability and mechanical properties, as well as on the kinetics of CHX release, and on the antimicrobial efficacy against oral pathogens were systematically assessed. Cytocompatibility in stem cells from human exfoliated deciduous teeth and inflammatory response in vivo using a subcutaneous rat model were determined. Our hydrogel system, that is, (CHX)-loaded nanotube-modified GelMA showed minimum localized inflammatory responses, supporting its ability for drug delivery applications. Moreover, we showed that the incorporation of CHX-loaded nanotubes reduces the mechanical properties, increases the swelling ratio, and diminishes the degradation rate of the hydrogels. Importantly, the presence of CHX-loaded nanotubes inhibits bacterial growth with minimal cell toxicity. Our findings provide a new strategy to modify GelMA hydrogel with chlorhexidine-loaded nanotubes for clinical use as an injectable drug delivery strategy for dental infection ablation.
Collapse
Affiliation(s)
- Juliana S Ribeiro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil
| | - Ester A F Bordini
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Araraquara, São Paulo 01049-010, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Evandro Piva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil
| | - Rafael G Lund
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent Advances on Magnetic Sensitive Hydrogels in Tissue Engineering. Front Chem 2020; 8:124. [PMID: 32211375 PMCID: PMC7068712 DOI: 10.3389/fchem.2020.00124] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering is a promising strategy for the repair and regeneration of damaged tissues or organs. Biomaterials are one of the most important components in tissue engineering. Recently, magnetic hydrogels, which are fabricated using iron oxide-based particles and different types of hydrogel matrices, are becoming more and more attractive in biomedical applications by taking advantage of their biocompatibility, controlled architectures, and smart response to magnetic field remotely. In this literature review, the aim is to summarize the current development of magnetically sensitive smart hydrogels in tissue engineering, which is of great importance but has not yet been comprehensively viewed.
Collapse
Affiliation(s)
- Zhongyang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
43
|
Hou Y, Yu L, Xie W, Camacho LC, Zhang M, Chu Z, Wei Q, Haag R. Surface Roughness and Substrate Stiffness Synergize To Drive Cellular Mechanoresponse. NANO LETTERS 2020; 20:748-757. [PMID: 31820645 DOI: 10.1021/acs.nanolett.9b04761] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Material surface topographic features have been shown to be crucial for tissue regeneration and surface treatment of implanted devices. Many biomaterials were investigated with respect to the response of cells on surface roughness. However, some conclusions even conflicted with each other due to the unclear interplay of surface topographic features and substrate elastic features as well as the lack of mechanistic studies. Herein, wide-scale surface roughness gradient hydrogels, integrating the surface roughness from nanoscale to microscale with controllable stiffness, were developed via soft lithography with precise surface morphology. Based on this promising platform, we systematically studied the mechanosensitive response of human mesenchymal stem cells (MSCs) to a broad range of roughnesses (200 nm to 1.2 μm for Rq) and different substrate stiffnesses. We observed that MSCs responded to surface roughness in a stiffness-dependent manner by reorganizing the surface hierarchical structure. Surprisingly, the cellular mechanoresponse and osteogenesis were obviously enhanced on very soft hydrogels (3.8 kPa) with high surface roughness, which was comparable to or even better than that on smooth stiff substrates. These findings extend our understanding of the interactions between cells and biomaterials, highlighting an effective noninvasive approach to regulate stem cell fate via synergetic physical cues.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Wenyan Xie
- Institute of Pharmacy , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany
| | - Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering , Sichuan University , 610065 Chengdu , China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering , Sichuan University , 610065 Chengdu , China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
44
|
Zhang Y, Wang WT, Gong CR, Li C, Shi M. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration. Neural Regen Res 2020; 15:1903-1911. [PMID: 32246639 PMCID: PMC7513967 DOI: 10.4103/1673-5374.280330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are promising seed cells for nerve regeneration. However, their application is limited by the hypoxic environment usually present at the site of injury. Exosomes derived from human umbilical cord mesenchymal stem cells have the potential to regulate the pathological processes that occur in response to hypoxia. The ability of OECs to migrate is unknown, especially in hypoxic conditions, and the effect of OECs combined with exosomes on peripheral nerve repair is not clear. Better understanding of these issues will enable the potential of OECs for the treatment of nerve injury to be addressed. In this study, OECs were acquired from the olfactory bulb of Sprague Dawley rats. Human umbilical cord mesenchymal stem cell-derived exosomes (0–400 μg/mL) were cultured with OECs for 12–48 hours. After culture with 400 μg/mL exosomes for 24 hours, the viability and proliferation of OECs were significantly increased. We observed changes to OECs subjected to hypoxia for 24 hours and treatment with exosomes. Exosomes significantly promoted the survival and migration of OECs in hypoxic conditions, and effectively increased brain-derived neurotrophic factor gene expression, protein levels and secretion. Finally, using a 12 mm left sciatic nerve defect rat model, we confirmed that OECs and exosomes can synergistically promote motor and sensory function of the injured sciatic nerve. These findings show that application of OECs and exosomes can promote nerve regeneration and functional recovery. This study was approved by the Institutional Ethical Committee of the Air Force Medical University, China (approval No. IACUC-20181004) on October 7, 2018; and collection and use of human umbilical cord specimens was approved by the Ethics Committee of the Linyi People’s Hospital, China (approval No. 30054) on May 20, 2019.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Tao Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chun-Rong Gong
- Rehabilitation Center, North District Hospital of the People's Hospital of Lin Yi City, Linyi, Shandong Province, China
| | - Chao Li
- Department of Orthopedics, The Eighth Medical Center of Chinese PLA general Hospital, Beijing, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
45
|
Reversible Mechanical Regulation and Splicing Ability of Alginate-Based Gel Based on Photo-Responsiveness of Molecular-Level Conformation. MATERIALS 2019; 12:ma12182919. [PMID: 31505857 PMCID: PMC6766279 DOI: 10.3390/ma12182919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
In this study, benefiting from the sensitive molecular conformation transversion in azobenzene, a new strategy for fabricating alginate gels with the abilities of splicing and photo-responsive mechanical adjustment is reported. Firstly, a 4,4’-azobis(benzoylhydrazide) (Azo-hydrazide) linker was used to crosslink alginate physically via the electrostatic interaction between hydrazide groups and carboxyl groups. It was then shaped and transferred in situ to a chemically crosslinked gel via 450 nm light irradiation. Under the irradiation, the molecular conformation change of azobenzene in the linker was able to form covalent bonds at the crosslinking points of the gels. Furthermore, the reversible conformation transformation of azobenzene was able to induce the increase and decrease of the storage modulus under irradiation with 365 nm light and 450 nm light, respectively, while also providing gel-like mechanical properties, depending upon the irradiation time and given wavelength. Meanwhile, the results also indicated that active groups could contribute to the splicing ability of the gel and construct a hollow cavity structure. It is believed that this work could provide a versatile strategy for preparing photo-responsive gels with reversibly tunable mechanical properties.
Collapse
|
46
|
Ma D, Chen Z, Yi L, Xi Z. Development of improved dual-diazonium reagents for faster crosslinking of tobacco mosaic virus to form hydrogels. RSC Adv 2019; 9:29070-29077. [PMID: 35528434 PMCID: PMC9071817 DOI: 10.1039/c9ra05630k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
New bench-stable reagents with two diazonium sites were designed and synthesized for protein crosslinking. Because of the faster diazonium-tyrosine coupling reaction, hydrogels from the crosslinking of tobacco mosaic virus and the reagent DDA-3 could be prepared within 1 min at room temperature. Furthermore, hydrogels with the introduction of disulfide bonds viaDDA-4 could be chemically degraded by dithiothreitol. Our results provided a facile approach for the direct construction of virus-based hydrogels. Improved dual-diazonium reagents were developed for more efficient crosslinking of tobacco mosaic virus to form hydrogels.![]()
Collapse
Affiliation(s)
- Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
| | - Zhuoyue Chen
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
| |
Collapse
|