1
|
Liang KA, Chih HY, Liu IJ, Yeh NT, Hsu TC, Chin HY, Tzang BS, Chiang WH. Tumor-targeted delivery of hyaluronic acid/polydopamine-coated Fe 2+-doped nano-scaled metal-organic frameworks with doxorubicin payload for glutathione depletion-amplified chemodynamic-chemo cancer therapy. J Colloid Interface Sci 2025; 677:400-415. [PMID: 39096708 DOI: 10.1016/j.jcis.2024.07.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.
Collapse
Affiliation(s)
- Kai-An Liang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Yun Chih
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Li Y, Li C, Liu S, Wang Q, Tang Z, Qu J, Ye J, Lu Y, Wang J, Zhang K, Fu Y, Xu J. Nano-photosensitizers with gallic acid-involved Fe-O-Cu "electronic storage station" bridging ligand-to-metal charge transfer for efficient catalytic theranostics. J Colloid Interface Sci 2024; 676:974-988. [PMID: 39068841 DOI: 10.1016/j.jcis.2024.07.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NH2-MIL-88B (Fe) (MOF) is a promising photocatalytic material for antitumor therapy because of its distinctive electronic structure. However, inadequate separation of photo-generated electrons and slow reaction rate in low/high-valence iron (Fe) cycles limit their clinical application. In the present study, "electronic storage station" as a ligand-to-metal charge transfer bridge bond was constructed to inhibit recombination of electron/hole under 650 nm laser irradiation. Cupric (Cu) ions and gallic acid (GA) were self-assembled into a MOF (denoted as CGMOF) to create an FeO(GA)Cu bridge bond. GA, characterized by robust electron delocalization and abundant electron-donating groups, significantly enhances electron transfer efficiency for photodynamic therapy (PDT). CGMOF can respond to endogenous glutathione and release cuprous ions, accelerating the iron ion/ferrous ion cycles for chemodynamic therapy (CDT). The released Fe species can serve as T2-weighted magnetic resonance imaging contrast. Extended X-ray absorption fine structure spectra confirmed the presence of GA-containing FeOCu bonds in CGMOF. Furthermore, a series of photo-electrochemical tests confirmed that the formation of FeO(GA)Cu bond prominently elevated the redox capacity and increased the carrier density of CGMOF by 2.74-fold compared to that of MOF. In addition, cinnamaldehyde was grafted onto CGMOF for tumor-responsive hydrogen peroxide self-supply. Concurrently, hyaluronic acid was surface-modified to achieve the targeted delivery of nano-photosensitizers. In summary, this study presents an innovative approach for engineering Fe-based metal-organic frameworks for synergetic PDT/CDT applications.
Collapse
Affiliation(s)
- Yunlong Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241002, PR China
| | - Jun Wang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545000, PR China.
| | - Kefen Zhang
- Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
3
|
Yeh NT, Lin TC, Liu IJ, Hu SH, Hsu TC, Chin HY, Tzang BS, Chiang WH. Hyaluronic acid-covered ferric ion-rich nanobullets with high zoledronic acid payload for breast tumor-targeted chemo/chemodynamic therapy. Int J Biol Macromol 2024; 279:135271. [PMID: 39233170 DOI: 10.1016/j.ijbiomac.2024.135271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Due to the heterogeneity of the tumor microenvironment, the clinical efficacy of tumor treatment is not satisfied, highlighting the necessity for new strategies to tackle this issue. To effectively treat breast tumors by tumor-targeted chemo/chemodynamic therapy, herein, the Fe3+-rich MIL-88B nanobullets (MNs) covered with hyaluronic acid (HA) were fabricated as vehicles of zoledronic acid (ZA). The attained ZA@HMNs showed a high ZA payload (ca 29.6 %), outstanding colloidal stability in the serum-containing milieu, and accelerated ZA as well as Fe3+ release under weakly acidic and glutathione (GSH)-rich conditions. Also, the ZA@HMNs consumed GSH by GSH-mediated Fe3+ reduction and converted H2O2 into OH via Fenton or Fenton-like reaction with pH reduction. After being internalized by 4T1 cells upon CD44-mediated endocytosis, the ZA@HMNs depleted intracellular GSH and degraded H2O2 into OH, thus eliciting lipid peroxidation and mitochondria damage to suppress cell proliferation. Also, the ZA@HMNs remarkably killed macrophage-like RAW 264.7 cells. Importantly, the in vivo studies and ki67 and GPX4 staining of tumor sections demonstrated that the ZA@HMNs efficiently accumulated in 4T1 tumors to hinder tumor growth via ZA chemotherapy combined with OH-mediated ferroptosis. This work presents a practicable strategy to fabricate ZA@HMNs for breast tumor-targeted chemo/chemodynamic therapy with potential clinical translation.
Collapse
Affiliation(s)
- Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
4
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
5
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
6
|
Zhu S, Xu H, Guo W, Yang M, Tan H, Hou S, Yao J, Luo H, Yao Y, Zhao J, Wei Y, Sun X, Ying B. Peroxidase-Mimetic Iron Silicate Nanosheets Coordinated with Indocyanine Green for Enhanced Anti-Tumor Therapy. Adv Healthc Mater 2024:e2403002. [PMID: 39319489 DOI: 10.1002/adhm.202403002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Indexed: 09/26/2024]
Abstract
The versatile element composition and multifunctional properties of biodegradable silicates have attracted significant attention in cancer therapeutics. However, their application as nanozymes is often limited by suboptimal catalytic efficiency and insufficient intratumoral retention. In this study, the hydrothermal synthesis of iron silicate (FeSi) nanosheets are reported exhibiting exceptional peroxidase (POD)-like activity (136.7 U mg-1), outperforming most reported iron-based nanozymes. Density functional theory calculations revealed that the introduction of Si into the catalyst enhances H2O2 adsorption and dissociation of Fe sites, leading to superior POD performance. Furthermore, the FeSi nanosheets are modified with Indocyanine Green (ICG) to facilitate targeted aggregation-potentiated therapy. The integration of ICG improved tumor penetration and retention of the FeSi nanosheets, significantly increasing their reactive oxygen species production and bolstering therapeutic efficacy.
Collapse
Affiliation(s)
- Shuairu Zhu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, 610041, China
| | - Hongwei Xu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wanying Guo
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Mei Yang
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiling Tan
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaosong Hou
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Yao
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Han Luo
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Yonggang Wei
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, 610041, China
| |
Collapse
|
7
|
Wang H, Zhang G, Lin M, Hartinger CG, Sun J. Zwitterionic Polyelectrolyte Complex Vesicles Assembled from Homopoly(2-Oxazoline)s as Enzyme Catalytic Nanoreactors for Potent Anti-Tumor Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19423-19429. [PMID: 39083025 DOI: 10.1021/acs.langmuir.4c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Enzymes are known for their remarkable catalytic efficiency across a wide range of applications. Here, we present a novel and convenient nanoreactor platform based on zwitterionic polyelectrolyte complex vesicles (PCVs), assembled from oppositely charged homopoly(2-oxazoline)s, facilitating enzyme immobilization. We show remarkable enhancements in catalytic activity and stability by encapsulation of lipase as a model enzyme. Even as the temperature rises, the performance of the lipase remains robust. Further, the structural characteristics of PCVs, including hollow architecture and semipermeable membranes, endow them with unique advantages for enzyme cascade reactions involving glucose oxidase (GOx) and horseradish peroxidase (HRP). A decline in catalytic efficiency is shown when the enzymes are individually loaded and subsequently mixed, in contrast to the coloaded GOx-HRP-PCV group. We demonstrate that the vesicle structures establish confined environments where precise enzyme-substrate interactions facilitate enhanced catalytic efficiency. In addition, the nanoreactors exhibit excellent biocompatibility and efficient anti-tumor activity, which hold significant promise for biomedical applications within enzyme-based technologies.
Collapse
Affiliation(s)
- Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Guojing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
8
|
Geng X, Song K, Hu Q, Yin Y, Li H, Yan X, Jiang B. Broad-spectrum degradation of fluoroquinolone antibiotics by Hemin-His-Fe nanozymes with peroxidase-like activity. J Mater Chem B 2024; 12:8647-8654. [PMID: 39138924 DOI: 10.1039/d4tb00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Fluoroquinolones are a widely used class of antibiotics, with a large variety, which are frequently monitored in the aqueous environment, threatening ecological and human health. To date, effective degradation of fluoroquinolone antibiotics remains a major challenge. Focused on the broad-spectrum degradation of fluoroquinolone antibiotics, a novel biomimetic peroxidase nanozyme named Hemin-His-Fe (HHF)-peroxidase nanozyme was synthesized through a green and rapid "one-pot" method involving hemin, Fmoc-L-His and Fe2+ as precursors. After systematic optimization of the reaction conditions, fluoroquinolone antibiotics can be degraded by the HHF-peroxidase nanozyme when supplemented with H2O2 in acidic environments. Through validation and analysis, it was proved that the generated strong oxidative hydroxyl radicals are the main active species in the degradation process. In addition, it was verified that this method shows great universal applicability in real water samples.
Collapse
Affiliation(s)
- Xin Geng
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Kexu Song
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Qingying Hu
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yue Yin
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| |
Collapse
|
9
|
Yang F, Dong Q, Chen Z, Gao B, Zheng D, Wang R, Qin S, Peng F, Luo M, Yang J, Nie M, Li B, Yang X. A pH-Responsive Drug-Delivery System Based on Apatinib-Loaded Metal-Organic Frameworks for Ferroptosis-Targeted Synergistic Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:9055-9070. [PMID: 39246426 PMCID: PMC11380856 DOI: 10.2147/ijn.s477248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose The efficacy of systemic therapy for hepatocellular carcinoma (HCC) is limited mainly by the complex tumor defense mechanism and the severe toxic side-effects of drugs. The efficacy of apatinib (Apa), a key liver cancer treatment, is unsatisfactory due to inadequate targeting and is accompanied by notable side-effects. Leveraging nanomaterials to enhance its targeting represents a crucial strategy for improving the effectiveness of liver cancer therapy. Patients and Methods A metal polyphenol network-coated apatinib-loaded metal-organic framework-based multifunctional drug-delivery system (MIL-100@Apa@MPN) was prepared by using metal-organic frameworks (MOFs) as carriers. The nanoparticles (NPs) were subsequently characterized using techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential measurements, and particle size analysis. In vitro experiments were conducted to observe the drug release kinetics and cytotoxic effects of MIL-100@Apa@MPN on HepG2 cells. The in vivo anti-tumor efficacy of MIL-100@Apa@MPN was evaluated using the H22 tumor-bearing mouse model. Results The formulated MIL-100@Apa@MPN demonstrates remarkable thermal stability and possesses a uniform structure, with measured drug-loading (DL) and encapsulation efficiency (EE) rates of 28.33% and 85.01%, respectively. In vitro studies demonstrated that HepG2 cells efficiently uptake coumarin-6-loaded NPs, and a significant increase in cumulative drug release was observed under lower pH conditions (pH 5.0), leading to the release of approximately 73.72% of Apa. In HepG2 cells, MIL-100@Apa@MPN exhibited more significant antiproliferative activity compared to free Apa. In vivo, MIL-100@Apa@MPN significantly inhibited tumor growth, attenuated side-effects, and enhanced therapeutic effects in H22 tumor-bearing mice compared to other groups. Conclusion We have successfully constructed a MOF delivery system with excellent safety, sustained-release capability, pH-targeting, and improved anti-tumor efficacy, highlighting its potential as a therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Qiaoyan Dong
- Luzhou Senior High School, Luzhou, 646000, People's Republic of China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Dongning Zheng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Shu Qin
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fangyi Peng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ming Luo
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jin Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Mengmei Nie
- Department of Urological Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| |
Collapse
|
10
|
Shu M, Wang J, Xu Z, Lu T, He Y, Li R, Zhong G, Yan Y, Zhang Y, Chu X, Ke J. Targeting nanoplatform synergistic glutathione depletion-enhanced chemodynamic, microwave dynamic, and selective-microwave thermal to treat lung cancer bone metastasis. Bioact Mater 2024; 39:544-561. [PMID: 38883314 PMCID: PMC11179176 DOI: 10.1016/j.bioactmat.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Once bone metastasis occurs in lung cancer, the efficiency of treatment can be greatly reduced. Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction. Microwave ablation (MWA) has been used to treat bone tumors. However, MWA may damage the surrounding normal tissues. Therefore, it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis. Herein, a microwave-responsive nanoplatform (MgFe2O4@ZOL) was constructed. MgFe2O4@ZOL NPs release the cargos of Fe3+, Mg2+ and zoledronic acid (ZOL) in the acidic tumor microenvironment (TME). Fe3+ can deplete intracellular glutathione (GSH) and catalyze H2O2 to generate •OH, resulting in chemodynamic therapy (CDT). In addition, the microwave can significantly enhance the production of reactive oxygen species (ROS), thereby enabling the effective implementation of microwave dynamic therapy (MDT). Moreover, Mg2+ and ZOL promote osteoblast differentiation. In addition, MgFe2O4@ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy (MTT). Both in vitro and in vivo experiments revealed that synergistic targeting, GSH depletion-enhanced CDT, MDT, and selective MTT exhibited significant antitumor efficacy and bone repair. This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Man Shu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Orthopaedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jingguang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ziyang Xu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Teliang Lu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yue He
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Renshan Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yunbo Yan
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Xiao Chu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jin Ke
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| |
Collapse
|
11
|
Liu J, Zhang X, Zhang Y, Zhao B, Liu Z, Dong X, Feng S, Du Y. Mn-based Prussian blue analogues: Multifunctional nanozymes for hydrogen peroxide detection and photothermal therapy of tumors. Talanta 2024; 277:126320. [PMID: 38824861 DOI: 10.1016/j.talanta.2024.126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Nanozymes have the advantages of simple synthesis, high stability, low cost and easy recycling, and can be applied in many fields including molecular detection, disease diagnosis and cancer therapy. However, most of the current nanozymes suffer from the defects of low catalytic activity and single function, which limits their sensing sensitivity and multifunctional applications. The development of highly active and multifunctional nanozymes is an important way to realize multidisciplinary applications. In this work, Mn-based Prussian blue analogues (Mn-PBA) and their derived double-shelled nanoboxes (DSNBs) are synthesized by co-precipitation method. The nanobox structure of DSNBs formed by etching Mn-PBA with tannic acid endows Mn-PBA DSNBs with better peroxidase-like activity than Mn-PBA. A colorimetric method for the rapid and sensitive determination of H2O2 is developed using Mn-PBA DSNBs-1.5 as a sensor with a detection limit as low as 0.62 μM. Moreover, Mn-PBA DSNBs-2 has excellent photothermal conversion ability, which can be applied to the photothermal therapy of tumors to inhibit the proliferation of tumor cells without damaging other tissues and organs. This study provides a new idea for the rational design of nanozymes and the expansion of their multi-functional applications in various fields.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
12
|
Yuan Y, Chen B, An X, Guo Z, Liu X, Lu H, Hu F, Chen Z, Guo C, Li CM. MOFs-Based Magnetic Nanozyme to Boost Cascade ROS Accumulation for Augmented Tumor Ferroptosis. Adv Healthc Mater 2024; 13:e2304591. [PMID: 38528711 DOI: 10.1002/adhm.202304591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/16/2024] [Indexed: 03/27/2024]
Abstract
The emerging cell death modality of ferroptosis has garnered increasing attention for antitumor treatment but still suffers from low therapeutic efficacy. A metal-organic frameworks (MOFs)-based magnetic nanozyme (PZFH) comprising porphyrin-based Zr-MOF (PCN) on zinc ferrite (ZF) nanoparticles modified with hyaluronic acid, delivering excellent magnetophotonic response for efficient ferroptosis, is reported here. PZFH shows multienzyme-like cascade activity encompassing a photon-triggered oxidase-like catalysis to generate O2 -, which is converted to H2O2 by superoxide dismutase-like activity and subsequent ·OH by magneto-promoted peroxidase (POD) behavior. Newly formed Fe─N coordination and increased Fe2+/Fe3+ levels in the PZFH contribute to the enhanced POD activity, which is further enhanced by accelerated surface electron transfer when exposure to alternated magnetic field. Accumulation of lipid peroxides is eventually accomplished through the conversion of ·OH radicals and singlet oxygen (1O2) produced through laser irradiation. When combined with the depletion of inhibition of glutathione and glutathione peroxidase 4, PZFH exhibits significantly enhanced ferroptosis in tumor-bearing mice, offering insights into nanomedicine for ferroptosis and holding great promise in clinical antitumor therapies.
Collapse
Affiliation(s)
- Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Xingxing An
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Zhanhang Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xin Liu
- The Third School of Clinical Medical, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, P. R. China
| | - Hao Lu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Fangxin Hu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Zhigang Chen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| |
Collapse
|
13
|
Zhu X, Feng T, Chen Y, Xiao Y, Wen W, Wang S, Wang D, Zhang X, Liang J, Xiong H. Reactive Oxygen-Correlated Photothermal Imaging of Smart COF Nanoreactors for Monitoring Chemodynamic Sterilization and Promoting Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310247. [PMID: 38368267 DOI: 10.1002/smll.202310247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
14
|
Li X, Jiang YW, Tang WJ, Yue S, Wang W, Yao H, Xu J, Chen Z, Zhu JJ. Self-Regenerating Photothermal Agents for Tandem Photothermal and Thermodynamic Tumor Therapy. SMALL METHODS 2024:e2400697. [PMID: 38824667 DOI: 10.1002/smtd.202400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.
Collapse
Affiliation(s)
- Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wen-Jing Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huiqin Yao
- Department of Medical Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Junpeng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
He X, Yu J, Yin R, Zhang P, Xiao C, Chen X. A Nanoscale Trans-Platinum(II)-Based Supramolecular Coordination Self-Assembly with a Distinct Anticancer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312488. [PMID: 38301714 DOI: 10.1002/adma.202312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Huang X, Zhu J, Dong C, Li Y, Yu Q, Wang X, Chen Z, Li J, Yang Y, Wang H. Polyvalent Aptamer-Functionalized NIR-II Quantum Dots for Targeted Theranostics in High PD-L1-Expressing Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21571-21581. [PMID: 38636085 DOI: 10.1021/acsami.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Ag2S quantum dots (QDs) show superior optical properties in the NIR-II region and display significant clinical potential with favorable biocompatibility. However, inherent defects of low targeting and poor solubility necessitate practical modification methods to achieve the theranostics of Ag2S QDs. Herein, we used rolling circle amplification (RCA) techniques to obtain long single-stranded DNA containing the PD-L1 aptamer and C-rich DNA palindromic sequence. The C-rich DNA palindromic sequences can specifically chelate Ag2+ and thus serve as a template to result in biomimetic mineralization and formation of pApt-Ag2S QDs. These QDs enable specific targeting and illuminate hot tumors with high PD-L1 expression effectively, serving as excellent molecular targeted probes. In addition, due to the high NIR-II absorption of Ag2S QDs, pApt-Ag2S QDs exhibit remarkable photothermal properties. And besides, polyvalent PD-L1 aptamers can recognize PD-L1 protein and effectively block the inhibitory signal of PD-L1 on T cells, enabling efficient theranostics through the synergistic effect of photothermal therapy and immune checkpoint blocking therapy. Summary, we enhance the biological stability and antibleaching ability of Ag2S QDs using long single-stranded DNA as a template, thereby establishing a theranostic platform that specifically targets PD-L1 high-expressing inflamed tumors and demonstrates excellent performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Jiawei Zhu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Chuhuang Dong
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yuqing Li
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Qing Yu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Jiabei Li
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Hou J, Wang J, Han J, Wang J, Chao D, Dong Q, Fan D, Dong S. An intelligent ratiometric fluorescent assay based on MOF nanozyme-mediated tandem catalysis that guided by contrary logic circuit for highly sensitive sarcosine detection and smartphone-based portable sensing application. Biosens Bioelectron 2024; 249:116035. [PMID: 38244294 DOI: 10.1016/j.bios.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As the well-known test-indicator for early prostate cancer (PCa), sarcosine (SA) is closely related to the differential pathological process, which makes its accurate determination increasingly significant. Herein, we for the first time expanded the peroxidase (POD)-like property of facile-synthesized Zn-TCPP(Fe) MOF to fluorescent substrates and exploited it to ratiometric fluorescent (RF) sensing. By harnessing the effective catalytic oxidation of MOF nanozyme toward two fluorescent substrates (Scopoletin, SC; Amplex Red, AR) with contrary changes, and target-responsive (SA + SOx)/MOF/(SC + AR) tandem catalytic reaction, we constructed the first MOF nanozyme-based RF sensor for the quantitative determination of SA. Superior to previous works, the operation of this RF sensor is under the guidance of AND-(AND^NAND) contrary logic circuit. The dual-channel binary output changes (from 1/0 to 0/1) not only enable the intelligent logical recognition of SA, bringing strengthened reliability and accuracy, but also manifest the proof-of-concept discrimination of PCa individuals and healthy ones. Through recording the fluorescence alterations of SC (F465) and AR (F585), two segments of linear relationships between ratiometric values (F585/F465) and varied contents of SA are realized successfully. The LOD for SA could reach to as low as 39.98 nM, which outperforms all nanozyme-originated SA sensors reported till now. Moreover, this sensor also demonstrates high selectivity and satisfactory performance in human serum samples. Furthermore, the portable sensing of SA is realized under the assistance of smartphone-based RGB analysis, demonstrating the potential of point-of-care diagnostics of PCa in the future.
Collapse
Affiliation(s)
- Jingyu Hou
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Daiyong Chao
- Shandong Second Medical University, Weifang, 261053, China
| | - Qing Dong
- Shandong Second Medical University, Weifang, 261053, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
18
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
19
|
Liu Q, Chen Q, Tong YJ, Zou X, Zheng X, Gong Z. Tailoring the Coordination Environment of Fe/Zn-BDC to Boost Peroxidase-like Activity for Highly Selective Detection of PFOS. Anal Chem 2024; 96:4673-4681. [PMID: 38451931 DOI: 10.1021/acs.analchem.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Perfluorooctanesulfonic acid potassium salt (PFOS) residues in ecosystems over long periods are of increasing concern and require a selective and stable optical probe for monitoring. Herein, two functional groups (-F and -NH2) with opposite electronic modulation ability were introduced into Fe/Zn-BDC (denoted as Fe/Zn-BDC-F4 and Fe/Zn-BDC-NH2, respectively) to tailor the coordination environment of the Fe metal center, further regulating the nanozyme activity efficiently. Notably, the peroxidase-like activity is related to the coordination environment of the nanozymes and obeys the following order Fe/Zn-BDC-F4 > Fe/Zn-BDC > Fe/Zn-BDC-NH2. Based on the excellent peroxidase-like activity of Fe/Zn-BDC-F4 and the characteristics of being rich in F atoms, a rapid, selective, and visible colorimetric method was developed for detecting PFOS with a detection limit of 100 nM. The detection mechanism was attributed to various interaction forces between Fe/Zn-BDC-F4 and PFOS, including electrostatic interactions, Fe-S interactions, Fe-F bonds, and halogen bonds. This work not only offers new insights into the atomic-scale rational design of highly active nanozymes but also presents a novel approach to detecting PFOS in environmental samples.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiumeng Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yuan-Jun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Xue Zou
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Xiaoke Zheng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| |
Collapse
|
20
|
Fan H, Zheng J, Xie J, Liu J, Gao X, Yan X, Fan K, Gao L. Surface Ligand Engineering Ruthenium Nanozyme Superior to Horseradish Peroxidase for Enhanced Immunoassay. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300387. [PMID: 37086206 DOI: 10.1002/adma.202300387] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Nanozymes have great potential to be used as an alternative to natural enzymes in a variety of fields. However, low catalytic activity compared with natural enzymes limits their practical use. It is still challenging to design nanozymes comparable to their natural counterparts in terms of the specific activity. In this study, a surface engineering strategy is employed to improve the specific activity of Ru nanozymes using charge-transferrable ligands such as polystyrene sulfonate (PSS). PSS-modified Ru nanozyme exhibits a peroxidase-like specific activity of up to 2820 U mg-1 , which is twice that of horseradish peroxidase (1305 U mg-1 ). Mechanism studies suggest that PSS readily accepts negative charge from Ru, thus reducing the affinity between Ru and ·OH. Importantly, the modified Ru-peroxidase nanozyme is successfully used to develop an immunoassay for human alpha-fetoprotein and achieves a 140-fold increase in detection sensitivity compared with traditional horseradish-peroxidase-based enzyme-linked immunosorbent assay. Therefore, this work provides a feasible route to design nanozymes with high specific activity that meets the practical use as an alternative to natural enzymes.
Collapse
Affiliation(s)
- Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaying Xie
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
21
|
Lee J, Le XA, Chun H, Vu TH, Choi D, Han B, Kim MI, Lee J. Active site engineering of Zn-doped mesoporous ceria toward highly efficient organophosphorus hydrolase-mimicking nanozyme. Biosens Bioelectron 2024; 246:115882. [PMID: 38043302 DOI: 10.1016/j.bios.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Hydrolase-mimicking nanozymes have received increasing attention in recent years, but the effective rational design and development of these materials has not been realized, as they are not at present considered a critical research target. Herein, we report that Zn-doped mesoporous ceria (Zn-m-ceria) engineered to have an abundance of two different active sites with different functions-one that allows both co-adsorption binding of organophosphate (OP) and water and another that serves as a general base-has significant organophosphorus hydrolase (OPH)-like catalytic activity. Specifically, Zn-m-ceria exhibits a catalytic efficiency over 75- and 25-fold higher than those of m-ceria and natural OPH, respectively. First-principles calculations reveal the importance of Zn for the OPH-mimicking activity of the material, promoting substrate adsorption and proton-binding. The OPH-like Zn-m-ceria catalyst is successfully applied to detect a model OP, methyl paraoxon, in spiked tap water samples with excellent sensitivity, stability, and detection precision. We expect that these findings will promote research based on the rational engineering of the active site of nanozymes and efficient strategies for obtaining a diverse range of catalysts that mimic natural enzymes, and hence the utilization in real-world applications of enzyme-mimicking catalysts with properties superior to their natural analogs should follow.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xuan Ai Le
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Trung Hieu Vu
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, Republic of Korea.
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
22
|
Chen X, Cheng D, Yu N, Feng J, Li J, Lin L. Tumor-targeting polymer nanohybrids with amplified ROS generation for combined photodynamic and chemodynamic therapy. J Mater Chem B 2024; 12:1296-1306. [PMID: 38193142 DOI: 10.1039/d3tb02341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Reactive oxygen species (ROS) generating strategies have been widely adopted for cancer therapy, but therapeutic efficacies are often low due to the complicated tumor microenvironment. In this study, we present the development of tumor-targeting polymer nanohybrids that amplify ROS generation by combining photodynamic therapy (PDT) and chemodynamic therapy (CDT) for cancer treatment. Such polymer nanohybrids contained three main components: a semiconducting polymer (SP) that acted as the photosensitizer for PDT, manganese dioxide (MnO2) that acted as the catalyst for CDT, and transferrin that mediated tumor targeting via binding to transferrin receptors overexpressed on the surface of tumor cells. The formed nanohybrids (TSM) showed obviously enhanced accumulation efficacy in tumor sites because of their targeting ability. In tumor sites, TSM produced singlet oxygen (1O2) under near-infrared (NIR) laser irradiation and a hydroxyl radical (˙OH) via reacting with hydrogen peroxide (H2O2), which resulted in amplified generation of ROS to achieve PDT/CDT combinational therapy. The growth of subcutaneous 4T1 tumors was remarkably inhibited via TSM-mediated treatment. In addition, this therapeutic efficacy could suppress tumor metastasis in the liver and lungs. This study presents a targeting hybrid nanoplatform to combine different ROS generating strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Danling Cheng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Ningyue Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jian Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jingchao Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
23
|
Tang Y, Yang X, Hu H, Jiang H, Xiong W, Mei H, Hu Y. Elevating the potential of CAR-T cell therapy in solid tumors: exploiting biomaterials-based delivery techniques. Front Bioeng Biotechnol 2024; 11:1320807. [PMID: 38312512 PMCID: PMC10835794 DOI: 10.3389/fbioe.2023.1320807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells exhibit promising progress in addressing hematologic malignancies. However, CAR-T therapy for solid tumors remains limited, with no FDA-approved CAR-T products available for clinical use at present. Primary reasons include insufficient infiltration, accumulation, tumor immunosuppression of the microenvironment, and related side effects. Single utilization of CAR-T cannot effectively overcome these unfavorable obstacles. A probable effective pathway to achieve a better CAR-T therapy effect would be to combine the benefits of biomaterials-based technology. In this article, comprehensive biomaterials strategies to break through these obstacles of CAR-T cell therapy at the tumor sites are summarized, encompassing the following aspects: 1) generating orthotopic CAR-T cells; 2) facilitating CAR-T cell trafficking; 3) stimulating CAR-T cell expansion and infiltration; 4) improving CAR-T cell activity and persistence; 5) reprogramming the immunosuppressive microenvironments. Additionally, future requirements for the development of this field, with a specific emphasis on promoting innovation and facilitating clinical translation, are thoroughly discussed.
Collapse
Affiliation(s)
- Yuxiang Tang
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Xiaoyu Yang
- Department of Pharmacy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Hu
- School of Pharmacy, ChangZhou University, Changzhou, China
| | - Huiwen Jiang
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Wei Xiong
- Wuhan Sian Medical Technology Co., Ltd., Wuhan, China
| | - Heng Mei
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Yu Hu
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| |
Collapse
|
24
|
Yan L, Shang S, Hu J, Zhang X, Chen J, Geng B, Zhao Y, Zhu J. An NIR-II-photoresponsive CoSnO 3 nanozyme for mild photothermally augmented nanocatalytic cancer therapy. J Mater Chem B 2024; 12:710-719. [PMID: 38164065 DOI: 10.1039/d3tb02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The main challenges of nanozyme-based tumor catalytic therapy (NCT) lie in the unsatisfactory catalytic activity accompanied by a complex tumor microenvironment (TME). A few nanozymes have been designed to possess both enzyme-like catalytic activities and photothermal properties; however, the previously reported nanozymes mainly utilize the inefficient and unsafe NIR-I laser, which has a low maximum permissible exposure limit and a limited penetration depth. Herein, we report for the first time an all-in-one strategy to realize mild NIR-II photothermally amplified NCT by synthesizing amorphous CoSnO3 nanocubes with efficient triple enzyme-like catalytic activities and photothermal conversion properties. The presence of Co2+ and Sn4+ endows CoSnO3 nanocubes with the triple enzyme-like catalytic activities, not only achieving enhanced reactive oxygen species (ROS) generation through the Co2+-mediated peroxidase-like catalytic reaction to generate ˙OH and Sn4+-mediated depletion of overexpressed GSH, but also realizing the catalytic decomposition of endogenous H2O2 for relieving tumor hypoxia. More importantly, the obtained CoSnO3 nanocubes with a high photothermal conversion efficiency of 82.1% at 1064 nm could achieve mild hyperthermia (43 °C), which further improves the triple enzyme-like catalytic activities of the CoSnO3 nanozyme. The synergetic therapeutic efficacy of the NIR-II-responsive CoSnO3 nanozyme through mild NIR-II PTT-enhanced NCT could realize all-in-one multimodal tumor therapy to completely eliminate tumors without recurrence. This study will open a new avenue to explore NIR-II-photoresponsive nanozymes for efficient tumor therapy.
Collapse
Affiliation(s)
- Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Siyu Shang
- Operating Theatre, Department of Anaesthesiology, First Affliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Xiaofang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yin Zhao
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Ansari MA, Shoaib S, Chauhan W, Gahtani RM, Hani U, Alomary MN, Alasiri G, Ahmed N, Jahan R, Yusuf N, Islam N. Nanozymes and carbon-dots based nanoplatforms for cancer imaging, diagnosis and therapeutics: Current trends and challenges. ENVIRONMENTAL RESEARCH 2024; 241:117522. [PMID: 37967707 DOI: 10.1016/j.envres.2023.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC 27710, USA
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, Collage of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Nabeel Ahmed
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
26
|
Zhao Y, Yuan B, Yan L, Wang Z, Xu Z, Geng B, Guo X, Chen X. In Situ Synthesis of Ru/TiO 2- x @TiCN Ternary Heterojunctions for Enhanced Sonodynamic and Nanocatalytic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307029. [PMID: 38032117 PMCID: PMC10811504 DOI: 10.1002/advs.202307029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Albeit nanozymes-based tumor catalytic therapy (NCT) relies on endogenous chemical reactions that could achieve tumor microenvironment (TME)-specialized reactive oxygen species (ROS) production, the unsatisfactory catalytic activity of nanozymes accompanied by complex TME poses a barrier to the therapeutic effect of NCT. Herein, a one-step in situ synthesis strategy is reported to construct ternary Ru/TiO2- x @TiCN heterojunctions through oxidative conversion of TiCN nanosheets (NSs) to TiO2- x NSs and reductive deposition of Ru3+ to Ru nanoparticles. The narrow bandgap and existence of heterojunctions enhance the ultrasound-activated ROS generation of Ru/TiO2- x @TiCN because of the accelerated electron transfer and inhibits electron-hole pair recombination. The augmented ROS production efficiency is achieved by Ru/TiO2- x @TiCN with triple enzyme-like activities, which amplifies the ROS levels in a cascade manner through the catalytic decomposition of endogenous H2 O2 to relieve hypoxia and heterojunction-mediated NCT, as well as depletion of overexpressed glutathione. The satisfactory therapeutic effects of Ru/TiO2- x @TiCN heterojunctions are achieved through synergetic sonodynamic therapy and NCT, which achieve the complete elimination of tumors without recurrence. This strategy highlights the potential of in situ synthesis of semiconductor heterojunctions as enhanced sonosensitizers and nanozymes for efficient tumor therapy.
Collapse
Affiliation(s)
- Yin Zhao
- Spine CenterDepartment of OrthopedicsShanghai Changzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bo Yuan
- Spine CenterDepartment of OrthopedicsShanghai Changzheng HospitalNaval Medical UniversityShanghai200003China
| | - Lang Yan
- Department of Health ToxicologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433China
| | - Zhiwei Wang
- Spine CenterDepartment of OrthopedicsShanghai Changzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zheng Xu
- Spine CenterDepartment of OrthopedicsShanghai Changzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bijiang Geng
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444China
| | - Xiang Guo
- Spine CenterDepartment of OrthopedicsShanghai Changzheng HospitalNaval Medical UniversityShanghai200003China
| | - Xiongsheng Chen
- Spine CenterDepartment of OrthopedicsShanghai Changzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
27
|
Sun J, Jiang K, Wang Y, Liu Y, Wang T, Ding S, Zhang X, Xiong W, Zheng F, Yang H, Zhu JJ. One-Pot Synthesis of Tumor-Microenvironment Responsive Degradable Nanoflower-Medicine for Multimodal Cancer Therapy with Reinvigorating Antitumor Immunity. Adv Healthc Mater 2023; 12:e2302016. [PMID: 37713653 DOI: 10.1002/adhm.202302016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Multimodal cancer therapies show great promise in synergistically enhancing anticancer efficacy through different mechanisms. However, most current multimodal therapies either rely on complex assemblies of multiple functional nanomaterials and drug molecules or involve the use of nanomedicines with poor in vivo degradability/metabolizability, thus restricting their clinical translatability. Herein, a nanoflower-medicine using iron ions, thioguanine (TG), and tetracarboxylic porphyrin (TCPP) are synthesized as building blocks through a one-step hydrothermal method for combined chemo/chemodynamic/photodynamic cancer therapy. The resulting nanoflowers, consisting of low-density Fe2 O3 core and iron complex (Fe-TG and Fe-TCPP compounds) shell, exhibit high accumulation at the tumor site, desirable degradability in the tumor microenvironment (TME), robust suppression of tumor growth and metastasis, as well as effective reinvigoration of host antitumor immunity. Triggered by the low pH in tumor microenvironment, the nanoflowers gradually degrade after internalization, contributing to the effective drug release and initiation of high-efficiency catalytic reactions precisely in tumor sites. Moreover, iron ions can be eliminated from the body through renal clearance after fulfilling their mission. Strikingly, it is also found that the multimodal synergistic therapy effectively elicits the host antitumor immunity without inducing additional toxicity. This easy-manufactured and degradable multimodal therapeutic nanomedicine is promising for clinical precision oncology.
Collapse
Affiliation(s)
- Jiamin Sun
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Kai Jiang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Yifan Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Yuqing Liu
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Ting Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Shiyue Ding
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Xianzhi Zhang
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Ave 163, Nanjing, Jiangsu, 210023, China
| | - Weiwei Xiong
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Fenfen Zheng
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai 241, 200030, Shanghai, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Ave 163, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
28
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
29
|
Wang TH, Shen MY, Yeh NT, Chen YH, Hsu TC, Chin HY, Wu YT, Tzang BS, Chiang WH. Photothermal nanozymes to self-augment combination cancer therapy by dual-glutathione depletion and hyperthermia/acidity-activated hydroxyl radical generation. J Colloid Interface Sci 2023; 650:1698-1714. [PMID: 37499626 DOI: 10.1016/j.jcis.2023.07.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising strategy for tumor treatment. Nevertheless, the low Fenton catalytic efficiency and the high concentration of glutathione (GSH) in cancer cells largely decline antitumor efficacy of CDT. To self-augment antitumor effect of the CDT by combining with photothermal therapy (PTT), the unique photothermal nanozymes that doubly depleted GSH, and generated massive hydroxyl radicals (·OH) in the hyperthermia/acidity-activated manner were developed. Through the coordination of Fe3+ ions with PEGylated chitosan (PEG-CS)-modified polydopamine (PDA) nanoparticles, the attained Fe3+@PEG-CS/PDA nanozymes showed outstanding colloidal stability, photothermal conversion efficiency and acidity-triggered Fe3+ release. By GSH-mediated valence states transition of Fe3+ ions and Michael reaction between GSH and quinone-rich PDA, the nanozymes sufficiently executed dual depletion of GSH with the elevated temperature.Under mimic tumor acidity and near-infrared (NIR) irradiation condition, the endocytosed nanozymes effectively converted intracellular H2O2 into toxic ·OH upon amplified Fenton reaction, thereby potently killing 4T1 cancer cells and RAW 264.7 cells. Importantly, the nanozymes prominently suppressed 4T1 tumor growth in vivo and metastasis of cancer cells by CDT/PTT combination therapy without significant systemic toxicity. Our study provides novel visions in design of therapeutic nanozymes with great clinical translational prospect for tumor treatment.
Collapse
Affiliation(s)
- Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Yen Shen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
30
|
He M, Dan Y, Chen M, Dong CM. Biocompatible Polymer-Modified Nanoplatform for Ferroptosis-Enhanced Combination Cancer Therapy. Macromol Biosci 2023; 23:e2300215. [PMID: 37363952 DOI: 10.1002/mabi.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Ferroptosis is a novel type of iron-dependent non-apoptotic pathway that regulates cell death and shows unique mechanisms including causing lipid peroxide accumulation, sensitizing drug-resistant cancers, priming immunity by immunogenic cell death, and cooperatively acting with other anticancer modalities for eradicating aggressive malignancies and tumor relapse. Recently, there has been a great deal of effort to design and develop anticancer biocompatible polymeric nanoplatforms including polypeptide and PEGylated ones to achieve effective ferroptosis therapy (FT) and synergistic combination therapies including chemotherapy (CT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), gas therapy (GT) including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), and immunotherapy (IT). To be noted, the combo therapies such as FT-CT, FT-PTT, FT-GT, and FT-IT are attracting much efforts to fight against intractable and metastatic tumors as they can generate synergistic antitumor effects and immunogenic cell death (ICD) effects or modulate immunosuppressive tumor microenvironments to initiate strong antitumor immunity and memory effects. The polymeric Fenton nano-agents with good biosafety and high anticancer efficacy will provide a guarantee for their applications. In this review, various biocompatible polymer-modified nanoplatforms designed for FT and combo treatments are summarized for anticancer therapies and discussed for potential clinical transitions.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxin Dan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, 201508, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Li D, Fan T, Mei X. A comprehensive exploration of the latest innovations for advancements in enhancing selectivity of nanozymes for theranostic nanoplatforms. NANOSCALE 2023; 15:15885-15905. [PMID: 37755133 DOI: 10.1039/d3nr03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Tuocen Fan
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Xifan Mei
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| |
Collapse
|
32
|
Li Y, Wang J, Li H, Guo M, Sun X, Liu C, Yu C. MnO 2 Decorated Metal-Organic Framework-Based Hydrogel Relieving Tumor Hypoxia for Enhanced Photodynamic Therapy. Macromol Rapid Commun 2023; 44:e2300268. [PMID: 37402482 DOI: 10.1002/marc.202300268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising cancer treatment modality; however, its therapeutic efficacy is greatly limited by tumor hypoxia. In this study, a metal-organic framework (MOF)-based hydrogel (MOF Gel) system that synergistically combines PDT with the supply of oxygen is designed. Porphyrin-based Zr-MOF nanoparticles are synthesized as the photosensitizer. MnO2 is decorated onto the surface of the MOF, which can effectively convert H₂O₂ into oxygen. Simultaneously, the incorporation of MnO2 -decorated MOF (MnP NPs) into a chitosan hydrogel (MnP Gel) serves to enhance its stability and retention at the tumor site. The results show that this integrated approach significantly improves tumor inhibition efficiency by relieving tumor hypoxia and enhancing PDT. Overall, the findings underscore the potential for employing nano-MOF-based hydrogel systems as promising agents for cancer therapy, thus advancing the application of multifunctional MOFs in cancer treatment.
Collapse
Affiliation(s)
- Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Miantong Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyan Sun
- Department of Blood Transfusion, Anyang District Hospital of Puyang, Henan, 455000, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
33
|
P. N. N, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, Plebanski M, Bhargava SK. Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology. Adv Healthc Mater 2023; 12:e2300768. [PMID: 37392379 PMCID: PMC11481082 DOI: 10.1002/adhm.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Nanomaterials that mimic the catalytic activity of natural enzymes in the complex biological environment of the human body are called nanozymes. Recently, nanozyme systems have been reported with diagnostic, imaging, and/or therapeutic capabilities. Smart nanozymes strategically exploit the tumor microenvironment (TME) by the in situ generation of reactive species or by the modulation of the TME itself to result in effective cancer therapy. This topical review focuses on such smart nanozymes for cancer diagnosis, and therapy modalities with enhanced therapeutic effects. The dominant factors that guide the rational design and synthesis of nanozymes for cancer therapy include an understanding of the dynamic TME, structure-activity relationships, surface chemistry for imparting selectivity, and site-specific therapy, and stimulus-responsive modulation of nanozyme activity. This article presents a comprehensive analysis of the subject including the diverse catalytic mechanisms of different types of nanozyme systems, an overview of the TME, cancer diagnosis, and synergistic cancer therapies. The strategic application of nanozymes in cancer treatment can well be a game changer in future oncology. Moreover, recent developments may pave the way for the deployment of nanozyme therapy into other complex healthcare challenges, such as genetic diseases, immune disorders, and ageing.
Collapse
Affiliation(s)
- Navya P. N.
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Amrin Begum
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | | | - Ruchika Ojha
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Christian Hartinger
- School of Chemical SciencesThe University of AucklandAuckland 1142Private Bag92019New Zealand
| | - Magdalena Plebanski
- Cancer, Ageing and Vaccines Research GroupSchool of Health and Biomedical SciencesSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| |
Collapse
|
34
|
Cai X, Liu R, Yan H, Jiao L, Sha M, Chen Y, Rong S, Liu Z, Deng L, Shen L, Zhu C. Cascaded Nanozyme with In Situ Enhanced Photothermal Capacity for Tumor-Specific and Self-Replenishing Cancer Therapy. Adv Healthc Mater 2023; 12:e2300516. [PMID: 37285596 DOI: 10.1002/adhm.202300516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS)-involved tumor therapeutic strategy, chemodynamic therapy (CDT), has attracted extensive research interest in the scientific community. However, the therapeutic effect of CDT is insufficient and unsustainable owing to the limited endogenous H2 O2 level in the tumor microenvironment. Here, peroxidase (POD)-like RuTe2 nanozyme with the immobilization of glucose oxidase (GOx) and allochroic 3,3',5,5'-tetramethylbenzidine (TMB) molecule have been synthesized to construct RuTe2 -GOx-TMB nanoreactors (RGT NRs) as cascade reaction systems for tumor-specific and self-replenishing cancer therapy. GOx in sequential nanocatalysts can effectively deplete glucose in tumor cells. Meanwhile, a sustainable supply of H2 O2 for subsequent Fenton-like reactions catalyzed by RuTe2 nanozyme is achieved in response to the mild acidic tumor microenvironment. Through this cascade reaction, highly toxic hydroxyl radicals (·OH) are produced, which can further oxidize TMB to trigger tumor-specific "turn-on" photothermal therapy (PTT). In addition, PTT and massive ROS can stimulate the tumor immune microenvironment and activate the systematic anti-tumor immune responses, exerting a notable effect on hindering tumor recurrence and metastasis. This study paves a promising paradigm for synergistic starvation therapy, PTT, and CDT cancer therapy with high efficiency.
Collapse
Affiliation(s)
- Xiaoli Cai
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Renyu Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongye Yan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Meng Sha
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yifeng Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
35
|
Deng Y, Ding M, Zhu L, Zhang Y, Wang F, Zhao L, Li J. Near-infrared light-activated ROS generation using semiconducting polymer nanocatalysts for photodynamic-chemodynamic therapy. J Mater Chem B 2023; 11:8484-8491. [PMID: 37593820 DOI: 10.1039/d3tb00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging treatment strategy for cancer, but the low therapeutic efficacy and potential side effects still limit its applications. In this study, we report a semiconducting polymer nanocatalyst (PGFe) that can generate reactive oxygen species (ROS) only upon near-infrared (NIR) light-activation for photodynamic therapy (PDT)-synergized CDT. Such PGFe consists of a semiconducting polymer as a photosensitizer, iron oxide (Fe3O4) nanoparticles as CDT agents, and glucose oxidase (GOx), all of which are loaded into a singlet oxygen (1O2)-responsive nanocarrier. Under NIR laser irradiation, PGFe produces 1O2 through a photosensitizer-mediated PDT effect, and the produced 1O2 destroys the 1O2-responsive nanocarriers, leading to controlled releases of Fe3O4 nanoparticles and GOx. In a tumor microenvironment, GOx catalyzes glucose degradation to form hydrogen peroxide (H2O2), and thus the CDT effect of Fe3O4 nanoparticles is greatly improved. As such, an amplified ROS level in tumor cells is obtained by PGFe to induce cell death. PGFe can be utilized to treat subcutaneous 4T1 tumors, observably inhibiting the tumor growth and suppressing lung and liver metastasis. This study thus provides a NIR light-activated ROS generation strategy for precise and effective treatments of tumors.
Collapse
Affiliation(s)
- Yingyi Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Liyun Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
36
|
Zhao S, Wang J, Lu SY, Wang J, Chen Z, Sun Y, Xu T, Liu Y, He L, Chen C, Ouyang Y, Tan Y, Chen Y, Zhou B, Cao Y, Liu H. Facile Synthesis of Basic Copper Carbonate Nanosheets for Photoacoustic Imaging-Guided Tumor Apoptosis and Ferroptosis and the Extension Exploration of the Synthesis Method. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42317-42328. [PMID: 37640060 DOI: 10.1021/acsami.3c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elimination of tumor cells using carbonate nanomaterials with tumor microenvironment-responsive capacity has been explored as an effective strategy. However, their therapeutic outcomes are always compromised by the relatively low intratumoral accumulation and limited synthesis method. Herein, a novel kind of basic copper carbonate nanosheets was designed and prepared using a green synthesis method for photoacoustic imaging-guided tumor apoptosis and ferroptosis therapy. These nanosheets were synthesized with the assistance of dopamine and ammonium bicarbonate (NH4HCO3) and the loading of glucose oxidase (GOx). NH4HCO3 could not only provide an alkaline environment for the polymerization of dopamine but also supply carbonates for the growth of nanosheets. The formed nanosheets displayed good acid and near-infrared light responsiveness. After intercellular uptake, they could be degraded to release Cu2+ and GOx, generating hydroxyl radicals through a Cu+-mediated Fenton-like reaction, consuming glucose, up-regulating H2O2 levels, and down-regulating GSH levels. Tumor elimination could be achieved by hydroxyl radical-induced apoptosis and ferroptosis. More amusingly, this synthesis method can be extended to several kinds of mono-element and multi-element carbonate nanomaterials (e.g., Fe, Mn, and Co), showing great potential for further tumor theranostics.
Collapse
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jianxin Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shi-Yu Lu
- College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jingjing Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yihao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanqing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Liang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yixin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
37
|
Xu K, Chang M, Wang Z, Yang H, Jia Y, Xu W, Zhao B, Chen Y, Yao F. Multienzyme-Mimicking LaCoO 3 Nanotrigger for Programming Cancer-Cell Pyroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302961. [PMID: 37227938 DOI: 10.1002/adma.202302961] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pyroptosis, a distinct paradigm of programmed cell death, is an efficient strategy against cancer by overcoming resistance to apoptosis. In this study, LaCoO3 (LCO) lanthanide-based nanocrystals with multienzyme characteristics are rationally designed and engineered to trigger the generation of cytotoxic reactive oxygen species (ROS) and the release of lanthanum ions, ultimately inducing lung cancer cell pyroptosis. The peroxidase- and oxidase-mimicking activities of LCO nanocrystals endow LCO with ROS production capacity in tumor tissues with an acidic pH and high hydrogen peroxide content. Concurrently, the LCO nanoenzyme exhibits catalase- and glutathione peroxidase-like activities, reversing the hypoxic microenvironment, destroying the activated antioxidant system of tumor cells, and amplifying the sensitivity of tumor cells to ROS. The use of ultrasound further accelerates the enzymatic kinetic rate. Most importantly, the La3+ ions released by LCO robustly destroy the lysosomal membrane, finally inducing canonical pyroptotic cell death, together with ROS. LCO-nanocrystal-triggered programmed cell pyroptosis amplifies the therapeutic effects both in vitro and in vivo, effectively restraining lung cancer growth and metastasis. This study paves a new avenue for the efficient treatment of lung cancer and metastasis through US-enhanced lanthanum-based nanoenzyme platforms and pyroptotic cell death.
Collapse
Affiliation(s)
- Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yunxuan Jia
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Weijiao Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Baicheng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Wenzhou Medical University, Wenzhou, 325035, P. R. China
| |
Collapse
|
38
|
Chang Y, Huang J, Shi S, Xu L, Lin H, Chen T. Precise Engineering of a Se/Te Nanochaperone for Reinvigorating Cancer Radio-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212178. [PMID: 37204161 DOI: 10.1002/adma.202212178] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Facilely synthesized nanoradiosensitizers with well-controlled structure and multifunctionality are greatly desired to address the challenges of cancer radiotherapy. In this work, a universal method is developed for synthesizing chalcogen-based TeSe nano-heterojunctions (NHJs) with rod-, spindle-, or dumbbell-like morphologies by engineering the surfactant and added selenite. Interestingly, dumbbell-shaped TeSe NHJs (TeSe NDs) as chaperone exhibit better radio-sensitizing activities than the other two nanostructural shapes. Meanwhile, TeSe NDs can serve as cytotoxic chemodrugs that degrade to highly toxic metabolites in acidic environment and deplete GSH within tumor to facilitate radiotherapy. More importantly, the combination of TeSe NDs with radiotherapy significantly decreases regulatory T cells and M2-phenotype tumor-associated macrophage infiltrations within tumors to reshape the immunosuppressive microenvironment and induce robust T lymphocytes-mediated antitumor immunity, resulting in great abscopal effects on combating distant tumor progression. This study provides a universal method for preparing NHJ with well-controlled structure and developing nanoradiosensitizers to overcome the clinical challenges of cancer radiotherapy.
Collapse
Affiliation(s)
- Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiarun Huang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ligeng Xu
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tianfeng Chen
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
39
|
Abstract
With the rapid development of nanotechnology, nanozymes are regarded as excellent substitutes for natural enzymes due to their high activity, convenient preparation, low cost, robust stability and other unique properties of nanomaterials. In biomedical applications, the always-on activity of nanozymes is undesirable as it poses a potential threat to normal tissues. Stimuli-responsive nanozymes were designed to manipulate the activities of nanozymes. This review introduces two types of stimuli-responsive nanozymes. One is smart responsive nanozymes with stimuli-switchable activities, further divided into those with on/off switchable activity and one/another switchable activity. Another is nanozymes exhibiting responsive release from specific carriers. Additionally, the biomedical applications of stimuli-responsive nanozymes in cancer therapy, antibacterial therapy, biosensing and anti-inflammatory therapy are briefly reviewed. Finally, we address the challenges and prospects in this field.
Collapse
Affiliation(s)
- Mengli Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Luo Y, Zhang L, Wang S, Wang Y, Hua J, Wen C, Zhao S, Liang H. H 2O 2 Self-Supply and Glutathione Depletion Engineering Nanoassemblies for NIR-II Photoacoustic Imaging of Tumor Tissues and Photothermal-Enhanced Gas Starvation-Primed Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38309-38322. [PMID: 37534669 DOI: 10.1021/acsami.3c07227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of tumor microenvironment (TME)-activated nanoassemblies which can produce a photoacoustic (PA) signal and enhance the H2O2 level is critical to achieve accurate diagnosis and highly efficient chemodynamic therapy (CDT). In this study, we developed nanoassemblies consisting of oxygen vacancy titanium dioxide (TiO2-x) surface-constructed copper, sulfur-doped mesoporous organosilica and glucose oxidase (TiO2-x@Cu,S-MONs@GOx, hereafter TMG). We found that highly abundant glutathione (GSH) in the TME nanoassemblies can reduce tetrasulfide bonds and Cu2+ to sulfur ions and Cu+ in the TMG nanoassemblies, respectively, causing the breakage of the tetrasulfide bond and the mesoporous structure collapse, releasing Cu+ ions and TiO2-x nanoparticles, and producing hydrogen sulfide gas, thereby achieving synergistic multimodal tumor treatment through TME-activated NIR-II PA imaging and photothermal-enhanced gas starvation-primed CDT. Therefore, the TMG nanoassemblies form a smart nanoplatform that can serve as an excellent tumor diagnosis-treatment agent by playing an important role in imaging-guided precision diagnosis of cancer and efficient targeting treatment.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
41
|
Shuai Y. A tumor-microenvironment-activated nanoplatform of modified SnFe 2O 4 nanozyme in scaffold for enhanced PTT/PDT tumor therapy. Heliyon 2023; 9:e18019. [PMID: 37483724 PMCID: PMC10362236 DOI: 10.1016/j.heliyon.2023.e18019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Phototherapy has attracted widespread attention for cancer treatment due to its noninvasiveness and high selectivity. However, severe hypoxia, overexpressed glutathione and high levels of hydrogen peroxide (H2O2) of tumor microenvironment limit the antitumor efficiency of phototherapy. Herein, inspired by the specific response of nanozymes to the tumor microenvironment, a simple and versatile nanozyme-mediated synergistic dual phototherapy nanoplatform is constructed. In this study, tin ferrite (SnFe2O4, SFO) nanozyme as a photosensitizer was surface modified with polydopamine (denoted as P-SFO) and incorporated into poly(l-lactide) to fabricate an antitumor scaffold fabricated by selective laser sintering. On one hand, SFO nanozyme could act as a photoabsorber to convert light energy into heat for photothermal therapy (PTT). On the other hand, it played a role of photosensitizer in transferring the photon energy to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). Importantly, its multivalent metal ions redox couples would decompose H2O2 into O2 for enhancing O2-dependent PDT and consume glutathione to relieve antioxidant capability of the tumors. Besides, polydopamine as a photothermal conversion agent further enhanced the photothermal performance of SFO. The results revealed the PLLA/P-SFO scaffold possessed a photothermal conversion efficiency of 43.52% for PTT and a high ROS generation capacity of highly toxic ·O2- and ·OH for PDT. Consequently, the scaffold displayed a prominent phototherapeutic effect with antitumor rate of 96.3%. In addition, the PLLA/P-SFO scaffolds possessed good biocompatibility for cell growth. These advantages endow PLLA/P-SFO scaffold with extensive applications in biomedical fields and opened up new avenue towards nanozyme-mediated synergistic phototherapy.
Collapse
Affiliation(s)
- Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology. 430074, China
| |
Collapse
|
42
|
Zhu H, Deng J, Yuan M, Rong X, Xiang X, Du F, Luo X, Cheng C, Qiu L. Semiconducting Titanate Supported Ruthenium Clusterzymes for Ultrasound-Amplified Biocatalytic Tumor Nanotherapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206911. [PMID: 36765452 DOI: 10.1002/smll.202206911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/15/2023] [Indexed: 05/04/2023]
Abstract
The external-stimulation-induced reactive-oxygen-species (ROS) generation has attracted increasing attention in therapeutics for malignant tumors. However, engineering a nanoplatform that integrates with efficient biocatalytic ROS generation, ultrasound-amplified ROS production, and simultaneous relief of tumor hypoxia is still a great challenge. Here, we create new semiconducting titanate-supported Ru clusterzymes (RuNC/BTO) for ultrasound-amplified biocatalytic tumor nanotherapies. The morphology and chemical/electronic structure analysis prove that the biocatalyst consists of Ru nanoclusters that are tightly stabilized by Ru-O coordination on BaTiO3 . The peroxidase (POD)- and halogenperoxidase-like biocatalysis reveals that the RuNC/BTO can produce abundant •O2 - radicals. Notably, the RuNC/BTO exhibits the highest turnover number (63.29 × 10-3 s-1 ) among the state-of-the-art POD-mimics. Moreover, the catalase-like activity of the RuNC/BTO facilitates the decomposition of H2 O2 to produce O2 for relieving the hypoxia of the tumor and amplifying the ROS level via ultrasound irradiation. Finally, the systematic cellular and animal experiments have validated that the multi-modal strategy presents superior tumor cell-killing effects and suppression abilities. We believe that this work will offer an effective clusterzyme that can adapt to the tumor microenvironment-specific catalytic therapy and also provide a new pathway for engineering high-performance ROS production materials across broad therapeutics and biomedical fields.
Collapse
Affiliation(s)
- Huang Zhu
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiuhong Deng
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Minjia Yuan
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
43
|
Afshari MJ, Cheng X, Duan G, Duan R, Wu S, Zeng J, Gu Z, Gao M. Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks. ACS NANO 2023; 17:7109-7134. [PMID: 37036400 DOI: 10.1021/acsnano.3c01641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Guangxin Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruixue Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
44
|
Li T, Zhang Y, Zhu J, Zhang F, Xu A, Zhou T, Li Y, Liu M, Ke H, Yang T, Tang Y, Tao J, Miao L, Deng Y, Chen H. A pH-Activatable Copper-Biomineralized Proenzyme for Synergistic Chemodynamic/Chemo-Immunotherapy against Aggressive Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210201. [PMID: 36573375 DOI: 10.1002/adma.202210201] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Artificial enzymes have demonstrated therapeutic benefits against diverse malignant tumors, yet their antitumor potencies are still severely compromised by non-selective catalysis, low atomic-utilization efficiency, and undesired off-target toxicity. Herein, it is reported that peroxidase-like biomineralized copper (II) carbonate hydroxide nanocrystals inside single albumin nanocages (CuCH-NCs) act as a pH-activatable proenzyme to achieve tumor-selective and synergistic chemodynamic/chemo-immunotherapy against aggressive triple-negative breast cancers (TNBCs). These CuCH-NCs show pH-sensitive Cu2+ release, which spontaneously undergoes glutathione (GSH)-mediated reduction into Cu+ species for catalyzing the evolution of H2 O2 into hydroxyl radicals (·OH) in a single-atom-like manner to cause chemodynamic cell injury, and simultaneously activates non-toxic disulfiram to cytotoxic complex for yielding selective chemotherapeutic damage via blocking cell proliferation and amplifying cell apoptosis. CuCH-NCs exhibit considerable tumor-targeting capacity with deep penetration depth, thus affording preferable efficacy against orthotopic breast tumors through synergistic chemodynamic/chemotherapy, together with good in vivo safety. Moreover, CuCH-NCs arouse distinct immunogenic cell death effect and upregulate PD-L1 expression upon disulfiram combination, and thus synergize with anti-PD-L1 antibody to activate adaptive and innate immunities, together with relieving immunosuppression, finally yielding potent antitumor efficacy against both primary and metastatic TNBCs. These results provide insights into smart and high-performance proenzymes for synergistic therapy against aggressive cancers.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fangrui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - An'an Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tian Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yaoqi Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
45
|
Dong S, Dong Y, Zhao Z, Liu J, Liu S, Feng L, He F, Gai S, Xie Y, Yang P. "Electron Transport Chain Interference" Strategy of Amplified Mild-Photothermal Therapy and Defect-Engineered Multi-Enzymatic Activities for Synergistic Tumor-Personalized Suppression. J Am Chem Soc 2023; 145:9488-9507. [PMID: 36998235 DOI: 10.1021/jacs.2c09608] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Arming activatable mild-photothermal therapy (PTT) with the property of relieving tumor thermotolerance holds great promise for overcoming traditional mild PTT limitations such as thermoresistance, insufficient therapeutic effect, and off-target heating. Herein, a mitochondria-targeting, defect-engineered AFCT nanozyme with enhanced multi-enzymatic activity was elaborately designed as a tumor microenvironment (TME)-activatable phototheranostic agent to achieve remarkable anti-tumor therapy via "electron transport chain (ETC) interference and synergistic adjuvant therapy". Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the AFCT nanozymes with excellent catalytic activity. In TME, open sources of H2O2 can be achieved by superoxide dismutase-mimicking AFCT nanozymes. In response to the dual stimuli of H2O2 and mild acidity, the peroxidase-mimicking activity of AFCT nanozymes not only catalyzes the accumulation of H2O2 to generate ·OH but also converts the loaded 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form with strong near-infrared absorption, specifically unlocking its photothermal and photoacoustic imaging properties. Intriguingly, the undesired thermoresistance of tumor cells can be greatly alleviated owing to the reduced expression of heat shock proteins enabled by NADH POD-mimicking AFCT-mediated NADH depletion and consequent restriction of ATP supply. Meanwhile, the accumulated ·OH can facilitate both apoptosis and ferroptosis in tumor cells, resulting in synergistic therapeutic outcomes in combination with TME-activated mild PTT.
Collapse
Affiliation(s)
- Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
46
|
Zeng X, Wang H, Ma Y, Xu X, Lu X, Hu Y, Xie J, Wang X, Wang Y, Guo X, Zhao L, Li J. Vanadium Oxide Nanozymes with Multiple Enzyme-Mimic Activities for Tumor Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897191 DOI: 10.1021/acsami.2c20878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using tumors containing high concentrations of hydrogen peroxide to design nanozymes is a new and effective strategy, and vanadium-based nanomaterials receive increasing attention. In this paper, four kinds of vanadium oxide nanozymes with different valences of vanadium are synthesized by a simple method to verify the effect of valence on enzyme activity. Vanadium oxide nanozyme-III (Vnps-III) with a low valence of vanadium (V4+) exhibits good peroxidase (POD) and oxidase (OXD) activities, which can effectively produce reactive oxygen species (ROS) in the tumor microenvironment for tumor treatment. In addition, Vnps-III can also consume glutathione (GSH) to reduce ROS consumption. Vanadium oxide nanozyme-I (Vnps-I) containing a high valence of vanadium (V5+) has catalase (CAT) activity, which can catalyze hydrogen peroxide (H2O2) into oxygen (O2), which is beneficial to alleviate the hypoxic environment of solid tumors. Finally, a vanadium oxide nanozyme with both trienzyme simulation activity and GSH consumption ability was screened out by adjusting the ratio of V4+ to V5+ in vanadium oxide nanozymes. In cell and animal experiments, we successfully demonstrate that vanadium oxide nanozymes have excellent antitumor ability and high safety, which may bring great potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiangle Zeng
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hairong Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yating Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xue Xu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xingxi Lu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yujie Hu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Jihong Xie
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yushuai Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Li Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, Hubei 430000, China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| |
Collapse
|
47
|
Li X, Ren X, Xie M, Zhu M, Zhang Y, Li T, Huo M, Li Q. Biominerallized Noble Metal‐Based RuO
2
Nanozymes Against Myocardial Ischemic/Reperfusion Injury. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Xi Li
- Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
- Laboratory of Mitochondrial and Metabolism Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
| | - Xiangyi Ren
- Core Facilities of West China Hospital Sichuan University Chengdu 610041 P.R. China
| | - Maodi Xie
- Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
- Laboratory of Mitochondrial and Metabolism Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
| | - Mengli Zhu
- Core Facilities of West China Hospital Sichuan University Chengdu 610041 P.R. China
| | - Yabing Zhang
- Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
- Laboratory of Mitochondrial and Metabolism Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
| | - Tao Li
- Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
| | - Minfeng Huo
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200072 P.R. China
| | - Qian Li
- Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
- Laboratory of Mitochondrial and Metabolism Department of Anesthesiology West China Hospital of Sichuan University Chengdu 610041 P.R. China
| |
Collapse
|
48
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
49
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials 2023; 293:121980. [PMID: 36580722 DOI: 10.1016/j.biomaterials.2022.121980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
There is an urgent medical need to develop effective therapies that can ameliorate damage to the radiation-exposed hematopoietic system. Nanozymes with robust antioxidant properties have a therapeutic potential for mitigating radiation-induced hematopoietic injury. However, enhancing nanozyme recruitment to injured tissues in vivo while maintaining their catalytic activity remains a great challenge. Herein, we present the design and preparation of a biomimetic nanoparticle, a mesenchymal stem cell membrane camouflaged Prussian blue nanozyme (PB@MSCM), which exhibits biocompatible surface properties and demonstrates enhanced injury site-targeting towards the irradiated murine bone marrow niche. Notably, the constructed PB@MSCM possessed redox enzyme-mimic catalytic activity and could scavenge overproduced reactive oxygen species in the irradiated bone marrow cells, both in vitro and ex vivo. More importantly, the administration of PB@MSCM significantly mitigated hematopoietic cell apoptosis and accelerated the regeneration of hematopoietic stem and progenitor cells. Our findings provide a new targeted strategy to improve nanozyme therapy in vivo and mitigate radiation-induced hematopoietic injury.
Collapse
|