1
|
Zhou H, Wang R, Sun M, Zhou Y, Zhang L, Song J, Sun Q, Zhang ST, Yang W, Xue S. Highly efficient pure organic near-ultraviolet (NUV) electro-fluorescent materials with high electron mobility and improved hole mobility. Chem Sci 2024:d4sc05625f. [PMID: 39449684 PMCID: PMC11495493 DOI: 10.1039/d4sc05625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The lack of blue-emissive materials with high efficiency and excellent color purity commonly represents a pivotal obstacle in the development of organic light-emitting diodes (OLEDs). In this work, two blue to near-ultraviolet (NUV) donor-π-acceptor (D-π-A) emitters based on a fluorene π-bridge, 9-PCZCFTZ and 3-PCZCFTZ, are thus designed and synthesized, and non-doped devices derived from these two materials exhibit electroluminescence (EL) emission peaks at 404 nm and 417 nm, respectively. Interestingly, due to the specific stacking, a phenomenon appears in both materials in which the mobility of the electron is much higher than that of the hole, prompting us to use host doping to increase the hole mobilities, which ultimately leads to excellent OLED performances. As a result, the maximum external quantum efficiency (EQEmax) values of 9-PCZCFTZ and 3-PCZCFTZ in the doped devices reach as high as 14.5% and 10.8% respectively. Notably, both OLEDs show high blue purity very close to the BT.2020 standard.
Collapse
Affiliation(s)
- Huayi Zhou
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Runze Wang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mizhen Sun
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Li Zhang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jingru Song
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Wenjun Yang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
2
|
He J, Wang S, Song XF, Chang X, Zou C, Lu W, Li K. Tetradentate carbene-anilido boron complexes: highly fluorescent dyes with larger Stokes shifts than BODIPY analogues. Chem Commun (Camb) 2024; 60:11524-11527. [PMID: 39310925 DOI: 10.1039/d4cc03944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A new class of carbene-anilido boron complexes have been designed and synthesized. The complexes show intense fluorescence with large Stokes shift because of their charge-transfer excited states, different from typical BODIPY dyes. By using a chiral 1,1'-bi(2-naphthol) ligand, dyes exhibiting circularly polarized luminescence can also be facilely developed.
Collapse
Affiliation(s)
- Jiang He
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Songmeng Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
3
|
Liao C, Wang S, Chen B, Xie Q, Feng J, Bai J, Li X, Liu H. Hybrid Local and Charge Transfer Emitters Utilizing Hyperconjugation Effect Towards Solution-Processed Ultra-Deep-Blue OLEDs with External Quantum Efficiency Approaching 12 . Angew Chem Int Ed Engl 2024:e202414905. [PMID: 39266869 DOI: 10.1002/anie.202414905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Hybrid local and charge transfer (HLCT) excited state materials, which possess weak donor-acceptor (D-A) pure organic structures, deserve one of the most promising efficient and stable blue emitters. Through high-lying reverse intersystem crossing (hRISC) process, 75 % triplet excitons generated by electrical excitation could be harvested and utilized in organic light-emitting diodes (OLEDs). However, there are still significant challenges to achieve high-efficiency ultra-deep-blue HLCT emitters with low Commission Internationale de l'Eclairage (CIE) 1931 chromaticity coordinate y values. Here, a series of novel blue HLCT emitters based on spiro[1,8-diazafluorene-9,2'-imidazole] structure were designed and synthesized by fine-tuning the spiro[fluorene-9,2'-imidazole] core structure in our previous work through heteroatom substitution and hyperconjugation effect. The target emitters were endowed with excellent photophysical and electrochemical merits, thermal stability and solution processibility. The solution-processed OLED based on 4',5'-bis(4-(9H-carbazol-9-yl)phenyl)spiro[1,8-diazafluorene-9,2'-imidazole] (NFIP-CZ) achieved efficient ultra-deep-blue emission (CIEx,y=0.1581, 0.0422) with the maximum external quantum efficiency (EQEmax), maximum current efficiency (CEmax) and maximum power efficiency (PEmax) of 11.94 %, 4.07 cd ⋅ A-1 and 2.56 lm ⋅ W-1. The record EQE is a breakthrough in both solution-processed and vacuum vapor deposition ultra-deep-blue HLCT OLEDs currently.
Collapse
Affiliation(s)
- Chuanxin Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Bo Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Qi Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jingyuan Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaxu Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Hongli Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
4
|
Zhang K, Zhou Z, Liu D, Chen Y, Zhang S, Pan J, Qiao X, Ma D, Su S, Zhu W, Liu Y. Boosting External Quantum Efficiency to 12.0 % of an Ultraviolet OLED by Engineering the Horizontal Dipole Orientation of a Hot Exciton Emitter. Angew Chem Int Ed Engl 2024; 63:e202407502. [PMID: 38721850 DOI: 10.1002/anie.202407502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 06/27/2024]
Abstract
Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (ϕPL: 72 %, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92 %), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0 %. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.
Collapse
Affiliation(s)
- Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yichao Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jie Pan
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Xianfeng Qiao
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - ShiJian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
5
|
An RZ, Sun Y, Chen HY, Liu Y, Privitera A, Myers WK, Ronson TK, Gillett AJ, Greenham NC, Cui LS. Excited-State Engineering Enables Efficient Deep-Blue Light-Emitting Diodes Exhibiting BT.2020 Color Gamut. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313602. [PMID: 38598847 DOI: 10.1002/adma.202313602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Organic luminescent materials that exhibit thermally activated delayed fluorescence (TADF) can convert non-emissive triplet excitons into emissive singlet states through a reverse intersystem crossing (RISC) process. Therefore, they have tremendous potential for applications in organic light-emitting diodes (OLEDs). However, with the development of ultra-high definition 4K/8K display technologies, designing efficient deep-blue TADF materials to achieve the Commission Internationale de l'Éclairage (CIE) coordinates fulfilling BT.2020 remains a significant challenge. Here, an effective approach is proposed to design deep-blue TADF molecules based on hybrid long- and short-range charge-transfer by incorporation of multiple donor moieties into organoboron multiple resonance acceptors. The resulting TADF molecule exhibits deep-blue emission at 414 nm with a full width at half maximum (FWHM) of 29 nm, together with a thousand-fold increase in RISC rate. OLEDs based on the champion material achieve a record maximum external quantum efficiency (EQE) of 22.8% with CIE coordinates of (0.163, 0.046), approaching the coordinates of the BT.2020 blue standard. Moreover, TADF-assisted fluorescence devices employing the designed material as a sensitizer exhibit an exceptional EQE of 33.1%. This work thus provides a blueprint for future development of efficient deep-blue TADF emitters, representing an important milestone towards meeting the blue color gamut standard of BT.2020.
Collapse
Affiliation(s)
- Rui-Zhi An
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Hao-Yang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 Xiaoying East Road, Beijing, 100192, China
| | - Alberto Privitera
- Department of Industrial Engineering and INSTM Research Unit, University of Florence, Via Santa Marta 3, Firenze, 50139, Italy
| | - William K Myers
- Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Qi H, Xie D, Gao Z, Wang S, Peng L, Liu Y, Ying S, Ma D, Yan S. A record-high EQE of 7.65%@3300 cd m -2 achieved in non-doped near-ultraviolet OLEDs based on novel D'-D-A type bipolar fluorophores upon molecular configuration engineering. Chem Sci 2024; 15:11053-11064. [PMID: 39027275 PMCID: PMC11253119 DOI: 10.1039/d4sc02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Developing a high-performance near-ultraviolet (NUV) material and its simple non-doped device with a small efficiency roll-off and good color purity is a promising but challenging task. Here, we proposed a novel donor'-donor-acceptor (D'-D-A) type molecular strategy to largely solve the intrinsic contradictions among wide-bandgap NUV emission, fluorescence efficiency, carrier injection and transport. An efficient NUV fluorophore, 3,6-mPPICNC3, exhibiting a hybridized local and charge-transfer state, is achieved through precise molecular configuration engineering, realizing similar hole and electron mobilities at both low and high electric fields. Moreover, the planarized intramolecular charge transfer excited state and steric hindrance effect endow 3,6-mPPICNC3 with a considerable luminous efficiency and good color purity in the aggregation state. Consequently, the non-doped device emitting stable NUV light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.160, 0.032) and a narrow full width at half maximum of 44 nm exhibits a state-of-the-art external quantum efficiency (EQE) of 7.67% and negligible efficiency roll-off over a luminance range from 0 to 3300 cd m-2. This is a record-high efficiency among all the reported non-doped NUV devices. Amazingly, an EQE of 7.85% and CIE coordinates of (0.161, 0.025) are achieved in the doped device. This demonstrates that the D'-D-A-type molecular structure has great potential for developing high-performance organic light-emitting materials and their optoelectronic applications.
Collapse
Affiliation(s)
- Haoyuan Qi
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Danyu Xie
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Zexuan Gao
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shengnan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Ling Peng
- College of Chemistry and Chemical Engineering, Heze University Heze 274015 P. R. China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shian Ying
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Dongge Ma
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
7
|
Xie Q, Liao C, Liu H, Wang S, Li X. Rational Design of Coumarin-Based Hybridized Local and Charge-Transfer Blue Emitters for Solution-Processed Organic Light-Emitting Diodes. Chemistry 2024; 30:e202401078. [PMID: 38752798 DOI: 10.1002/chem.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 05/28/2024]
Abstract
Hybridized local and charge-transfer (HLCT) with the utilization of both singlet and triplet excitons through the "hot excitons" channel have great application potential in highly efficient blue organic light-emitting diodes (OLEDs). The proportion of charge-transfer (CT) and locally excited (LE) components in the relevant singlet and triplet states makes a big difference for the high-lying reverse intersystem crossing process. Herein, three novel donor (D)-acceptor (A) type HLCT materials, 7-([1,1'-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)-3-phenyl-1H-isochromen-1-one (pPh-7P), 7-([1,1'-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)-3-methyl-1H-isochromen-1-one (pPh-7M), and 6-([1,1'-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)-3-methyl-1H-isochromen-1-one (pPh-6M), were rationally designed and synthesized with diphenylamine derivative as donor and oxygen heterocyclic coumarin moiety as acceptors. The proportions of CT and LE components were fine controlled by changing the connection site of diphenylamine derivative at C6/C7-position and the substituent at C3-position of coumarin moiety. The HLCT characteristics of pPh-7P, pPh-7M, and pPh-6M were systematically demonstrated through photophysical properties and density functional theory calculations. The solution-processed doped OLEDs based on pPh-6M exhibited deep-blue electroluminescence with the maximum emission wavelength of 446 nm, maximum luminance of 8755 cd m-2, maximum current efficiency of 5.83 cd A-1, and maximum external quantum efficiency of 6.54 %. The results reveal that pPh-6M with dominant 1LE and 3CT components has better OLED performance.
Collapse
Affiliation(s)
- Qi Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chuanxin Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Hongli Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
8
|
Zhou H, Li T, Xie M, Zhou Y, Sun Q, Zhang ST, Zhang Y, Yang W, Xue S. Improving electron transportation and operational lifetime of full color organic light emitting diodes through a "weak hydrogen bonding cage" structure. Chem Sci 2024; 15:8106-8111. [PMID: 38817588 PMCID: PMC11134344 DOI: 10.1039/d4sc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Efficient electron-transporting materials (ETMs) are critical to achieving excellent performance of organic light-emitting diodes (OLEDs), yet developing such materials remains a major long-term challenge, particularly ETMs with high electron mobilities (μeles). Herein, we report a short conjugated ETM molecule (PICN) with a dipolar phenanthroimidazole group, which exhibits an electron mobility of up to 1.52 × 10-4 cm2 (V-1 s-1). The origin of this high μele is long-ranged, regulated special cage-like interactions with C-H⋯N radii, which are also favorable for the excellent efficiency stability and operational stability in OLEDs. It is worth noting that the green phosphorescent OLED operation half-lifetimes can reach up to 630 h under unencapsulation, which is 20 times longer than that based on the commonly used commercial ETM TPBi.
Collapse
Affiliation(s)
- Huayi Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Tengyue Li
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mingliang Xie
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yujian Zhang
- Department of Chemistry Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Yingbin Road No. 688 Jinhua 321004 P. R. China
| | - Wenjun Yang
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
9
|
Banerjee M, Anoop A. Exploring the Theoretical Foundations of Thermally Activated Delayed Fluorescence (TADF) Emission: A Comprehensive TD-DFT Study on Phenothiazine Systems. Chemistry 2024; 30:e202304206. [PMID: 38319588 DOI: 10.1002/chem.202304206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
This study conducts a thorough theoretical investigation of Thermally Activated Delayed Fluorescence (TADF) in phenothiazine-based systems, examining ten molecular configurations recognized experimentally as TADF-active. Employing Time-Dependent Density Functional Theory (TD-DFT), our analysis spans the investigation of singlet-triplet energy gaps (ΔEST), spin-orbit coupling, and excitation characteristics using Multiwfn. This approach not only validates the adherence to El Sayed's rule across these systems but also provides a detailed understanding of charge transfer dynamics, as visualized through heat maps. A significant aspect of our study is the exploration of different oxidation states of sulfur and site substitutions on phenothiazine. This systematic variation aims to identify additional TADF-active compounds, drawing parallels with properties characterizing other known TADF emitters. Our investigation into Reverse Intersystem Crossing (rISC) rates and the analysis of dihedral angles in relation to ΔEST values offer nuanced insights into the TADF behaviours of these molecules. By integrating rigorous computational analysis with practical implications, we provide a foundational understanding that enhances the design and optimization of phenothiazine-based materials for optoelectronic applications. This work not only advances our theoretical understanding of TADF in phenothiazine derivatives but also serves as a guide for experimentalists and industry professionals in the strategic design of new TADF materials.
Collapse
Affiliation(s)
- Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
10
|
Brannan AC, Cho HH, Reponen APM, Linnolahti M, Bochmann M, Greenham NC, Romanov AS. Phosphorescent Carbene-Gold-Arylacetylide Materials as Emitters for Near UV-OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306249. [PMID: 37656901 DOI: 10.1002/adma.202306249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Indexed: 09/03/2023]
Abstract
A series of carbene-gold-acetylide complexes [(BiCAAC)AuCC]n C6 H5- n (n = 1, Au1; n = 2, Au2; n = 3, Au3; BiCAAC = bicyclic(alkyl)(amino)carbene) have been synthesized in high yields. Compounds Au1-Au3 exhibit deep-blue to blue-green phosphorescence with good quantum yields up to 43% in all media. An increase of the (BiCAAC)Au moieties in gold complexes Au1-Au3 increases the extinction coefficients in the UV-vis spectra and stronger oscillator strength coefficients supported by theoretical calculations. The luminescence radiative rates decrease with an increase of the (BiCAAC)Au moieties. The time-dependent density functional theory study supports a charge-transfer nature of the phosphorescence due to the large (0.5-0.6 eV) energy gap between singlet excited (S1 ) and triplet excited (T1 ) states. Transient luminescence study reveals the presence of both nonstructured UV prompt-fluorescence and vibronically resolved long-lived phosphorescence 428 nm. Organic light-emitting diodes (OLED) are fabricated by physical vapor deposition with 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF) as a host material with complex Au1. The near-UV electroluminescence is observed at 405 nm with device efficiency of 1% while demonstrating OLED device lifetime LT50 up to 20 min at practical brightness of 10 nits, indicating a highly promising class of materials to develop stable UV-OLEDs.
Collapse
Affiliation(s)
- Alexander C Brannan
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| | - Hwan-Hee Cho
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, CB3 0HF, UK
| | - Antti-Pekka M Reponen
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, CB3 0HF, UK
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK
| | - Neil C Greenham
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, CB3 0HF, UK
| | - Alexander S Romanov
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
11
|
Li G, Xu K, Zheng J, Fang X, Lou W, Zhan F, Deng C, Yang YF, Zhang Q, She Y. High-Performance Ultraviolet Organic Light-Emitting Diodes Enabled by Double Boron-Oxygen-Embedded Benzo[ m]tetraphene Emitters. J Am Chem Soc 2024; 146:1667-1680. [PMID: 38175122 DOI: 10.1021/jacs.3c12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ultraviolet organic light-emitting diodes (UV OLEDs) have attracted increasing attention because of their promising applications in healthcare, industry, and agriculture; however, their development has been hindered by the shortage of robust UV emitters. Herein, we embedded double boron-oxygen units into nonlinear polycyclic aromatic hydrocarbons (BO-PAHs) to regulate their molecular configurations and excited-state properties, enabling novel bent BO-biphenyl (BO-bPh) and helical BO-naphthyl (BO-Nap) emitters with hybridized local and charge-transfer (HLCT) characteristics. They could be facilely synthesized in gram-scale amounts via a highly efficient two-step route. BO-bPh and BO-Nap showed strong UV and violet-blue photoluminescence in toluene with full width at half-maximum values of 25 and 37 nm, along with quantum efficiencies of 98 and 99%, respectively. A BO-bPh-based OLED showed high color purity UV electroluminescence peaking at 394 nm with Commission Internationale de l'Eclairage (CIE) coordinates of (0.166, 0.021). Moreover, the device demonstrated a record-high maximum external quantum efficiency (EQE) of 11.3%, achieved by successful hot exciton utilization. This work demonstrates the promising potential of double BO-PAHs as robust emitters for future UV OLEDs.
Collapse
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianbing Zheng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaoli Fang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
12
|
He X, Lou J, Li B, Dong X, Zhong F, Liu W, Feng X, Yang D, Ma D, Zhao Z, Wang Z, Tang BZ. Rational Medium-Range Charge Transfer Strategy Toward Highly Efficient Violet-Blue Organic Light-Emitting Diodes with Narrowed Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310417. [PMID: 37971674 DOI: 10.1002/adma.202310417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The spectral narrowing engineering of pure-organic emitters attracts great research interests in realizing high color purity. Here, the adjusted medium-range charge transfer (MCT) strategy of TIC-BO with rigid planar structure by fusing two typical UV-emitting multiple resonance (MR) fragments via the ingenious double-halide cyclized coupling reaction is reported. The resulting TIC-BO with MCT nature shows efficient violet-blue emission in dilute toluene and evaporated host-guest films, and desirably narrowed spectra are achieved by the suppression of structural relaxation and the shortened charge transfer states. The single-doped device with TIC-BO as emitter shows narrowed violet-blue electroluminescence peaked at 428 nm with full-width at half-maximum of 43 nm (0.28 eV), and the Commission Internationale de l'Éclairage coordinates of (0.160, 0.050). A maximum external quantum efficiency (EQEmax ) of 20.50% is achieved, which is among the best results of the corresponding violet-blue emitting region. Further introduction of a stronger electron-donating carbazole group makes TIC-BNO exhibit red-shifted sky-blue emission with MR-dominant properties, and good device performance is received with EQEmax of 34.58%. The outstanding performances of TIC-BO successfully demonstrate the significance and prospect of the proposed molecular design strategy.
Collapse
Affiliation(s)
- Xin He
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Jingli Lou
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Baoxi Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Xiaobin Dong
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Feiyang Zhong
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dezhi Yang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Dongge Ma
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zujin Zhao
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
13
|
Ma P, Chen Y, Man Y, Qi Q, Guo Y, Wang H, Li Z, Chang P, Qu C, Han C, Xu H. High-Efficiency Ultraviolet Electroluminescence from Multi-Resonance Phosphine Oxide Polycyclic Aromatics. Angew Chem Int Ed Engl 2023:e202316479. [PMID: 38055193 DOI: 10.1002/anie.202316479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Efficient ultraviolet (UV) electroluminescent materials remain a great challenge, since short peak wavelength <400 nm and narrow full width at half maximum (FWHM) <50 nm are simultaneously required. In this sense, multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters featuring narrow-band emissions hold the promise for UV applications. Herein, a novel MR-TADF skeleton featuring carbazole-phosphine oxide (P=O) fused aromatics is developed to construct the first two UV MR emitters named CzP2PO and tBCzP2PO. In addition to synergistic resonance effects of P=O and N atom, sp3 -hybrid P atom renders the curved polycyclic planes of CzP2PO and tBCzP2PO, giving rise to their narrowband UV emissions with peak wavelengths <390 nm and FWHM<35 nm. Besides configuration quasi-planarization for radiation enhancement and quenching suppression, P=O moiety further enhances singlet-triplet coupling to facilitate reverse intersystem crossing, resulting in the state-of-the-art photoluminescence quantum yield of 62 % in tBCzP2PO doped films. As consequence, tBCzP2PO endowed its UV organic light-emitting diodes with the peak at 382 nm and FWHM of 32 nm, and especially the record-high external quantum efficiency (EQE) of 15.1 % among all kinds of UV devices. Our results demonstrate great potential of P=O based MR emitters in practical applications including optoelectronics, biology and medicine science.
Collapse
Affiliation(s)
- Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yingying Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Quan Qi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yuanting Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chao Qu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
14
|
Liao C, Chen B, Xie Q, Li X, Liu H, Wang S. A Breakthrough in Solution-Processed Ultra-Deep-Blue HLCT OLEDs: A Record External Quantum Efficiency Exceeding 10% Based on Novel V-Shaped Emitters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305310. [PMID: 37523270 DOI: 10.1002/adma.202305310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/28/2023] [Indexed: 08/02/2023]
Abstract
It is always a great challenge to achieve high-efficiency solution-processed ultra-deep-blue organic light-emitting diodes (OLEDs) with the Commission Internationale de l'Eclairage (CIE) 1931 chromaticity coordinates matching the blue primary of Rec. International Telecommunication Union-Radiocommunication BT.2100, which specifies high dynamic range television image parameters. Inspired by hybrid local and charge transfer (HLCT) excited state emitters improving exciton utilization through high-lying reverse intersystem crossing, here, a series of high-performance blue emitters by a V-shaped symmetric donor (D)-π-acceptor (A)-π-D design strategy are developed. Here, the large torsions and unstable bonds of D-A structures can be improved through π bridges, and also the conjugation length and donor groups can be easily adjusted. The obtained emitters merit excellent photophysical and electrochemical properties, thermal stability, solution processibility, and HLCT excited state excellence. Results suggest that the OLEDs based on the obtained blue emitters all achieve high maximum external quantum efficiency (EQEmax ) of more than 8% with very low efficiency roll-off. In particular, the device based on 4',5'-bis(4-(9H-carbazol-9-yl)phenyl)spiro[fluorene-9,2'-imidazole] exhibits a satisfactory ultra-deep-blue emission (CIEx , y = 0.1579, 0.0387) and a record-high EQEmax (10.40%) among solution-processed HLCT OLEDs, which is very close to the record EQEmax of devices by vacuum vapor deposition technology.
Collapse
Affiliation(s)
- Chuanxin Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Bo Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Qi Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Hongli Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
15
|
Liu F, Cao G, Feng Z, Cheng Z, Yan Y, Xu Y, Jiang Y, Chang Y, Lv Y, Lu P. Triphenylene-Based Emitters with Hybridized Local and Charge-Transfer Characteristics for Efficient Nondoped Blue OLEDs with a Narrowband Emission and a Small Efficiency Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47307-47316. [PMID: 37750758 DOI: 10.1021/acsami.3c09433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Developing high-efficiency nondoped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off is vital for display and lighting applications. Herein, we developed two asymmetric D-π-A blue emitters, PIAnTP and PyIAnTP, in which triphenylene is first utilized as a functional acceptor. The relatively weak charge transfer (CT) properties, rigid molecular structures, and multiple supramolecular interactions in PIAnTP and PyIAnTP can significantly enhance the fluorescence efficiency and suppress the structural relaxations to obtain a narrowband blue emission. The photophysical experiments and theoretical simulations reveal that they both exhibit a typical hybridized local and charge-transfer (HLCT) excited state and achieve high external quantum efficiency (EQE) via a "hot exciton" channel. As a result, PIAnTP- and PyIAnTP-based nondoped devices realize blue emission at 456 and 464 nm, corresponding to CIE coordinates of (0.16, 0.14) and (0.16, 0.19), narrow full width at half-maximums of 52 and 60 nm, and the high EQEs of 8.36 and 8.69%, respectively. More importantly, the PIAnTP- and PyIAnTP-based nondoped devices show small EQE roll-offs of only 5.9 and 2.4% at 1000 cd m-2, respectively. These results signify an advance in designing a highly efficient blue emitter for nondoped OLEDs.
Collapse
Affiliation(s)
- Futong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gongyi Cao
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yan Yan
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yangze Xu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yixuan Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
16
|
Siddiqui I, Kumar S, Tsai YF, Gautam P, Shahnawaz, Kesavan K, Lin JT, Khai L, Chou KH, Choudhury A, Grigalevicius S, Jou JH. Status and Challenges of Blue OLEDs: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2521. [PMID: 37764550 PMCID: PMC10536903 DOI: 10.3390/nano13182521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi-Fang Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shahnawaz
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kiran Kesavan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jin-Ting Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luke Khai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-Hsien Chou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhijeet Choudhury
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
17
|
Deng SL, Chen YK, Lei J, Jayakumar J, Ko CL, Hung WY, Wu TL, Cheng CH. Modifications of Pyridine-3,5-dicarbonitrile Acceptor for Highly Efficient Green-to-Red Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418573 DOI: 10.1021/acsami.3c05243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The strategy of acceptor modification is a powerful technique for tuning the emission color of thermally activated delayed fluorescence (TADF) emitters. In this study, we have successfully designed and synthesized three TADF emitters with donor-acceptor (D-A) structures using a 4-(diphenylamino)-2,6-dimethylphenyl (TPAm) donor and various pyridine-3,5-dicarbonitrile (PC) acceptor units. As a result, three compounds named TPAmbPPC, TPAm2NPC, and TPAmCPPC exhibited greenish-yellow to orange-red emissions with high photoluminescent quantum yields (76-100%) in thin films. Remarkably, a greenish-yellow device based on TPAmbPPC and TPAm2NPC showed a high maximum external quantum efficiency (EQEmax) of 39.1 and 39.0%, respectively. Furthermore, benefiting from the suitable steric hindrance between the acceptor and donor, the nondoped organic light-emitting diodes (OLEDs) based on TPAmbPPC demonstrated an exceptional EQEmax of 21.6%, indicating its promising potential as an efficient emitter for the application of OLED applications. Furthermore, orange-red OLED devices based on TPAmCPPC exhibited a high EQEmax of 26.2%, a CE of 50.1 cd A-1, and a PE of 52.4 lm W-1.
Collapse
Affiliation(s)
- Sheng-Lin Deng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jian Lei
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | | | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
18
|
Zhao T, Jiang S, Wang Y, Hu J, Lin FL, Meng L, Gao P, Chen XL, Lu CZ. Realizing High-Efficiency Orange-Red Thermally Activated Delayed Fluorescence Materials through the Construction of Intramolecular Noncovalent Interactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37315213 DOI: 10.1021/acsami.3c04117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of highly efficient orange and red thermally activated delayed fluorescence (TADF) materials for constructing full-color and white organic light-emitting diodes (OLEDs) remains insufficient because of the formidable challenges in molecular design, such as the severe radiationless decay and the intrinsic trade-off between the efficiencies of radiative decay and reverse intersystem crossing (RISC). Herein, we design two high-efficiency orange and orange-red TADF molecules by constructing intermolecular noncovalent interactions. This strategy could not only ensure high emission efficiency via suppression of the nonradiative relaxation and enhancement of the radiative transition but also create intermediate triplet excited states to ensure the RISC process. Both emitters exhibit typical TADF characteristics, with a fast radiative rate and a low nonradiative rate. Photoluminescence quantum yields (PLQYs) of the orange (TPA-PT) and orange-red (DMAC-PT) materials reach up to 94 and 87%, respectively. Benefiting from the excellent photophysical properties and stability, OLEDs based on these TADF emitters realize orange to orange-red electroluminescence with high external quantum efficiencies reaching 26.2%. The current study demonstrates that the introduction of intermolecular noncovalent interactions is a feasible strategy for designing highly efficient orange to red TADF materials.
Collapse
Affiliation(s)
- Tianxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Yashu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Jiaxuan Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Fu-Lin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Peng Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhang D, Jiang S, Tao X, Lin F, Meng L, Chen XL, Lu CZ. Efficient Spin-Flip between Charge-Transfer States for High-Performance Electroluminescence, without an Intermediate Locally Excited State. RESEARCH (WASHINGTON, D.C.) 2023; 6:0155. [PMID: 37250955 PMCID: PMC10214979 DOI: 10.34133/research.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials with both high photoluminescence quantum yield (PLQY) and fast reverse intersystem crossing (RISC) are strongly desired to realize efficient and stable organic light-emitting diodes (OLEDs). Control of excited-state dynamics via molecular design plays a central role in optimizing the PLQY and RISC rate of TADF materials but remains challenging. Here, 3 TADF emitters possessing similar molecular structures, similar high PLQYs (89.5% to 96.3%), and approximate energy levels of the lowest excited singlet states (S1), but significantly different spin-flipping RISC rates (0.03 × 106 s-1 vs. 2.26 × 106 s-1) and exciton lifetime (297.1 to 332.8 μs vs. 6.0 μs) were systematically synthesized to deeply investigate the feasibility of spin-flip between charge-transfer excited states (3CT-1CT) transition. Experimental and theoretical studies reveal that the small singlet-triplet energy gap together with low RISC reorganization energy between the 3CT and 1CT states could provide an efficient RISC through fast spin-flip 3CT-1CT transition, without the participation of an intermediate locally excited state, which has previously been recognized as being necessary for realizing fast RISC. Finally, the OLED based on the champion TADF emitter achieves a maximum external quantum efficiency of 27.1%, a tiny efficiency roll-off of 4.1% at 1,000 cd/m2, and a high luminance of 28,150 cd/m2, which are markedly superior to those of the OLEDs employing the other 2 TADF emitters.
Collapse
Affiliation(s)
- Donghai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xiaodong Tao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fulin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes,
Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Li C, Luo Y, Huang Y, Qiu H, Lu Z. A Low-Cost Test Method for Accurate Detection of Different Excited-State Species with a Lifetime Span over 5 Orders of Magnitude in One Time Window. Anal Chem 2023; 95:8150-8155. [PMID: 37155725 DOI: 10.1021/acs.analchem.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Accurate quantification on the quantum yields (φ) of both the prompt fluorescence (PF) and the delayed fluorescence (DF) species is quite essential for the clarification of molecular design rationales for thermally activated delayed fluorescence (TADF) luminogens. Currently, most φPF and φDF data of TADF fluorophores were acquired through time-correlated single-photon counting (TCSPC) lifetime measurement systems. However, because of their equal-time-channel working manner, so far all the commercially available TCSPC systems cannot render accurate measurement on φPF of TADF materials due to the lack of enough valid data points in the faster decay region of the corresponding photoluminescence (PL) decay curves. Although an intensified charge coupled device (ICCD) system equipped with a streak camera or an optical parametric oscillation laser has been proven to be a powerful tool for accurate determination of φPF and φDF of TADF fluorophores, the ultrahigh cost of these ICCD systems makes them inaccessible to most users. Herein, by replacing the timing module of a commercial TCSPC system with a low-cost and versatile time-to-digital converter (TDC) module, we developed a modified TCSPC system that can work in an unequal-time-channel manner. The resultant TDC-TCSPC system can not only concurrently determine the accurate lifetime of PF and DF species whose lifetime span even exceeds 5 orders of magnitude in just one time window but also render accurate measurements on φPF and φDF of TADF fluorophores. The reliability of the TDC-TCSPC method was verified through TCSPC- and ICCD-based comparative experiments on ACMPS, a known TADF fluorophore. Our results not only can provide a low-cost and convenient test method for accurate determination of key experimental data of TADF materials but also will facilitate deeper understanding of the molecular design principles for high-performance TADF materials.
Collapse
Affiliation(s)
- Chuan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hailin Qiu
- Orient KOJI Limited, Tianjin 300122, P. R. China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
21
|
Zhang T, Wang X, Huang H, Liu Y, Kang Z. Conventional and Inverted Light-Emitting Diodes with 386 nm Emission Wavelength Based on Metal-Free Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18045-18054. [PMID: 36989133 DOI: 10.1021/acsami.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ultraviolet (UV) light-emitting diodes (LEDs) are of great concern due to wide applications in the fields of solid-state displays, photocommunication, and scientific and medical instruments. During the past 10 years, organic and inorganic semiconductors have made great breakthroughs in short-wavelength emission. Nowadays, carbon dots (CDs), which possess distinctive superiorities of high stability, nontoxicity, and low cost, are promising all-band emission materials for the next generation of LEDs. However, the fabrication of CD-based LEDs (CD-LEDs) with emission wavelengths below 400 nm is still a huge limitation in this field. Herein, we prepared UV emission CDs with the photoluminescence emission wavelength of 371 nm. The UV-CDs are perfectly compatible with both conventional and inverted device structures so as to realize the currently shortest electroluminescent emission wavelength of 386 nm for CD-LEDs. The conventional UV-CD-LEDs possess the optimum luminance of 268 cd m-2 (5427 W sr-1 m-2) with an external quantum efficiency (EQE) of 1.115%. Meanwhile, the inverted UV-CD-LEDs possess the optimum luminance of 132 cd m-2 (2673 W sr-1 m-2) with an EQE of 0.869%. This work paves a new road to manufacture carbon nanomaterial-based UV emission devices with high luminance, EQE, and stability.
Collapse
Affiliation(s)
- Tianyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Xiao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
22
|
Madayanad Suresh S, Zhang L, Hall D, Si C, Ricci G, Matulaitis T, Slawin AMZ, Warriner S, Olivier Y, Samuel IDW, Zysman‐Colman E. A Deep-Blue-Emitting Heteroatom-Doped MR-TADF Nonacene for High-Performance Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2023; 62:e202215522. [PMID: 36480790 PMCID: PMC10107802 DOI: 10.1002/anie.202215522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λPL of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, ΦPL of 71 %, and a delayed lifetime, τd of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQEmax ) of 8.5 % at Commission Internationale de l'Éclairage (CIE) coordinates of (0.173, 0.055). The EQEmax values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).
Collapse
Affiliation(s)
- Subeesh Madayanad Suresh
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Gaetano Ricci
- Laboratory for Computational Modeling of Functional Materials & Solid State Physics LaboratoryNamur Institute of Structured MatterUniversity of NamurRue de Bruxelles, 615000NamurBelgium
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Alexandra M. Z. Slawin
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Stuart Warriner
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials & Solid State Physics LaboratoryNamur Institute of Structured MatterUniversity of NamurRue de Bruxelles, 615000NamurBelgium
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre, EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| |
Collapse
|
23
|
Xie Y, Hua L, Wang Z, Liu Y, Ying S, Liu Y, Ren Z, Yan S. Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
24
|
Zhao C, Ding Z, Zhang Y, Ni Z, Li S, Gong S, Zou B, Wang K, Yu L. Thermally activated delayed fluorescence with dual-emission and pressure-induced bidirectional shifting: cooperative effects of intramolecular and intermolecular energy transfer. Chem Sci 2023; 14:1089-1096. [PMID: 36756321 PMCID: PMC9891365 DOI: 10.1039/d2sc05792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Different from the conventional piezochromic materials with a mono-redshift of single emission, our well-designed molecule demonstrates a sensitive turn-on and color-tunable piezochromic luminescence in response to the hydrostatic pressure. The molecule PXZ-W-SOF possesses dual-emission and pressure-induced bidirectional shifting characteristics. On the basis of in-depth experimental studies, on one hand, it is confirmed that the origin of the dual-emission behavior is the intramolecular charge transfer, namely thermally activated delayed fluorescence (TADF), and the intermolecular excimer; on the other hand, the emission of the excimer exhibits three-step variations with increasing pressure, which is mainly attributed to the molecular structure and its crystal packing state. The remarkable color change of PXZ-W-SOF from sky-blue to green to deep-blue during the whole process of boosting and releasing pressure is a result of intramolecular and intermolecular energy-transfer interactions. The PXZ-W-SOF molecular model is an extremely rare example of highly sensitive fluorescence tuning driven by TADF and excimer conversion under mechanical stimulation, thus providing a novel mechanism for the field of piezochromism. The unique molecular design also offers a new idea for rare deep-blue and ultraviolet TADF materials.
Collapse
Affiliation(s)
- Chenyue Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Zhipeng Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Yibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University Wuhan 430072 People's Republic of China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University Qianjin Street 2699 Changchun 130012 People's Republic of China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University Qianjin Street 2699 Changchun 130012 People's Republic of China
| | - Ling Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|
25
|
Weber F, Mori H. On donor-acceptor-bridging intramolecular hydrogen bonds in NIR-TADF molecules. RSC Adv 2023; 13:3942-3946. [PMID: 36756563 PMCID: PMC9891092 DOI: 10.1039/d2ra07450h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Following a report that highlights the importance of intramolecular hydrogen bonds for improved NIR-TADF efficiency in CAT-1 [Leng et al., J. Phys Chem. A, 2021, 125, 2905], an intramolecularly doubly hydrogen-bonded base design is investigated and compared to singly and non-bonded derivatives. It is found that the potential to form more intramolecular hydrogen bonds correlates with decreasing internal reorganization energies in most of the designed structures. In addition, our proposed base design facilitates the desired interlocking of charge transfer donor-, linker- and acceptor-planes through steric gauche-interactions to both linker-plane sides, allowing to trap also smaller heterocyclic linkers.
Collapse
Affiliation(s)
- Fabian Weber
- Chuo University, Department of Applied Chemistry Kasuga 1-13-27 112-8551 Tokyo-to Bunkyo-ku Japan
| | - Hirotoshi Mori
- Chuo University, Department of Applied Chemistry Kasuga 1-13-27 112-8551 Tokyo-to Bunkyo-ku Japan
| |
Collapse
|
26
|
Yiu TC, Gnanasekaran P, Chen WL, Lin WH, Lin MJ, Wang DY, Lu CW, Chang CH, Chang YJ. Multifaceted Sulfone-Carbazole-Based D-A-D Materials: A Blue Fluorescent Emitter as a Host for Phosphorescent OLEDs and Triplet-Triplet Annihilation Up-Conversion Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1748-1761. [PMID: 36576167 DOI: 10.1021/acsami.2c21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electroluminescence (EL) from the singlet-excited (S1) state is the ideal choice for stable, high-performing deep-blue organic light-emitting diodes (OLEDs) owing to the advantages of an adequately short radiative lifetime, improved device durability, and low cost, which are the most important criteria for their commercialization. Herein, we present the design and synthesis of three donor-acceptor-donor (D-A-D)-configured deep-blue fluorescent materials (denoted as TC-1, TC-2, and TC-3) composed of a thioxanthone or diphenyl sulfonyl acceptor and phenyl carbazolyl donor. These systems exhibit strong deep-blue photoluminescence (422-432 nm) in solutions and redshifted emission (472-486 nm) in thin films. The solid-state photoluminescence quantum yield (PLQY) was estimated to be 78 and 94% for TC-2 and TC-3, respectively. TC-2 and TC-3 possess good molecular packing and large molecular cross-sectional areas, which not only improves the PLQY but enhances the triplet-triplet annihilation up-conversion (TTAUC) efficiency of fluorescent emitters. Furthermore, both compounds were applied as an acceptor for confirming their TTAUC property using bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III) (Ir(MDQ)2acac) as the sensitizer. Non-doped OLEDs based on TC-2 and TC-3 exhibit blue EL in the 461-476 nm range. In particular, TC-3 exhibits a maximum external quantum efficiency (EQEmax) of 5.1%, and its EL maximum is 476 nm. In addition, the three emitters were employed as hosts in red OLEDs using bis(1-phenylisoquinoline)(acetylacetonate)iridium(III) (Ir(piq)2acac) as the phosphorescent dopant. The red phosphorescent OLEDs based on TC-1, TC-2, and TC-3 achieve excellent EQEmax values of 21.6, 22.9, and 21.9%, respectively, and peak luminance efficiencies of 12.0, 14.0, and 12.3 cd A-1. These results highlight these fluorophores' versatility and promising prospects in practical OLED applications.
Collapse
Affiliation(s)
- Tsz Chung Yiu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | | | - Wei-Ling Chen
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wei-Han Lin
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Jun Lin
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Chih-Hao Chang
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
27
|
Gu J, Li Z, Li Q. From single molecule to molecular aggregation science. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Huo Y, Lv J, Xie Y, Hua L, Liu Y, Ren Z, Li T, Ying S, Yan S. Structurally Regulated Carbazole-Pyridine Derivatives Based on Space-Crowded Theory for Efficient Narrowband Ultraviolet Nondoped Organic Light-Emitting Diodes from the High-Lying Reverse Intersystem Crossing Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57092-57101. [PMID: 36516406 DOI: 10.1021/acsami.2c20806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Achieving ultraviolet and narrowband emission simultaneously in nondoped organic light-emitting diodes (OLEDs) remains a tremendous challenge. Here, a "space-crowded donor-acceptor-donor" molecular design strategy is proposed for developing ultraviolet pure organic fluorophores by the nearby substituted positions at the phenyl linker between carbazole and pyridine units. Benefitting from the large steric hindrance effect, multiple intramolecular interactions, and low-frequency vibronic coupling dominated excited state property, all the emitters exhibit excellent fluorescence efficiencies at the solid state as well as the narrow full width at half maximums (FWHMs). Moreover, the effect of different substitution positions of pyridine on the structure-property relationship is also revealed. Consequently, the nondoped OLEDs exhibit an electroluminescence emission peak of 397 nm with FWHMs of 17 and 22 nm. Due to the high-lying reverse intersystem crossing process, external quantum and exciton utilization efficiencies of 3.6 and 54.55%, respectively, have been achieved based on the emitter with para-linkage. These findings may pave an avenue for the development of high-performance narrowband ultraviolet materials and OLEDs.
Collapse
Affiliation(s)
- Yumiao Huo
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong266590, P. R. China
| | - Jichen Lv
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Yanchao Xie
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Tingxi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong266590, P. R. China
| | - Shian Ying
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
29
|
He X, Lou J, Li B, Wang H, Peng X, Li G, Liu L, Huang Y, Zheng N, Xing L, Huo Y, Yang D, Ma D, Zhao Z, Wang Z, Tang BZ. An Ultraviolet Fluorophore with Narrowed Emission via Coplanar Molecular Strategy. Angew Chem Int Ed Engl 2022; 61:e202209425. [DOI: 10.1002/anie.202209425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Xin He
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Jingli Lou
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Baoxi Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Han Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Lu Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Yu Huang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Longjiang Xing
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen 518172 China
| |
Collapse
|
30
|
Huang Z, Lei B, Yang D, Ma D, Bin Z, You J. Modified Intramolecular‐Lock Strategy Enables Efficient Thermally Activated Delayed Fluorescence Emitters for Non‐Doped OLEDs. Angew Chem Int Ed Engl 2022; 61:e202213157. [DOI: 10.1002/anie.202213157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Zhenmei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| | - Bowen Lei
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| |
Collapse
|
31
|
Li T, Wang Z, Zhang Y, Wu Z. Engineering Coinage Metal Nanoclusters for Electroluminescent Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3837. [PMID: 36364613 PMCID: PMC9656650 DOI: 10.3390/nano12213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Coinage metal nanoclusters (MNCs) are a new type of ultra-small nanoparticles on the sub-nanometer (typically < three nm) scale intermediate between atoms and plasmonic nanoparticles. At the same time, the ultra-small size and discrete energy levels of MNCs enable them to exhibit molecular-like energy gaps, and the total structure involving the metal core and surface ligand together leads to their unique properties. As a novel environmentally friendly chromophore, MNCs are promising candidates for the construction of electroluminescent light-emitting diodes (LEDs). However, a systematic summary is urgently needed to correlate the properties of MNCs with their influences on electroluminescent LED applications, describe the synthetic strategies of highly luminescent MNCs for LEDs’ construction, and discuss the general influencing factors of MNC-based electroluminescent LEDs. In this review, we first discuss relevant photoemissions of MNCs that may have major influences on the performance of MNC-based electroluminescent LEDs, and then demonstrate the main synthetic strategies of highly luminescent MNCs. To this end, we illustrate the recent development of electroluminescent LEDs based on MNCs and present our perspectives on the opportunities and challenges, which may shed light on the design of MNC-based electroluminescent LEDs in the near future.
Collapse
Affiliation(s)
- Tingting Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ying Zhang
- Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
32
|
Muniz CN, Schaab J, Razgoniaev A, Djurovich PI, Thompson ME. π-Extended Ligands in Two-Coordinate Coinage Metal Complexes. J Am Chem Soc 2022; 144:17916-17928. [PMID: 36126274 DOI: 10.1021/jacs.2c06948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-coordinate carbene-MI-amide (cMa, MI = Cu, Ag, Au) complexes have emerged as highly efficient luminescent materials for use in a variety of photonic applications due to their extremely fast radiative rates through thermally activated delayed fluorescence (TADF) from an interligand charge transfer (ICT) process. A series of cMa derivatives was prepared to examine the variables that affect the radiative rate, with the goal of understanding the parameters that control the radiative TADF process in these materials. We find that blue-emissive complexes with high photoluminescence efficiencies (ΦPL > 0.95) and fast radiative rates (kr = 4 × 106 s-1) can be achieved by selectively extending the π-system of the carbene and amide ligands. Of note is the role played by the increased separation between the hole and electron in the ICT excited state. Analysis of temperature-dependent luminescence data and theoretical calculations indicate that the hole-electron separation exerts a primary effect on the energy gap between the lowest-energy singlet and triplet states (ΔEST) while keeping the radiative rate for the singlet state relatively unchanged. This interpretation provides guidelines for the design of new cMa derivatives with even faster radiative rates in addition to those with slower radiative rates and thus extended excited state lifetimes.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anton Razgoniaev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
33
|
Yu Y, Xing H, Liu D, Zhao M, Sung HH, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angew Chem Int Ed Engl 2022; 61:e202204279. [DOI: 10.1002/anie.202204279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Yu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Hao Xing
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Dan Liu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Mengying Zhao
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Herman H.‐Y. Sung
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ian D. Williams
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Jacky W. Y. Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| |
Collapse
|
34
|
Li S, Zhou L, Zhang H. Investigation progresses of rare earth complexes as emitters or sensitizers in organic light-emitting diodes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:177. [PMID: 35688822 PMCID: PMC9187687 DOI: 10.1038/s41377-022-00866-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Due to unique photo-physical characteristics, rare earth (RE) complexes play important roles in many fields, for example, telecommunications, life science, and organic light-emitting diodes (OLEDs). Especially, thanks to narrow emission bandwidth and 100% theoretical internal quantum efficiency (IQE), the study of RE complexes in the electroluminescence field has been a hot research topic in recent 30 years. As a leading technology in solid-state light source fields, OLEDs have attracted great interest from academic researchers and commercial endeavors. In the last decades, OLED-based products have trickled into the commercial market and developed quickly into portable display devices. Here, we briefly introduce the luminescent characteristics and electroluminescent (EL) study of RE complexes in material synthesis and device design. Moreover, we emphatically reveal the innovative application of RE complexes as sensitizers in OLEDs. Through experimental validation, the application of RE complexes as sensitizers can realize the complementary advantages of RE complexes and transition metal complexes, leading to significantly improved performances of OLEDs. The application of RE complexes as sensitizers provides a new strategy for designing and developing novel high performances OLEDs.
Collapse
Affiliation(s)
- Shuaibing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230027, Hefei, China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230027, Hefei, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230027, Hefei, China
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
35
|
Li H, Huang L, Huang Z, Zhang L, Tang Y, Wang X, He Y, Liu Z. Improving the chemical stability of blue heteroleptic iridium emitter FIrpic in the lowest triplet state through ancillary ligand modification: a theoretical perspective. Phys Chem Chem Phys 2022; 24:9543-9550. [PMID: 35389412 DOI: 10.1039/d2cp00185c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the aim of providing a deeper understanding of the underlying degradation mechanisms associated with the lifetime of blue emitters during the decay process of blue PhOLEDs, quantum chemistry studies were performed to examine the chemical degradation mechanism of common sky blue emitter iridium(III)bis(4,6-di-fluorophenyl)-pyridinato-N,C2')picolinate (FIrpic) and its derivatives with density functional theory (DFT) calculations. For these Ir(III) emitters, the Ir-N1 bond between the ancillary ligand (picolinate) and central iridium will be broken by external light stimuli, which is followed by conversion from the initial emissive metal-to-ligand charge transfer (3MLCT) state to the non-emissive metal centered (3MC) state. The potential energy change for the photo-induced degradation path is then dominated by the energy levels of the 3MT and 3MC states, which are related to the triplet transition energy and the Ir-N1 bond strength, respectively. Thereby, the Ir-N1 bond dissociation in the lowest triplet state will be much harder to proceed if the S0 → T1 transition energy gets more energetically stable or the bond strength gets larger. It is believed that strategic modification of the ancillary ligand, especially by substitution of electron-donating groups at the para position of the pyridyl N atom or extension of the p-electron delocalization, is an effective and easy way to enhance the photochemical stability of the typical blue emitter FIrpic.
Collapse
Affiliation(s)
- Huifang Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Luyan Huang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Zehua Huang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Lisheng Zhang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Xiaojun Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Yan He
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Zhiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| |
Collapse
|
36
|
Yu Y, Xing H, Liu D, Zhao M, Sung HHY, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15%. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Yu
- CUHKS: The Chinese University of Hong Kong - Shenzhen Science and Engineering CHINA
| | - Hao Xing
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Dan Liu
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Mengying Zhao
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Herman H.-Y. Sung
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Ian D. Williams
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Jacky W. Y. Lam
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | | | - Zheng Zhao
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|
37
|
Li G, Li B, Zhang H, Guo X, Lin C, Chen K, Wang Z, Ma D, Tang BZ. Efficient Ultraviolet Organic Light-Emitting Diodes with a CIEy of 0.04 and Negligible-Efficiency Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10627-10636. [PMID: 35171553 DOI: 10.1021/acsami.1c24285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic light-emitting diodes (OLEDs) with ultraviolet (UV) emission (λEL ≤ 400 nm) have attracted special attention in commercial and civil fields owing to their special functions. Nevertheless, the lack of high-quality ultraviolet emitters restricts the practical application of UV OLEDs. Herein, a novel organic molecule with desirable UV emission, 2Na-CzCN, is developed for UV OLEDs. Theoretical investigation indicates that it is equipped with hybridized local and charge-transfer (HLCT) characteristics, which is in favor of the high-lying reverse intersystem crossing (RISC) process, thus remarkably boosting the exciton utilization in electroluminescence (EL). Significantly, the nondoped device derived from the 2Na-CzCN emitter exhibits an EL emission peak of 398 nm with a maximum external quantum efficiency (EQE) of 5.92%, which represents the record-high result among nondoped UV OLEDs. The doped UV OLED of 2Na-CzCN radiates robust UV emission at a peak of 392 nm with a maximum EQE of 6.15%. Coupled with the narrow full width at half-maximum (FWHM) of the EL spectra, desirable color purities with Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.06) and (0.16, 0.04) for nondoped and doped OLEDs are presented, respectively. Additionally, the potential of 2Na-CzCN adopted as the host material is demonstrated with phosphorescent OLEDs (PhOLEDs), and all of the devices show good EL performances with low-efficiency roll-offs. An orange PhOLED with 2Na-CzCN acquires a maximum current and external quantum efficiency of 84.9 cd A-1 and 25.3%, respectively. These findings may pave an avenue for the development of high-performance UV emitters.
Collapse
Affiliation(s)
- Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Baoxi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Han Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Xuecheng Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Chengwei Lin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Kongqi Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
38
|
Chen J, Liu H, Guo J, Wang J, Qiu N, Xiao S, Chi J, Yang D, Ma D, Zhao Z, Tang BZ. Robust Luminescent Molecules with High-Level Reverse Intersystem Crossing for Efficient Near Ultraviolet Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2022; 61:e202116810. [PMID: 34981618 DOI: 10.1002/anie.202116810] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/21/2022]
Abstract
Organic light-emitting diodes (OLEDs) radiating near ultraviolet (NUV) light are of high importance but rarely reported due to the lack of robust organic short-wavelength emitters. Here, we report a short π-conjugated molecule (POPCN-2CP) with high thermal and morphological stabilities and strong NUV photoluminescence. Its neat film exhibits an electroluminescence (EL) peak at 404 nm with a maximum external quantum efficiency (ηext,max ) of 7.5 % and small efficiency roll-off. The doped films of POPCN-2CP in both non-polar and polar hosts at a wide doping concentration range (10-80 wt%) achieve high-purity NUV light (388-404 nm) and excellent ηext,max s of up to 8.2 %. The high-level reverse intersystem crossing improves exciton utilization and accounts for the superb ηext,max s. POPCN-2CP can also serve as an efficient host for blue fluorescence, thermally activated delayed fluorescence and phosphorescence emitters, providing excellent EL performance via Förster energy transfer.
Collapse
Affiliation(s)
- Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jianghui Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Nuoling Qiu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shu Xiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jiajin Chi
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Guangdong, 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
39
|
Chen J, Liu H, Guo J, Wang J, Qiu N, Xiao S, Chi J, Yang D, Ma D, Zhao Z, Tang BZ. Robust Luminescent Molecules with High‐Level Reverse Intersystem Crossing for Efficient Near Ultraviolet Organic Light‐Emitting Diodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jianghui Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Nuoling Qiu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Shu Xiao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jiajin Chi
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- AIE Institute, Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
40
|
Bai X, Wu SX, Duan YC, Pan QQ, Gao FW, Kan YH, Su ZM. Turning conventional non-TADF units into high-lying reverse intersystem crossing TADF emitters: different symmetric D–A–D-type modified donor units. NEW J CHEM 2022. [DOI: 10.1039/d2nj02484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT and TD-DFT calculations were performed to turn conventional non-TADF units into high-lying reverse intersystem crossing D–A–D-type TADF emitters.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Shui-xing Wu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ying-chen Duan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Qing-qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Feng-wei Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| | - Yu-he Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, China
| | - Zhong-min Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
41
|
Jiang X, Liang T, Wang J, Pan Y, Yang B. Effects of long-short axis skeleton on excited-state properties of ultraviolet hot exciton molecules: luminescence mechanism and molecular design. Phys Chem Chem Phys 2022; 24:22309-22318. [DOI: 10.1039/d2cp02824g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wise design strategies for efficient ultraviolet (UV) hot exciton molecules are highly desired. In this work, inspired by the long-short axis skeleton strategy, theoretical perspective for the substituent effect of...
Collapse
|
42
|
Li J, Li T, Zhang M, Guo D, Zhang H. Rational designs of structurally similar TADF and HLCT emitters with benzo- or naphtho-carbazole units as electron donors. Phys Chem Chem Phys 2022; 24:25937-25949. [DOI: 10.1039/d2cp03500f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Structurally similar D–A type molecules with the combination of benzo- or naphtho-carbazole units as electron donors and tunable electron acceptors with different electron-withdrawing ability are designed to realize HLCT and TADF emissions.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tingyu Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingfan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dongxue Guo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
43
|
Liu F, Cheng Z, Wan L, Feng Z, Liu H, Jin H, Gao L, Lu P, Yang W. Highly Efficient Multi-Resonance Thermally Activated Delayed Fluorescence Material with a Narrow Full Width at Half-Maximum of 0.14 eV. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106462. [PMID: 34862733 DOI: 10.1002/smll.202106462] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) material, which possesses the ability to achieve narrowband emission in organic light-emitting diodes (OLEDs), is of significant importance for wide color gamut and high-resolution display applications. To date, MR-TADF material with narrow full width at half-maximum (FWHM) below 0.14 eV still remains a great challenge. Herein, through peripheral protection of MR framework by phenyl derivatives, four efficient narrowband MR-TADF emitters are successfully designed and synthesized. The introduction of peripheral phenyl-based moieties via a single bond significantly suppresses the high-frequency stretching vibrations and reduces the reorganization energies, accordingly deriving the resulting molecules with small FWMH values around 20 nm/0.11 eV and fast radiative decay rates exceeding 108 s-1 . The corresponding green OLED based on TPh-BN realizes excellent performance with the maximum external quantum efficiency (EQE) up to 28.9% without utilizing any sensitizing host and a relatively narrow FWHM of 0.14 eV (28 nm), which is smaller than the reported green MR-TADF molecules in current literatures. Especially, the devices show significantly reduced efficiency roll-off and relatively long operational lifetimes among the sensitizer-free MR-TADF devices. These results clearly indicate the promise of this design strategy for highly efficient OLEDs with ultra-high color purity.
Collapse
Affiliation(s)
- Futong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liang Wan
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hui Liu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haixu Jin
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lei Gao
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
44
|
Wei Z, Zuo T, Jiang S, Qi F, Yang M, Meng L, Lu CZ. Theoretically elucidating high photoluminescence performance of dimethylacridan-based blue-color thermally activated delayed fluorescent materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj05251a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on first-principles methods, we comprehensively quantify the luminous quantum efficiencies and related photophysical process rates of dimethylacridan-based blue-color TADF emitters.
Collapse
Affiliation(s)
- Zhuangzhuang Wei
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Tao Zuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shanshan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Fangfang Qi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Lingyi Meng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Can-Zhong Lu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
45
|
Exceptionally efficient deep blue anthracene-based luminogens: design, synthesis, photophysical, and electroluminescent mechanisms. Sci Bull (Beijing) 2021; 66:2090-2098. [PMID: 36654267 DOI: 10.1016/j.scib.2021.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023]
Abstract
Achieving high-efficiency deep blue emitter with CIEy < 0.06 (CIE, Commission Internationale de L'Eclairage) and external quantum efficiency (EQE) >10% has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes (OLEDs). Here, we report the rational design and synthesis of two new deep blue luminogens: 4-(10-(4'-(9H-carbazol-9-yl)-2,5-dimethyl-[1,1'-biphenyl]-4-yl)anthracen-9-yl)benzonitrile (2M-ph-pCzAnBzt) and 4-(10-(4-(9H-carbazol-9-yl)-2,5-dimethylphenyl)anthracen-9-yl)benzonitrile (2M-pCzAnBzt). In particular, 2M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIEx,y (0.151, 0.057). The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion, which are supported by analysis of theoretical calculation, triplet sensitization experiments, as well as nanosecond transient absorption spectroscopy. This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.
Collapse
|
46
|
Zhang H, Li G, Guo X, Zhang K, Zhang B, Guo X, Li Y, Fan J, Wang Z, Ma D, Tang BZ. High-Performance Ultraviolet Organic Light-Emitting Diode Enabled by High-Lying Reverse Intersystem Crossing. Angew Chem Int Ed Engl 2021; 60:22241-22247. [PMID: 34387938 DOI: 10.1002/anie.202108540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Indexed: 11/05/2022]
Abstract
Ultraviolet (UV) organic emitters that can open up applications for future organic light-emitting diodes (OLEDs) are of great value but rarely developed. Here, we report a high-quality UV emitter with hybridized local and charge-transfer (HLCT) excited state and its application in UV OLEDs. The UV emitter, 2BuCz-CNCz, shows the features of low-lying locally excited (LE) emissive state and high-lying reverse intersystem crossing (hRISC) process, which helps to balance the color purity and exciton utilization of UV OLED. Consequently, the OLED based on 2BuCz-CNCz exhibits not only a desired narrowband UV electroluminescent (EL) at 396 nm with satisfactory color purity (CIEx, y =0.161, 0.031), but also a record-high maximum external quantum efficiency (EQE) of 10.79 % with small efficiency roll-off. The state-of-the-art device performance can inspire the design of UV emitters, and pave a way for the further development of high-performance UV OLEDs.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Xiaomin Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Bing Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Xuecheng Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Yuxuan Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
47
|
Zhang H, Li G, Guo X, Zhang K, Zhang B, Guo X, Li Y, Fan J, Wang Z, Ma D, Tang BZ. High‐Performance Ultraviolet Organic Light‐Emitting Diode Enabled by High‐Lying Reverse Intersystem Crossing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Han Zhang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xiaomin Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology School of Physics and Electronics Shandong Normal University Jinan 250014 China
| | - Bing Zhang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xuecheng Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Yuxuan Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology School of Physics and Electronics Shandong Normal University Jinan 250014 China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen 518172 China
| |
Collapse
|
48
|
Chen YK, Jayakumar J, Hsieh CM, Wu TL, Liao CC, Pandidurai J, Ko CL, Hung WY, Cheng CH. Triarylamine-Pyridine-Carbonitriles for Organic Light-Emitting Devices with EQE Nearly 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008032. [PMID: 34297444 DOI: 10.1002/adma.202008032] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Collapse
Affiliation(s)
- Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayachandran Jayakumar
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chia-Min Hsieh
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chun-Cheng Liao
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayabalan Pandidurai
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
49
|
Liu Y, Hua L, Zhao Z, Ying S, Ren Z, Yan S. High-Efficiency Solution-Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101326. [PMID: 34313017 PMCID: PMC8456236 DOI: 10.1002/advs.202101326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Indexed: 05/29/2023]
Abstract
The state-of-the-art luminescent materials are gained widely by utilizing thermally activated delayed fluorescence (TADF) mechanism. However, the feasible molecular designing strategy of fully exploiting triplet excitons to enhance TADF properties is still in demand. Herein, TADF emitters with multiple conversion channels of triplet excitons are designed by concisely halogenating the electron acceptors containing carbonyl moiety. Compared with the chlorinated and brominated analogues, the fluorinated emitter exhibits distinguishing molecular stacking structures, participating in the formation of trimers through integrating CH···F and C═O···H hydrogen bonds together. It is also demonstrated that the multiple channels can be involved synergistically to accelerate the spin-flip of triplet excitons, and to take charge of the relatively superior reverse intersystem crossing constant rate of 6.20 × 105 s-1 , and thus excellent photoluminescence quantum yields over 90% can easily be achieved. Then the solution-processable organic light emitting diode based on fluorinated emitter can achieve a record-high external quantum efficiency value of 27.13% and relatively low efficiency roll-off with remaining 24.74% at 1000 cd m-2 . This result manifests the significance of enhancing photophysical properties through constructing multiple conversion channels of triplets excitons for high-efficiency TADF emitters and provides a guideline for the future study.
Collapse
Affiliation(s)
- Yuchao Liu
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber‐PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Lei Hua
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shian Ying
- Key Laboratory of Rubber‐PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber‐PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| |
Collapse
|
50
|
Li TY, Shlian DG, Djurovich PI, Thompson ME. A Luminescent Two-Coordinate Au I Bimetallic Complex with a Tandem-Carbene Structure: A Molecular Design for the Enhancement of TADF Radiative Decay Rate. Chemistry 2021; 27:6191-6197. [PMID: 33561304 DOI: 10.1002/chem.202100512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/15/2022]
Abstract
A luminescent bimetallic AuI complex comprised of N-heterocyclic carbene (NHC) and carbazole (Cz) ligands, that is, (NHC')Au(NHC)AuCz has been synthesized and studied. Both carbene ligands in the bimetallic complex act as electron acceptors in tandem to increase the energy separation between the ground and excited state, which is higher than those found in either monometallic analogue, (NHC)AuCz and (NHC')AuCz. A coplanar geometry designed into the tandem complex ensures sufficient electronic coupling between the π-orbitals of the ligands to impart a strong oscillator strength to the singlet intra-ligand charge-transfer (1 ICT) transition. Theoretical modelling indicates that the emissive ICT excited state involves both NHC ligands. The tandem complex gives blue luminescence (λmax =480 nm) with a high photoluminescent quantum yield (ΦPL =0.80) with a short decay lifetime (τ=0.52 μs). Temperature-dependent photophysical studies indicate that emission is via thermally assisted delayed fluorescence (TADF) and give a small singlet-triplet energy difference (ΔEST =50 meV, 400 cm-1 ) consistent with the short TADF lifetime.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|