1
|
Shao G, Liu YY, Niu C, Yin ZC, Ye SQ, Yao YR, Chen M, Chen JS, Xia XL, Yang S, Wang GW. Unexpected and divergent mechanosynthesis of furanoid-bridged fullerene dimers C 120O and C 120O 2. Chem Sci 2024:d4sc04167d. [PMID: 39246362 PMCID: PMC11376007 DOI: 10.1039/d4sc04167d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
An unexpected, divergent and efficient approach toward furanoid-bridged fullerene dimers C120O and C120O2 was established under different solvent-free ball-milling conditions by simply using pristine C60 as the starting material, water as the oxygen source and FeCl3 as the mediator. The structures of C120O and C120O2 were unambiguously established by single-crystal X-ray crystallography. A plausible reaction mechanism is proposed on the basis of control experiments. Furthermore, C120O2 has been applied in organic solar cells as the third component and exhibits good performance.
Collapse
Affiliation(s)
- Gang Shao
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yuan-Yuan Liu
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuang Niu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Zheng-Chun Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Shi-Qi Ye
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology Dongguan Guangdong 523808 P. R. China
| | - Jun-Shen Chen
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xu-Ling Xia
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou Gansu 730000 P. R. China
| |
Collapse
|
2
|
Liu J, Liu X, Xin J, Zhang Y, Wen L, Liang Q, Miao Z. Dual Function of the Third Component in Ternary Organic Solar Cells: Broaden the Spectrum and Optimize the Morphology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308863. [PMID: 38287727 DOI: 10.1002/smll.202308863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Ternary organic solar cells (T-OSCs) have attracted significant attention as high-performance devices. In recent years, T-OSCs have achieved remarkable progress with power conversion efficiency (PCE) exceeding 19%. However, the introduction of the third component complicates the intermolecular interaction compared to the binary blend, resulting in poor controllability of active layer and limiting performance improvement. To address these issues, dual-functional third components have been developed that not only broaden the spectral range but also optimize morphology. In this review, the effect of the third component on expanding the absorption range of T-OSCs is first discussed. Second, the extra functions of the third component are introduced, including adjusting the crystallinity and molecular stack in active layer, regulating phase separation and purity, altering molecular orientation of the donor or acceptor. Finally, a summary of the current research progress is provided, followed by a discussion of future research directions.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xingpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jingming Xin
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yutong Zhang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Liangquan Wen
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qiuju Liang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China
- School of Electronic Information, Xijing University, Xi'an, 710123, China
| |
Collapse
|
3
|
Kirk BP, Bjuggren JM, Andersson GG, Dastoor P, Andersson MR. Printing and Coating Techniques for Scalable Organic Photovoltaic Fabrication. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2511. [PMID: 38893776 PMCID: PMC11173114 DOI: 10.3390/ma17112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Within recent years, there has been an increased interest towards organic photovoltaics (OPVs), especially with their significant device performance reaching beyond 19% since 2022. With these advances in the device performance of laboratory-scaled OPVs, there has also been more attention directed towards using printing and coating methods that are compatible with large-scale fabrication. Though large-area (>100 cm2) OPVs have reached an efficiency of 15%, this is still behind that of laboratory-scale OPVs. There also needs to be more focus on determining strategies for improving the lifetime of OPVs that are suitable for scalable manufacturing, as well as methods for reducing material and manufacturing costs. In this paper, we compare several printing and coating methods that are employed to fabricate OPVs, with the main focus towards the deposition of the active layer. This includes a comparison of performances at laboratory (<1 cm2), small (1-10 cm2), medium (10-100 cm2), and large (>100 cm2) active area fabrications, encompassing devices that use scalable printing and coating methods for only the active layer, as well as "fully printed/coated" devices. The article also compares the research focus of each of the printing and coating techniques and predicts the general direction that scalable and large-scale OPVs will head towards.
Collapse
Affiliation(s)
- Bradley P. Kirk
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Jonas M. Bjuggren
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Gunther G. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Paul Dastoor
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mats R. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
4
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
Yu R, Li S, Yuan H, Yang Z, Jin S, Tan Z. Research Advances of Nonfused Ring Acceptors for Organic Solar Cells. J Phys Chem Lett 2024:2781-2803. [PMID: 38441058 DOI: 10.1021/acs.jpclett.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The last few decades have witnessed the rapid development of organic solar cells (OSCs). High power conversion efficiencies (PCEs) of over 19% have been successfully achieved due to the emergence of fused-ring acceptors (FRAs). However, the high complexity and low yield for the material synthesis result in high production costs of FRAs, limiting the further commercial application of OSCs. In contrast, nonfused ring acceptors (NFRAs) with the merits of facile synthesis, high yield, and preferable stability can promote the development of low-cost OSCs. Currently, the PCEs of NFRAs-based OSCs have exceeded 17%, which is expected to reach efficiency comparable to that of the FRAs-based OSCs. This review describes the advantages of the recent advances in NFRAs, which emphasizes exploring how the chemical structures of NFRAs influence molecular conformation, aggregation, and packing modes. In addition, the further development of NFRA materials is prospected from molecular design, morphological control, and stability perspectives.
Collapse
Affiliation(s)
- Runnan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuang Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyu Yuan
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongzhi Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengli Jin
- Zhejiang Baima Lake Laboratory Co. Ltd., Hangzhou 310051, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Zhou H, Liu C, Liu S, Zhang Z, Sun S, Xu W, Ma X, Wang J, Xu Y, Du X, Jeong SY, Woo HY, Zhang F, Sun Q. PC 71BM as Morphology Regulator for Highly Efficient Ternary Organic Solar Cells with Bulk Heterojunction or Layer-by-Layer Configuration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308216. [PMID: 37946696 DOI: 10.1002/smll.202308216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PC71BM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.10% to 18.02% and from 17.20% to 18.20% by introducing PC71BM into the binary active layer, respectively. The in situ UV-vis absorption spectra indicate that the molecular aggregation and crystallization process can be prolonged by introducing PC71BM into the PM6:L8-BO or PM6/L8-BO active layer. The molecular orientation and molecular crystallinity in the active layer are optimized by introducing the PC71BM into the binary BHJ or LbL active layers, which can be confirmed by the experimental results of grazing incidence wide-angle X-ray scattering. This study demonstrates that the third component PC71BM can be used as a morphology regulator to regulate the morphology of BHJ or LbL active layers, thus effectively improving the performance of BHJ and LbL OSCs.
Collapse
Affiliation(s)
- Hang Zhou
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Chunxiang Liu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Shaofei Liu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zijian Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Shixiu Sun
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wenjing Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jian Wang
- College of Physics and Electronic Engineering, Taishan University, Taian, Shandong, 271021, P. R. China
| | - Yujie Xu
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaoyan Du
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Qianqian Sun
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
7
|
Paci B, Righi Riva F, Generosi A, Guaragno M, Mangiacapre E, Brutti S, Wagner M, Distler A, Egelhaaf HJ. Semitransparent Organic Photovoltaic Devices: Interface/Bulk Properties and Stability Issues. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:269. [PMID: 38334540 PMCID: PMC10857079 DOI: 10.3390/nano14030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In the present work, an insight on the morpho/structural properties of semitransparent organic devices for buildings' integrated photovoltaics is presented, and issues related to interface and bulk stability are addressed. The organic photovoltaic (OPV) cells under investigation are characterized by a blend of PM6:Y6 as a photo-active layer, a ZnO ETL (electron transporting layer), a HTL (hole transporting layer) of HTL-X and a transparent electrode composed by Ag nanowires (AgNWs). The devices' active nanomaterials, processed as thin films, and their mutual nanoscale interfaces are investigated by a combination of in situ Energy Dispersive X-ray Reflectometry (EDXR) and ex situ Atomic Force Microscopy (AFM), X-ray Diffraction (XRD) and micro-Raman spectroscopy. In order to discriminate among diverse concomitant aging pathways potentially occurring upon working conditions, the effects of different stress factors were investigated: light and temperature. Evidence is gained of an essential structural stability, although an increased roughness at the ZnO/PM6:Y6 interface is deduced by EDXR measurements. On the contrary, an overall stability of the system subjected to thermal stress in the dark was observed, which is a clear indication of the photo-induced origin of the observed degradation phenomenon. Micro-Raman spectroscopy brings light on the origin of such effect, evidencing a photo-oxidation process of the active material in the device, using hygroscopic organic HTL, during continuous illumination in ambient moisture conditions. The process may be also triggered by a photocatalytic role of the ZnO layer. Therefore, an alternative configuration is proposed, where the hygroscopic HTL-X is replaced by the inorganic compound MoOx. The results show that such alternative configuration is stable under light stress (solar simulator), suggesting that the use of Molybdenum Oxide, limiting the photo-oxidation of the bulk PM6:Y6 active material, can prevent the cell from degradation.
Collapse
Affiliation(s)
- Barbara Paci
- SpecX-Lab, Istituto di Struttura della Materia CNR, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Flavia Righi Riva
- SpecX-Lab, Istituto di Struttura della Materia CNR, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Amanda Generosi
- SpecX-Lab, Istituto di Struttura della Materia CNR, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Marco Guaragno
- SpecX-Lab, Istituto di Struttura della Materia CNR, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Emanuela Mangiacapre
- Dipartimento di Chimica, Università di Roma La Sapienza, P. Le Aldo Moro 2, 00185 Roma, Italy
| | - Sergio Brutti
- Dipartimento di Chimica, Università di Roma La Sapienza, P. Le Aldo Moro 2, 00185 Roma, Italy
| | - Michael Wagner
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Forschungszentrum Jülich GmbH (FZJ), Immerwahrstraße 2, 91058 Erlangen, Germany
- Institute Materials for Electronics and Energy Technology (i-MEET), Department of Material Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute Materials for Electronics and Energy Technology (i-MEET), Department of Material Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Forschungszentrum Jülich GmbH (FZJ), Immerwahrstraße 2, 91058 Erlangen, Germany
- Institute Materials for Electronics and Energy Technology (i-MEET), Department of Material Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Liu TX, Wang X, Xia S, Chen M, Li M, Yang P, Ma N, Hu Z, Yang S, Zhang G, Wang GW. Dearomative Ring-Fused Azafulleroids and Carbazole-Derived Metallofullerenes: Reactivity Dictated by Encapsulation in a Fullerene Cage. Angew Chem Int Ed Engl 2023; 62:e202313074. [PMID: 37789646 DOI: 10.1002/anie.202313074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Muqing Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Mingjie Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panting Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ziqi Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Li X, Tang A, Wang H, Wang Z, Du M, Guo Q, Guo Q, Zhou E. Benzotriazole-Based 3D Four-Arm Small Molecules Enable 19.1 % Efficiency for PM6 : Y6-Based Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202306847. [PMID: 37565778 DOI: 10.1002/anie.202306847] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.
Collapse
Affiliation(s)
- Xiangyu Li
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Helin Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zongtao Wang
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mengzhen Du
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qiang Guo
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qing Guo
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
10
|
Liu Q, Vandewal K. Understanding and Suppressing Non-Radiative Recombination Losses in Non-Fullerene Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302452. [PMID: 37201949 DOI: 10.1002/adma.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Organic solar cells benefit from non-fullerene acceptors (NFA) due to their high absorption coefficients, tunable frontier energy levels, and optical gaps, as well as their relatively high luminescence quantum efficiencies as compared to fullerenes. Those merits result in high yields of charge generation at a low or negligible energetic offset at the donor/NFA heterojunction, with efficiencies over 19% achieved for single-junction devices. Pushing this value significantly over 20% requires an increase in open-circuit voltage, which is currently still well below the thermodynamic limit. This can only be achieved by reducing non-radiative recombination, and hereby increasing the electroluminescence quantum efficiency of the photo-active layer. Here, current understanding of the origin of non-radiative decay, as well as an accurate quantification of the associated voltage losses are summarized. Promising strategies for suppressing these losses are highlighted, with focus on new material design, optimization of donor-acceptor combination, and blend morphology. This review aims at guiding researchers in their quest to find future solar harvesting donor-acceptor blends, which combine a high yield of exciton dissociation with a high yield of radiative free carrier recombination and low voltage losses, hereby closing the efficiency gap with inorganic and perovskite photovoltaics.
Collapse
Affiliation(s)
- Quan Liu
- Hasselt University, IMOMEC, Wetenschapspark 1, Diepenbeek, 3590, Belgium
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Koen Vandewal
- Hasselt University, IMOMEC, Wetenschapspark 1, Diepenbeek, 3590, Belgium
| |
Collapse
|
11
|
Yadav S, Shivanna R, Mohapatra AA, Sawhney N, Gangadharappa C, Swaraj S, Rao A, Friend RH, Patil S. Resonant Energy Transfer-Mediated Efficient Hole Transfer in the Ternary Blend Organic Solar Cells. J Phys Chem Lett 2023; 14:6601-6609. [PMID: 37459166 DOI: 10.1021/acs.jpclett.3c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The ternary blend approach accomplished improved spectral coverage and enhanced the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the role of the third component in improving the photovoltaic parameters needs critical analysis. Here, we introduced a wide band gap n-type twisted perylene diimide (TPDI) into the PM6:Y6 blend as a third component that improves spectral coverage and morphology, resulting in an overall increase in the efficiency of the OSCs. TPDI acts as an antenna for efficient energy- and charge-transfer processes. A systematic study compared charge- and energy-transfer dynamics and the orientational dependence nanomorphology of ternary blends with those of their binary counterparts. Femtosecond transient absorption measurements reveal enhanced hole-transfer efficiency in finely tuned ternary mixtures. This study provides a rational approach to identifying a third component to improve light management and morphology. These parameters enhance the energy and charge-transfer processes, improving the PCE of OSCs.
Collapse
Affiliation(s)
- Suraj Yadav
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ravichandran Shivanna
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | - Nipun Sawhney
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | - Sufal Swaraj
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Akshay Rao
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Richard H Friend
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Zhang M, Chen X, Wang L, Deng X, Tan S. Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor. RSC Adv 2023; 13:17354-17361. [PMID: 37304790 PMCID: PMC10251189 DOI: 10.1039/d3ra02225k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
The ternary strategy has been recognized as an effective method to improve the photovoltaic performance of organic solar cells (OSCs). In ternary OSCs, the complementary or broadened absorption spectrum, optimized morphology, and enhanced photovoltaic performance could be obtained by selecting a third rational component for the host system. In this work, a fused ring electron acceptor named BTMe-C8-2F, which possesses a high-lying lowest unoccupied molecular orbital (LUMO) energy level and a complementary absorption spectrum to PM6:Y6, was introduced to a PM6:Y6 binary system. The ternary blend film PM6:Y6:BTMe-C8-2F showed high and more balanced charge mobilities, and low charge recombination. Therefore, the OSC based on the PM6:Y6:BTMe-C8-2F (1 : 1.2 : 0.3, w/w/w) blend film achieved the highest power conversion efficiency (PCE) of 17.68%, with an open-circuit voltage (VOC) of 0.87 V, a short-circuit current (JSC) of 27.32 mA cm-2, and a fill factor (FF) of 74.05%, which are much higher than the binary devices of PM6:Y6 (PCE = 15.86%) and PM6:BTMe-C8-2F (PCE = 11.98%). This work provides more insight into the role of introducing a fused ring electron acceptor with a high-lying LUMO energy level and complementary spectrum for simultaneously enhancing the VOC and JSC to promote the performance of ternary OSCs.
Collapse
Affiliation(s)
- Min Zhang
- Modern Industry School of Advanced Ceramics, Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, Hunan University of Humanities, Science and Technology Lou'di Hunan 417000 China
| | - Xiaoyuan Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Lei Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Xiong Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| |
Collapse
|
13
|
Wang T, Chen ZH, Qiao JW, Qin W, Liu JQ, Wang XZ, Pu YJ, Yin H, Hao XT. Correlating Charge Transfer Dynamics with Interfacial Trap States in High-Efficiency Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12109-12118. [PMID: 36813758 DOI: 10.1021/acsami.2c21470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.
Collapse
Affiliation(s)
- Tong Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Zhi-Hao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Jia-Wei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Jian-Qiang Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Xing-Zhu Wang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS)2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
14
|
Wang Y, Zhang Z, Xu H, Deng H, Hu M, Yang T, Li J. Optimized Morphology Enables High-Efficiency Nonfullerene Ternary Organic Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:75-82. [PMID: 36525579 DOI: 10.1021/acs.langmuir.2c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tuning the three-dimensional morphology in the active layer is an effective method to improve the performance of bulk heterojunction organic solar cells (OSCs). In this work, an acceptor-donor-acceptor structured small molecule ST10-CN-1 was synthesized and employed as the guest donor to fabricate ternary OSCs based on a PBDB-T:IT-M host binary system. The incorporation of ST10-CN-1 could broaden the active layer's absorption range of solar light thereby leading to a promotional short-circuit current. Moreover, adding an appropriate amount of ST10-CN-1 could effectively regulate the morphology of the active layer in both the lateral direction and vertical stratification. All of these morphological alterations helped to speed up the exciton dissociation, charge transit, and charge collecting processes, which in turn increased the power conversion efficiency. As a result, an excellent PCE of 11.5% for the ternary device based on PBDB-T:IT-M:ST10-CN-1 was obtained. The enhanced PCE was also linked to the formation of an alloylike state between PBDB-T and ST10-CN-1, as evidenced by the fact that the open circuit voltage of ternary OSCs lay between those for PBDB-T:IT-M (0.925 V) and ST10-CN-1:IT-M (1.064 V). This work illustrates that refining the morphology of the active layer by incorporating an appropriate third component is an effective way to further enhance the device's performance.
Collapse
Affiliation(s)
- Yun Wang
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Zhengli Zhang
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
- Engineering Research Center of Semiconductor Power Device Reliability, Ministry of Education, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Haoming Xu
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Haoyun Deng
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Mi Hu
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Ting Yang
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| | - Junli Li
- College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
- Engineering Research Center of Semiconductor Power Device Reliability, Ministry of Education, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China
| |
Collapse
|
15
|
Zhang S, Son DH, Nasrun RFB, Salma SA, Suh H, Kim JH. Medium Bandgap Polymers for Efficient Non-Fullerene Polymer Solar Cells-An In-Depth Study of Structural Diversity of Polymer Structure. Int J Mol Sci 2022; 24:522. [PMID: 36613965 PMCID: PMC9820695 DOI: 10.3390/ijms24010522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
A series of medium bandgap polymer donors, named poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione) (IND-T-BDTF), poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophen-2-yl)-4-hexylthiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(4-hexylthiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND-HT-BDTF), and poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophen-2-yl)-6-octylthieno [3,2-b]thiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(6-octylthieno [3,2-b]thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND-OTT-BDTF), are developed for non-fullerene acceptors (NFAs) polymer solar cells (PSCs). Three polymers consist of donor-acceptor building block, where the electron-donating fluorinated benzodithiophene (BDTF) unit is linked to the electron-accepting 4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND) derivative via thiophene (T) or thieno [3,2-b]thiopene (TT) bridges. The absorption range of the polymer donors based on IND in this study shows 400~800 nm, which complimenting the absorption of Y6BO (600~1000 nm). The PSC's performances are also significantly impacted by the π-bridges. NFAs inverted type PSCs based on polymer donors and Y6BO acceptor are fabricated. The power conversion efficiency (PCE) of the device based on IND-OTT-BDTF reaches up to 11.69% among all polymers with a short circuit current of 26.37 mA/cm2, an open circuit voltage of 0.79 V, and a fill factor of 56.2%, respectively. This study provides fundamental information on the invention of new polymer donors for NFA-based PSCs.
Collapse
Affiliation(s)
- Shimiao Zhang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Dong Hwan Son
- CECS Research Institute, Core Research Institute, Busan 48513, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Rahmatia Fitri Binti Nasrun
- CECS Research Institute, Core Research Institute, Busan 48513, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sabrina Aufar Salma
- CECS Research Institute, Core Research Institute, Busan 48513, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hongsuk Suh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Joo Hyun Kim
- CECS Research Institute, Core Research Institute, Busan 48513, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
16
|
Li Z, Kong X, Chen Z, Angunawela I, Zhu H, Li X, Meng L, Ade H, Li Y. Small-Molecule Acceptor with Unsymmetric Substituents and Fused Rings for High-Performance Organic Solar Cells with Enhanced Mobility and Reduced Energy Losses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52058-52066. [PMID: 36349970 DOI: 10.1021/acsami.2c17235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new unsymmetric small-molecule acceptor (SMA) BTPOSe-4F was designed by unsymmetric structure modification to Y6 with an alkyl upper side chain replaced by an alkoxy side chain and a sulfur atom in its central fused ring replaced by a selenium atom, for the application as an acceptor to fabricate organic solar cells (OSCs). BTPOSe-4F exhibits a higher lowest unoccupied molecular orbital (LUMO) energy level, a reduced nonradiation energy loss, and better charge extraction properties in its binary OSCs with a higher Voc of 0.886. Furthermore, the ternary OSCs with the addition of PC71BM demonstrated a higher power conversion efficiency (PCE) of 17.33% with Voc of 0.890 V. This work reveals that the unsymmetric modification strategy can further give impetus to the photovoltaic performance promotion of OSCs for Y6-series SMAs.
Collapse
Affiliation(s)
- Zechen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Xiaolei Kong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Indunil Angunawela
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Science, Beijing 100049, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
17
|
Hsieh CM, Hsiao HC, Yamada Y, Wu WR, Jeng US, Su CJ, Lin YS, Murata M, Chang YJ, Chuang SC. Promoting the Efficiency and Stability of Nonfullerene Organic Photovoltaics by Incorporating Open-Cage [60]Fullerenes in the Nonfullerene Nanocrystallites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39109-39119. [PMID: 35976775 DOI: 10.1021/acsami.2c06354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The device efficiency of PM6:Y6-based nonfullerene organic solar cells is fast advanced recently. To maintain organic solar cells (OSCs) with high power conversion efficiency over 16% in long-term operation, however, remains a challenge. Here, a novel non-volatile additive, an open-cage [60]fullerene (8OC60Me), is incorporated into PM6:Y6-based OSCs for high-performance with high durability. With optimized addition of 1.0 wt % 8OC60Me, the PCE value of PM6:Y6/8OC60Me OSCs can be promoted to 16.5% from 15.0%. Most strikingly, such a high PCE performance can maintain nearly 100% for over 500 h at room temperature; at an elevated operation temperature of 80 °C, the PCE can be stabilized above 15.0% after 45 h of operation. Grazing incidence small- and wide- angle X-ray scattering studies reveal improved orientation and crystallinity of Y6 in a fractal-like network structure of PM6 in PM6:Y6/8OC60Me films under in situ annealing, parallel to the enhanced electron mobility. Analysis of charge distributions lines up possible van der Waals interaction between the thienyl/carbonyl moiety of 8OC60Me and difluorophenyl-based FIC-end groups of Y6. This result is of great contrast to those devices with the best-selling PC61BM as the additives─8OC60Me might be of interest to be incorporated into future Y6-based OSCs for concomitantly improved PCE and excellent stability.
Collapse
Affiliation(s)
- Cheng-Ming Hsieh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Huan-Chang Hsiao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Yuto Yamada
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Wei-Ru Wu
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Jen Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Sheng Lin
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Michihisa Murata
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| |
Collapse
|
18
|
Liu Y, Zhang D, Yang G, Wang R, Yu J. High Performance and Stable Organic Solar Cells Fabricated by Y-Series Small Molecular Materials as the Interfacial Modified Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36910-36917. [PMID: 35925803 DOI: 10.1021/acsami.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The organic solar cell (OSC) has received tremendous consideration for the impressive increased power conversion efficiency (PCE) from 11% to over 18% in the last decade, but another main parameter, the stability, still needs further study to meet the requirements of commercialization. Generally, the inverted structure device shows more stability than the conventional one owing to the structure characteristics, but even so, the performance and stability of the OSC device still need further improvement because of some undesirable contact between the electron transport layer (typically transition metal oxide like ZnO) and the active layer. Here, three Y-series small molecular acceptor materials (Y6, BTP-eC9, and L8-BO) are used as an interfacial modified layer (IML), which could optimize the interfacial characterization of the devices and thus enhance both the performance and stability. As a result, the insertion of the IML improved the interlayer charge transport capacity by passivating the surface of ZnO, leading to the enhancement of short circuit current density (JSC), fill factor, and PCE of the OSCs. Furthermore, because of the protection of the IML, the OSCs show outstanding stability compared to the control device (without IML), which could maintain 80% performance of the device over 150 h.
Collapse
Affiliation(s)
- Yuzhe Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Dayong Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Genjie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| |
Collapse
|
19
|
Park S, Song CE, Ryu DH, Oh D, Kim J, Kang IN. Efficient ternary organic solar cells with BT-rhodanine-based nonfullerene acceptors in a PM6:Y6-BO blend. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Li Y, Wu J, Tang H, Yi X, Liu Z, Yang Q, Fu Y, Liu J, Xie Z. Non-Halogenated Solvents and Layer-by-Layer Blade-Coated Ternary Organic Solar Cells via Cascade Acceptor Adjusting Morphology and Crystallization to Reduce Energy Loss. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31054-31065. [PMID: 35763722 DOI: 10.1021/acsami.2c05504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The power conversion efficiency (PCE) of halogenated solvent spin-coated organic solar cells (OSCs) has been boosted to a high level (>18%) by developing efficient photovoltaic materials and precise morphological control. However, the PCE of OSCs prepared from non-halogenated solvents and with a scalable printing process is far behind, limited by tough morphology manipulation. Herein, we have fabricated ternary OSCs by using layer-by-layer (LBL) blade-coating and a non-halogenated solvent. The ternary OSCs based on the PM6:IT-M(1:0.2)/BTP-eC9 active layer are processed with the hydrocarbon solvent 1,2,4-trimethylbenzene with no need of any additives and post-treatment. The vertical donor/acceptor distribution is optimized by LBL blade-coating within the PM6:IT-M(1:0.2)/BTP-eC9 active layer. The cascade acceptor IT-M blended in PM6 not only attenuates the damage of BTP-eC9 to the PM6 crystallization, leading to a dense nanofiber-like morphology, but also prefers to reside between PM6 and BTP-eC9 to form a cascade energy level alignment for a fast charge-transfer process. Finally, the improved morphology and crystallization lead to a reduced molecular recombination, low energy loss, and high open-circuit voltage. The prepared non-halogenated solvent and LBL blade-coated OSCs achieve a PCE of 17.16%. The work provides an approach to fabricate hydrocarbon solvent-processed high-performance OSCs by employing LBL blade-coating and a ternary strategy.
Collapse
Affiliation(s)
- Youzhan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xueting Yi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zekun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yingying Fu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
21
|
Zheng Y, Liu T, Wu J, Xu T, Wang X, Han X, Cui H, Xu X, Pan C, Li X. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202238. [PMID: 35538660 DOI: 10.1002/adma.202202238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Indexed: 06/14/2023]
Abstract
The triboelectric nanogenerator (TENG) is an emerging technology that offers excellent potential for the conversion of mechanical energy from rain into electricity for hybrid energy applications. However, a high-performance TENG is yet to be achieved because a quantitative analysis method for the energy conversion process is still lacking. Herein, a quantitative analysis method, termed the "kinetic energy calculation and current integration" (KECCI) method, which significantly improves the understanding of the mechanical-to-electrical energy conversion process, is presented. Based on the KECCI method, a high-performance TENG is developed by systematically optimizing a biomimetic surface structure and instant switch design, with 1.25 mA short-circuit current (Isc ), 150 V open-circuit voltage (Voc ), and a high energy-conversion efficiency of 24.89%. Furthermore, a multilayered TENG device is proposed for continuously harvesting the kinetic energy of raindrops for further improvement in the energy-conversion efficiency. Finally, the multilayered TENGs are integrated with organic photovoltaics, achieving all-weather energy harvesting. This work presents a validated theoretical basis that will guide further development of TENGs toward higher performances, which will promote the commercialization of hybrid TENG systems for all-weather applications.
Collapse
Affiliation(s)
- Yang Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Tong Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junpeng Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tiantian Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiandi Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Xun Han
- College of Mechatronics and Control Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaofeng Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Mechatronics and Control Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Xiaoyi Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
22
|
Sun R, Wu Y, Yang X, Gao Y, Chen Z, Li K, Qiao J, Wang T, Guo J, Liu C, Hao X, Zhu H, Min J. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110147. [PMID: 35438225 DOI: 10.1002/adma.202110147] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The ternary strategy has been widely identified as an effective approach to obtain high-efficiency organic solar cells (OSCs). However, for most ternary OSCs, the nonradiative voltage loss lies between those of the two binary devices, which limits further efficiency improvements. Herein, an asymmetric guest acceptor BTP-2F2Cl is designed and incorporated into a PM1:L8-BO host blend. Compared with the L8-BO neat film, the L8-BO:BTP-2F2Cl blend film shows higher photoluminescence quantum yield and larger exciton diffusion length. Introducing BTP-2F2Cl into the host blend extends its absorption spectrum, improves the molecular packing of host materials, and suppresses the nonradiative charge recombination of the ternary OSCs. Consequently, the power conversion efficiency is improved up to 19.17% (certified value 18.7%), which represents the highest efficiency value reported for single-junction OSCs so far. The results show that improving the exciton behaviors is a promising approach to reducing the nonradiative voltage loss and realizing high-performance OSCs.
Collapse
Affiliation(s)
- Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yao Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zeng Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Li
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tao Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jing Guo
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
23
|
Chau HD, Kataria M, Kwon NY, Park SH, Kim Y, Kang H, Harit AK, Woo HY, Yoon HJ, Park S, Cho MJ, Choi DH. Improved Photovoltaic Performance of Ternary All-Polymer Solar Cells by Incorporating a New Y6-based Polymer Acceptor and PC61BM. Macromol Res 2022. [DOI: 10.1007/s13233-022-0069-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Fernández-Castro M, Truer J, Espindola-Rodriguez M, Andreasen JW. Environmentally Friendly and Roll-Processed Flexible Organic Solar Cells Based on PM6:Y6. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organic Solar Cells (OSCs) have reached the highest efficiencies using lab-scale device manufacturing on active areas far below 0.1 cm2. The most used fabrication technique is spin-coating, which has poor potential for upscaling and substantial material waste. This tends to widen the so-called “lab-to-fab gap”, which is one of the most important challenges to make OSCs competitive. Other techniques such as blade or slot-die coating are much more suitable for roll-to-roll manufacturing, which is one of the advantages the technology presents due to the huge potential for fast and low-cost fabrication of flexible OSCs. However, only a few studies report solar cells using these fabrication techniques, especially applied on a roll-platform. Additionally, for environmentally friendly large area OSCs, inks based on non-hazardous solvent systems are needed. In this work, slot-die coating has been chosen to coat a PM6:Y6 active layer, using o-xylene, a more environmentally friendly alternative than halogenated solvents, and without additives. The optimal coating process is defined through fine-tuning of the coating parameters, such as the drying temperature and solution concentration. Moreover, ternary devices with PCBM, and fully printed devices are also fabricated. Power conversion efficiencies of 6.3% and 7.2% are achieved for binary PM6:Y6 and ternary PM6:Y6:PCBM devices measured with an aperture area of ∼0.4 cm2 (total device area ∼0.8 cm2).
Collapse
|
25
|
Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 2022; 604:280-286. [PMID: 35418631 DOI: 10.1038/s41586-022-04455-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures1. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported2-5. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells6,7. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells8 and losses introduced by the interconnect between the subcells9,10. Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells11, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions12 and are on a par with perovskite-CIGS and all-perovskite multijunctions13.
Collapse
|
26
|
Xia H, Zhang Y, Deng W, Liu K, Xia X, Su CJ, Jeng US, Zhang M, Huang J, Huang J, Yan C, Wong WY, Lu X, Zhu W, Li G. Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fine-Tuning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107659. [PMID: 34997631 DOI: 10.1002/adma.202107659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The large non-radiative recombination is the main factor that limits state-of-the-art organic solar cells (OSCs). In this work, two novel structurally similar oligomers (named 5BDTBDD and 5BDDBDT) with D-A-D-A-D and A-D-A-D-A configuration are synthesized for high-performance ternary OSCs with low energy loss. As third components, these PM6 analogue oligomers effectively suppress the non-radiative recombination in OSCs. Although the highest occupied molecular orbital (HOMO) levels of 5BDTBDD and 5BDDBDT are higher than that of PM6, the oligomers enabled ultra-high electroluminescence quantum efficiency (EQEEL ) of 0.05% and improved VOC , indicating suppressing non-radiative recombination overweighs the common belief of deeper HOMO requirement in third component selection. Moreover, the different compatibility of 5BDTBDD and 5BDDBDT with PM6 and BTP-BO4Cl fine-tunes the active layer morphology with synergistic effects. The ternary devices based on PM6:5BDTBDD:BTPBO4Cl and PM6:5BDDBDT:BTP-BO4Cl achieve a significantly improved PCEs of 17.54% and 17.32%, representing the state-of-the art OSCs processed by green solvent of o-xylene. The strategy using novel oligomer as third component also has very wide composition tolerance in ternary OSCs. This is the first work that demonstrates novel structurally compatible D-A type oligomers are effective third components, and provides new understanding of synergetic energy loss mechanisms towards high performance OSCs.
Collapse
Affiliation(s)
- Hao Xia
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Ying Zhang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Wanyuan Deng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kuan Liu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Miao Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Jiaming Huang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jingwei Huang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Cenqi Yan
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| |
Collapse
|
27
|
Qin J, Yang Q, Oh J, Chen S, Odunmbaku GO, Ouedraogo NAN, Yang C, Sun K, Lu S. Volatile Solid Additive-Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105347. [PMID: 35072347 PMCID: PMC8948555 DOI: 10.1002/advs.202105347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/31/2021] [Indexed: 05/15/2023]
Abstract
Morphology optimization of active layer plays a critical role in improving the performance of organic solar cells (OSCs). In this work, a volatile solid additive-assisted sequential deposition (SD) strategy is reported to regulate the molecular order and phase separation in solid state. The OSC adopts polymer donor D18-Cl and acceptor N3 as active layer, as well as 1,4-diiodobenzene (DIB) as volatile additive. Compared to the D18-Cl:N3 (one-time deposition of mixture) and D18-Cl/N3 (SD) platforms, the D18-Cl/N3(DIB) device based on DIB-assisted SD method exhibits a finer phase separation with greatly enhanced molecular crystallinity. The optimal morphology delivers superior charge transport and extraction, offering a champion power conversion efficiency of 18.42% with significantly enhanced short-circuit current density (Jsc ) of 27.18 mA cm-2 and fill factor of 78.8%. This is one of the best performances in binary SD OSCs to date. Angle-dependent grazing-incidence wide-angle X-ray scattering technique effectively reveals the vertical phase separation and molecular crystallinity of the active layer. This work demonstrates the combination of volatile solid additive and sequential deposition is an effective method to develop high-performance OSCs.
Collapse
Affiliation(s)
- Jianqiang Qin
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and SystemsSchool of Energy & Power EngineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| | - Qianguang Yang
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| | - Jiyeon Oh
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringPerovtronics Research CenterLow Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Shanshan Chen
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and SystemsSchool of Energy & Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - George Omololu Odunmbaku
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and SystemsSchool of Energy & Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Nabonswendé Aïda Nadège Ouedraogo
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and SystemsSchool of Energy & Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Changduk Yang
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringPerovtronics Research CenterLow Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Kuan Sun
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and SystemsSchool of Energy & Power EngineeringChongqing UniversityChongqing400044P. R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| |
Collapse
|
28
|
Yang J, Ding WL, Li QS, Li ZS. Theoretical Study of Non-Fullerene Acceptors Using End-Capped Groups with Different Electron-Withdrawing Abilities toward Efficient Organic Solar Cells. J Phys Chem Lett 2022; 13:916-922. [PMID: 35049301 DOI: 10.1021/acs.jpclett.1c03943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acceptors in organic solar cells (OSCs) are of paramount importance. On the basis of the well-known non-fullerene acceptor Y6, six acceptors (Y6-COH, Y6-COOH, Y6-CN, Y6-SO2H, Y6-CF3, and Y6-NO2) were designed by end-capped manipulation. The effects of end-capped engineering on electronic properties, optical properties, and interfacial charge-transfer states were systematically studied by density functional theory, time-dependent density functional theory, and molecular dynamics. The designed acceptors possess suitable energy levels and improved optical properties. More importantly, the electron mobility of the new acceptors was greatly enhanced, even more than 20 times that of the parent molecule. Among them, Y6-NO2 with the lowest-lying frontier molecular orbitals and the largest red-shifted absorption was selected to construct interfaces with the donor PM6. PM6/Y6-NO2 exhibits stronger interfacial interactions and enhanced charge-transfer characteristics compared with PM6/Y6. This work not only enhances the understanding of the structure-property relationship for acceptors but also offers a set of promising acceptors for high-performance OSCs.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Lu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ze-Sheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Zhao Y, Cheng P, Yang H, Wang M, Meng D, Zhu Y, Zheng R, Li T, Zhang A, Tan S, Huang T, Bian J, Zhan X, Weiss PS, Yang Y. Towards High-Performance Semitransparent Organic Photovoltaics: Dual-Functional p-Type Soft Interlayer. ACS NANO 2022; 16:1231-1238. [PMID: 34932319 DOI: 10.1021/acsnano.1c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semitransparent organic photovoltaics (OPVs) have drawn significant attention for their promising potential in the field of building integrated photovoltaics such as energy-generating greenhouses. However, the conflict between the need to attain satisfying average visible transmittances for greenhouse applications and the need to maintain high power conversion efficiencies is limiting the commercialization of semitransparent OPVs. A major manifestation of this issue is the undermining of charge carrier extraction efficiency when opaque, visible-light-absorbing electrodes are substituted with semitransparent ones. Here, we incorporated a dual-function p-type compatible interlayer to modify the interface of the hole-transporting layer and the ultrathin electrode of the semitransparent devices. We find that the p-type interlayer not only enhances the charge carrier extraction of the electrode but also increases the light transmittance in the wavelength range of 400-450 nm, which covers most of the photosynthetic absorption spectrum. The modified semitransparent devices reach a power conversion efficiency of 13.7% and an average visible transmittance of 22.2%.
Collapse
Affiliation(s)
| | | | - Hangbo Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, China
| | | | | | | | - Tengfei Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | | - Jiming Bian
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
30
|
Review on Y6-Based Semiconductor Materials and Their Future Development via Machine Learning. CRYSTALS 2022. [DOI: 10.3390/cryst12020168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Non-fullerene acceptors are promising to achieve high efficiency in organic solar cells (OSCs). Y6-based acceptors, one group of new n-type semiconductors, have triggered tremendous attention when they reported a power-conversion efficiency (PCE) of 15.7% in 2019. After that, scientists are trying to improve the efficiency in different aspects including choosing new donors, tuning Y6 structures, and device engineering. In this review, we first summarize the properties of Y6 materials and the seven critical methods modifying the Y6 structure to improve the PCEs developed in the latest three years as well as the basic principles and parameters of OSCs. Finally, the authors would share perspectives on possibilities, necessities, challenges, and potential applications for designing multifunctional organic device with desired performances via machine learning.
Collapse
|
31
|
Wang Y, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K. Narrowband organic photodetectors - towards miniaturized, spectroscopic sensing. MATERIALS HORIZONS 2022; 9:220-251. [PMID: 34704585 DOI: 10.1039/d1mh01215k] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Omnipresent quality monitoring in food products, blood-oxygen measurement in lightweight conformal wrist bands, or data-driven automated industrial production: Innovation in many fields is being empowered by sensor technology. Specifically, organic photodetectors (OPDs) promise great advances due to their beneficial properties and low-cost production. Recent research has led to rapid improvement in all performance parameters of OPDs, which are now on-par or better than their inorganic counterparts, such as silicon or indium gallium arsenide photodetectors, in several aspects. In particular, it is possible to directly design OPDs for specific wavelengths. This makes expensive and bulky optical filters obsolete and allows for miniature detector devices. In this review, recent progress of such narrowband OPDs is systematically summarized covering all aspects from narrow-photo-absorbing materials to device architecture engineering. The recent challenges for narrowband OPDs, like achieving high responsivity, low dark current, high response speed, and good dynamic range are carefully addressed. Finally, application demonstrations covering broadband and narrowband OPDs are discussed. Importantly, several exciting research perspectives, which will stimulate further research on organic-semiconductor-based photodetectors, are pointed out at the very end of this review.
Collapse
Affiliation(s)
- Yazhong Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Shen Xing
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Felix Dollinger
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| |
Collapse
|
32
|
Wei Y, Liang N, Jiang W, Zhai T, Wang Z. Rylene-Fullerene Hybrid an Emerging Electron Acceptor for High-Performing and Photothermal-Stable Ternary Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104060. [PMID: 34825446 DOI: 10.1002/smll.202104060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Molecular carbon imides, especially extended perylene diimides (PDIs) have been the best wide-band-gap nonfullerene acceptors. Despite their excellent photothermal/chemical stability, flexible reaction sites, and unique photoelectronic properties, there is still a lack of fundamental understanding of their molecular characteristics as a third component. Here, generations of PDIs with distinctive molecular architecture, are deliberately screened out as the third component to PM6:Y6. Only a rylene-fullerene hybrid, S-Fuller-PMI, surprisingly boosts the fill factor (FF) of ternary organic solar cells (OSCs) to 0.77 from 0.72 for PM6:Y6 binary ones, and therefore the power conversion efficiency (PCE) of ternary cells is enhanced from 15.3% to 16.2%. Compared with highly-flexible rylene dimer and rigid multimer, S-Fuller-PMI exhibits higher electron mobility, favorable surface tension, and, therefore tailored compatibility with Y6. These formed Y6:S-Fuller-PMI alloys play as a morphological controller to improve charge separation and transport process. Simultaneously, the suppressed photothermal-induced traps, along with inherent enlarged entropy effect, endow the ternary OSCs still with ≈70% of initial PCE even after 500 h continuous illumination, whereas only 53% is left in their binary counterparts. These results provide new insight into the molecular design principle for distinctive molecular carbon imides as the third component for efficient and durable PM6:Y6-based OSCs.
Collapse
Affiliation(s)
- Yi Wei
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ningning Liang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianrui Zhai
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Xu W, Ma X, Son JH, Jeong SY, Niu L, Xu C, Zhang S, Zhou Z, Gao J, Woo HY, Zhang J, Wang J, Zhang F. Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulk-Heterojunction or Layer-By-Layer Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104215. [PMID: 34841671 DOI: 10.1002/smll.202104215] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/07/2021] [Indexed: 05/21/2023]
Abstract
Although the rapid development of polymer solar cells (PSCs) has been achieved, it is still a great challenge to explore efficient ways for improving power conversion efficiency (PCE) of PSCs from materials and device engineering. Ternary strategy has been confirmed as an efficient way to improve PCE of PSCs by employing three kinds of materials. In this work, one polymer donor PM6, and two non-fullerene materials N3 and MF1 are selected to prepare ternary PSCs with layer-by-layer (LbL) or bulk-heterojunction (BHJ) structure. The LbL and BHJ-PSCs exhibit PCEs of 16.75% and 16.76% with 15 wt% MF1 content in acceptors, corresponding to over 5% or 4% PCE improvement compared with N3-based binary PSCs with LbL or BHJ structure. The PCE improvement is mainly attributed to the fill factor enhancement from 73.29% to 76.95% for LbL-PSCs or from 74.13% to 77.51% for BHJ-PSCs by employing the ternary strategy. This work indicates that ternary strategy has great potential in preparing highly efficient LbL-PSCs via simultaneously optimizing molecular arrangement and the thickness of each layer.
Collapse
Affiliation(s)
- Wenjing Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| | - Jae Hoon Son
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Lianbin Niu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Chunyu Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| | - Shuping Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhengji Zhou
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, and School of Materials, Henan University, Kaifeng, Henan, 475004, China
| | - Jinhua Gao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jian Zhang
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, 1st Jinji Road, Guilin, 541004, China
| | - Jian Wang
- College of Physics and Electronic Engineering, Taishan University, Taian, Shandong Province, 271021, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
34
|
Liu Z, Wang HE. High-performance ternary organic photovoltaics with NC 70BA as the third component material enabling thickness-insensitive photoactive performance. NANOTECHNOLOGY 2021; 33:065206. [PMID: 34731850 DOI: 10.1088/1361-6528/ac3612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
In this work, a thinner (100 nm) and thicker (150 and 200 nm) ternary organic photovoltaic (OPV) are fabricate by D18 as donor, Y6 as acceptor and NC70BA as third component materials. The addition of the hollow 3D spherical structure of NC70BA into D18:Y6 binary films is helpful for improving phase separation and smooth surface of ternary photoactive layer, and form more continuous electron transport channels in ternary photoactive layers. It is enhance photovoltaic performance under not only thinner photoactive layer thickness but also thicker photoactive layer thickness. Our results demonstrate the feasibility of employing D18:Y6 as a binary photovoltaic layer and fullerene derivative NC70BA as a third component material and has construct high-efficiency thickness-insensitive ternary OPVs; this approach would promote the development of thicker photoactive layer ternary OPVs to fulfill the requirements of solution coating processes.
Collapse
Affiliation(s)
- Zhiyong Liu
- Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, People's Republic of China
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming 650500, People's Republic of China
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Hong-En Wang
- Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, People's Republic of China
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming 650500, People's Republic of China
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
35
|
Kim M, Ryu SU, Park SA, Pu YJ, Park T. Designs and understanding of small molecule-based non-fullerene acceptors for realizing commercially viable organic photovoltaics. Chem Sci 2021; 12:14004-14023. [PMID: 34760184 PMCID: PMC8565376 DOI: 10.1039/d1sc03908c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Organic photovoltaics (OPVs) have emerged as a promising next-generation technology with great potential for portable, wearable, and transparent photovoltaic applications. Over the past few decades, remarkable advances have been made in non-fullerene acceptor (NFA)-based OPVs, with their power conversion efficiency exceeding 18%, which is close to the requirements for commercial realization. Novel molecular NFA designs have emerged and evolved in the progress of understanding the physical features of NFA-based OPVs in relation to their high performance, while there is room for further improvement. In this review, the molecular design of representative NFAs is described, and their blend characteristics are assessed via statistical comparisons. Meanwhile, the current understanding of photocurrent generation is reviewed along with the significant physical features observed in high-performance NFA-based OPVs, while the challenging issues and the strategic perspectives for the commercialization of OPV technology are also discussed.
Collapse
Affiliation(s)
- Minjun Kim
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Seung Un Ryu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongsangbuk-do 37673 Republic of Korea
| | - Sang Ah Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongsangbuk-do 37673 Republic of Korea
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongsangbuk-do 37673 Republic of Korea
| |
Collapse
|
36
|
Kim M, Choi Y, Hwan Lee D, Min J, Pu YJ, Park T. Roles and Impacts of Ancillary Materials for Multi-Component Blend Organic Photovoltaics towards High Efficiency and Stability. CHEMSUSCHEM 2021; 14:3475-3487. [PMID: 34164933 DOI: 10.1002/cssc.202100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Organic photovoltaics (OPVs) are a promising next-generation photovoltaic technology with great potential for wearable and transparent device applications. Over the past decades, remarkable advances in device efficiency close to 20 % have been made for bulk heterojunction (BHJ)-based OPV devices with long-term stability, and room for further improvements still exists. In recent years, ancillary components have been demonstrated as effective in improving the photovoltaic performance of OPVs by controlling the optoelectronic and morphological properties of BHJ blends. Herein, an updated understanding of polymer-based blend OPVs is provided, and the role and impact of ancillary components in various blend systems are categorized and discussed. Lastly, a strategic perspective on the ancillary components of blend-based OPVs for commercialization is provided.
Collapse
Affiliation(s)
- Minjun Kim
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Yelim Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Jihyun Min
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| |
Collapse
|
37
|
Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Bi P, Zhang S, Wang J, Ren J, Hou J. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Ma X, Zeng A, Gao J, Hu Z, Xu C, Son JH, Jeong SY, Zhang C, Li M, Wang K, Yan H, Ma Z, Wang Y, Woo HY, Zhang F. Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6 : Y6-1O as acceptor. Natl Sci Rev 2021; 8:nwaa305. [PMID: 34691710 PMCID: PMC8363335 DOI: 10.1093/nsr/nwaa305] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 11/14/2022] Open
Abstract
A series of ternary organic photovoltaics (OPVs) are fabricated with one wide bandgap polymer D18-Cl as donor, and well compatible Y6 and Y6-1O as acceptor. The open-circuit-voltage (VOC ) of ternary OPVs is monotonously increased along with the incorporation of Y6-1O, indicating that the alloy state should be formed between Y6 and Y6-1O due to their excellent compatibility. The energy loss can be minimized by incorporating Y6-1O, leading to the VOC improvement of ternary OPVs. By finely adjusting the Y6-1O content, a power conversion efficiency of 17.91% is achieved in the optimal ternary OPVs with 30 wt% Y6-1O in acceptors, resulting from synchronously improved short-circuit-current density (JSC ) of 25.87 mA cm-2, fill factor (FF) of 76.92% and VOC of 0.900 V in comparison with those of D18-Cl : Y6 binary OPVs. The JSC and FF improvement of ternary OPVs should be ascribed to comprehensively optimal photon harvesting, exciton dissociation and charge transport in ternary active layers. The more efficient charge separation and transport process in ternary active layers can be confirmed by the magneto-photocurrent and impedance spectroscopy experimental results, respectively. This work provides new insight into constructing highly efficient ternary OPVs with well compatible Y6 and its derivative as acceptor.
Collapse
Affiliation(s)
- Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Anping Zeng
- Departmentof Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinhua Gao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhenghao Hu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Chunyu Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Jae Hoon Son
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Caixia Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Mengyang Li
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - He Yan
- Departmentof Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
40
|
Liu X, Liu Y, Ni Y, Fu P, Wang X, Yang Q, Guo X, Li C. Reducing non-radiative recombination energy loss via a fluorescence intensifier for efficient and stable ternary organic solar cells. MATERIALS HORIZONS 2021; 8:2335-2342. [PMID: 34846439 DOI: 10.1039/d1mh00868d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing electroluminescene quantum efficiency (EQEEL) of the photoactive layer to reduce non-radiative recombination energy loss (Eloss) has been demonstrated as an effective strategy to improve open-circuit voltage (Voc) of organic solar cells (OSCs). Meanwhile, incorporating a third component into the active-layer film can improve power conversion efficiency (PCE) of resultant ternary OSCs, mostly contributed from increments in short-circuit current density and fill factor but less in the Voc. Herein, we report a highly fluorescent molecule (IT-MCA) as a third component to reduce the Eloss and enhance the Voc for ternary OSCs. Applying the IT-MCA to three binary hosts, a significant increase of Voc (41 mV) is acquired and a best PCE of 16.7% is obtained with outstanding device stability. This work provides a new guideline to design the third-component molecule by enhancing its fluorescence for efficient and stable ternary OSCs with improved Voc.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhu K, Wang X, He Y, Zhai X, Gao C, Wang Q, Jing X, Yu L, Sun M. Ester-substituted copolymer-based ternary semitransparent polymer solar cells with enhanced FF and PCE. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Abstract
ITO/PEDOT:PSS/P3HT:PC60BM/Mg-Al organic solar cells (OSCs) were fabricated depending on optimization of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-Butyric-Acid-Methyl Ester (PC60BM). The optimization of the active layer, P3HT:PC60BM, was carried out under different spin frequencies coating from 900 to 3000 rpm. The post-production annealing temperature of all prepared OSC was studied from 130 to 190 °C. The holes transport layer, poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS), was prepared under constant conditions of 3000 rpm for 35 s, and annealing temperature 178 °C for 15 min. From our study, the optimum conditions for P3HT:PC60BM were spin coating of 3000 rpm, and annealing temperature of 160 °C for 5 min. The optimum J-V parameters values for the prepared OSC were JSC = 12.01 mA/cm2, VOC = 660 mV, FF = 59%, PCE = 4.65%, and EQE = 61%. A complete OSC with acceptable efficiency was designed using simple and low-cost techniques that may be utilized in the industry. Furthermore, the cost of the synthesized solar cell is projected to be around 1 $/cm2, with the goal of lowering the cost and increasing efficiency in the future by incorporating more commercial nanostructured electron/hole transport components.
Collapse
|
43
|
Abstract
The power conversion efficiency (PCE) of organic photovoltaics (OPVs) has exceeded 18% with narrow bandgap, non-fullerene materials Y6 or its derivatives when used as an electron acceptor. The PCE improvement of OPVs is due to strong photon harvesting in near-infrared light range and low energy loss. Meanwhile, ternary strategy is commonly recognized as a convenient and efficient means to improve the PCE of OPVs. In this review article, typical donor and acceptor materials in prepared efficient OPVs are summarized. From the device engineering perspective, the typical research work on ternary strategy and tandem structure is introduced for understanding the device design and materials selection for preparing efficient OPVs.
Collapse
|
44
|
Dai T, Lei P, Zhang B, Zhou J, Tang A, Geng Y, Zeng Q, Zhou E. Tricyclic or Pentacyclic D Units: Design of D-π-A-Type Copolymers for High VOC Organic Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30756-30765. [PMID: 34180228 DOI: 10.1021/acsami.1c08487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although there are several electron-donating (D) units, only the classic benzo[1,2-b:4,5-b']dithiophenes (BDT) unit was utilized to develop D-π-A-type copolymers for high-voltage organic photovoltaic (OPV) cells. Hence, in this work, we chose two tricyclic D units, BDT and benzo[1,2-b:4,5-b']difurans (BDF), together with one pentacyclic ring, dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophenes (DTBDT), to comprehensively study the effect of different D units on the optoelectronic properties and photovoltaic performance. By copolymerized with the benzo[1,2,3]triazole (BTA) electron-accepting unit, the final copolymers J52-Cl, F11, and PE52 were combined with a nonfullerene acceptor (NFA) F-BTA3 according to the "Same-A-Strategy." As we preconceived, all the three single-junction OPV cells can obtain high open-circuit voltage (VOC) over 1.10 V. Although the tricyclic D unit of BDF exhibits a slightly lower VOC of 1.12 V because of its mildly larger energy loss of 0.698 eV, its higher carrier mobilities and exciton dissociation efficiency strikingly boost the short-circuit current (JSC) and fill factor, which contribute to a comparable PCE of 10.04% with J52-Cl (10.10%). However, the DTBDT-based polymer PE52 shows the worst performance with a PCE of 6.78% and a VOC of 1.14 V, owing to the higher bimolecular recombination and disordered molecular stacking. Our results indicate that tricyclic D units should be a better choice for constructing D-π-A-type polymers for high-voltage photovoltaic materials than the pentacyclic analogues.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Samal S, Thompson BC. Influence of Alkyl Chain Spacer Length on the Charge Carrier Mobility of Isotactic Poly( N-carbazolylalkyl acrylates). ACS Macro Lett 2021; 10:720-726. [PMID: 35549095 DOI: 10.1021/acsmacrolett.1c00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the search for semiconducting polymer alternatives to conjugated polymers, stereoregular nonconjugated pendant electroactive polymers (NCPEPs) have recently shown competitive hole mobilities with conjugated polymers and a dramatic increase in mobility relative to atactic analogues. Here we investigate one of the key structural variables of NCPEPs: the flexible alkyl spacer that separates the electroactive pendant from the backbone. We investigate a straightforward postpolymerization functionalization synthetic method to synthesize such polymers with high isotacticity using poly(N-carbazolylalkyl acrylate) as a model system, where the alkyl chain spacer in the NCPEPs is varied from 2 to 12 carbons. We observed that the hole mobility increased from the two-carbon spacer, resulting in the highest mobility upon thermal annealing with a four-carbon spacer for 75% isotactic polymers and with a six-carbon spacer for 87% isotactic polymers. As such, we have demonstrated an important role of the spacer chain in influencing mobility. For all spacer lengths, higher mobilities were measured with the more isotactic polymer. While physical characterization of the largely amorphous polymers yielded little insight into the structure-function relationships, DFT and MD simulations indicated helical structures for the polymers where intermolecular short-range π-stacking is observed and is affected by spacer chain length. This work demonstrates that both the degree of stereoregularity and the spacer chain length play a role in determining the hole mobility in NCPEPs.
Collapse
Affiliation(s)
- Sanket Samal
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
46
|
Xu Y, Ji Q, Yin L, Zhang N, Liu T, Li N, He X, Wen G, Zhang W, Yu L, Murto P, Xu X. Synergistic Engineering of Substituents and Backbones on Donor Polymers: Toward Terpolymer Design of High-Performance Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23993-24004. [PMID: 33974390 DOI: 10.1021/acsami.1c03794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Design of terpolymers via copolymerization has emerged as a potential strategy for expanding the family of high-performing donor polymers and boosting the photovoltaic performance of non-fullerene polymer solar cells (PSCs). Herein, double-ester-substituted thiophenes and thienothiophenes are incorporated as third building blocks into the donor polymer PBDB-TF, developing two groups of terpolymers with donor-acceptor 1-donor-acceptor 2 (D-A1-D-A2)-type backbones. An optimum 10% concentration of double-ester-substituted thiophene units in PBDB-TF-T10 downshifts the molecular energy and increases the dielectric constant, and delivers proper miscibility and nanostructure in blends with the high-performing acceptor Y6. These characteristics are designed to synergistically enhance the photovoltage, photocurrent, and efficiency of PSCs. The resulting power conversion efficiency (PCE) of 16.4% surpasses the conventional PBDB-TF/Y6 PSCs, and it is among the best-performing PSCs based on PBDB-TF-derived terpolymers. Gratifyingly, PBDB-TF-T10 does not show significant batch-to-batch variation and it retains high PCEs above 16% in a broad range of molecular weights. This work introduces a facile strategy to easily synthesize terpolymers in combination with Y6 for the attainment of high-performing and reproducible non-fullerene PSCs.
Collapse
Affiliation(s)
- Yunxiang Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qing Ji
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Luqi Yin
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Zhang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tong Liu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaochuan He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Liyang Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Petri Murto
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
47
|
Xia D, Zhang Z, Zhao C, Wang J, Xia J, Chen G, Li S, Tang Z, You S, Li W. Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17. J Colloid Interface Sci 2021; 601:70-77. [PMID: 34058553 DOI: 10.1016/j.jcis.2021.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
In this work, we introduced a fullerene acceptor (PC71BM) into the binary photo-active layer based on a polymer donor (PM6) and a non-fullerene small molecular acceptor (BTP-BO-4Cl), and as a consequence, the ternary organic solar cells realized a high-power conversion efficiency of 17.39% compared to 16.65% in binary solar cells. The performance enhancement was found to be due to the optimized morphology and hence balanced hole and electron mobilities, which is responsible for the suppressed charge recombination and hence high photocurrent in solar cells. In addition, PC71BM shows the complementary absorption with PM6 and BTP-BO-4Cl, which can broaden the absorption range of the photo-active layer and hence more photons from the sunlight can be utilized. Besides, PC71BM shows the cascade energy level alignment between PM6 and BTP-BO-4Cl, which is helpful for charge transfer from donor to acceptor. All these merits explain the high performance in ternary solar cells, and also demonstrate that ternary photovoltaics adopting non-fullerene acceptor with the fullerene acceptor as small amount of additive is an efficient strategy to gain high performing organic solar cells.
Collapse
Affiliation(s)
- Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhou Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China.
| | - Jing Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jun Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Guihua Chen
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Shuai Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China.
| | - Weiwei Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
48
|
Dai T, Lei P, Zhang B, Tang A, Geng Y, Zeng Q, Zhou E. Fabrication of High VOC Organic Solar Cells with a Non-Halogenated Solvent and the Effect of Substituted Groups for "Same-A-Strategy" Material Combinations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21556-21564. [PMID: 33908246 DOI: 10.1021/acsami.1c03757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a class of high-voltage organic solar cells (OSCs) processed by the environmentally friendly solvent tetrahydrofuran (THF), where four benzotriazole (BTA)-based p-type polymers (PE31, PE32, PE33, and J52-Cl) and a BTA-based small molecule BTA5 are applied as p-type and n-type materials, respectively, according to "Same-A-Strategy" (SAS). The single-junction OSCs based on all four material blends exhibit a high open-circuit voltage (VOC) above 1.10 V. We systematically study the impact of the three different substituents (-OCH3, -F, -Cl) on the BTA unit of the polymer donors. Interestingly, PE31 containing the unsubstituted BTA unit shows the efficient hole transfer and more balanced charge mobilities, thus leading to the highest power conversion efficiency (PCE) of 10.08% with a VOC of 1.11 V and a JSC of 13.68 mA cm-2. Due to the upshifted highest electron-occupied molecular orbital (HOMO) level and the weak crystallinity of the methoxy-substituted polymer PE32, the resulting device shows the lowest PCE of 7.40% with a slightly decreased VOC of 1.10 V. In addition, after the chlorination and fluorination, the HOMO levels of the donor materials PE33 and J52-Cl are gradually downshifted, contributing to increased VOC values of 1.16 and 1.21 V, respectively. Our results prove that an unsubstituted p-type polymer can also afford high voltage and promising performance via non-halogenated solvent processing, which is of great significance for simplifying the synthesis steps and realizing the commercialization of OSCs.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Zhang M, Zhu L, Hao T, Zhou G, Qiu C, Zhao Z, Hartmann N, Xiao B, Zou Y, Feng W, Zhu H, Zhang M, Zhang Y, Li Y, Russell TP, Liu F. High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007177. [PMID: 33742493 DOI: 10.1002/adma.202007177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The intrinsic electronic properties of donor (D) and acceptor (A) materials in coupling with morphological features dictate the output in organic solar cells (OSCs). New physical properties of intimate eutectic mixing are used in nonfullerene-acceptor-based D-A1 -A2 ternary blends to fine-tune the bulk heterojunction thin film morphology as well as their electronic properties. With enhanced thin film crystallinity and improved carrier transport, a significant JSC amplification is achieved due to the formation of eutectic fibrillar lamellae and reduced defects state density. Material wise, aligned cascading energy levels with much larger driving force, and suppressed recombination channels confirm efficient charge transfer and transport, enabling an improved power conversion efficiency (PCE) of 17.84%. These results reveal the importance of utilizing specific material interactions to control the crystalline habit in blended films to form a well-suited morphology in guiding superior performances, which is of high demand in the next episode of OSC fabrication toward 20% PCE.
Collapse
Affiliation(s)
- Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianyu Hao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaoqun Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhe Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | | | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Hubei, 430056, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Zhejiang, 310027, P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| |
Collapse
|
50
|
Günther M, Blätte D, Oechsle AL, Rivas SS, Yousefi Amin AA, Müller-Buschbaum P, Bein T, Ameri T. Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by Using Fullerene Derivative Additives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19072-19084. [PMID: 33861568 DOI: 10.1021/acsami.1c00700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic solar cells (OSCs) recently achieved efficiencies of over 18% and are well on their way to practical applications, but still considerable stability issues need to be overcome. One major problem emerges from the electron transport material zinc oxide (ZnO), which is mainly used in the inverted device architecture and decomposes many high-performance nonfullerene acceptors due to its photocatalytic activity. In this work, we add three different fullerene derivatives-PC71BM, ICMA, and BisPCBM-to an inverted binary PBDB-TF:IT-4F system in order to suppress the photocatalytic degradation of IT-4F on ZnO via the radical scavenging abilities of the fullerenes. We demonstrate that the addition of 5% fullerene not only increases the performance of the binary PBDB-TF:IT-4F system but also significantly improves the device lifetime under UV illumination in an inert atmosphere. While the binary devices lose 20% of their initial efficiency after only 3 h, this time is increased fivefold for the most promising ternary devices with ICMA. We attribute this improvement to a reduced photocatalytic decomposition of IT-4F in the ternary system, which results in a decreased recombination. We propose that the added fullerenes protect the IT-4F by acting as a sacrificial reagent, thereby suppressing the trap state formation. Furthermore, we show that the protective effect of the most promising fullerene ICMA is transferable to two other binary systems PBDB-TF:BTP-4F and PTB7-Th:IT-4F. Importantly, this effect can also increase the air stability of PBDB-TF:IT-4F. This work demonstrates that the addition of fullerene derivatives is a transferable and straightforward strategy to improve the stability of OSCs.
Collapse
Affiliation(s)
- Marcella Günther
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Dominic Blätte
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Anna Lena Oechsle
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Sergio Sánchez Rivas
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Amir Abbas Yousefi Amin
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
- Heinz Maier-Leibnitz-Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, Garching 85748, Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tayebeh Ameri
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
- Institute for Materials and Processes, Chemical Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| |
Collapse
|