1
|
Cunha DR, Segundo MA, Quinaz MB. Electrochemical methods for evaluation of therapeutic monoclonal antibodies: A review. Biosens Bioelectron 2025; 271:116988. [PMID: 39642528 DOI: 10.1016/j.bios.2024.116988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Biopharmaceuticals are complex pharmaceutical drug products produced by biotechnology in living systems. Small changes in the production process can induce differences in the structure of the active ingredient, which may have a strong impact on its pharmacological properties. Therefore, quality assurance of biopharmaceuticals results in a high analytical effort. Strict quality and stability monitoring of potentially critical quality attributes (CQAs) is required. Electrochemical methods have been contributing to the expansion of sensors and biosensors due to their advantages, such as cost-effectiveness and easy operation. Here, we discuss the recent developments in sensors and biosensors using electrochemical techniques employed for the determination of biopharmaceuticals, namely monoclonal antibodies (mAb) and fragments of mAbs. In the frame of this information, this review aims to critically address electrochemical sensors and biosensors for the analysis of biopharmaceuticals reported since 2016. Electrochemical bio(sensors) development has been mainly based on gold and aptamers, respectively, as the most used electrode material and biorecognition element. Also, Bevacizumab (BEVA) was the main therapeutic mAb detected and 69% of the works described a (bio)sensor) that can be applied to therapeutic drug monitoring.
Collapse
Affiliation(s)
- Diana R Cunha
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - M Beatriz Quinaz
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Ma L, He Z, Chen K, Li H, Wu Y, Ye J, Hou H, Rong J, Yu X. Deciphering Surface-Localized Structure of Nanodiamonds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2024. [PMID: 39728560 PMCID: PMC11728798 DOI: 10.3390/nano14242024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties. This study utilizes density functional theory (DFT), lattice dynamics, and molecular dynamics (MD) simulations to analyze the structural and property characteristics of NDs. Fine structural analysis reveals that, despite variations in particle size, surface layer thickness remains relatively constant at approximately 3 Å. DFT methods enable computation of the surface layer to capture subtle electronic characteristics, while the internal core is analyzed via MD. Further investigation into amorphous structure control indicates that ND surface amorphous structures with a packing coefficient above 0.38 are thermodynamically stable. This study offers a novel approach to nanomaterial control in practical applications by elucidating the core-shell interactions and surface structures of NDs.
Collapse
Affiliation(s)
- Li Ma
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Zhijie He
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Keyuan Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Hanqing Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Yongzhi Wu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Jueyi Ye
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Hongying Hou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.M.); (Z.H.); (K.C.); (H.L.); (Y.W.); (J.Y.); (H.H.)
- Yunnan Key Laboratory of Integrated Computational Materials Engineering for Advanced Light Metals, Kunming 650093, China
| |
Collapse
|
3
|
Luo GF, Zhang XZ. Magnetic nanoparticles for use in bioimaging. Biomater Sci 2024; 12:6224-6236. [PMID: 39498601 DOI: 10.1039/d4bm01145g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Magnetic nanoparticles (MNPs) are well-known contrast agents for use in medical imageology, facilitating disease detection via magnetic resonance imaging (MRI). With the development of nanotechnology, various MNPs have been exploited with strong contrast enhancement effects as well as multiple functions to conquer challenges related to the low detection accuracy and sensitivity. In this review, the typical characteristics and types of MNPs are outlined, and the design and fabrication of MNP-based MRI contrast agents as well as multi-mode imaging agents are also introduced by discussing the representative studies. In the pursuit of performance-enhanced MNPs, novel MNPs are expected to be developed as the next generation of contrast agents for precise bioimaging applications in a broad spectrum of fields.
Collapse
Affiliation(s)
- Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
4
|
Chen D, Zardán Gómez de la Torre T, Wei F, Tian B, Wu K. Editorial: Magnetic particle-assisted sensing and magnetic biosensors. Front Bioeng Biotechnol 2024; 12:1518156. [PMID: 39588361 PMCID: PMC11586173 DOI: 10.3389/fbioe.2024.1518156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Dongfei Chen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | | | - Fuxiang Wei
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Ashour M, Ibrahim R, Abd El-Salam Y, Abdel Samad F, Mahmoud A, Mohamed T. Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1674. [PMID: 39453010 PMCID: PMC11509968 DOI: 10.3390/nano14201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
In this work, the nonlinear optical (NLO) properties of CuO nanoparticles (CuO NPs) were studied experimentally using the pulsed laser ablation (PLA) technique. A nanosecond Nd: YAG laser was employed as the ablation excitation source to create CuO NPs in distilled water. Various CuO NPs samples were prepared at ablation periods of 20, 30, and 40 min. Utilizing HR-TEM, the structure of the synthesized CuO NPs samples was verified. In addition, a UV-VIS spectrophotometer was used to investigate the linear features of the samples. The Z-scan technique was utilized to explore the NLO properties of CuO NPs samples, including the nonlinear absorption coefficient (β) and nonlinear refractive index (n2). An experimental study on the NLO features was conducted at a variety of excitation wavelengths (750-850 nm), average excitation powers (0.8-1.2 W), and CuO NPs sample concentrations and sizes. The reverse saturable absorption (RSA) behavior of all CuO NPs samples differed with the excitation wavelength and average excitation power. In addition, the CuO NPs samples demonstrated excellent optical limiters at various excitation wavelengths, with limitations dependent on the size and concentration of CuO NPs.
Collapse
Affiliation(s)
- Mohamed Ashour
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- High Institute of Optics Technology HIOT, Sheraton Heliopolis, Cairo 11799, Egypt
| | - Rasha Ibrahim
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Yasmin Abd El-Salam
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Abdel Samad
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Alaa Mahmoud
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
6
|
Mohammadi Dargah M, Pedram P, Cabrera-Barjas G, Delattre C, Nesic A, Santagata G, Cerruti P, Moeini A. Biomimetic synthesis of nanoparticles: A comprehensive review on green synthesis of nanoparticles with a focus on Prosopis farcta plant extracts and biomedical applications. Adv Colloid Interface Sci 2024; 332:103277. [PMID: 39173272 DOI: 10.1016/j.cis.2024.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
The synthesis of nanoparticles (NPs) using environmentally friendly methods has garnered significant attention in response to concerns about the environmental impact of various nanomaterial manufacturing techniques. To address this issue, natural resources like extracts from plants, fungi, and bacteria are employed as a green alternative for nanoparticle synthesis. Plant extracts, which contain active components such as terpenoids, alkaloids, phenols, tannins, and vitamins, operate as coating and reducing agents. Bacteria and fungi, on the other hand, rely on internal enzymes, sugar molecules, membrane proteins, nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) dependent enzymes to play critical roles as reducing agents. This review collects recent advancements in biomimetic methods for nanoparticle synthesis, critically discussing the preparation approaches, the type of particles obtained, and their envisaged applications. A specific focus is given on using Prosopis fractal plant extracts to synthesize nanoparticles tailored for biomedical applications. The applications of this plant and its role in the biomimetic manufacturing of nanoparticles have not been reported yet, making this review a pioneering and valuable contribution to the field.
Collapse
Affiliation(s)
- Maryam Mohammadi Dargah
- Department of Pharmaceutical Chemistry, Faculty of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Pedram
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastian, Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Aleksandra Nesic
- University of Belgrade, Vinca Institute for Nuclear Sciences, National Institute of Republic of Serbia, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Gabriella Santagata
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Arash Moeini
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
7
|
Chen Y, Zhang L, Wu X, Sun X, Sundah NR, Wong CY, Natalia A, Tam JKC, Lim DWT, Chowbay B, Ang BT, Tang C, Loh TP, Shao H. Magnetic augmentation through multi-gradient coupling enables direct and programmable profiling of circulating biomarkers. Nat Commun 2024; 15:8410. [PMID: 39333499 PMCID: PMC11437193 DOI: 10.1038/s41467-024-52754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Conventional magnetic biosensing technologies have reduced analytical capacity for magnetic field dimensionality and require extensive sample processing. To address these challenges, we spatially engineer 3D magnetic response gradients for direct and programmable molecular detection in native biofluids. Named magnetic augmentation through triple-gradient coupling for high-performance detection (MATCH), the technology comprises gradient-distributed magnetic nanoparticles encapsulated within responsive hydrogel pillars and suspended above a magnetic sensor array. This configuration enables multi-gradient matching to achieve optimal magnetic activation, response and transduction, respectively. Through focused activation by target biomarkers, the platform preferentially releases sensor-proximal nanoparticles, generating response gradients that complement the sensor's intrinsic detection capability. By implementing an upstream module that recognizes different biomarkers and releases universal activation molecules, the technology achieves programmable detection of various circulating biomarkers in native plasma. It bypasses conventional magnetic labeling, completes in <60 minutes and achieves sensitive detection (down to 10 RNA and 1000 protein copies). We apply the MATCH to measure RNAs and proteins directly in patient plasma, achieving accurate cancer classification.
Collapse
Affiliation(s)
- Yuan Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Xuecheng Sun
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
| | - Balram Chowbay
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
- Clinical Pharmacology Laboratory, National Cancer Centre Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Carol Tang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- SG Enable, Innovation, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
8
|
Wei X, Junot G, Golestanian R, Zhou X, Wang Y, Tierno P, Meng F. Molecular dynamics simulations of microscopic structural transition and macroscopic mechanical properties of magnetic gels. J Chem Phys 2024; 161:074902. [PMID: 39145560 DOI: 10.1063/5.0210769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
Magnetic gels with embedded micro-/nano-sized magnetic particles in cross-linked polymer networks can be actuated by external magnetic fields, with changes in their internal microscopic structures and macroscopic mechanical properties. We investigate the responses of such magnetic gels to an external magnetic field, by means of coarse-grained molecular dynamics simulations. We find that the dynamics of magnetic particles are determined by the interplay of magnetic dipole-dipole interactions, polymer elasticity, and thermal fluctuations. The corresponding microscopic structures formed by the magnetic particles, such as elongated chains, can be controlled by the external magnetic field. Furthermore, the magnetic gels can exhibit reinforced macroscopic mechanical properties, where the elastic modulus increases algebraically with the magnetic moments of the particles in the form of ∝(m-mc)2 when magnetic chains are formed. This simulation work can not only serve as a tool for studying the microscopic and the macroscopic responses of the magnetic gels, but also facilitate future fabrications and practical controls of magnetic composites with desired physical properties.
Collapse
Affiliation(s)
- Xuefeng Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Gaspard Junot
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Xin Zhou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanting Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Fanlong Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Wang A, Chen Z, Feng X, He G, Zhong T, Xiao Y, Yu X. Magnetic-gold nanoparticle-mediated paper-based biosensor for highly sensitive colorimetric detection of food adulteration. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134849. [PMID: 38885584 DOI: 10.1016/j.jhazmat.2024.134849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Food adulteration presents a significant challenge due to the evasion of legal oversight and the difficulty of identification. Addressing this issue, there is an urgent need for on-site, rapid, visually based small-scale equipment, along with large-scale screening technology, to enable prompt results without providing opportunities for dishonest traders to react. Colorimetric reactions offer advantages in terms of speed, visualization, and miniaturization. However, there is a scarcity of suitable colorimetric reactions for food adulteration detection, and interference from colored food impurities and easily comparable color results affects accuracy. To overcome limitations, this study introduces a novel approach utilizing polydopamine magnetic nanoparticles to enrich DNA in food samples, effectively eliminating interfering components. By employing gold nanoparticles to generate magnetic-gold nanoparticles, a single magnetic bead achieves simultaneous enrichment, impurity removal, and detection. The use of paper-based biosensors and visualization equipment allows for the visualization and digital analysis of results, achieving a low detection limit of 4.59 nmol mL-1. The method also exhibits high accuracy and repeatability, with a RSD ranging from 1.6 % to 4.0 %. This innovative colorimetric method addresses the need for rapid, miniaturized, and large-scale detection, thus providing a solution for food adulteration challenges.
Collapse
Affiliation(s)
- Anyu Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao Special Administrative Region of China
| | - Zihan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao Special Administrative Region of China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao Special Administrative Region of China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao Special Administrative Region of China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
10
|
Barrera G, Celegato F, Vassallo M, Martella D, Coïsson M, Olivetti ES, Martino L, Sözeri H, Manzin A, Tiberto P. Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:4902. [PMID: 39123949 PMCID: PMC11315026 DOI: 10.3390/s24154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles. The combination of magneto-impedance sensors with ad hoc microfluidic systems favors the design of integrated portable devices with high specificity towards magnetic ferrofluids, allowing the use of very small sample volumes and making measurements faster and more reliable. In this work, a magneto-impedance sensor based on an amorphous Fe73.5Nb3Cu1Si13.5B9 wire as the sensing element is integrated into a customized millifluidic chip. The sensor detects the presence of magnetic nanoparticles in the ferrofluid and distinguishes the different stray fields generated by single-domain superparamagnetic iron oxide nanoparticles or magnetically blocked Co-ferrite nanoparticles.
Collapse
Affiliation(s)
- Gabriele Barrera
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Federica Celegato
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Marta Vassallo
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara, 1, 50019 Florence, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Marco Coïsson
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Elena S. Olivetti
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Luca Martino
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Hüseyin Sözeri
- Magnetics Laboratory, TÜBITAK Ulusal Metroloji Enstitüsü (UME), Gebze Yerleşkesi, 41470 Kocaeli, Turkey;
| | - Alessandra Manzin
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Paola Tiberto
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| |
Collapse
|
11
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
12
|
Bai S, Lin Y, Wang X, Zhang X, Yoshida T, Yue X. A high security coding and anti-counterfeiting method based on the nonlinear magnetization response of superparamagnetic nanomaterials. Sci Rep 2024; 14:15360. [PMID: 38965281 PMCID: PMC11224384 DOI: 10.1038/s41598-024-65450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Traditional coding methods based on graphics and digital or magnetic labels have gradually decreased their anti-counterfeiting because of market popularity. This paper presents a new magnetic anti-counterfeiting coding method. This method uses a high-performance coding material, which, along with small changes to the material itself and the particle size of the superparamagnetic nanomaterials, results in a large difference in the nonlinear magnetization response. This method, which adopts 12-site coding and establishes a screening model by measuring the voltage amplitude of 12-site variables, can code different kinds of products, establishing long-term stable coding and decoding means. Through the anti-counterfeiting experiment of wine, the experiment results show that the authenticity of the coded products can be verified using the self-developed magnetic encoding and decoding system. The new coding technology can verify the anti-counterfeiting of 9000 products, with a single detection accuracy of 97% and a detection time of less than one minute. Moreover, this coding method completely depends on the production batch of the superparamagnetic nanomaterials, which is difficult to imitate, and it provides a new coding anti-counterfeiting technology for related industries with a wide range of potential applications.
Collapse
Affiliation(s)
- Shi Bai
- Department of Information Engineering, Shenyang University of Technology, ShenYang, 110870, China
| | - Yuxi Lin
- Department of Information Engineering, Shenyang University of Technology, ShenYang, 110870, China
| | - Xiaoju Wang
- Liaoning Vocational and Technical College of Economics, ShenYang, 110122, China
| | - Xiaodan Zhang
- Department of Information Engineering, Shenyang University of Technology, ShenYang, 110870, China
| | - Takashi Yoshida
- Department of Electronic Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xiaohan Yue
- Department of Information Engineering, Shenyang University of Technology, ShenYang, 110870, China.
| |
Collapse
|
13
|
Huo B, Xia L, Hu Y, Li G. Flexible microfluidic co-recognition coupled with magnetic enrichment and silent SERS sensing for simultaneous analysis of bacteria in food. Biosens Bioelectron 2024; 255:116227. [PMID: 38552524 DOI: 10.1016/j.bios.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Food safety represents a critical global public health issue, with safety challenges posed by foodborne pathogens garnering extensive attention. Therefore, we introduce a co-recognition, enrichment and sensing (CES) all-in-one strategy for analysis of bacteria with low background and high specificity. This method employs antimicrobial peptide (AMP) functionalized magnetic nanoparticles (MNPs) to enrich bacteria and uses aptamer@Au@PBA (KxMFe(CN)6 (M = Pb and Ni)) NPs as silent SERS tags. When both S. aureus and E. coli O157:H7 are present, the silent SERS probes could specifically label the target bacteria, forming a sandwich-like structure. This binding induces silent Raman shifts (2139 cm-1 and 2197 cm-1), enabling quantification of two bacteria. Coupling with the modular flexible microfluidics and magnetic control slider device, this platform facilitates rapid switching between magnetic loading and elution. The CES SERS method demonstrated linear relationships for both S. aureus and E. coli O157:H7 at 50-1600 cfu mL-1, with detection limits of 14 and 18 cfu mL-1, respectively. The method achieved recovery rates of 85.6-112% and relative standard deviations of 1.5-8.6%. Validation using the ELISA method revealed relative errors between -7.5 and 4.3%. The CES approach has potential applications in food safety, environmental monitoring, and biomedical diagnosis.
Collapse
Affiliation(s)
- Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Yang F, Ma Y, Zhang A, Yao J, Jiang S, He C, Peng H, Ren G, Yang Y, Wu A. Engineering magnetic nanosystem for TRPV1 and TRPV4 channel activation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1987. [PMID: 39136188 DOI: 10.1002/wnan.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
Recently, physical tools for remotely stimulating mechanical force-sensitive and temperature-sensitive proteins to regulate intracellular pathways have opened up novel and exciting avenues for basic research and clinical applications. Among the numerous modes of physical stimulation, magnetic stimulation is significantly attractive for biological applications due to the advantages of depth penetration and spatial-temporally controlled transduction. Herein, the physicochemical parameters (e.g., shape, size, composition) that influence the magnetic properties of magnetic nanosystems as well as the characteristics of transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential vanilloid-4 (TRPV4) channels are systematically summarized, which offer opportunities for magnetic manipulation of cell fate in a precise and effective manner. In addition, representative regulatory applications involving magnetic nanosystem-based TRPV1 and TRPV4 channel activation are highlighted, both at the cellular level and in animal models. Furthermore, perspectives on the further development of this magnetic stimulation mode are commented on, with emphasis on scientific limitations and possible directions for exploitation. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yaqi Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoran Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Junlie Yao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenglong He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Guiping Ren
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
15
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
16
|
Curti L, Prado Y, Michel A, Talbot D, Baptiste B, Otero E, Ohresser P, Journaux Y, Cartier-Dit-Moulin C, Dupuis V, Fleury B, Sainctavit P, Arrio MA, Fresnais J, Lisnard L. Room-temperature-persistent magnetic interaction between coordination complexes and nanoparticles in maghemite-based nanohybrids. NANOSCALE 2024; 16:10607-10617. [PMID: 38758111 DOI: 10.1039/d4nr01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Maghemite nanoparticles functionalised with Co(II) coordination complexes at their surface show a significant increase of their magnetic anisotropy, leading to a doubling of the blocking temperature and a sixfold increase of the coercive field. Magnetometric studies suggest an enhancement that is not related to surface disordering, and point to a molecular effect involving magnetic exchange interactions mediated by the oxygen atoms at the interface as its source. Field- and temperature-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) studies show that the magnetic anisotropy enhancement is not limited to surface atoms and involves the core of the nanoparticle. These studies also point to a mechanism driven by anisotropic exchange and confirm the strength of the magnetic exchange interactions. The coupling between the complex and the nanoparticle persists at room temperature. Simulations based on the XMCD data give an effective exchange field value through the oxido coordination bridge between the Co(II) complex and the nanoparticle that is comparable to the exchange field between iron ions in bulk maghemite. Further evidence of the effectiveness of the oxido coordination bridge in mediating the magnetic interaction at the interface is given with the Ni(II) analog to the Co(II) surface-functionalised nanoparticles. A substrate-induced magnetic response is observed for the Ni(II) complexes, up to room temperature.
Collapse
Affiliation(s)
- Leonardo Curti
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | - Yoann Prado
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Aude Michel
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Delphine Talbot
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Benoît Baptiste
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Yves Journaux
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | | | - Vincent Dupuis
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Benoit Fleury
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| | - Philippe Sainctavit
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Marie-Anne Arrio
- CNRS, Sorbonne Université, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, Paris, France.
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Électrolytes et Nanosystèmes interfaciaux, PHENIX, F-75005, France.
| | - Laurent Lisnard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005, Paris, France.
| |
Collapse
|
17
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Udomsom S, Kanthasap K, Paengnakorn P, Jantrawut P, Kumphune S, Auephanwiriyakul S, Mankong U, Theera-Umpon N, Baipaywad P. Itaconic Acid Cross-Linked Biomolecule Immobilization Approach on Amine-Functionalized Silica Nanoparticles for Highly Sensitive Enzyme-Linked Immunosorbent Assay (ELISA). ACS OMEGA 2024; 9:13636-13643. [PMID: 38559953 PMCID: PMC10975634 DOI: 10.1021/acsomega.3c07548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Biomolecule immobilization on nanomaterials is attractive for biosensors since it enables the capture of a higher concentration of bioreceptor units while also serving as a transduction element. The technique could enhance the accuracy, specificity, and sensitivity of the analytical measurements of biomolecules. However, it was found that the limitation in chemically binding biomolecules on nanoparticle surfaces could only cross-link between the C-terminal and N-terminal. Here, we report the facile one-step synthesis of amine-functionalized silica nanoparticles (AFSNPs). (3-Aminopropyl)triethoxysilane was used as a precursor to modify the functional surface of nanoparticles via the Stöber process. The biomolecules were immobilized to the AFSNPs through itaconic acid, a novel cross-linker that binds between the N-terminal and N-terminal and potentially improves proteins and nucleic acid immobilization onto the nanoparticle surface. The newly developed immobilization approach on AFSNPs for biomolecular detection enhanced the efficiency of ELISA, resulting in increased sensitivity. It might also be easily used to identify different pathogens for clinical diagnostics.
Collapse
Affiliation(s)
- Suruk Udomsom
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Kritsana Kanthasap
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pathinan Paengnakorn
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pensak Jantrawut
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Sarawut Kumphune
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Sansanee Auephanwiriyakul
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Ukrit Mankong
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Nipon Theera-Umpon
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| |
Collapse
|
19
|
Sanz-de Diego E, Aires A, Palacios-Alonso P, Cabrera D, Silvestri N, Vequi-Suplicy CC, Artés-Ibáñez EJ, Requejo-Isidro J, Delgado-Buscalioni R, Pellegrino T, Cortajarena AL, Terán FJ. Multiparametric modulation of magnetic transduction for biomolecular sensing in liquids. NANOSCALE 2024; 16:4082-4094. [PMID: 38348700 DOI: 10.1039/d3nr06489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The recent COVID19 pandemic has remarkably boosted the research on in vitro diagnosis assays to detect biomarkers in biological fluids. Specificity and sensitivity are mandatory for diagnostic kits aiming to reach clinical stages. Whilst the modulation of sensitivity can significantly improve the detection of biomarkers in liquids, this has been scarcely explored. Here, we report on the proof of concept and parametrization of a novel biosensing methodology based on the changes of AC magnetic hysteresis areas observed for magnetic nanoparticles following biomolecular recognition in liquids. Several parameters are shown to significantly modulate the transducing capacity of magnetic nanoparticles to detect analytes dispersed in saline buffer at concentrations of clinical relevance. Magnetic nanoparticles were bio-conjugated with an engineered recognition peptide as a receptor. Analytes are engineered tetratricopeptide binding domains fused to the fluorescent protein whose dimerization state allows mono- or divalent variants. Our results unveil that the number of receptors per particle, analyte valency and concentration, nanoparticle composition and concentration, and field conditions play a key role in the formation of assemblies driven by biomolecular recognition. Consequently, all these parameters modulate the nanoparticle transduction capacity. Our study provides essential insights into the potential of AC magnetometry for customizing biomarker detection in liquids.
Collapse
Affiliation(s)
- Elena Sanz-de Diego
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| | - Antonio Aires
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
| | | | - David Cabrera
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thurnburrow Drive, ST4 7QB, Stoke on Trent, UK
| | | | | | - Emilio J Artés-Ibáñez
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanotech Solutions, 40150 Villacastín, Spain
| | - José Requejo-Isidro
- Centro Nacional de Biotecnologia (CSIC), 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | | | | | - Aitziber L Cortajarena
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco J Terán
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
20
|
Li T, Meng F, Fang Y, Luo Y, He Y, Dong Z, Tian B. Multienzymatic disintegration of DNA-scaffolded magnetic nanoparticle assembly for malarial mitochondrial DNA detection. Biosens Bioelectron 2024; 246:115910. [PMID: 38086308 DOI: 10.1016/j.bios.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Early diagnosis of malaria can prevent the spread of disease and save lives, which, however, remains challenging in remote and less developed regions. Here we report a portable and low-cost optomagnetic biosensor for rapid amplification and detection of malarial mitochondrial DNA. Bioresponsive magnetic nanoparticle assemblies are constructed by using nucleic acid scaffolds containing endonucleolytic DNAzymes and their substrates, which can be activated by the presence of target DNA and self-disintegrated to release magnetic nanoparticles for optomagnetic quantification. Specifically, target molecules can induce padlock probe ligation and subsequent one-pot homogeneous cascade reactions consisting of nicking-enhanced rolling circle amplification, DNAzyme-assisted nucleic acid recycling, and strand-displacement-driven disintegration of the magnetic assembly. With an optimized magnetic actuation process for reaction acceleration, a detection limit of 1 fM can be achieved by the proposed biosensor with a total assay time of ca. 90 min and a dynamic detection range spanning 3 orders of magnitude. The robustness of the system was validated by testing target molecules spiked in 5% serum samples. Clinical sample validation was conducted by testing malaria-positive clinical blood specimens, obtaining quantitative results concordant with qPCR measurements.
Collapse
Affiliation(s)
- Tingting Li
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Fanming Meng
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yuan Fang
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; College of Biology, Hunan University, Changsha, 410082, China
| | - Yifei Luo
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yilong He
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhuxin Dong
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China
| | - Bo Tian
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
21
|
Ramezaninejad Z, Shiri L. MgFe 2O 4@Tris magnetic nanoparticles: an effective and powerful catalyst for one-pot synthesis of pyrazolopyranopyrimidine and tetrahydrodipyrazolopyridine derivatives. RSC Adv 2024; 14:6006-6015. [PMID: 38362071 PMCID: PMC10868241 DOI: 10.1039/d3ra07934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Magnesium (Mg) as a metal has wide applications, but its use in chemical reactions is rarely reported. Currently, magnesium catalytic processes are being developed to synthesize basic chemical compounds. Therefore, an effective and recyclable nano-catalyst was synthesized using MgFe2O4@Tris in this study. The structure of MgFe2O4@Tris was characterized by various techniques including Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) techniques. Finally, the catalytic activity of this nano-catalyst was evaluated for the synthesis of pyrazolopyranopyrimidine and tetrahydrodipyrazolopyridine derivatives. Among the advantages of this catalyst are its high catalytic activity, high yields, use of environmentally friendly solvents, easy magnetic separation, and the possibility of reusing the catalyst.
Collapse
Affiliation(s)
- Zahra Ramezaninejad
- Department of Chemistry, Faculty of Sciences, Ilam University P.O. Box 69315516 Ilam Iran
| | - Lotfi Shiri
- Department of Chemistry, Faculty of Sciences, Ilam University P.O. Box 69315516 Ilam Iran
| |
Collapse
|
22
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
23
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Huang J, Yang J, Wang Y, Zhang J, Wang J, Fu Z, Peng R, Lu Y. Enhanced ferromagnetic properties achieved by F-doping in BaFe1-xMnxO3-δ. J Chem Phys 2024; 160:034702. [PMID: 38226827 DOI: 10.1063/5.0186858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
Tailoring the crystal structure, spin, and charge state of perovskite oxides through fluorine ion doping is an attractive and effective strategy, which could significantly modify the physical and chemical properties of base oxides. Here, BaFe1-xMnxO3-δ (x = 0, 0.1, 0.2, 0.3) and BaFe1-xMnxO2.9-δF0.1 (x = 0.1, 0.2, 0.3), belonging to 6H-type BaFeO3-δ, are prepared and investigated to evaluate the impact of F- doping. The distortion of crystal structure and the reduced average valence of Mn and Fe confirm the preference for F- substitution in the hexagonal layer, which are found as the key factors for the improved magnetic properties, including ferromagnetic ordering temperature, coercive force, and remanent magnetization. Moreover, the valence reduction of B-site ions and the increased resistance distinctly indicate the expense of electron hole via fluorine doping. This work describes the adjustment of crystal structure, electronic configuration, and ferromagnetic performance by simple F- doping, which provides a prospect for practical magnetic materials.
Collapse
Affiliation(s)
- Jun Huang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiwen Yang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yangkai Wang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Zhang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianlin Wang
- Hefei National Laboratory of Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhengping Fu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory of Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Ranran Peng
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory of Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yalin Lu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory of Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Liu Y, Zeng T, Liu C, Fang X, Li S, Cao X, Lu C, Yang H. DNA Origami-Based Letterpress Printing of Gold Nanostructures with Predesigned Morphologies. NANO LETTERS 2023; 23:11569-11577. [PMID: 38078629 DOI: 10.1021/acs.nanolett.3c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Creating customizable metallic nanostructures in a simple and controllable manner has been a long-standing goal in nanoscience. In this study, we use DNA origami as a letterpress printing plate and gold nanoparticles as ink to produce predesigned gold nanostructures. The letterpress plate is reusable, enabling the repetitive production of predesigned gold nanostructures. Furthermore, by modifying the DNA origami letterpress plate on magnetic beads, we can simplify the printing processes. We have successfully printed gold nanoparticle dimers, trimers, straight and quadrilateral tetramers, and other nanostructures. Our approach improves the flexibility and stability of metallic nanostructures, simplifying both their design and their operation. It promises universal applicability in the fabrication of metamaterials, biosensors, and surface plasma nanooptics.
Collapse
Affiliation(s)
- Yana Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tao Zeng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chuang Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xiao Fang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xiuping Cao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
26
|
Fang Y, Yang Y, Yao Z, Lei X, Dong Z, Zhang M, Yao R, Tian B. On-Particle Hyperbranched Rolling Circle Amplification-Scaffolded Magnetic Nanoactuator Assembly for Ferromagnetic Resonance Detection of MicroRNA. ACS Sens 2023; 8:4792-4800. [PMID: 38073137 DOI: 10.1021/acssensors.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Inspired by natural molecular machines, scientists are devoted to designing nanomachines that can navigate in aqueous solutions, sense their microenvironment, actuate, and respond. Among different strategies, magnetically driven nanoactuators can easily be operated remotely in liquids and thus are valuable in biosensing. Here we report a magnetic nanoactuator swarm with rotating-magnetic-field-controlled conformational changes for reaction acceleration and target quantification. By grafting nucleic acid amplification primers, magnetic nanoparticle (MNP) actuators can assemble and be fixed with a flexible DNA scaffold generated by surface-localized hyperbranched rolling circle amplification in response to the presence of a target microRNA, osa-miR156. Net magnetic anisotropy changes of the system induced by the MNP assembly can be measured by ferromagnetic resonance spectroscopy as shifts in the resonance field. With a total assay time of ca. 120 min, the proposed biosensor offers a limit of detection of 6 fM with a dynamic detection range spanning 5 orders of magnitude. The specificity of the system is validated by testing different microRNAs and salmon sperm DNA. Endogenous microRNAs extracted from Oryza sativa leaves are tested with both quantitative reverse transcription-PCR and our approach, showing comparable performances with a Pearson correlation coefficient >0.9 (n = 20).
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xi Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
27
|
Zhai W, Wei D, Cao M, Wang Z, Wang M. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Food Chem 2023; 429:136944. [PMID: 37487389 DOI: 10.1016/j.foodchem.2023.136944] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenyu Wang
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
28
|
Abuawad A, Ashhab Y, Offenhäusser A, Krause HJ. DNA Sensor for the Detection of Brucella spp. Based on Magnetic Nanoparticle Markers. Int J Mol Sci 2023; 24:17272. [PMID: 38139102 PMCID: PMC10744106 DOI: 10.3390/ijms242417272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.
Collapse
Affiliation(s)
- Abdalhalim Abuawad
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Yaqoub Ashhab
- Palestine–Korea Biotechnology Center, Palestine Polytechnic University, Hebron P720, Palestine
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
| |
Collapse
|
29
|
Huang X, Li L, Ou C, Shen M, Li X, Zhang M, Wu R, Kou X, Gao L, Liu F, Luo R, Wu Q, Gong C. Tumor Environment Regression Therapy Implemented by Switchable Prune-to-Essence Nanoplatform Unleashed Systemic Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303715. [PMID: 37875395 PMCID: PMC10724435 DOI: 10.1002/advs.202303715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/01/2023] [Indexed: 10/26/2023]
Abstract
Coevolution of tumor cells and surrounding stroma results in protective protumoral environment, in which abundant vessel, stiff structure and immunosuppression promote each other, cooperatively incurring deterioration and treatment compromise. Reversing suchenvironment may transform tumors from treatment-resistant to treatment-vulnerable. However, effective reversion requires synergistic comprehensive regression of such environment under precise control. Here, the first attempt to collaboratively retrograde coevolutionary tumor environment to pre-oncogenesis status, defined as tumor environment regression therapy, is made for vigorous immune response eruption by a switchable prune-to-essence nanoplatform (Pres) with simplified composition and fabrication process. Through magnetic targeting and multimodal imaging of Pres, tumor environment regression therapy is guided, optimized and accomplished in a trinity way: Antiangiogenesis is executed to rarefy vessels to impede tumor progression. By seizing the time, cancer associated fibroblasts are eliminated to diminish collagen and loosen the stiff structure for deep penetration of Pres, which alternately functioned in deeper tumors, forming a positive feedback loop. Through this loop, immune cell infiltration, immunosuppression mitigation and immunogenic cells death induction are all fulfilled and further escalated in the regressed environment. These transformations consequently unleashed systemic immune responses and generated immune memory against carcinoma. This study provides new insights intotreatment of solid tumors.
Collapse
Affiliation(s)
- Xianzhou Huang
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Li
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Chunqing Ou
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Meiling Shen
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xinchao Li
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Miaomiao Zhang
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Wu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaorong Kou
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Ling Gao
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Furong Liu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Luo
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qinjie Wu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Changyang Gong
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
30
|
Palacios-Alonso P, Sanz-de-Diego E, Peláez RP, Cortajarena AL, Teran FJ, Delgado-Buscalioni R. Predicting the size and morphology of nanoparticle clusters driven by biomolecular recognition. SOFT MATTER 2023; 19:8929-8944. [PMID: 37530392 DOI: 10.1039/d3sm00536d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nanoparticle aggregation is a driving principle of innovative materials and biosensing methodologies, improving transduction capabilities displayed by optical, electrical or magnetic measurements. This aggregation can be driven by the biomolecular recognition between target biomolecules (analytes) and receptors bound onto nanoparticle surface. Despite theoretical advances on modelling the entropic interaction in similar systems, predictions of the fractal morphologies of the nanoclusters of bioconjugated nanoparticles are lacking. The morphology of resulting nanoclusters is sensitive to the location, size, flexibility, average number of receptors per particle f̄, and the analyte-particle concentration ratio. Here we considered bioconjugated iron oxide nanoparticles (IONPs) where bonds are mediated by a divalent protein that binds two receptors attached onto different IONPs. We developed a protocol combining analytical expressions for receptors and linker distributions, and Brownian dynamics simulations for bond formation, and validated it against experiments. As more bonds become available (e.g., by adding analytes), the aggregation deviates from the ideal Bethe's lattice scenario due to multivalence, loop formation, and steric hindrance. Generalizing Bethe's lattice theory with a (not-integer) effective functionality feff leads to analytical expressions for the cluster size distributions in excellent agreement with simulations. At high analyte concentration steric impediment imposes an accessible limit value facc to feff, which is bounded by facc < feff < f̄. A transition to gel phase, is correctly captured by the derived theory. Our findings offer new insights into quantifying analyte amounts by assessing nanocluster size, and predicting nanoassembly morphologies accurately is a first step towards understanding variations of physical properties in clusters formed after biomolecular recognition.
Collapse
Affiliation(s)
- Pablo Palacios-Alonso
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center, IFIMAC, Spain
| | | | - Raúl P Peláez
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - A L Cortajarena
- CIC biomaGUNE-BRTA, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - F J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center, IFIMAC, Spain
| |
Collapse
|
31
|
Mostufa S, Rezaei B, Yari P, Xu K, Gómez-Pastora J, Sun J, Shi Z, Wu K. Giant Magnetoresistance Based Biosensors for Cancer Screening and Detection. ACS APPLIED BIO MATERIALS 2023; 6:4042-4059. [PMID: 37725557 DOI: 10.1021/acsabm.3c00592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Early-stage screening of cancer is critical in preventing its development and therefore can improve the prognosis of the disease. One accurate and effective method of cancer screening is using high sensitivity biosensors to detect optically, chemically, or magnetically labeled cancer biomarkers. Among a wide range of biosensors, giant magnetoresistance (GMR) based devices offer high sensitivity, low background noise, robustness, and low cost. With state-of-the-art micro- and nanofabrication techniques, tens to hundreds of independently working GMR biosensors can be integrated into fingernail-sized chips for the simultaneous detection of multiple cancer biomarkers (i.e., multiplexed assay). Meanwhile, the miniaturization of GMR chips makes them able to be integrated into point-of-care (POC) devices. In this review, we first introduce three types of GMR biosensors in terms of their structures and physics, followed by a discussion on fabrication techniques for those sensors. In order to achieve target cancer biomarker detection, the GMR biosensor surface needs to be subjected to biological decoration. Thus, commonly used methods for surface functionalization are also reviewed. The robustness of GMR-based biosensors in cancer detection has been demonstrated by multiple research groups worldwide and we review some representative examples. At the end of this review, the challenges and future development prospects of GMR biosensor platforms are commented on. With all their benefits and opportunities, it can be foreseen that GMR biosensor platforms will transition from a promising candidate to a robust product for cancer screening in the near future.
Collapse
Affiliation(s)
- Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jiajia Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Zongqian Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
32
|
Hagness DE, Yang Y, Tilley RD, Gooding JJ. The application of an applied electrical potential to generate electrical fields and forces to enhance affinity biosensors. Biosens Bioelectron 2023; 238:115577. [PMID: 37579531 DOI: 10.1016/j.bios.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Affinity biosensors play a crucial role in clinical diagnosis, pharmaceuticals, immunology, and other areas of human health. Affinity biosensors rely on the specific binding between target analytes and biological ligands such as antibodies, nucleic acids, aptamers, or other receptors to primarily generate electrochemical or optical signals. Considerable effort has been put into improving the performance of the affinity technologies to make them more sensitive, efficient and reproducible, of the many approaches electrokinetic phenomena are a viable option. In this perspective, studies that combine electrokinetic phenomena with affinity biosensor are discussed about their promise for achieving higher sensitivity and lower detection limit.
Collapse
Affiliation(s)
- Daniel E Hagness
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ying Yang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
33
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
34
|
Ulanova M, Gloag L, Bongers A, Kim CK, Duong HTK, Kim HN, Gooding JJ, Tilley RD, Biazik J, Wen W, Sachdev PS, Braidy N. Evaluation of Dimercaptosuccinic Acid-Coated Iron Nanoparticles Immunotargeted to Amyloid Beta as MRI Contrast Agents for the Diagnosis of Alzheimer's Disease. Cells 2023; 12:2279. [PMID: 37759500 PMCID: PMC10527350 DOI: 10.3390/cells12182279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer's disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aβ) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aβ antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle's binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Lucy Gloag
- Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Andre Bongers
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- Faculty of Medicine, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chul-Kyu Kim
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Hong Thien Kim Duong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia;
| | - John Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
| | - Wei Wen
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| |
Collapse
|
35
|
Li W, Bai X, Xiao F, Huang J, Zeng X, Xu Q, Song Y, Xu X, Xu H. MXene@Au based electrochemical biosensor with pretreatment by magnetic nanoparticles for determination of MRSA from clinical samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131823. [PMID: 37320900 DOI: 10.1016/j.jhazmat.2023.131823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Pathogenic bacteria are associated with high morbidity rates and present significant diagnostic challenges in terms of rapid detection. This study introduces a magnetic separation-based electrochemical biosensor for the detection of Methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin (Van) was used to modify on the surface of polyethyleneimine (PEI) mediated MBs (MBs-PEI-Van) for separation and enrichment of MRSA. The MBs-PEI-Van shown a satisfactory stability and applicability with capture effective (CE) > 85% in both PBS and cerebrospinal fluid (CSF) samples. MXene@Au with controllable size of AuNPs was synthesized by a self-reduction method and employed to modify the glassy carbon electrode (GCE). Immunoglobulin G (IgG) was loaded onto the modified electrode to immobilize MRSA, and ferroceneboronic acid (Fc-BA) was used as a probe for quantitative determination. The differential pulse voltammetry (DPV) current was plotted against the concentration of MRSA from 3.8 × 101 to 3.8 × 107 CFU/mL with a limit of detection (LOD) of 3.8 × 101 CFU/mL. In addition, MRSA was successfully detected in spiked CSF samples with satisfactory recoveries (94.35-107.81 %) and validation results (RSD < 11 %). Overall, this study presents a promising method for the detection of MRSA, with the potential to be further developed into a universal pathogen detection method.
Collapse
Affiliation(s)
- Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xuekun Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xianxiang Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyun Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Economics and Management, Nanchang University, Nanchang 330036, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Economics and Management, Nanchang University, Nanchang 330036, PR China.
| |
Collapse
|
36
|
Idil N, Aslıyüce S, Perçin I, Mattiasson B. Recent Advances in Optical Sensing for the Detection of Microbial Contaminants. MICROMACHINES 2023; 14:1668. [PMID: 37763831 PMCID: PMC10536746 DOI: 10.3390/mi14091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
Microbial contaminants are responsible for several infectious diseases, and they have been introduced as important potential food- and water-borne risk factors. They become a global burden due to their health and safety threats. In addition, their tendency to undergo mutations that result in antimicrobial resistance makes them difficult to treat. In this respect, rapid and reliable detection of microbial contaminants carries great significance, and this research area is explored as a rich subject within a dynamic state. Optical sensing serving as analytical devices enables simple usage, low-cost, rapid, and sensitive detection with the advantage of their miniaturization. From the point of view of microbial contaminants, on-site detection plays a crucial role, and portable, easy-applicable, and effective point-of-care (POC) devices offer high specificity and sensitivity. They serve as advanced on-site detection tools and are pioneers in next-generation sensing platforms. In this review, recent trends and advances in optical sensing to detect microbial contaminants were mainly discussed. The most innovative and popular optical sensing approaches were highlighted, and different optical sensing methodologies were explained by emphasizing their advantages and limitations. Consequently, the challenges and future perspectives were considered.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Biotechnology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Sevgi Aslıyüce
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara 06800, Turkey;
| | - Işık Perçin
- Department of Biology, Molecular Biology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, 22100 Lund, Sweden
- Indienz AB, Annebergs Gård, 26873 Billeberga, Sweden
| |
Collapse
|
37
|
He Y, Xu Z, Kasputis T, Zhao X, Ibañez I, Pavan F, Bok M, Malito JP, Parreno V, Yuan L, Wright RC, Chen J. Development of Nanobody-Displayed Whole-Cell Biosensors for the Colorimetric Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37184-37192. [PMID: 37489943 PMCID: PMC11216949 DOI: 10.1021/acsami.3c05900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 μg/mL with a limit of detection (LOD) of 0.037 μg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhiyuan Xu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Itati Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Viviana Parreno
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
38
|
Kirkpatrick KM, Zhou BH, Bunting PC, Rinehart JD. Quantifying superparamagnetic signatures in nanoparticle magnetite: a generalized approach for physically meaningful statistics and synthesis diagnostics. Chem Sci 2023; 14:7589-7594. [PMID: 37449068 PMCID: PMC10337765 DOI: 10.1039/d3sc02113k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023] Open
Abstract
Magnetization is a common measurable for characterizing bulk, nanoscale, and molecular materials, which can be quantified to high precision as a function of an applied external field. These data provide detailed information about a material's electronic structure, phase purity, and impurities, though interpreting this data can be challenging due to many contributing factors. In sub-single-domain particles of a magnetic material, an inherently time-dependent rotation of the entire particle spin becomes possible. This phenomenon, known as superparamagnetism (SPM), simultaneously represents a very early size-dependent property to be considered, while being one of the least explored in the current quantum materials era. This discrepancy is, at least in part, due to the need for models with less built-in complexity that can facilitate the generation of comparative data. In this work, we map an extensive dataset of variable-size SPM Fe3O4 (magnetite) to an intrinsic statistical model for their field-dependence. By constraining the SPM behavior to a probabilistic model, the data are apportioned to several decorrelated sources. From this, there is strong evidence that standard measures such as saturation magnetization, MS, are poor comparative parameters, being dependent on experimental knowledge and measurement of the magnetic mass. In contrast, parameters of the intrinsic probability distribution, such as the maximum susceptibility, χmax, are far better suited to describe the SPM behavior itself and do not propagate unknown magnetic mass error. By confining the data fitting to intrinsic variables of the model distribution, scaling parameters, and linear contributions, we find greater value in magnetic data, ultimately aiding potential synthesis diagnostics and prediction of new properties and functionality.
Collapse
Affiliation(s)
- Kyle M Kirkpatrick
- Department of Chemistry and Biochemistry, University of California - San Diego La Jolla California 92093 USA
| | - Benjamin H Zhou
- Materials Science and Engineering Program, University of California - San Diego La Jolla California 92093 USA
| | - Philip C Bunting
- Department of Chemistry and Biochemistry, University of California - San Diego La Jolla California 92093 USA
| | - Jeffrey D Rinehart
- Department of Chemistry and Biochemistry, University of California - San Diego La Jolla California 92093 USA
- Materials Science and Engineering Program, University of California - San Diego La Jolla California 92093 USA
| |
Collapse
|
39
|
Shi C, Zhao Z, Zhu N, Yu Q. Magnetic nanoparticle-assisted colonization of synthetic bacteria on plant roots for improved phytoremediation of heavy metals. CHEMOSPHERE 2023; 329:138631. [PMID: 37030349 DOI: 10.1016/j.chemosphere.2023.138631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is a facile strategy to remove environmental heavy metals by using metal-accumulating plants from the rhizosphere environment. However, its efficiency is frequently compromised by the weak activity of rhizosphere microbiomes. This study developed a magnetic nanoparticle-assisted root colonization technique of synthetic functional bacteria to regulate rhizosphere microbiome composition for enhanced phytoremediation of heavy metals. The iron oxide magnetic nanoparticles with the size of 15-20 nm were synthesized and grafted by chitosan, a natural bacterium-binding polymer. The synthetic Escherichia coli SynEc2, which highly exposed an artificial heavy metal-capturing protein, was then introduced with the magnetic nanoparticles to bind the Eichhornia crassipes plants. Confocal microscopy, scanning electron microscopy, and microbiome analysis revealed that the grafted magnetic nanoparticles strongly promoted colonization of the synthetic bacteria on the plant roots, leading to remarkable change of rhizosphere microbiome composition, with the increase in the abundance of Enterobacteriaceae, Moraxellaceae, and Sphingomonadaceae. Histological staining and biochemical analysis further showed that the combination of SynEc2 and the magnetic nanoparticles protected the plants from heavy metal-induced tissue damage, and increased plant weights from 29 g to 40 g. Consequently, the plants with the assistance of synthetic bacteria and the magnetic nanoparticles in combination exhibited much higher heavy metal-removing capacity than the plants treated by the synthetic bacteria or the magnetic nanoparticles alone, leading to the decrease in the heavy metal levels from 3 mg/L to 0.128 mg/L for cadmium, and to 0.032 mg/L for lead. This study provided a novel strategy to remodel rhizosphere microbiome of metal-accumulating plants by integrating synthetic microbes and nanomaterials for improving the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
40
|
Norouzi S, Soltani S, Alipour E. Recent advancements in biosensor designs toward the detection of intestine cancer miRNA biomarkers. Int J Biol Macromol 2023:125509. [PMID: 37364808 DOI: 10.1016/j.ijbiomac.2023.125509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer diagnosis and treatment have been of broad interest among scientists in the last decades due to the high death rate, widespread occurrence, and recurrence after treatment. The survival rate of cancer patients depends greatly on early detection and appropriate treatments. Therefore developing new technologies applicable to sensitive and specific methods of cancer detection is an inevitable task for cancer researchers. Abnormal miRNA expression is contributed to severe diseases such as cancers and since their expression level and type differ strictly during carcinogenesis and later metastasis and treatments, the improved detection accuracy of these miRNAs would undoubtedly lead to early diagnosis, prognosis, and targeted therapy. Biosensors are accurate and straightforward analytical devices that have had practical applications especially in the last decade. Their domain is still growing through a combination of attractive nanomaterials and amplification methods, leading to innovative biosensing platforms for the efficient detection of miRNAs as diagnostic and prognostic biomarkers. In this review, we will provide the recent developments in biosensors to detect intestine cancer miRNA biomarkers and also discuss the challenges and outcomings of this field.
Collapse
Affiliation(s)
| | - Somaieh Soltani
- Pharmacy faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
41
|
Shi J, Zhang J, Wang C, Liu Y, Li J. Research progress on the magnetite nanoparticles in the fields of water pollution control and detection. CHEMOSPHERE 2023:139220. [PMID: 37327826 DOI: 10.1016/j.chemosphere.2023.139220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (MNPs) have shown increasing application in the fields of water pollution control and detection due to their perfect combination of interfacial functionalities and physicochemical properties, such as surface interface adsorption, (synergistic) reduction, catalytic oxidation, and electrical chemistry. This review presents the research advances in the synthesis and modification methods of MNPs in recent years, systematically summarizes the performances of MNPs and their modified materials in terms of three technical systems, including single decontamination system, coupled reaction system, and electrochemical system. In addition, the progress of the key roles played by MNPs in adsorption, reduction, catalytic oxidative degradation and their coupling with zero-valent iron for the reduction of pollutants are described. Moreover, the application prospect of MNPs-based electrochemical working electrodes for detecting micro-pollutants in water were also discussed in detail. This review addresses that the construction of MNPs-based systems for water pollution control and detection should be adapted to the natures of the target pollutants in water. Finally, the following research directions of MNPs and their remaining challenges are outlooked. In general, this review will inspire MNPs researchers in different fields for effective control and detection of a variety of contaminants in water.
Collapse
Affiliation(s)
- Jianxuan Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Chengze Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yiwei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
42
|
Vazhnichaya E, Lytvyn S, Kurapov Y, Semaka O, Lutsenko R, Chunikhin A. The influence of pure (ligandless) magnetite nanoparticles functionalization on blood gases and electrolytes in acute blood loss. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2023; 50:102675. [PMID: 37028737 DOI: 10.1016/j.nano.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Objective was to compare the effect of functionalization of magnetite (Fe3O4) nanoparticles (NPs) with sodium chloride (NaCl), or its combination with ethylmethylhydroxypyrydine succinate (EMHPS) and polyvinylpyrrolidone (PVP) on blood gases and electrolytes in acute blood loss. Ligandless magnetite NPs were synthesized by the electron beam technology and functionalized by mentioned agents. Size of NPs in colloidal solutions Fe3O4@NaCl, Fe3O4@NaCl@EMHPS, Fe3O4@NaCl@PVP, Fe3O4@NaCl@EMHPS@PVP (nanosystems 1-4) was determined by dynamic light scattering. In vivo experiments were performed on 27 Wistar rats. Acute blood loss was modeled by removal 25 % circulating blood. Nanosystems 1-4 were administered to animals intaperitoneally after the blood loss with followed determination of blood gases, pH and electrolytes. In blood loss, nanosystems Fe3O4@NaCl and Fe3O4@NaCl@PVP were able to improve the state of blood gases, pH, and the ratio of sodium/potassium in the blood. So, magnetite NPs with a certain surface modification can promote oxygen transport under hypoxic conditions.
Collapse
Affiliation(s)
- Elena Vazhnichaya
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Stanislav Lytvyn
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine.
| | - Yurii Kurapov
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine
| | - Oleksandr Semaka
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Ruslan Lutsenko
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Alexander Chunikhin
- Department of Smooth Muscle, O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich Street, 01054 Kyiv, Ukraine
| |
Collapse
|
43
|
Pan HJ, Gong YC, Cao WQ, Zhang ZH, Jia LP, Zhang W, Shang L, Li XJ, Xue QW, Wang HS, Ma RN. Fascinating Immobilization-Free Electrochemical Immunosensing Strategy Based on the Cooperation of Buoyancy and Magnetism. Anal Chem 2023; 95:7336-7343. [PMID: 37129510 DOI: 10.1021/acs.analchem.3c00485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.
Collapse
Affiliation(s)
- Hui-Jing Pan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Ying-Chao Gong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Wen-Qi Cao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Zhi-Heng Zhang
- Oncology Department, Hospital of Traditional Chinese Medicine of Liaocheng City, Liaocheng, Shandong 252000, P.R. China
| | - Li-Ping Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Xiao-Jian Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Qing-Wang Xue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| |
Collapse
|
44
|
Liu Y, Zhu S, Fan J, Guo W, Min Y, Jiang X, Li J. Photo-Cross-Linked Polymeric Dispersants of Comb-Shaped Benzophenone-Containing Poly(ether amine). ACS APPLIED MATERIALS & INTERFACES 2023; 15:19470-19479. [PMID: 37023404 DOI: 10.1021/acsami.3c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Efficient dispersion of nanoparticles (NPs) is a crucial challenge in the preparation and application of composites that contain NPs, particularly in coatings, inks, and related materials. Physical adsorption and chemical modification are the two common methods used to disperse NPs. However, the former suffers from desorption, and the latter is more specific and has limited versatility. To address these issues, we developed a novel photo-cross-linked polymeric dispersant, comb-shaped benzophenone-containing poly(ether amine) (bPEA), using a one-pot nucleophilic/cyclic-opening addition reaction. The results demonstrated that the bPEA dispersant forms a dense and stable shell on the surface of pigment NPs through physical adsorption and subsequent chemical photo-cross-linking, which effectively overcome the drawbacks of the desorption occurred in physical adsorption and the specificity of the chemical modification. By means of the dispersing effect of bPEA, the obtained pigment dispersions show high solvent, thermal, and pH stability without flocculation during storage. Moreover, the NPs dispersants show good compatibility with screen printing, coating, and 3D printing, endowing the ornamental products with high uniformity, color fastness, and less color shading. These properties make bPEA dispersants ideal candidates in fabrication dispersions of other NPs.
Collapse
Affiliation(s)
- Yanchi Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanfeng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenyao Guo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Cheraghi M, Karami B, Farahi M, Keshavarz M. A novel, ecofriendly 1H-1,2,4-triazole-3-thiol-functionalized Fe3O4@SiO2 magnetic nano-catalyst for the synthesis of 2H-indazolo[2,1-b] phthalazine-trione and triazolo[1,2-a]indazole-trione derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
46
|
Suo Z, Niu X, Wei M, Jin H, He B. Latest strategies for rapid and point of care detection of mycotoxins in food: A review. Anal Chim Acta 2023; 1246:340888. [PMID: 36764774 DOI: 10.1016/j.aca.2023.340888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Mycotoxins contaminated in agricultural products are often highly carcinogenic and genotoxic to humans. With the streamlining of the food industry chain and the improvement of food safety requirements, the traditional laboratory testing mode is constantly challenged due to the expensive equipment, complex operation steps, and lag in testing results. Therefore, rapid detection methods are urgently needed in the food safety system. This review focuses on the latest strategies that can achieve rapid and on-site testing, with particular attention to the nanomaterials integrated biosensors. To provide researchers with the latest trends and inspiration in the field of rapid detection, we summarize several strategies suitable for point of care testing (POCT) of mycotoxins, including enzyme-linked immunoassay (ELISA), lateral flow assay (LFA), fluorescence, electrochemistry, and colorimetry assay. POCT-based strategies are all developing towards intelligence and portability, especially when combined with smartphones, making it easier to read signals for intuitive access and analysis of test data. Detection performance of the devices has also improved considerably with the integration of biosensors and nanomaterials.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xingyuan Niu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
47
|
Kreissl P, Holm C, Weeber R. Interplay between steric and hydrodynamic interactions for ellipsoidal magnetic nanoparticles in a polymer suspension. SOFT MATTER 2023; 19:1186-1193. [PMID: 36655681 DOI: 10.1039/d2sm01428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic nanoparticles couple to polymeric environments by several mechanisms. These include van der Waals, steric, hydrodynamic and electrostatic forces. This leads to numerous interesting effects and potential applications. Still, the details of the coupling are often unknown. In a previous work, we showed that, for spherical particles, hydrodynamic coupling alone can explain experimentally observed trends in magnetic AC susceptibility spectra [P. Kreissl, C. Holm and R. Weeber, Soft Matter, 2021, 17, 174-183]. Non-spherical, elongated particles are of interest because an enhanced coupling to the surrounding polymers is expected. In this publication we study the interplay of steric and hydrodynamic interactions between those particles and a polymer suspension. To this end, we obtain rotational friction coefficients, relaxation times for the magnetic moment, and AC susceptibility spectra, and compare these for simulations with and without hydrodynamic interactions considered. We show that, even if the particle is ellipsoidal, its hydrodynamic interactions with the surrounding polymers are much stronger than the steric ones due to the shape-anisotropy of the particle.
Collapse
Affiliation(s)
- Patrick Kreissl
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Rudolf Weeber
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| |
Collapse
|
48
|
Campanile R, Elia VC, Minopoli A, Ud Din Babar Z, di Girolamo R, Morone A, Sakač N, Velotta R, Della Ventura B, Iannotti V. Magnetic micromixing for highly sensitive detection of glyphosate in tap water by colorimetric immunosensor. Talanta 2023; 253:123937. [PMID: 36179557 DOI: 10.1016/j.talanta.2022.123937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
Glyphosate is the most widely used herbicide in the world and, in view of its toxicity, there is a quest for easy-to-use, but reliable methods to detect it in water. To address this issue, we realized a simple, rapid, and highly sensitive immunosensor based on gold coated magnetic nanoparticles (MNPs@Au) to detect glyphosate in tap water. Not only the gold shell provided a sensitive optical transduction of the biological signal - through the shift of the local surface plasmon resonance (LSPR) entailed by the nanoparticle aggregation -, but it also allowed us to use an effective photochemical immobilization technique to tether oriented antibodies straight on the nanoparticles surface. While such a feature led to aggregates in which the nanoparticles were at close proximity each other, the magnetic properties of the core offered us an efficient tool to steer the nanoparticles by a rotating magnetic field. As a result, the nanoparticle aggregation in presence of the target could take place at higher rate (enhanced diffusion) with significant improvement in sensitivity. As a matter of fact, the combination of plasmonic and magnetic properties within the same nanoparticles allowed us to realize a colorimetric biosensor with a limit of detection (LOD) of 20 ng∙L-1.
Collapse
Affiliation(s)
- Raffaele Campanile
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Valerio Cosimo Elia
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Antonio Minopoli
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Zaheer Ud Din Babar
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy; Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino,10, 80138, Italy
| | - Rocco di Girolamo
- Department of Chemistry, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Antonio Morone
- CNR - Istituto di Struttura Della Materia - Unità di Tito-Scalo Zona Industriale di Tito Scalo, 85050, Potenza, Italy
| | - Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova 7, 42000, Varaždin, Croatia
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Vincenzo Iannotti
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy; CNR - SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices), Piazzale V. Tecchio 80, 80125, Naples, Italy
| |
Collapse
|
49
|
Gogoi L, Gao W, Ajayan PM, Deb P. Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials. Phys Chem Chem Phys 2023; 25:1430-1456. [PMID: 36601788 DOI: 10.1039/d2cp05228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Investigating magnetic phenomena at the microscopic level has emerged as an indispensable research domain in the field of low-dimensional magnetic materials. Understanding quantum phenomena that mediate the magnetic interactions in dimensionally confined materials is crucial from the perspective of designing cheaper, compact, and energy-efficient next-generation spintronic devices. The infrequent occurrence of intrinsic long-range magnetic order in dimensionally confined materials hinders the advancement of this domain. Hence, introducing and controlling the ferromagnetic character in two-dimensional materials is important for further prospective studies. The interface in a heterostructure significantly contributes to modulating its collective magnetic properties. Quantum phenomena occurring at the interface of engineered heterostructures can enhance or suppress magnetization of the system and introduce magnetic character to a native non-magnetic system. Considering most 2D magnetic materials are used as stacks with other materials in nanoscale devices, the methods to control the magnetism in a heterostructure and understanding the corresponding mechanism are crucial for promising spintronic and other functional applications. This review highlights the effect of electric polarization of the adjacent layer, changed structural configuration at the vicinity of the interface, natural strain induced by lattice mismatch, and exchange interaction in the interfacial region in modulating the magnetism of heterostructures of van der Waals and non-van der Waals materials. Further, prospects of interface-engineered magnetism in spin-dependent device applications are also discussed.
Collapse
Affiliation(s)
- Liyenda Gogoi
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pulickel M Ajayan
- Benjamin M. and Mary Greenwood Anderson Professor of Engineering, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | - Pritam Deb
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| |
Collapse
|
50
|
Saeidi H, Mozaffari M, Ilbey S, Dutz S, Zahn D, Azimi G, Bock M. Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020331. [PMID: 36678084 PMCID: PMC9861161 DOI: 10.3390/nano13020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles (MNPs) have been widely applied as magnetic resonance imaging (MRI) contrast agents. MNPs offer significant contrast improvements in MRI through their tunable relaxivities, but to apply them as clinical contrast agents effectively, they should exhibit a high saturation magnetization, good colloidal stability and sufficient biocompatibility. In this work, we present a detailed description of the synthesis and the characterizations of europium-substituted Mn-Zn ferrite (Mn0.6Zn0.4EuxFe2-xO4, x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, and 0.15, herein named MZF for x = 0.00 and EuMZF for others). MNPs were synthesized by the coprecipitation method and subsequent hydrothermal treatment, coated with citric acid (CA) or pluronic F127 (PF-127) and finally characterized by X-ray Diffraction (XRD), Inductively Coupled Plasma (ICP), Vibrating Sample Magnetometry (VSM), Fourier-Transform Infrared (FTIR), Dynamic Light Scattering (DLS) and MRI Relaxometry at 3T methods. The XRD studies revealed that all main diffraction peaks are matched with the spinel structure very well, so they are nearly single phase. Furthermore, XRD study showed that, although there are no significant changes in lattice constants, crystallite sizes are affected by europium substitution significantly. Room-temperature magnetometry showed that, in addition to coercivity, both saturation and remnant magnetizations decrease with increasing europium substitution and coating with pluronic F127. FTIR study confirmed the presence of citric acid and poloxamer (pluronic F127) coatings on the surface of the nanoparticles. Relaxometry measurements illustrated that, although the europium-free sample is an excellent negative contrast agent with a high r2 relaxivity, it does not show a positive contrast enhancement as the concentration of nanoparticles increases. By increasing the europium to x = 0.15, r1 relaxivity increased significantly. On the contrary, europium substitution decreased r2 relaxivity due to a reduction in saturation magnetization. The ratio of r2/r1 decreased from 152 for the europium-free sample to 11.2 for x = 0.15, which indicates that Mn0.6Zn0.4Eu0.15Fe1.85O4 is a suitable candidate for dual-mode MRI contrast agent potentially. The samples with citric acid coating had higher r1 and lower r2 relaxivities than those of pluronic F127-coated samples.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Morteza Mozaffari
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Correspondence: ; Tel.: +98-31-3793-4741
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Diana Zahn
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| |
Collapse
|