1
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
2
|
Narita M, Kohata A, Kageyama T, Watanabe H, Aikawa K, Kawaguchi D, Morihiro K, Okamoto A, Okazoe T. Fluorocarbon-DNA Conjugates for Enhanced Cellular Delivery: Formation of a Densely Packed DNA Nano-Assembly. Chembiochem 2024; 25:e202400436. [PMID: 38858172 DOI: 10.1002/cbic.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Forming nano-assemblies is essential for delivering DNA conjugates into cells, with the DNA density in the nano-assembly playing an important role in determining the uptake efficiency. In this study, we developed a strategy for the facile synthesis of DNA strands bearing perfluoroalkyl (RF) groups (RF-DNA conjugates) and investigated how they affect cellular uptake. An RF-DNA conjugate bearing a long RF group at the DNA terminus forms a nano-assembly with a high DNA density, which results in greatly enhanced cellular uptake. The uptake mechanism is mediated by clathrin-dependent endocytosis. The use of RF groups to densely assemble negatively charged DNA is a useful strategy for designing drug delivery carriers.
Collapse
Grants
- 22UT0019 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT0211 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT1115 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 20K05460 JSPS KAKENHI Grant-in-Aid for Scientific Research
- 23K13852 Grant-in-Aid for Early-Career Scientists
Collapse
Affiliation(s)
- Minako Narita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Current address: School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Taiichi Kageyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Honoka Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
3
|
Liu M, Jin Z, Xiang Q, He H, Huang Y, Long M, Wu J, Zhi Huang C, Mao C, Zuo H. Rational Design of Untranslated Regions to Enhance Gene Expression. J Mol Biol 2024; 436:168804. [PMID: 39326490 DOI: 10.1016/j.jmb.2024.168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
How to improve gene expression by optimizing mRNA structures is a crucial question for various medical and biotechnological applications. Previous efforts focus largely on investigation of the 5' UTR hairpin structures. In this study, we present a rational strategy that enhances mRNA stability and translation by engineering both the 5' and 3' UTR sequences. We have successfully demonstrated this strategy using green fluorescent protein (GFP) as a model in Escherichia coli and across different expression vectors. We further validated it with luciferase and Plasmodium falciparum lactate dehydrogenase (PfLDH). To elucidate the underlying mechanism, we have quantitatively analyzed both protein, mRNA levels and half-life time. We have identified several key aspects of UTRs that significantly influence mRNA stability and protein expression in our system: (1) The optimal length of the single-stranded spacer between the stabilizer hairpin and ribosome binding site (RBS) in the 5' UTR is 25-30 nucleotide (nt) long. An optimal 32% GC content in the spacer yielded the highest levels of GFP protein production. (2) The insertion of a homodimerdizable, G-quadruplex structure containing RNA aptamer, "Corn", in the 3' UTR markedly increased the protein expression. Our findings indicated that the carefully engineered 5' UTRs and 3' UTRs significantly boosted gene expression. Specifically, the inclusion of 5 × Corn in the 3' UTR appeared to facilitate the local aggregation of mRNA, leading to the formation of mRNA condensates. Aside from shedding light on the regulation of mRNA stability and expression, this study is expected to substantially increase biological protein production.
Collapse
Affiliation(s)
- Mingchun Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhuoer Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qing Xiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huawei He
- Biological Sciences Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengfei Long
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Raj G, Ghosh T, D S V, P H, Kumar DB, Prasad J, V B A, S M A, Varghese R. G 4-Hemin-loaded 2D nanosheets for combined and targeted chemo-photodynamic cancer therapy. NANOSCALE 2024; 16:16195-16203. [PMID: 39140185 DOI: 10.1039/d4nr01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Synergetic combination therapy is emerging as one of the most promising approaches for cancer treatment. Among the various therapeutic approaches, PDT has received particular attention due to its non-invasive nature. However, the therapeutic performance of PDT is severely affected by tumour hypoxia. Herein, we report a supramolecular strategy for the fabrication of a PDT-active 2D nanosheet loaded with a POD mimicking DNAzyme for the synergetic combination of PDT and CDT for targeted cancer therapy. Assembly of biotin-functionalized BODIPY (1) and cationic β-cyclodextrin (β-CD+) leads to the formation of a 1/β-CD+ nanosheet with positively charged β-CD+ on the surface of the sheet. The cationic face of the 1/β-CD+ sheet was then loaded with a POD-mimicking Hem-loaded G-quadruplex aptamer (Hem/DNA1) via electrostatic interactions (1/β-CD+/Hem/DNA1). Cellular internalization of the 1/β-CD+/Hem/DNA1 nanosheet occurs via a receptor-mediated endocytic pathway, which then undergoes lysosomal escape. Subsequently, Hem/DNA1 on the surface of 1/β-CD+/Hem/DNA1 reacts with endogenous H2O2via the Fenton pathway to produce ˙OH and O2. Moreover, under cellular conditions, Hem inside the 1/β-CD+/Hem/DNA1 nanosheet produces Fe2+, which then undergoes another Fenton reaction to produce ˙OH and O2. The Fe3+ generated after the Fenton reaction is then reduced in situ to Fe2+ by glutathione for the next Fenton cycle. At the same time, photoirradiation of the 1/β-CD+ nanosheet using a 635 nm laser produces 1O2via the PDT pathway by using endogenous O2. The most remarkable feature of the present nanoformulation is the cooperativity in its therapeutic action, wherein O2 produced during the CDT pathway was used by the 1/β-CD+ sheet for improving its PDT efficacy in the hypoxic tumor microenvironment. This work represents a unique combination of CDT and PDT for targeted cancer therapy, wherein the CDT action of the nanoagent enhances the PDT efficacy and we strongly believe that this approach would encourage researchers to design similar combination therapy for advancements in the treatment of cancer.
Collapse
Affiliation(s)
- Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Tamraparni Ghosh
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Vasudev D S
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Harsha P
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Devu B Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India
| | - Justin Prasad
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Athul V B
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India
| | - Abhimanyu S M
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| |
Collapse
|
5
|
Raj G, Vasantha AP, Sreekumar VD, Beena AV, Dommeti VKK, Perozhy H, Jose AT, Khurana S, Varghese R. Bimetallic DNAsome Decorated with G 4-DNA as a Nanozyme for Targeted and Enhanced Chemo/Chemodynamic Cancer Therapy. Adv Healthc Mater 2024; 13:e2400256. [PMID: 38669674 DOI: 10.1002/adhm.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Cancer is indisputably one of the major threats to mankind, and hence the design of new approaches for the improvement of existing therapeutic strategies is always wanted. Herein, the design of a tumor microenvironment-responsive, DNA-based chemodynamic therapy (CDT) nanoagent with dual Fenton reaction centers for targeted cancer therapy is reported. Self-assembly of DNA amphiphile containing copper complex as the hydrophobic Fenton reaction center results in the formation of CDT-active DNAsome with Cu2+-based Fenton catalytic site as the hydrophobic core and hydrophilic ssDNA protrude on the surface. DNA-based surface addressability of the DNAsome is then used for the integration of second Fenton reaction center, which is a peroxidase-mimicking DNAzyme noncovalently loaded with Hemin and Doxorubicin, via DNA hybridization to give a CDT agent having dual Fenton reaction centers. Targeted internalization of the CDT nanoagent and selective generation of •OH inside HeLa cell are also shown. Excellent therapeutic efficiency is observed for the CDT nanoagent both in vitro and in vivo, and the enhanced efficacy is attributed to the combined and synergetic action of CDT and chemotherapy.
Collapse
Affiliation(s)
- Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Anu P Vasantha
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Vasudev D Sreekumar
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Athul V Beena
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Viswa Kalyan Kumar Dommeti
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Harsha Perozhy
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Alwin T Jose
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| |
Collapse
|
6
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
7
|
Jiang MC, Fang ZL, Zhang JY, Ma W, Liao LF, Yu CY, Wei H. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation. Acta Biomater 2024; 180:407-422. [PMID: 38614414 DOI: 10.1016/j.actbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.
Collapse
Affiliation(s)
- Ming-Chao Jiang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhou-Long Fang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Yan Zhang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Luan-Feng Liao
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine Hunan, Academy of Chinese Medicine, Changsha 410013, China; Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
9
|
Tao Z, Zhang H, Wu S, Zhang J, Cheng Y, Lei L, Qin Y, Wei H, Yu CY. Spherical nucleic acids: emerging amplifiers for therapeutic nanoplatforms. NANOSCALE 2024; 16:4392-4406. [PMID: 38289178 DOI: 10.1039/d3nr05971e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Gene therapy is a revolutionary treatment approach in the 21st century, offering significant potential for disease prevention and treatment. However, the efficacy of gene delivery is often compromised by the inherent challenges of gene properties and vector-related defects. It is crucial to explore ways to enhance the curative effect of gene drugs and achieve safer, more widespread, and more efficient utilization, which represents a significant challenge in amplification gene therapy advancements. Spherical nucleic acids (SNAs), with their unique physicochemical properties, are considered an innovative solution for scalable gene therapy. This review aims to comprehensively explore the amplifying contributions of SNAs in gene therapy and emphasize the contribution of SNAs to the amplification effect of gene therapy from the aspects of structure, application, and recent clinical translation - an aspect that has been rarely reported or explored thus far. We begin by elucidating the fundamental characteristics and scaling-up properties of SNAs that distinguish them from traditional linear nucleic acids, followed by an analysis of combined therapy treatment strategies, theranostics, and clinical translation amplified by SNAs. We conclude by discussing the challenges of SNAs and provide a prospect on the amplification characteristics. This review seeks to update the current understanding of the use of SNAs in gene therapy amplification and promote further research into their clinical translation and amplification of gene therapy.
Collapse
Affiliation(s)
- Zhenghao Tao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Shang Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| |
Collapse
|
10
|
Li Y, Chen R, Zhou B, Dong Y, Liu D. Rational Design of DNA Hydrogels Based on Molecular Dynamics of Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307129. [PMID: 37820719 DOI: 10.1002/adma.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Indexed: 10/13/2023]
Abstract
In recent years, DNA has emerged as a fascinating building material to engineer hydrogel due to its excellent programmability, which has gained considerable attention in biomedical applications. Understanding the structure-property relationship and underlying molecular determinants of DNA hydrogel is essential to precisely tailor its macroscopic properties at molecular level. In this review, the rational design principles of DNA molecular networks based on molecular dynamics of polymers on the temporal scale, which can be engineered via the backbone rigidity and crosslinking kinetics, are highlighted. By elucidating the underlying molecular mechanisms and theories, it is aimed to provide a comprehensive overview of how the tunable DNA backbone rigidity and the crosslinking kinetics lead to desirable macroscopic properties of DNA hydrogels, including mechanical properties, diffusive permeability, swelling behaviors, and dynamic features. Furthermore, it is also discussed how the tunable macroscopic properties make DNA hydrogels promising candidates for biomedical applications, such as cell culture, tissue engineering, bio-sensing, and drug delivery.
Collapse
Affiliation(s)
- Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruofan Chen
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Chen T, Wang Y, Zhu L, Wu J, Lin J, Huang W, Yan D. Hybrid Membrane Camouflaged Chemodrug-Gene Nanoparticles for Enhanced Combination Therapy of Ovarian Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58067-58078. [PMID: 38056905 DOI: 10.1021/acsami.3c10586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Recently, cell membrane camouflaged nanoparticles (NPs) endowed with natural cellular functions have been extensively studied in various biomedical fields. However, there are few reports about such biomimetic NPs used to codeliver chemodrug and genes for synergistic cancer treatment up to now. Herein, we first prepare chemodrug-gene nanoparticles (Mito-Her2 NPs) by the electrostatic interaction coself-assembly of mitoxantrone hydrochloride (Mito) and human epidermal growth factor receptor-2 antisense oligonucleotide (Her2 ASO). Then, Mito-Her2 NPs are coated by a hybrid membrane (RSHM), consisting of the red blood cell membrane (RBCM) and the SKOV3 ovarian cancer cell membrane (SCM), to produce biomimetic chemodrug-gene nanoparticles (Mito-Her2@RSHM NPs) for combination therapy of ovarian cancer. Mito-Her2@RSHM NPs integrate the advantages of RBCM (e.g., good immune evasion capability and long circulation lifetime in the blood) and SCM (e.g., highly specific cognate recognition) together and improve the anticancer efficacy of Mito-Her2 NPs. The results show that Mito-Her2@RSHM NPs can be devoured by SKOV3 ovarian cancer cells and effectively degraded to release Her2 ASOs and Mito simultaneously. Her2 ASOs can inhibit the expression of endogenous Her2 genes and recover cancer cells' sensitivity to Mito, which ultimately led to a high apoptosis rate of 75.7% in vitro. Mito-Her2@RSHM NPs also show a high tumor suppression rate of 83.33 ± 4.16% in vivo without significant damage to normal tissues. In summary, Mito-Her2@RSHM NPs would be expected as a versatile and safe nanodrug delivery platform with high efficiency for chemo-gene combined cancer treatment.
Collapse
Affiliation(s)
- Tianbao Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200217, China
| | - Jingchun Wu
- Zhejiang Haobang Chemical Co., LTD, 26 Luyin Road, Quzhou Hi-Tech Industrial Park, Zhejiang 324100, China
| | - Jintang Lin
- Zhejiang Haobang Chemical Co., LTD, 26 Luyin Road, Quzhou Hi-Tech Industrial Park, Zhejiang 324100, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Wang J, Zhang T, Li X, Wu W, Xu H, Xu XM, Zhang T. DNA Nanobarrel-Based Drug Delivery for Paclitaxel and Doxorubicin. Chembiochem 2023; 24:e202300424. [PMID: 37470220 DOI: 10.1002/cbic.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Co-delivery of anticancer drugs and target agents by endogenous materials is an inevitable approach towards targeted and synergistic therapy. Employing DNA base pair complementarities, DNA nanotechnology exploits a unique nanostructuring method and has demonstrated its capacity for nanoscale positioning and templated assembly. Moreover, the water solubility, biocompatibility, and modifiability render DNA structure suitable candidate for drug delivery applications. We here report single-stranded DNA tail conjugated antitumor drug paclitaxel (PTX), and the co-delivery of PTX, doxorubicin and targeting agent mucin 1 (MUC-1) aptamer on a DNA nanobarrel carrier. We investigated the effect of tail lengths on drug release efficiencies and dual drug codelivery-enabled cytotoxicity. Owing to the rapidly developing field of structural DNA nanotechnology, functional DNA-based drug delivery is promising to achieve clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Tianyu Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hui Xu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xin-Ming Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
13
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Xie L, Liu R, Wang D, Pan Q, Yang S, Li H, Zhang X, Jin M. Golden Buckwheat Extract-Loaded Injectable Hydrogel for Efficient Postsurgical Prevention of Local Tumor Recurrence Caused by Residual Tumor Cells. Molecules 2023; 28:5447. [PMID: 37513319 PMCID: PMC10383787 DOI: 10.3390/molecules28145447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
To prevent local tumor recurrence caused by possible residual cancer cells after surgery, avoid toxicity of systemic chemotherapy and protect the fragile immune system of postsurgical patients, an increasing amount of attention has been paid to local anti-cancer drug delivery systems. In this paper, golden buckwheat was first applied to prevent post-operative tumor recurrence, which is a Chinese herb and possesses anti-tumor activity. Golden buckwheat extract-loaded gellan gum injectable hydrogels were fabricated via Ca2+ crosslinking for localized chemotherapy. Blank and/or drug-loaded hydrogels were characterized via FT-IR, TG, SEM, density functional theory, drug release and rheology studies to explore the interaction among gellan gum, Ca2+ and golden buckwheat extract (GBE). Blank hydrogels were non-toxic to NIH3T3 cells. Of significance, GBE and GBE-loaded hydrogel inhibited the proliferation of tumor cells (up to 90% inhibition rate in HepG2 cells). In vitro hemolysis assay showed that blank hydrogel and GBE-loaded hydrogel had good blood compatibility. When GBE-loaded hydrogel was applied to the incompletely resected tumor of mice bearing B16 tumor xenografts, it showed inhibition of tumor growth in vivo and induced the apoptosis of tumor cells. Taken together, gellan gum injectable hydrogel containing GBE is a potential local anticancer drug delivery system for the prevention of postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dan Wang
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Shujie Yang
- Department of Pharmacy, Chengdu University, Chengdu 610059, China
| | - Huilun Li
- Clinical Medical College, Chengdu University, Chengdu 610106, China
| | - Xinmu Zhang
- Department of Pharmacy, Chengdu University, Chengdu 610059, China
| | - Meng Jin
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
17
|
Wang D, Zhang X, Zhu X. Drug-Grafted DNA for Cancer Therapy. J Phys Chem B 2023. [PMID: 37294640 DOI: 10.1021/acs.jpcb.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the development of solid-phase synthesis and DNA nanotechnology, DNA-based drug delivery systems have seen large advancements over the past decades. By combining various drugs (small-molecular drugs, oligonucleotides, peptides, and proteins) with DNA technology, drug-grafted DNA has demonstrated great potential as a promising platform in recent years, in which complementary properties of both components have been discovered; for instance, the synthesis of amphiphilic drug-grafted DNA has enabled the production of DNA nanomedicines for gene therapy and chemotherapy. Through the design of linkages between drug and DNA parts, stimuli-responsiveness can be instilled, which has boosted the application of drug-grafted DNA in various biomedical applications such as cancer therapy. This review discusses the progress of various drug-grafted DNA therapeutic agents, exploring the synthetic techniques and anticancer applications afforded through the combination of drug and nucleic acids.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| | - Xinyue Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| |
Collapse
|
18
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
19
|
Tian R, Shang Y, Wang Y, Jiang Q, Ding B. DNA Nanomaterials-Based Platforms for Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201518. [PMID: 36651129 DOI: 10.1002/smtd.202201518] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Indexed: 05/17/2023]
Abstract
The past few decades have witnessed the evolving paradigm for cancer therapy from nonspecific cytotoxic agents to selective, mechanism-based therapeutics, especially immunotherapy. In particular, the integration of nanomaterials with immunotherapy is proven to improve the therapeutic outcome and minimize off-target toxicity in the treatment. As a novel nanomaterial, DNA-based self-assemblies featuring uniform geometries, feasible modifications, programmability, surface addressability, versatility, and intrinsic biocompatibility, are extensively exploited for innovative and effective cancer immunotherapy. In this review, the successful employment of DNA nanoplatforms for cancer immunotherapy, including the delivery of immunogenic cell death inducers, adjuvants and vaccines, immune checkpoint blockers as well as the application in immune cell engineering and adoptive cell therapy is summarized. The remaining challenges and future perspectives regarding the pharmacokinetics/pharmacodynamics, in vivo fate and immunogenicity of DNA materials, and the design of intelligent DNA nanomedicine for individualized cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Ding F, Zhang S, Chen Q, Feng H, Ge Z, Zuo X, Fan C, Li Q, Xia Q. Immunomodulation with Nucleic Acid Nanodevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206228. [PMID: 36599642 DOI: 10.1002/smll.202206228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The precise regulation of interactions of specific immunological components is crucial for controllable immunomodulation, yet it remains a great challenge. With the assistance of advanced computer design, programmable nucleic acid nanotechnology enables the customization of synthetic nucleic acid nanodevices with unprecedented geometrical and functional precision, which have shown promising potential for precise immunoengineering. Notably, the inherently immunologic functions of nucleic acids endow these nucleic acid-based assemblies with innate advantages in immunomodulatory engagement. In this review, the roles of nucleic acids in innate immunity are discussed, focusing on the definition, immunologic modularity, and enhanced bioavailability of structural nucleic acid nanodevices. In light of this, molecular programming and precise organization of functional modules with nucleic acid nanodevices for immunomodulation are emphatically reviewed. At last, the present challenges and future perspectives of nucleic acid nanodevices for immunomodulation are discussed.
Collapse
Affiliation(s)
- Fei Ding
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Chen
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Hao Feng
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaolei Zuo
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, P. R. China
| | - Qiang Xia
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
21
|
Hartmann D, Booth MJ. Accessible light-controlled knockdown of cell-free protein synthesis using phosphorothioate-caged antisense oligonucleotides. Commun Chem 2023; 6:59. [PMID: 37005479 PMCID: PMC10067960 DOI: 10.1038/s42004-023-00860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Controlling cell-free expression of a gene to protein with non-invasive stimuli is vital to the future application of DNA nanodevices and synthetic cells. However, little emphasis has been placed on developing light-controlled 'off' switches for cell-free expression. Light-activated antisense oligonucleotides have been developed to induce gene knockdown in living cells; however, they are complicated to synthesise and have not been tested in cell-free systems. Developing simple, accessible methods to produce light-activated antisense oligonucleotides will be crucial for allowing their application in cell-free biology and biotechnology. Here, we report a mild, one-step method for selectively attaching commercially-available photoremovable protecting groups, photocages, onto phosphorothioate linkages of antisense oligonucleotides. Using this photocaging method, upon illumination, the original phosphorothioate antisense oligonucleotide is reformed. Photocaged antisense oligonucleotides, containing mixed phosphorothioate and phosphate backbones, showed a drastic reduction in duplex formation and RNase H activity, which was recovered upon illumination. We then demonstrated that these photocaged antisense oligonucleotides can be used to knock down cell-free protein synthesis using light. This simple and accessible technology will have future applications in light-controlled biological logic gates and regulating the activity of synthetic cells.
Collapse
Affiliation(s)
- Denis Hartmann
- Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA, Oxford, UK
| | - Michael J Booth
- Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA, Oxford, UK.
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, UK.
| |
Collapse
|
22
|
Zhang Z, Chen H, Fang L, He H, Mao C, Zuo H. Solution-Phase Synthesis of DNA Amphiphiles for DNA Micellar Assembly. Bioconjug Chem 2023; 34:85-91. [PMID: 36173879 DOI: 10.1021/acs.bioconjchem.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hydrophobic moieties of amphiphilic DNAs can help DNAs penetrate cell membranes, but the conjugation of hydrophobic moieties to DNAs in solution phase remains challenging. Herein we report a solution-phase synthesis method to conjugate hydrophobic molecules to DNAs. This method is simple and efficient. The resulted amphiphilic DNAs can spontaneously assemble into micelles, which may serve as nanocarriers for cellular delivery of nucleic acids and water-insoluble drugs.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huaiqing Chen
- Biological Sciences Research Center, State Key laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Huawei He
- Biological Sciences Research Center, State Key laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Xu F, Xia Q, Ye J, Dong L, Yang D, Xue W, Wang P. Programming DNA Aptamer Arrays of Prescribed Spatial Features with Enhanced Bioavailability and Cell Growth Modulation. NANO LETTERS 2022; 22:9935-9942. [PMID: 36480429 DOI: 10.1021/acs.nanolett.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Epithelial cell adhesion molecules (EpCAMs) play pivotal roles in tumorigenesis in many cancer types, which is reported to reside within nano- to microscale membrane domains, forming small clusters. We propose that building multivalent ligands that spatially patch to EpCAM clusters may largely enhance their targeting capability. Herein, we assembled EpCAM aptamers into nanoscale arrays of prescribed valency and spatial arrangements by using a rectangular DNA pegboard. Our results revealed that EpCAM aptamer arrays exhibited significantly higher binding avidity to MCF-7 cells than free monovalent aptamers, which was affected by both valency and spatial arrangement of aptamers. Furthermore, EpCAM aptamer arrays showed improved tolerance against competing targets in an extracellular environment and potent bioavailability and targeting specificity in a xenograft tumor model in mice. This work may shed light on rationally designing multivalent ligand complexes of defined parameters with optimized binding avidity and targeting capability toward various applications in the biomedical fields.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
24
|
Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, Jian L, Ma J, Yu J, Yang Z, Wu P, Li G, Liu X, Kang Z, Wang Z, Wang L, Wang H, Xu W. Transformable ECM Deprivation System Effectively Suppresses Renal Cell Carcinoma by Reversing Anoikis Resistance and Increasing Chemotherapy Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203518. [PMID: 36004775 DOI: 10.1002/adma.202203518] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Extracellular matrix (ECM) is crucial in various biological functions during tumor progression, including induction of anoikis resistance and cell adhesion-mediated drug resistance (CAM-DR). Fibronectin (FN) is a vital ECM component with direct regulatory effects on ECM-mediated anoikis resistance and CAM-DR, making it an attractive and innovative therapeutic target for depriving ECM in tumor tissue. Herein, an ECM deprivation system (EDS) is developed based on FN targeting self-assembly peptide for constructing nanofibers in the ECM of renal cell carcinoma (RCC), which contributes to: i) targeting and recognizing FN to form nanofibers for long-term retention in ECM, ii) reversing anoikis resistance via arresting the FN signaling pathway, and iii) serving as a drug-loading platform for sensitizing chemotherapy by ameliorating CAM-DR. The results reveal that EDS significantly reverses anoikis resistance of RCC cells by inhibiting the phosphorylation of FAK, a positive regulator of the FN signaling pathway. Meanwhile, EDS serves as a chemotherapy-sensitizer of cancer, exerting significant synergistic effects with doxorubicin (DOX). In vivo validation experiments show that EDS effectively suppresses metastasis and tumor growth with chemotherapy resistance. Collectively, the innovative EDS notably inhibits the tumor-promoting effect of ECM and may provide a novel approach for suppressing ECM and enhancing chemo-drug sensitivity.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jiaqi Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yulin Lv
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Bo Fu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Lingrui Jian
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jinpeng Ma
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jiaao Yu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Zongzheng Yang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Peng Wu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Guangbin Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Xiao Liu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Zhijian Kang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Ziqi Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Lei Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| |
Collapse
|
25
|
Chen Y, Li W, Xing H. Chemistries and applications of DNA-natural product conjugate. Front Chem 2022; 10:984916. [PMID: 36147254 PMCID: PMC9489112 DOI: 10.3389/fchem.2022.984916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Natural products and their derivatives have made great contributions to chemotherapy, especially for the treatment of tumors and infections. Despite the achievements, natural product-based small molecule drugs usually suffer from side effects, short circulation time, and solubility issue. To overcome these drawbacks, a common approach is to integrate another bio-functional motif into a natural product compound, enabling targeted or synergistic therapy. One of the most promising strategies is to form a DNA-natural product conjugate to improve therapeutic purposes. The incorporated DNA molecules can serve as an aptamer, a nucleic-acid-based congener of antibody, to specifically bind to the disease target of interest, or function as a gene therapy agent, such as immuno-adjuvant or antisense, to enable synergistic chemo-gene therapy. DNA-natural product conjugate can also be incorporated into other DNA nanostructures to improve the administration and delivery of drugs. This minireview aims to provide the chemistry community with a brief overview on this emerging topic of DNA-natural product conjugates for advanced therapeutics. The basic concepts to use the conjugation, the commonly used robust conjugation chemistries, as well as applications in targeted therapy and synergistic therapy of using DNA-natural product conjugates, are highlighted in this minireview. Future perspectives and challenges of this field are also discussed in the discussion and perspective section.
Collapse
|
26
|
Guo Y, Qin J, Zhao Q, Yang J, Wei X, Huang Y, Xie M, Zhang C, Li Y. Plaque-Targeted Rapamycin Spherical Nucleic Acids for Synergistic Atherosclerosis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105875. [PMID: 35344289 PMCID: PMC9165522 DOI: 10.1002/advs.202105875] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Indexed: 05/04/2023]
Abstract
Atherosclerosis with unstable plaques is the dominant pathological basis of lethal cardio-cerebrovascular diseases, which can cause acute death due to the rupture of plaques. Plaque-targeted drug delivery to achieve promoted treatment remains the main challenge because of the systemic occurrence of atheroma. Herein, a rapamycin (RAP) spherical nucleic acid (SNA) structure, capable of specifically accumulating in plaques for synergistic atherosclerosis treatment is constructed. By designing consecutive phosphorothioate (PS) at 3' terminus of the deoxyribonucleic acid (DNA) strand, multiple hydrophobic RAPs are covalently grafted onto the PS segment to form an amphiphilic drug-grafted DNA (RAP-DNA), which successively self-assembles into micellar SNA (RAP-SNA). Moreover, the phosphodiester-DNA segment constitutes the outer shell of RAP-SNA, enabling further hybridization with functional siRNA (targeting lectin-like oxidized low-density lipoprotein receptor-1, LOX-1) to obtain the drug codelivered SNA (LOX-1/RAP-SNA). With two active ingredients inside, LOX-1/RAP-SNA can not only induce robust autophagy and decrease the evil apoptosis of the pathological macrophages, but also simultaneously prohibit the LOX-1-mediated formation of damageable foam cells, realizing the effect of synergistic therapy. As a result, the LOX-1/RAP-SNA significantly reduces the progression of atheroma and stabilizes the plaques, providing a new strategy for synergistically targeted atherosclerosis treatment.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Jingcan Qin
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Qianqian Zhao
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Jiapei Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xiaoer Wei
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Yu Huang
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| | - Miao Xie
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yuehua Li
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine600 Yi Shan RoadShanghai200233China
| |
Collapse
|
27
|
Jiang Y, Zhou H, Zhao W, Zhang S. ATP-Triggered Drug Release of Self-Assembled 3D DNA Nanostructures for Fluorescence Imaging and Tumor Therapy. Anal Chem 2022; 94:6771-6780. [PMID: 35471011 DOI: 10.1021/acs.analchem.2c00409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulus-responsive materials are ideal carriers for precisely controlled drug delivery due to their high selectivity. However, the complex physiological environment hinders its development in clinical medicine. Here, we aim to design a self-assembled three-dimensional (3D) DNA nanostructure drug delivery system with adenosine-5'-triphosphate (ATP)-triggered drug release for tumor fluorescence imaging analysis and targeted drug delivery. Dox@3D DNA nanostructures are self-assembled by a simple one-pot annealing reaction and embedded with drugs, which are structurally stable but can be induced using high concentrations of ATP in tumor cells to cleave and release drugs rapidly, facilitating the rapid accumulation of drugs in tumors and exerting therapeutic effects, thus effectively avoiding damage to normal tissues. This work demonstrates that 3D DNA nanostructures can be used as efficient drug nanocarriers with promising applications in tumor therapy.
Collapse
Affiliation(s)
- Yao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.,Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Huimin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Wenjing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
28
|
Guo Y, Zhang Q, Zhu Q, Gao J, Zhu X, Yu H, Li Y, Zhang C. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. SCIENCE ADVANCES 2022; 8:eabn2941. [PMID: 35442728 PMCID: PMC9020667 DOI: 10.1126/sciadv.abn2941] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/03/2022] [Indexed: 05/27/2023]
Abstract
Packaging multiple drugs into a nanocarrier with rational design to achieve synergistic cancer therapy remains a challenge due to the intrinsically varied pharmacodynamics of therapeutic agents. Especially difficult is combining small-molecule drugs and macromolecular biologics. Here, we successfully graft pheophorbide A (PPA) photosensitizers on DNA backbone at predesigned phosphorothioate modification sites. The synthesized four PPA-grafted DNAs are assembled into a tetrahedron framework, which further associates with a programmed death ligand-1 (PD-L1) small interfering RNA (siRNA) linker through supramolecular self-assembly to form an siRNA and PPA copackaged nanogel. With dual therapeutic agents inside, the nanogel can photodynamically kill tumor cells and induce remarkable immunogenic cell death. Also, it simultaneously silences the PD-L1 expression of the tumor cells, which substantially promotes the antitumor immune response and leads to an enhanced antitumor efficacy in a synergistic fashion.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiushuang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiwen Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
29
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
30
|
Jiang Y, Zhao W, Zhou H, Zhang Q, Zhang S. ATP-Triggered Intracellular In Situ Aggregation of a Gold-Nanoparticle-Equipped Triple-Helix Molecular Switch for Fluorescence Imaging and Photothermal Tumor Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3755-3764. [PMID: 35291761 DOI: 10.1021/acs.langmuir.1c03331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isotropic gold nanoparticles (AuNPs) can generate a plasma-plasma interaction when aggregating and can also produce ideal photothermal effects. Some studies have designed ATP-responsive nanodrug delivery systems by taking advantage of the differences between internal and external ATP in tumor cells, but few studies have focused on the photothermal effects of ATP-induced AuNP aggregation in tumors. Here, a triple-helix probe (THP) molecular switch and MUC1 aptamer-functionalized AuNPs were constructed for fluorescence imaging analysis and photothermal therapy (PTT). The MUC1 aptamer guides THP-AuNP targeting in tumor cells, followed by the high concentration of ATP inducing structural changes in triple-helix probes and causing the intracellular aggregation of AuNPs, which cannot escape from the tumor site, enabling tumor imaging while performing PTT. Therefore, the designed THP-AuNPs have promising applications in fluorescence imaging and PTT.
Collapse
Affiliation(s)
- Yao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Wenjing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Huimin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
31
|
Fan Q, He Z, Xiong J, Chao J. Smart Drug Delivery Systems Based on DNA Nanotechnology. Chempluschem 2022; 87:e202100548. [PMID: 35233992 DOI: 10.1002/cplu.202100548] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/13/2022] [Indexed: 11/12/2022]
Abstract
The development of DNA nanotechnology has attracted tremendous attention in biotechnological and biomedical fields involving biosensing, bioimaging and disease therapy. In particular, precise control over size and shape, easy modification, excellent programmability and inherent homology make the sophisticated DNA nanostructures vital for constructing intelligent drug carriers. Recent advances in the design of multifunctional DNA-based drug delivery systems (DDSs) have demonstrated the effectiveness and advantages of DNA nanostructures, showing the unique benefits and great potential in enhancing the delivery of pharmaceutical compounds and reducing systemic toxicity. This Review aims to overview the latest researches on DNA nanotechnology-enabled nanomedicine and give a perspective on their future opportunities.
Collapse
Affiliation(s)
- Qin Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| | - Zhimei He
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| | - Jinxin Xiong
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing, 210000, P. R. China
| |
Collapse
|
32
|
Wang Y, Lu X, Wu X, Li Y, Tang W, Yang C, Liu J, Ding B. Chemically Modified DNA Nanostructures for Drug Delivery. Innovation (N Y) 2022; 3:100217. [PMID: 35243471 PMCID: PMC8881720 DOI: 10.1016/j.xinn.2022.100217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Based on predictable, complementary base pairing, DNA can be artificially pre-designed into versatile DNA nanostructures of well-defined shapes and sizes. With excellent addressability and biocompatibility, DNA nanostructures have been widely employed in biomedical research, such as bio-sensing, bio-imaging, and drug delivery. With the development of the chemical biology of nucleic acid, chemically modified nucleic acids are also gradually developed to construct multifunctional DNA nanostructures. In this review, we summarize the recent progress in the construction and functionalization of chemically modified DNA nanostructures. Their applications in the delivery of chemotherapeutic drugs and nucleic acid drugs are highlighted. Furthermore, the remaining challenges and future prospects in drug delivery by chemically modified DNA nanostructures are discussed. With excellent addressability and biocompatibility, DNA nanostructures are promising candidates for bio-sensing, bio-imaging, and drug delivery The recent progress in chemical modifications of DNA nanostructures is summarized Chemically modified DNA nanostructures for efficient delivery of chemotherapeutic drugs and nucleic acid drugs are highlighted Challenges and prospects of future development toward chemically modified DNA nanostructures for drug delivery are discussed
Collapse
|
33
|
Guo Y, Cao X, Zheng X, Abbas SJ, Li J, Tan W. Construction of nanocarriers based on nucleic acids and their application in nanobiology delivery systems. Natl Sci Rev 2022; 9:nwac006. [PMID: 35668748 PMCID: PMC9162387 DOI: 10.1093/nsr/nwac006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
In recent years, nanocarriers based on nucleic acids (NCNAs) have emerged as powerful and novel nanocarriers that are able to meet the demand for cancer cell-specific targeting. Functional dynamics analysis revealed good biocompatibility, low toxicity, and programmable structures, and their advantages include controllable size and modifiability. The development of novel hybrids has focused on the distinct roles of biosensing, drug and gene delivery, vaccine transport, photosensitization, counteracting drug resistance and functioning as carriers and logic gates. This review is divided into three parts: (1) DNA nanocarriers, (2) RNA nanocarriers, and (3) DNA/RNA hybrid nanocarriers and their biological applications. We also provide perspectives on possible future directions for growth in this field.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiuping Cao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Xiaofei Zheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| |
Collapse
|
34
|
Tan Y, Xiong M, Liu Q, Yin Y, Yin X, Liao S, Wang Y, Hu L, Zhang XB. Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles for drug delivery. RSC Adv 2022; 12:31173-31179. [DOI: 10.1039/d2ra05172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles (SPN-DNA) for drug delivery based on the minimized nonspecific adhesivity to cells.
Collapse
Affiliation(s)
- Ying Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Yao Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Shiyi Liao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Youjuan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Ling Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| |
Collapse
|
35
|
Chen Y, Shi S. Advances and prospects of dynamic DNA nanostructures in biomedical applications. RSC Adv 2022; 12:30310-30320. [PMID: 36337940 PMCID: PMC9590593 DOI: 10.1039/d2ra05006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has broken many limitations of static DNA nanostructures, making precise, remote, and reversible control possible. DDNs are intelligent nanostructures with certain dynamic behaviors that are capable of responding to specific stimuli. The responsible stimuli of DDNs include exogenous metal ions, light, pH, etc., as well as endogenous small molecules such as GSH, ATP, etc. Due to the excellent stimulus responsiveness and other superior physiological characteristics of DDNs, they are now widely used in biomedical fields. For example, they can be applied in the fields of biosensing and bioimaging, which are able to detect biomarkers with greater spatial and temporal precision to help disease diagnosis and live cell physiological function studies. Moreover, they are excellent intelligent carriers for drug delivery in treating cancer and other diseases, achieving controlled release of drugs. And they can promote tissue regeneration and regulate cellular behaviors. Although some challenges need further study, such as the practical value in clinical applications, DDNs have shown great potential applications in the biomedical field. With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has great potential applications in the biomedical field.![]()
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| |
Collapse
|
36
|
Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, Qian R, Zheng M, Shi B. Cation-Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104779. [PMID: 34751990 DOI: 10.1002/adma.202104779] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Indexed: 05/27/2023]
Abstract
Nanoparticle-based small interfering RNA (siRNA) therapy shows great promise for glioblastoma (GBM). However, charge associated toxicity and limited blood-brain-barrier (BBB) penetration remain significant challenges for siRNA delivery for GBM therapy. Herein, novel cation-free siRNA micelles, prepared by the self-assembly of siRNA-disulfide-poly(N-isopropylacrylamide) (siRNA-SS-PNIPAM) diblock copolymers, are prepared. The siRNA micelles not only display enhanced blood circulation time, superior cell take-up, and effective at-site siRNA release, but also achieve potent BBB penetration. Moreover, due to being non-cationic, these siRNA micelles exert no charge-associated toxicity. Notably, these desirable properties of this novel RNA interfering (RNAi) nanomedicine result in outstanding growth inhibition of orthotopic U87MG xenografts without causing adverse effects, achieving remarkably improved survival benefits. Moreover, as a novel type of polymeric micelle, the siRNA micelle displays effective drug loading ability. When utilizing temozolomide (TMZ) as a model loading drug, the siRNA micelle realizes effective synergistic therapy effect via targeting the key gene (signal transducers and activators of transcription 3, STAT3) in TMZ drug resistant pathways. The authors' results show that this siRNA micelle nanoparticle can serve as a robust and versatile drug codelivery platform, and RNAi nanomedicine and for effective GBM treatment.
Collapse
Affiliation(s)
- Tong Jiang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yonghan Qiao
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qingshan Yang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Guoying Wang
- Huaihe Hosiptal, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Qunzhi Chen
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinlong Yin
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Meng Zheng
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
37
|
Meng Y, Wu J. One-Step and Facile Synthesis of Poly(phenylalanine) as a Robust Drug Carrier for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49658-49670. [PMID: 34648254 DOI: 10.1021/acsami.1c13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent decades, many poly(amino acid)s have been successfully prepared for various biomedical applications. To date, the synthesis and purification procedures used to generate these poly(amino acid)s have generally been complicated and costly. Here, a one-step synthesis strategy was developed and optimized via direct polymerization using thionyl chloride to easily and economically obtain poly(amino acid)s. Phenylalanine (Phe) was selected as a model amino acid to construct a family of biodegradable and biocompatible poly(phenylalanine) (PPhe) molecules with a tunable molecular weight. The prepared PPhe can self-assemble into nanoparticles (PP-NPs) through nanoprecipitation with a particle size of approximately 100 nm. PP-NPs exhibit a high drug-loading capacity (>12 wt %) of paclitaxel (PTX, a commercial antitumor drug) and good therapeutic effects in CT26 cells. The in vivo evaluation of PTX@PP-NPs indicates that it has a prolonged blood circulation time and high tumor aggregation after intravenous injection, resulting in significant antitumor effects in CT26 tumor-bearing mice with minimal toxicity to normal organs. Overall, this study provides a facile and simple strategy for synthesizing poly(amino acids) and a PPhe-based nanoparticle platform for effectively delivering various small-molecule drugs.
Collapse
Affiliation(s)
- Yabin Meng
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
38
|
Cheng M, Dou H. Nano‐assemblies based on biomacromolecules to overcome cancer drug resistance. POLYM INT 2021. [DOI: 10.1002/pi.6310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
39
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
40
|
Wang D, Li S, Zhao Z, Zhang X, Tan W. Engineering a Second‐Order DNA Logic‐Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Shenhuan Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
41
|
Wang D, Li S, Zhao Z, Zhang X, Tan W. Engineering a Second-Order DNA Logic-Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angew Chem Int Ed Engl 2021; 60:15816-15820. [PMID: 33908144 DOI: 10.1002/anie.202103993] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Indexed: 01/24/2023]
Abstract
Tumor biomarker-based theranostics have achieved broad interest and success in recent years. However, single biomarker-based recognition can cause false-positive feedback, including the on-target off-tumor phenomenon, in the absence of tumor-specific antigen. Multibiomarker-based recognition molecules often elicit nonspecific and undesired internalization when they bind to "bystander" cells. We report a universal DNA tetrahedral scaffold (DTS) that anchors on the cell membrane to load multiple aptamers and therapeutics for precise and effective theranostics. This DNA logic-gated nanorobot (DLGN) not only facilitates precise discrimination among five cell lines, but also triggers synergistic killing of effector aptamer-tethered synergistic drugs (EASDs) to target cancer cells. Logic-gated recognition integrated into aptamer-functionalized molecular machines will prompt fast tumor profiling, in situ capture and isolation, and safe delivery of precise medicine.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Shenhuan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- The Cancer Hospital of the University of, Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
42
|
Xu X, Xiao L, Gu C, Shang J, Xiang Y. Wavelength-Selective Activation of Photocaged DNAzymes for Metal Ion Sensing in Live Cells. ACS OMEGA 2021; 6:13153-13160. [PMID: 34056465 PMCID: PMC8158819 DOI: 10.1021/acsomega.1c00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
RNA-cleaving DNAzymes are widely applied as sensors for detecting metal ions in environmental samples owing to their high sensitivity and selectivity, but their use for sensing biological metal ions in live cells is challenging because constitutive sensors fail to report the spatiotemporal heterogeneity of biological processes. Photocaged DNAzymes can be activated by light for sensing purposes that need spatial and temporal resolution. Studying complex biological processes requires logic photocontrol, but unfortunately all the literature-reported photocaged DNAzymes working in live cells cannot be selectively controlled by light irradiation at different wavelengths. In this work, we developed photocaged DNAzymes responsive to UV and visible light using a general synthetic method based on phosphorothioate chemistry. Taking the Zn2+-dependent DNAzyme sensor as a model, we achieved wavelength-selective activation of photocaged DNAzymes in live human cells by UV and visible light, laying the groundwork for the logic activation of DNAzyme-based sensors in biological systems.
Collapse
|
43
|
|
44
|
Gu C, Xiao L, Shang J, Xu X, He L, Xiang Y. Chemical synthesis of stimuli-responsive guide RNA for conditional control of CRISPR-Cas9 gene editing. Chem Sci 2021; 12:9934-9945. [PMID: 34377390 PMCID: PMC8317661 DOI: 10.1039/d1sc01194d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
CRISPR-Cas9 promotes changes in identity or abundance of nucleic acids in live cells and is a programmable modality of broad biotechnological and therapeutic interest. To reduce off-target effects, tools for conditional control of CRISPR-Cas9 functions are under active research, such as stimuli-responsive guide RNA (gRNA). However, the types of physiologically relevant stimuli that can trigger gRNA are largely limited due to the lack of a versatile synthetic approach in chemistry to introduce diverse labile modifications into gRNA. In this work, we developed such a general method to prepare stimuli-responsive gRNA based on site-specific derivatization of 2′-O-methylribonucleotide phosphorothioate (PS-2′-OMe). We demonstrated CRISPR-Cas9-mediated gene editing in human cells triggered by oxidative stress and visible light, respectively. Our study tackles the synthetic challenge and paves the way for chemically modified RNA to play more active roles in gene therapy. Conditional control of CRISPR-Cas9 activity by reactive oxygen species and visible light is achieved using stimuli-responsive guide RNA synthesized by a general method based on RNA 2′-O-methylribonucleotide phosphorothioate.![]()
Collapse
Affiliation(s)
- Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Jiachen Shang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Xiao Xu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Luo He
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| |
Collapse
|
45
|
Tang W, Han L, Lu X, Wang Z, Liu F, Li Y, Liu S, Liu S, Tian R, Liu J, Ding B. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20974-20981. [PMID: 33909408 DOI: 10.1021/acsami.1c02122] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CRISPR/Cas9 gene-editing system has become a promising strategy for tumor therapy with its powerful oncogene-editing ability. However, the efficient delivery of sgRNA/Cas9 complex into target tumor cells remains a challenge. Herein, we report a facile strategy for the construction of an sgRNA/Cas9 complex co-assembled nanoplatform for targeted gene editing and combined tumor therapy. In our design, the TAT peptide and thiolated DNA linker functionalized gold nanorod can efficiently load the sgRNA/Cas9 complex through the hybridization between the 3' overhang of sgRNA and the DNA linker. Due to the integration of an active cell targeting group (aptamer) and nuclear targeting peptide (TAT), the multifunctional nanoplatform can elicit the targeted cellular internalization and efficient nuclear targeting transportation to realize endogenous RNase H activated gene editing of the tumor-associated gene polo-like kinase 1 (PLK1). With mild photothermal treatment, this sgRNA/Cas9 complex loaded nanoplatform achieved efficient inhibition of tumor cell proliferation. This multifunctional nanocarrier provides a new strategy for the development of combined tumor therapy.
Collapse
Affiliation(s)
- Wantao Tang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lin Han
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xuehe Lu
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhaoran Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shengbo Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X. Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002927. [PMID: 34026433 PMCID: PMC8132047 DOI: 10.1002/advs.202002927] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 05/27/2023]
Abstract
Nanomedicines with photodynamic therapy and reactive oxygen species (ROS)-triggered drug release capabilities are promising for cancer therapy. However, most of the nanomedicines based on ROS-responsive nanocarriers still suffer from serious ROS consumption during the triggered drug release process. Herein, a photodynamic-chemodynamic cascade strategy for the design of drug delivery nanosystem is proposed. A doxorubicin hydrochloride-loaded ROS-responsive polymersome (DOX-RPS) is prepared via the self-assembly of amphiphilic poly(ethylene glycol)-poly(linoleic acid) and poly(ethylene glycol)-(2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-α)-iron chelate (PEG-HPPH-Fe). The RPS can effectively deliver a drug to tumor site through passive targeting effect. Upon laser irradiation, the photosensitizer HPPH can efficiently generate ROS, which further causes in situ oxidation of linoleic acid chain and subsequent RPS structural destruction, permitting triggered drug release. Intriguingly, catalyzed by HPPH-Fe, ROS will be regenerated from linoleic acid peroxide through a chemodynamic process. Therefore, ROS-triggered drug release can be achieved without ROS over-consumption. The in vitro and in vivo results confirmed ROS generation, triggered drug release behavior, and potent antitumor effect of the DOX-RPS. This photodynamic-chemodynamic cascade strategy provides a promising approach for enhanced combination therapy.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Guocan Yu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Weijing Yang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Rui Tian
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & Institute of Environmental Analysis and DetectionCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical EngineeringNational University of SingaporeSingapore117545Singapore
| |
Collapse
|
47
|
Dai Z, Wang L, Wang Z. Functional Immunostimulating DNA Materials: The Rising Stars for Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100083. [PMID: 33896107 DOI: 10.1002/mabi.202100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy has risen as a promising method in clinical practice for cancer treatment and DNA-based immune intervention materials, along with DNA nanotechnology, have obtained increasing importance in this field. In this review, various immunostimulating DNA materials are introduced and the mechanisms via which they exerted an immune effect are explained. Then, representative examples in which DNA is used as the leading component for anticancer applications through immune stimulation are provided and their efficacy is evaluated. Finally, the challenges for those materials in clinical applications are discussed and suggestions for possible further research directions are also put forward.
Collapse
Affiliation(s)
- Ziwen Dai
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
48
|
Qambrani A, Rehman FU, Tanziela T, Shaikh S, Semcheddine F, Du T, Liu W, Jiang H, Wang X. Biocompatible exosomes nanodrug cargo for cancer cell bioimaging and drug delivery. Biomed Mater 2021; 16:025026. [PMID: 32726764 DOI: 10.1088/1748-605x/abaaa2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapy against cancer remains a daunting issue for human health, despite remarkable innovations in many areas of pathology. In situ biosynthesized nanoclusters bestow a novel remedy for carcinogenic cell imaging. Exosomes have received special attention as an efficient tool for the diagnosis of various diseases, including cancers. All types of cells (healthy or diseased) generate exosomes, making them significantly unique for relevant disease diagnosis and treatment. In this contribution, we exploit the possibility of utilizing the exosomes to facilitate chemotherapeutics, viz. the combination of doxorubicin (Dox) and biosynthesized silver nanoclusters in cancer cells. Our study showed a new facile way for bioimaging of cancer cells using biosynthesized silver-DNA nanoclusters, and thus further targeting cancer cells using the relevant cancer exosomes as drug delivery cargo. After isolating exosomes from neoplastic cells, i.e. HeLa, loaded with the drug, and treating other neoplastic cells with cargo-loaded isolated exosomes, we found that cargo-loaded isolated exosomes can readily enter into the targeted cancer cells and efficiently kill these neoplastic cells. This raises the possibility of acting as a novel facile modality for target cancer theranostics with high efficiency and biocompability.
Collapse
Affiliation(s)
- Aqsa Qambrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 China. Correspondence and requests for materials should be addressed to
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shi L, Wu W, Duan Y, Xu L, Li S, Gao X, Liu B. Carrier-Free Hybrid DNA Nanoparticles for Light-Induced Self-Delivery of Functional Nucleic Acid Enzymes. ACS NANO 2021; 15:1841-1849. [PMID: 33449616 DOI: 10.1021/acsnano.0c10045] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we developed hybrid DNAzyme nanoparticles (NPs) to achieve light-induced carrier-free self-delivery of DNAzymes with sufficient cofactor supply and lysosome escape capacity. In this system, aggregation-induced emission (AIE) photosensitizer (PS) (TBD-Br) was grafted onto a phosphorothiolated DNAzyme backbone, which automatically self-assembled to form NPs and the surface phosphorothioate group could easily coordinate with the cofactor Zn2+ in the buffer. When the yielded hybrid DNAzyme NPs were located inside tumor cell lysosomes, the 1O2 from TBD-Br under light illumination could destroy lysosome structure and promote the Zn2+ coordinated DNAzyme NPs escape. Both in vitro and in vivo results demonstrated that the hybrid DNAzyme NPs could downregulate the early growth response factor-1 protein (EGR-1) to inhibit tumor cell growth in addition to induce tumor cell apoptosis by AIE PS (TBD-Br) under light irradiation.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Li Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600th Nanfeng Road, Shanghai 201499, China
| | - Sha Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Xihui Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
50
|
Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021; 168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) is a promising synthesizer for precisely constructing almost arbitrary geometry in two and three dimensions. Among various DNA-based soft materials, DNA hydrogels are comprised of hydrophilic polymeric networks of crosslinked DNA chains. For their properties of biocompatibility, porosity, sequence programmability and tunable multifunctionality, DNA hydrogels have been widely studied in bioanalysis and biomedicine. In this review, recent developments in DNA hydrogels and their applications in drug delivery systems are highlighted. First, physical and chemical crosslinking methods for constructing DNA hydrogels are introduced. Subsequently, responses of DNA hydrogels to nonbiological and biological stimuli are described. Finally, DNA hydrogel-based delivery platforms for different types of drugs are detailed. With the emergence of gene therapy, this review also gives future prospects for combining DNA hydrogels with the gene editing toolbox.
Collapse
|