1
|
Liang T, Zhang X, Huang Y, Lu Y, Jia H, Yuan Y, Meng L, Zhou Y, Zhou L, Guan P, Wan T, Ferry M, Chu D. Cutting-Edge Progress in Aqueous Zn-S Batteries: Innovations in Cathodes, Electrolytes, and Mediators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405810. [PMID: 39363800 DOI: 10.1002/smll.202405810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable aqueous zinc-sulfur batteries (AZSBs) are emerging as prominent candidates for next-generation energy storage devices owing to their affordability, non-toxicity, environmental friendliness, non-flammability, and use of earth-abundant electrodes and aqueous electrolytes. However, AZSBs currently face challenges in achieving satisfied electrochemical performance due to slow kinetic reactions and limited stability. Therefore, further research and improvement efforts are crucial for advancing AZSBs technology. In this comprehensive review, it is delved into the primary mechanisms governing AZSBs, assess recent advancements in the field, and analyse pivotal modifications made to electrodes and electrolytes to enhance AZSBs performance. This includes the development of novel host materials for sulfur (S) cathodes, which are capable of supporting higher S loading capacities and the refinement of electrolyte compositions to improve ionic conductivity and stability. Moreover, the potential applications of AZSBs across various energy platforms and evaluate their market viability based on recent scholarly contributions is explored. By doing so, this review provides a visionary outlook on future research directions for AZSBs, driving continuous advancements in stable AZSBs technology and deepening the understanding of their charge-discharge dynamics. The insights presented in this review signify a significant step toward a sustainable energy future powered by renewable sources.
Collapse
Affiliation(s)
- Tianyue Liang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xinren Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yixuan Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yile Lu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Haowei Jia
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yu Yuan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Linghui Meng
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yingze Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Lu Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Michael Ferry
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
2
|
Cheng L, Huang Y, Ahmad M, Liu Y, Xu J, Liu Y, Seidi F, Wang D, Lin Z, Xiao H. N-Vacancy Enriched Porous BN Fibers for Enhanced Polysulfides Adsorption and Conversion in High-Performance Lithium-Sulfur Batteries. Chemistry 2024; 30:e202402200. [PMID: 39004611 DOI: 10.1002/chem.202402200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/16/2024]
Abstract
Severe shuttle effect of soluble polysulfides and sluggish redox kinetics have been thought of as the critical issues hindering the extensive applications of lithium-sulfur batteries (LSBs). Herein, one-dimensional boron nitride (1D BN) fibers with abundant pores and sufficient N-vacancy defects were synthesized using a thermal crystallization following a pre-condensation step. The 1D structure of BN facilitates unblocked ions diffusion pathways during charge/discharge cycles. The embedded pores within the polar BN strengthen the immobilization of polysulfides via both physical confinement and chemical interaction. Moreover, the highly exposed active surface area and intentionally created N-vacancy sites substantially promote reaction kinetics by lowering the energy barriers of the rate-limiting steps. After incorporating with conductive carbon networks and elemental S, the as-prepared S/Nv-BN@CBC cathode of LSBs deliver an initial discharge capacity of up to 1347 mAh g-1 at 200 mA g-1, while maintaining a low decay rate of 0.03 % per cycle over 1000 cycles at 1600 mA g-1. This work offers an effective strategy to mitigate the shuttle effect and highlights the significant potential of defect-engineered BN in accelerating the reaction kinetics of LSBs.
Collapse
Affiliation(s)
- Long Cheng
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yue Liu
- FAMSUN New Energy BU, Famsun Group Changzhou Huacai New Energy technology Co., Ltd., Changzhou, 100043, China
| | - Jiaqi Xu
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yihong Liu
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongqing Wang
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zixia Lin
- Testing center, Yangzhou University, Yangzhou, 225009, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5 A3, Canada
| |
Collapse
|
3
|
Lu Y, Deng N, Wang H, Zhang F, Wang Y, Jin Y, Cheng B, Kang W. Progresses and Perspectives of Carbon-Free Metal Compounds-Modified Separators for High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405141. [PMID: 39194403 DOI: 10.1002/smll.202405141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Lithium-sulfur batteries (LSBs) have the advantages of high theoretical specific capacity, excellent energy density, abundant elemental sulfur reserves. However, the LSBs is mainly limited by shuttling of lithium polysulfides (LiPSs), slow reaction kinetics of sulfur cathode. For solving the above problems, by developing high-performance battery separators, the reversible capacity, Coulombic efficiency (CE) and cycle life of LSBs can be effectively enhanced. Carbon-free based metal compounds are expected to be highly efficient separator modifiers for a new generation of high-performance LSBs by virtue of superior chemical adsorption capacity, strong catalytic properties and excellent lithophilicity to a certain extent. They can give play to the synergistic effect of their "adsorption-catalysis" sites to accelerate the redox kinetics of LiPSs, and their good lithophilicity can accelerate the Li+ transport kinetics, thus showing more remarkable electrochemical performances. However, a comprehensive summary of carbon-free metal compounds-modified separators for LSBs is still lacking. Here, this review systematically summarizes the researching progresses and performance characteristics of carbon-free-based metal compounds modified materials for separators of LSBs, and summarizes the corresponding mechanisms of using carbon-based separators to enhance the performance of LSBs. Finally, the review also looks forward to the prospects of LSBs using carbon-free metal compounds separators.
Collapse
Affiliation(s)
- Yayi Lu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Fan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yilong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yongbing Jin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
4
|
Wang B, Wang Y, Lan Y, Lu G, Liu L, Tang T, Li M, Cheng Y, Xiao J, Li X. Integrated Design for Discrete Sulfur@Polymer Nanoreactor with Tandem Connection as Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2024; 63:e202406693. [PMID: 38781083 DOI: 10.1002/anie.202406693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Apart from electrode material modification, architecture design and optimization are important approaches for improving lithium-sulfur battery performance. Herein, an integrated structure with tandem connection is constructed by confining nanosulfur (NS) in conductive poly(3,4-ethylenedioxythiophene) (PEDOT) reaction chambers, forming an interface of discrete independent nanoreactor units bonded onto carbon nanotubes (noted as CNT/NS@PEDOT). The unique spatial confinement and concentration gradients of sulfur@PEDOT nanoreactors (SP-NRs) can promote reaction kinetics while facilitating rapid polysulfide transformation and minimizing dissolution and diffusion losses. Meanwhile, overall ultrahigh energy input and output are achieved through tandem connection with carbon nanotubes, isolation with PEDOT coating, and synergistic multiplicative effects among SP-NRs. As a result, it delivers a high initial discharge capacity of 1246 mAh g-1 at 0.1 C and 918 mAh g-1 at 1 C, the low capacity decay rate per lap of 0.011 % is achieved at a current density of 1 C after 1000 cycles. This research emphasizes the innovative structural design to provide a fresh trajectory for the further advancement of high-performance energy storage devices.
Collapse
Affiliation(s)
- Bin Wang
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Yu Wang
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Yudong Lan
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Guiling Lu
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Ling Liu
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Tao Tang
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Ming Li
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Yong Cheng
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Jianrong Xiao
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Xinyu Li
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
5
|
Dong X, Gu W, Tong X, Liu G, Sun J, Li H, Gu X, Zhu T, Zhang S. In Situ Growth Strategy to Construct "Four-In-One" Separators with Functionalized Polyphosphazene Coatings for Safe and Stable Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311471. [PMID: 38429237 DOI: 10.1002/smll.202311471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Lithium-sulfur batteries (LSBs) are facing many challenges, such as the inadequate conductivity of sulfur, the shuttle effect caused by lithium polysulfide (LiPSs), lithium dendrites, and the flammability, which have hindered their commercial applications. Herein, a "four-in-one" functionalized coating is fabricated on the surface of polypropylene (PP) separator by using a novel flame-retardant namely InC-HCTB to meet these challenges. InC-HCTB is obtained by cultivating polyphosphazene on the surface of carbon nanotubes with an in situ growth strategy. First, this unique architecture fosters an enhanced conductive network, bolstering the bidirectional enhancement of both ionic and electronic conductivities. Furthermore, InC-HCTB effectively inhibits the shuttle effect of LiPSs. LSBs exhibit a remarkable capacity of 1170.7 mA h g-1 at 0.2 C, and the capacity degradation is a mere 0.0436% over 800 cycles at 1 C. Third, InC-HCTB coating serves as an ion migration network, hindering the growth of lithium dendrites. More importantly, InC-HCTB exhibits notable flame retardancy. The radical trapping action in the gas phase and the protective effect of the shielded char layer in the condensed phase are simulated and verified. This facile in situ growth strategy constructs a "four-in-one" functional separator coating, rendering InC-HCTB a promising additive for the large-scale production of safe and stable LSBs.
Collapse
Affiliation(s)
- Xinxin Dong
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwen Gu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Tong
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoqing Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huihui Li
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Lee J, Zhao C, Wang C, Chen A, Sun X, Amine K, Xu GL. Bridging the gap between academic research and industrial development in advanced all-solid-state lithium-sulfur batteries. Chem Soc Rev 2024; 53:5264-5290. [PMID: 38619389 DOI: 10.1039/d3cs00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The energy storage and vehicle industries are heavily investing in advancing all-solid-state batteries to overcome critical limitations in existing liquid electrolyte-based lithium-ion batteries, specifically focusing on mitigating fire hazards and improving energy density. All-solid-state lithium-sulfur batteries (ASSLSBs), featuring earth-abundant sulfur cathodes, high-capacity metallic lithium anodes, and non-flammable solid electrolytes, hold significant promise. Despite these appealing advantages, persistent challenges like sluggish sulfur redox kinetics, lithium metal failure, solid electrolyte degradation, and manufacturing complexities hinder their practical use. To facilitate the transition of these technologies to an industrial scale, bridging the gap between fundamental scientific research and applied R&D activities is crucial. Our review will address the inherent challenges in cell chemistries within ASSLSBs, explore advanced characterization techniques, and delve into innovative cell structure designs. Furthermore, we will provide an overview of the recent trends in R&D and investment activities from both academia and industry. Building on the fundamental understandings and significant progress that has been made thus far, our objective is to motivate the battery community to advance ASSLSBs in a practical direction and propel the industrialized process.
Collapse
Affiliation(s)
- Jieun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| | - Chen Zhao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| | - Changhong Wang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
| | - Anna Chen
- Laurel Heights Secondary School, 650 Laurelwood Dr, Waterloo, ON, N2V 2V1, Canada
| | - Xueliang Sun
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| |
Collapse
|
7
|
Gao R, Tian LY, Wang T, Li HJ, Chen P, Yan TY, Gao XP. Surface-Phosphided Metal Oxide Microspheres as Catalytic Host of Sulfur to Enhance the Performance of Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21943-21952. [PMID: 38635833 DOI: 10.1021/acsami.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Lithium-sulfur (Li-S) batteries are one of the most promising high-energy density secondary batteries due to their high theoretical energy density of 2600 Wh kg-1. However, the sluggish kinetics and severe "shuttle effect" of polysulfides are the well-known barriers that hinder their practical applications. A carefully designed catalytic host of sulfur may be an effective strategy that not only accelerates the conversion of polysulfides but also limit their dissolution to mitigate the "shuttle effect." Herein, in situ surface-phosphided Ni0.96Co0.03Mn0.01O (p-NCMO) oxide microspheres are prepared via gas-phase phosphidation as a catalytic host of sulfur. The as-prepared unique heterostructured microspheres, with enriched surface-coated metal phosphide, exhibit superior synergistic effect of catalytic conversion and absorption of the otherwise soluble intermediate polysulfides. Correspondingly, the sulfur cathode exhibits excellent electrochemical performance, including a high initial discharge capacity (1162 mAh gs-1 at 0.1C), long cycling stability (491 mAh gs-1 after 1000 cycles at 1C), and excellent rate performance (565 mAh gs-1 at 5C). Importantly, the newly prepared sulfur cathode shows a high areal capacity of 4.0 mAh cm-2 and long cycle stability under harsh conditions (high sulfur loading of 5.3 mg cm-2 and lean electrolyte/sulfur ratio of 5.8 μL mg-1). This work proposes an effective strategy to develop the catalytic hosts of sulfur for achieving high-performance Li-S batteries via surface phosphidation.
Collapse
Affiliation(s)
- Rui Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li-Yuan Tian
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Wang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong-Jin Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Chen
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian-Ying Yan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xue-Ping Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Wang L, Zhong Y, Wang H, Malyi OI, Wang F, Zhang Y, Hong G, Tang Y. New Emerging Fast Charging Microscale Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307027. [PMID: 38018336 DOI: 10.1002/smll.202307027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
Fast charging lithium (Li)-ion batteries are intensively pursued for next-generation energy storage devices, whose electrochemical performance is largely determined by their constituent electrode materials. While nanosizing of electrode materials enhances high-rate capability in academic research, it presents practical limitations like volumetric packing density and high synthetic cost. As an alternative to nanosizing, microscale electrode materials cannot only effectively overcome the limitations of the nanosizing strategy but also satisfy the requirement of fast-charging batteries. Therefore, this review summarizes the new emerging microscale electrode materials for fast charging from the commercialization perspective. First, the fundamental theory of electronic/ionic motion in both individual active particles and the whole electrode is proposed. Then, based on these theories, the corresponding optimization strategies are summarized toward fast-charging microscale electrode materials. In addition, advanced functional design to tackle the mechanical degradation problems related to next generation high capacity alloy- and conversion-type electrode materials (Li, S, Si et al.) for achieving fast charging and stable cycling batteries. Finally, general conclusions and the future perspective on the potential research directions of microscale electrode materials are proposed. It is anticipated that this review will provide the basic guidelines for both fundamental research and practical applications of fast-charging batteries.
Collapse
Affiliation(s)
- Litong Wang
- School of Science, Qingdao University of Technology, Qingdao, 266520, P. R. China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems & Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Huibo Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Oleksandr I Malyi
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
| | - Feng Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuxin Tang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
9
|
Li M, Wang H, Yan G, Hu Z, Feng Y, Zhang X. Bifunctional Sulfhydryl-Based Polyimides for Highly Active Cathodes of Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38441047 DOI: 10.1021/acsami.3c18930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Sulfhydryl-based polyimides were synthesized by the nucleophilic ring-opening reaction of thiolactone monomers (BPDA-T, ODPA-T, BTDA-T) with polyethylenimine (PEI), and they were coated on carbon nanotubes as host materials (BPTP@CNT, ODTP@CNT, and BTTP@CNT) of the sulfur cathode. BPTP@CNT/S, ODTP@CNT/S, and BTTP@CNT/S as cathode materials not only promote the covalent bonding of sulfur and polysulfide with sulfhydryl-based polyimides but also reduce the shuttle effect of soluble polysulfide in the redox process. Moreover, sulfhydryl-based polyimides can help improve the compatibility and interfacial contact between sulfur and conductive carbon while alleviating the volume expansion of the cathode. In addition, the conductive network of carbon nanotubes improves the electronic conductivity of the cathode materials. The BTTP@CNT/S cathode showed superior stability (the initial capacity was 902 mAh g-1 at 1C, and the capacity retention rate was 88.58% after 500 cycles) and the initial capacity could reach 718 mAh g-1 when the sulfur loading was 4.8 mg cm-2 (electrolyte/sulfur ratio: 10 μL mg-1), which fully proves the feasibility of the large-scale application of sulfhydryl-based polyimide materials.
Collapse
Affiliation(s)
- Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Han Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Zongjie Hu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
10
|
Zhang J, Yan X, Cheng Z, Han Y, Zhang Y, Dong Y. Applications, prospects and challenges of metal borides in lithium sulfur batteries. J Colloid Interface Sci 2024; 657:511-528. [PMID: 38070337 DOI: 10.1016/j.jcis.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g-1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the "shuttle effect". Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.
Collapse
Affiliation(s)
- Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueli Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Lu H, Zeng Q, Xu L, Xiao Y, Xie L, Yang J, Rong J, Weng J, Zheng C, Zhang Q, Huang S. Multimodal Engineering of Catalytic Interfaces Confers Multi-Site Metal-Organic Framework for Internal Preconcentration and Accelerating Redox Kinetics in Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2024; 63:e202318859. [PMID: 38179841 DOI: 10.1002/anie.202318859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The development of highly efficient catalysts to address the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs) remains a formidable challenge. In this study, a series of multi-site catalytic metal-organic frameworks (MSC-MOFs) were elaborated through multimodal molecular engineering to regulate both the reactant diffusion and catalysis processes. MSC-MOFs were crafted with nanocages featuring collaborative specific adsorption/catalytic interfaces formed by exposed mixed-valence metal sites and surrounding adsorption sites. This design facilitates internal preconcentration, a coadsorption mechanism, and continuous efficient catalytic conversion toward polysulfides concurrently. Leveraging these attributes, LSBs with an MSC-MOF-Ti catalytic interlayer demonstrated a 62 % improvement in discharge capacity and cycling stability. This resulted in achieving a high areal capacity (11.57 mAh cm-2 ) at a high sulfur loading (9.32 mg cm-2 ) under lean electrolyte conditions, along with a pouch cell exhibiting an ultra-high gravimetric energy density of 350.8 Wh kg-1 . Lastly, this work introduces a universal strategy for the development of a new class of efficient catalytic MOFs, promoting SRR and suppressing the shuttle effect at the molecular level. The findings shed light on the design of advanced porous catalytic materials for application in high-energy LSBs.
Collapse
Affiliation(s)
- Haibin Lu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qinghan Zeng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
| | - Yingbo Xiao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Lin Xie
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Junhua Yang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Jionghui Rong
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Jingqia Weng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Cheng Zheng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qi Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
- State key Laboratory of Silicon Materials, Zhejiang University, 310027, Hangzhou, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
| |
Collapse
|
12
|
Zhao B, Zhou C, Chen P, Gao X. Synergistic Interfacial Optimization for High-Sulfur-Content All-Solid-State Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4679-4688. [PMID: 38241712 DOI: 10.1021/acsami.3c16067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Improving the sulfur content in the cathode is essential for achieving high-energy-density all-solid-state lithium-sulfur batteries (ASSLSBs). However, the complex multiinterfaces, akin to the short wooden planks that consist of the cask, severely limit the performance of ASSLSBs with high sulfur content. Since singular approaches fail to optimize these interfaces simultaneously, we propose a synergistic approach using a dual-doped sulfide solid electrolyte (Y2S3 and LiI) and an SbSn alloy sulfur host in this work. The incorporation of Y2S3 in the solid electrolyte serves to improve the electrolyte-electrolyte interfaces and enhance the ionic conductivity, while the inclusion of LiI helps stabilize the electrolyte-anode interface and suppress dendrite formation. Meanwhile, the SbSn alloy sulfur host facilitates the transfer of Li+ at the electrolyte-cathode interfaces. Consequently, the solid-solid interfaces are significantly improved, leading to impressive specific capacities in ASSLSBs with high sulfur content (>44% in the cathode composite) at room temperature (1163.5 mAh g-1) and at 60 °C (1408.7 mAh g-1) during the 50th cycle at 0.05C. This work presents a promising strategy for achieving practical high-performance ASSLSBs.
Collapse
Affiliation(s)
- BoSheng Zhao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chang Zhou
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Chen
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - XuePing Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Wei CD, Xue HT, Hu YX, Zhao QS, Tang FL. First-principles study of the discharge electrochemical and catalytic performance of the sulfur cathode host Fe 0.875M 0.125S 2 (M = Ti, V). Phys Chem Chem Phys 2024; 26:2249-2259. [PMID: 38165279 DOI: 10.1039/d3cp04694j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Lithium-sulfur batteries (LSBs) are one of the most promising energy storage devices with high energy density. However, their application and commercialization are hampered by the slow Li-S redox chemistry. Fe0.875M0.125S2 (M = Ti, V), as the sulfur cathode host, enhances the Li-S redox chemistry. FeS2 with Pa3̄ is transformed into Li2FeS2 with P3̄m1 after discharge. The structure changes and physicochemical properties during Fe0.875M0.125S2 discharge process are further investigated to screen out the sulfur cathode host materials with the best comprehensive properties. The discharge structure of Fe0.875M0.125S2 is verified by the thermodynamic stability of Li-deficient phases, voltage and capacity based on Monte Carlo methods. Fe0.875M0.125S2 with Pa3̄ is transformed into Li2Fe0.875M0.125S2 with P3̄m1 after discharge. Using the first-principles calculations, the physicochemical properties of Li2Fe0.875M0.125S2 are systematically investigated, including the formation energy, voltage, theoretical capacity, electrical conductivity, Li+ diffusion, catalytic performance and Li2S oxidation decomposition. The average redox voltage of Li2Fe0.875V0.125S2 is higher than that of Li2Fe0.875Ti0.125S2. Li2Fe0.875M0.125S2 shows metallic properties. Li2Fe0.875V0.125S2 is more beneficial to the reduction reaction of Li2S2 and Li2S oxidation decomposition. Fe0.875V0.125S2 has more potential as the sulfur cathode host than Fe0.875Ti0.125S2 in LSBs. A new strategy for the selection of the sulfur cathode host material for LSBs is provided by this work.
Collapse
Affiliation(s)
- Cheng-Dong Wei
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hong-Tao Xue
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yu-Xia Hu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qing-Shan Zhao
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Fu-Ling Tang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
14
|
Zhang S, Sarwar MT, Wang J, Wang G, Jiang Z, Tang A, Yang H. Palygorskite-Derived Ternary Fluoride with 2D Ion Transport Channels for Ampere Hour-Scale Li-S Pouch Cell with High Energy Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307651. [PMID: 38010278 DOI: 10.1002/adma.202307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Although various excellent electrocatalysts/adsorbents have made notable progress as sulfur cathode hosts on the lithium-sulfur (Li-S) coin-cell level, high energy density (WG ) of the practical Li-S pouch cells is still limited by inefficient Li-ion transport in the thick sulfur cathode under low electrolyte/sulfur (E/S) and negative/positive (N/P) ratios, which aggravates the shuttle effect and sluggish redox kinetics. Here a new ternary fluoride MgAlF5 ·2H2 O with ultrafast ion conduction-strong polysulfides capture integration is developed. MgAlF5 ·2H2 O has an inverse Weberite-type crystal framework, in which the corner-sharing [AlF6 ]-[MgF4 (H2 O)2 ] octahedra units extend to form two-dimensional Li-ion transport channels along the [100] and [010] directions, respectively. Applied as the cathode sulfur host, the MgAlF5 ·2H2 O lithiated by LiTFSI (lithium salt in Li-S electrolyte) acts as a fast ionic conductor to ensure efficient Li-ion transport to accelerate the redox kinetics under high S loadings and low E/S and N/P. Meanwhile, the strong polar MgAlF5 ·2H2 O captures polysulfides by chemisorption to suppress the shuttle effect. Therefore, a 1.97 A h-level Li-S pouch cell achieves a high WG of 386 Wh kg-1 . This work develops a new-type ionic conductor, and provides unique insights and new hosts for designing practical Li-S pouch cells.
Collapse
Affiliation(s)
- Shilin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Jie Wang
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Gang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhiyi Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
15
|
Cheng L, Tian R, Zhao Y, Wei Z, Pu X, Zhu YL, Zhang D, Du F. Small Things Make a Big Difference: Conductive Cross-Linking Sodium Alginate@MXene Binder Enables High-Volumetric-Capacity and High-Mass-Loading Li-S Battery. NANO LETTERS 2023; 23:10538-10544. [PMID: 37933820 DOI: 10.1021/acs.nanolett.3c03429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Binders are crucial for maintaining the integrity of an electrode, and there is a growing need for integrating multiple desirable properties into the binder for high-energy batteries, yet significant challenges remain. Here, we successfully synthesized a new binder by cross-linking sodium alginate (SA) with MXene materials (Ti3C2Tx). Besides the improved adhesion and mechanical properties, the integrated SA@Ti3C2Tx binder demonstrates much improved electronic conductivity, which enables ruling out the fluffy conductive additive from the electrode component with enhanced volumetric capacity. When SA@Ti3C2Tx is used to fabricate sulfur (S) cathodes, the conductive-additive-free electrode demonstrates extremely high capacity (1422 mAh cm-3/24.5 mAh cm-2) under an S loading of 17.2 mg cm-2 for Li-S batteries. Impressively, the SA@Ti3C2Tx binder shows remarkable feasibility in other battery systems such as Na-S and LiFePO4 batteries. The proposed strategy of constructing a cross-linking conductive binder opens new possibilities for designing high-mass-loading electrodes with high volumetric capacity.
Collapse
Affiliation(s)
- Lu Cheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Ruiyuan Tian
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Yifan Zhao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Zhixuan Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Xin Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
16
|
Neale ZG, Lefler MJ, Long JW, Rolison DR, Sassin MB, Carter R. Freestanding carbon nanofoam papers with tunable porosity as lithium-sulfur battery cathodes. NANOSCALE 2023; 15:16924-16932. [PMID: 37591812 DOI: 10.1039/d3nr02699j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
To reach energy density demands greater than 3 mA h cm-2 for practical applications, the electrode structure of lithium-sulfur batteries must undergo an architectural redesign. Freestanding carbon nanofoam papers derived from resorcinol-formaldehyde aerogels provide a three-dimensional conductive mesoporous network while facilitating electrolyte transport. Vapor-phase sulfur infiltration fully penetrates >100 μm thick electrodes and conformally coats the carbon aerogel surface providing areal capacities up to 4.1 mA h cm-2 at sulfur loadings of 6.4 mg cm-2. Electrode performance can be optimized for energy density or power density by tuning sulfur loading, pore size, and electrode thickness.
Collapse
Affiliation(s)
- Zachary G Neale
- National Research Council Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Matthew J Lefler
- National Research Council Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Jeffrey W Long
- Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory, Washington, DC, USA.
| | - Debra R Rolison
- Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory, Washington, DC, USA.
| | - Megan B Sassin
- Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory, Washington, DC, USA.
| | - Rachel Carter
- Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
17
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
18
|
Wang K, Liu S, Shu Z, Zheng Q, Zheng M, Dong Q. Single-atom site catalysis in Li-S batteries. Phys Chem Chem Phys 2023; 25:25942-25960. [PMID: 37746671 DOI: 10.1039/d3cp02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
With their high theoretical energy density, Li-S batteries are regarded as the ideal battery system for next generation electrochemical energy storage. In the last 15 years, Li-S batteries have made outstanding academic progress. Recently, research studies have placed more emphasis on their practical application aspects, which puts forward strict requirements for the loading of S cathodes and the amount of electrolytes. To meet the above requirements, electrode catalysis design is of crucial significance. Among all the catalysts, single-atom site catalysts (SASCs) are considered to be ideal catalyst materials for the commercialization of Li-S batteries due to their high activity and highest utilization of catalytic sites. This perspective introduces the kinetic mechanism of S cathodes, the basic concept and synthesis strategy of SASCs, and then systematically summarizes the research progress of SASCs for S cathodes and, the related functional interlayers/separators in recent years. Finally, the opportunities and challenges of SASCs in Li-S batteries are summarized and prospected.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Sheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Zhenghao Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Qingyi Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
19
|
Meng R, He X, Ong SJH, Cui C, Song S, Paoprasert P, Pang Q, Xu ZJ, Liang X. A Radical Pathway and Stabilized Li Anode Enabled by Halide Quaternary Ammonium Electrolyte Additives for Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2023; 62:e202309046. [PMID: 37528676 DOI: 10.1002/anie.202309046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Passivation of the sulfur cathode by insulating lithium sulfide restricts the reversibility and sulfur utilization of Li-S batteries. 3D nucleation of Li2 S enabled by radical conversion may significantly boost the redox kinetics. Electrolytes with high donor number (DN) solvents allow for tri-sulfur (S3 ⋅- ) radicals as intermediates, however, the catastrophic reactivity of such solvents with Li anodes pose a great challenge for their practical application. Here, we propose the use of quaternary ammonium salts as electrolyte additives, which can preserve the partial high-DN characteristics that trigger the S3 ⋅- radical pathway, and inhibit the growth of Li dendrites. Li-S batteries with tetrapropylammonium bromide (T3Br) electrolyte additive deliver the outstanding cycling stability (700 cycles at 1 C with a low-capacity decay rate of 0.049 % per cycle), and high capacity under a lean electrolyte of 5 μLelectrolyte mgsulfur -1 . This work opens a new avenue for the development of electrolyte additives for Li-S batteries.
Collapse
Affiliation(s)
- Ruijin Meng
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xin He
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Samuel Jun Hoong Ong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chenxu Cui
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shufeng Song
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| | - Peerasak Paoprasert
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Quanquan Pang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiao Liang
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
20
|
Zhao Y, Huang L, Zhao D, Yang Lee J. Fast Polysulfide Conversion Catalysis and Reversible Anode Operation by A Single Cathode Modifier in Li-Metal Anode-Free Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2023; 62:e202308976. [PMID: 37475640 DOI: 10.1002/anie.202308976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The two major issues confronting the commercialization of rechargeable lithium-sulfur (Li-S) batteries are the sluggish kinetics of the sulfur electrochemical reactions on the cathode and inadequate lithium deposition/stripping reversibility on the anode. They are commonly mitigated with additives designed specifically for the anode and the cathode individually. Here, we report the use of a single cathode modifier, In2 Se3 , which can effectively catalyse the polysulfide reactions on the cathode, and also improve the reversibility of Li deposition and removal on the anode through a LiInS2 /LiInSe2 containing solid electrolyte interface formed in situ by the Se and In ions dissolved in the electrolyte. The amounts of dissolved Se and In are small relative to the amount of In2 Se3 administered. The benefits of using this single modification approach were verified in Li-metal anode-free Li-S batteries with a Li2 S loading of 4 mg cm-2 and a low electrolyte/Li2 S ratio of 7.5 μL mg-1 . The resulting battery showed 60 % capacity retention after 160 cycles at the 0.2 C rate and an average Coulombic efficiency of 98.27 %, comparing very well with recent studies using separate electrode modifiers.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055, Shenzhen, P. R. China
| | - Limin Huang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055, Shenzhen, P. R. China
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jim Yang Lee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
21
|
Yao W, Xu J, Ma L, Lu X, Luo D, Qian J, Zhan L, Manke I, Yang C, Adelhelm P, Chen R. Recent Progress for Concurrent Realization of Shuttle-Inhibition and Dendrite-Free Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212116. [PMID: 36961362 DOI: 10.1002/adma.202212116] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Lithium-sulfur (Li-S) batteries have become one of the most promising new-generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg-1 ), cost-effectiveness, and environmental friendliness. Nevertheless, their practical applications are seriously impeded by the shuttle effect of soluble lithium polysulfides (LiPSs), and the uncontrolled dendrite growth of metallic Li, which result in rapid capacity fading and battery safety problems. A systematic and comprehensive review of the cooperative combination effect and tackling the fundamental problems in terms of cathode and anode synchronously is still lacking. Herein, for the first time, the strategies for inhibiting shuttle behavior and dendrite-free Li-S batteries simultaneously are summarized and classified into three parts, including "two-in-one" S-cathode and Li-anode host materials toward Li-S full cell, "two birds with one stone" modified functional separators, and tailoring electrolyte for stabilizing sulfur and lithium electrodes. This review also emphasizes the fundamental Li-S chemistry mechanism and catalyst principles for improving electrochemical performance; advanced characterization technologies to monitor real-time LiPS evolution are also discussed in detail. The problems, perspectives, and challenges with respect to inhibiting the shuttle effect and dendrite growth issues as well as the practical application of Li-S batteries are also proposed.
Collapse
Affiliation(s)
- Weiqi Yao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Xu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Lianbo Ma
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Xiaomeng Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dan Luo
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Liang Zhan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ingo Manke
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Chao Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Philipp Adelhelm
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
22
|
Liu H, Yang X, Jin B, Cui M, Li Y, Li Q, Li L, Sheng Q, Lang X, Jin E, Jeong S, Jiang Q. Coordinated Immobilization and Rapid Conversion of Polysulfide Enabled by a Hollow Metal Oxide/Sulfide/Nitrogen-Doped Carbon Heterostructure for Long-Cycle-Life Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300950. [PMID: 37066725 DOI: 10.1002/smll.202300950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Lithium-sulfur batteries (LSBs) are recognized as the prospective candidate in next-generation energy storage devices due to their gratifying theoretical energy density. Nonetheless, they still face the challenges of the practical application including low utilization of sulfur and poor cycling life derived from shuttle effect of lithium polysulfides (LiPSs). Herein, a hollow polyhedron with heterogeneous CoO/Co9 S8 /nitrogen-doped carbon (CoO/Co9 S8 /NC) is obtained through employing zeolitic imidazolate framework as precursor. The heterogeneous CoO/Co9 S8 /NC balances the redox kinetics of Co9 S8 with chemical adsorption of CoO toward LiPSs, effectively inhibiting the shuttle of LiPSs. The mechanisms are verified by both experiment and density functional theory calculation. Meanwhile, the hollow structure acts as a sulfur storage chamber, which mitigates the volumetric expansion of sulfur and maximizes the utilization of sulfur. Benefiting from the above advantages, lithium-sulfur battery with S-CoO/Co9 S8 /NC achieves a high initial discharge capacity (1470 mAh g-1 ) at 0.1 C and long cycle life (ultralow capacity attenuation of 0.033% per cycle after 1000 cycles at 1 C). Even under high sulfur loading of 3.0 mg cm-2 , lithium-sulfur battery still shows the satisfactory electrochemical performance. This work may provide an idea to elevate the electrochemical performance of LSBs by constructing a hollow metal oxide/sulfide/nitrogen-doped carbon heterogeneous structure.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xuejing Yang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Mengyang Cui
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Yiyang Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qicheng Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Lei Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qidong Sheng
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Enmei Jin
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Sangmun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| |
Collapse
|
23
|
Wei C, Xi B, Wang P, Liang Y, Wang Z, Tian K, Feng J, Xiong S. In Situ Anchoring Ultrafine ZnS Nanodots on 2D MXene Nanosheets for Accelerating Polysulfide Redox and Regulating Li Plating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303780. [PMID: 37165604 DOI: 10.1002/adma.202303780] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Lithium-sulfur (Li-S) battery is a promising energy storage system due to its cost effectiveness and high energy density. However, formation of Li dendrites from Li metal anode and shuttle effect of lithium polysulfides (LiPSs) from S cathode impede its practical application. Herein, ultrafine ZnS nanodots are uniformly grown on 2D MXene nanosheets by a low-temperature (60 °C) hydrothermal method for the first time. Distinctively, the ZnS nanodot-decorated MXene nanosheets (ZnS/MXene) can be easily filtered to be a flexible and freestanding film in several minutes. The ZnS/MXene film can be used as a current collector for Li-metal anode to promote uniform Li deposition due to the superior lithiophilicity of ZnS nanodots. ZnS/MXene powders obtained by freeze drying can be used as separator decorator to address the shuttle effect of LiPSs due to their excellent adsorbability. Theoretical calculation proves that the existence of ZnS nanodots on MXene can obviously improve the adsorption ability of ZnS/MXene with Li+ and LiPSs. Li-S full cells with composite Li-metal anode and modified separator exhibit remarkable rate and cycling performance. Other transition metal sulfides (CdS, CuS, etc.) can be also grown on 2D MXene nanosheets by the low-temperature hydrothermal strategy.
Collapse
Affiliation(s)
- Chuanliang Wei
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Yazhan Liang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Zhengran Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Kangdong Tian
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Jinkui Feng
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
24
|
Wang Z, Che H, Lu W, Chao Y, Wang L, Liang B, Liu J, Xu Q, Cui X. Application of Inorganic Quantum Dots in Advanced Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301355. [PMID: 37088862 PMCID: PMC10323660 DOI: 10.1002/advs.202301355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 05/03/2023]
Abstract
Lithium-sulfur (Li-S) batteries have emerged as one of the most attractive alternatives for post-lithium-ion battery energy storage systems, owing to their ultrahigh theoretical energy density. However, the large-scale application of Li-S batteries remains enormously problematic because of the poor cycling life and safety problems, induced by the low conductivity , severe shuttling effect, poor reaction kinetics, and lithium dendrite formation. In recent studies, catalytic techniques are reported to promote the commercial application of Li-S batteries. Compared with the conventional catalytic sites on host materials, quantum dots (QDs) with ultrafine particle size (<10 nm) can provide large accessible surface area and strong polarity to restrict the shuttling effect, excellent catalytic effect to enhance the kinetics of redox reactions, as well as abundant lithiophilic nucleation sites to regulate Li deposition. In this review, the intrinsic hurdles of S conversion and Li stripping/plating reactions are first summarized. More importantly, a comprehensive overview is provided of inorganic QDs, in improving the efficiency and stability of Li-S batteries, with the strategies including composition optimization, defect and morphological engineering, design of heterostructures, and so forth. Finally, the prospects and challenges of QDs in Li-S batteries are discussed.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Haiyun Che
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Wenqiang Lu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Liu Wang
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Bingyu Liang
- High & New Technology Research CenterHenan Academy of SciencesZhengzhou450002P. R. China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage MaterialsSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
25
|
Pan H, Cheng Z, Zhou Z, Xie S, Zhang W, Han N, Guo W, Fransaer J, Luo J, Cabot A, Wübbenhorst M. Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review. NANO-MICRO LETTERS 2023; 15:165. [PMID: 37386313 PMCID: PMC10310691 DOI: 10.1007/s40820-023-01137-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Lithium-sulfur (Li-S) batteries have received widespread attention, and lean electrolyte Li-S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur (E/S) ratios on battery energy density and the challenges for sulfur reduction reactions (SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios (< 10 µL mg-1), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li-S battery performance. Finally, an outlook is provided to guide future research on high energy density Li-S batteries.
Collapse
Affiliation(s)
- Hui Pan
- Laboratory for Soft Matter and Biophysics, Faculty of Science, KU Leuven, 3001, Leuven, Belgium
| | - Zhibin Cheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
| | - Zhenyu Zhou
- Department of Materials Engineering, Faculty of Science Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Sijie Xie
- Department of Materials Engineering, Faculty of Science Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Zhang
- Department of Materials Engineering, Faculty of Science Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Ning Han
- Department of Materials Engineering, Faculty of Science Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Guo
- Department of Materials Engineering, Faculty of Science Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, Faculty of Science Engineering, KU Leuven, 3001, Leuven, Belgium.
| | - Jiangshui Luo
- Lab of Electrolytes and Phase Change Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Andreu Cabot
- Advanced Materials Department, Catalonia Institute for Energy Research (IREC), Sant Adria del Besos, 08930, Barcelona, Spain.
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and Biophysics, Faculty of Science, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
26
|
Mao M, Fan X, Xie W, Wang H, Suo L, Wang C. The Proof-of-Concept of Anode-Free Rechargeable Mg Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207563. [PMID: 36938852 PMCID: PMC10190628 DOI: 10.1002/advs.202207563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Indexed: 05/18/2023]
Abstract
The desperate pursuit of high gravimetric specific energy leads to the ignorance of volumetric energy density that is one of the basic requirements for batteries. Due to the high volumetric capacity, less-prone formation of dendrite, and low reduction potential of Mg metal, rechargeable Mg batteries are considered with innately high volumetric energy density. Nevertheless, the substantial elevation in energy density is compromised by extremely excessive Mg metal anode. Herein, the proof-of-concept of anode-free Mg2 Mo6 S8 -MgS/Cu batteries is proposed, in which MgS as the premagnesiation additive constantly decomposes to replenish Mg loss by electrolyte corrosion over cycling, while both Mg2 Mo6 S8 and MgS acts as the active material to reversibly provide high capacities. Besides, Mg2 Mo6 S8 shows superior catalytic activity on the decomposition of MgS and provides the strong affinity to polysulfides to restrain their dissolution. Consequently, the anode-free Mg2 Mo6 S8 -MgS/Cu batteries deliver a high reversible capacity of 190 mAh g-1 with the capacity retention of 92% after 100 cycles, corresponding to the highly competitive energy density of 420 Wh L-1 . The proposed anode-free Mg battery here spotlights the great promise of Mg batteries in achieving high volumetric energy densities, which will significantly expedite the advances of Mg batteries in practice.
Collapse
Affiliation(s)
- Minglei Mao
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xueru Fan
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhan430074P. R. China
| | - Wei Xie
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haoxiang Wang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhan430074P. R. China
| | - Liumin Suo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of PhysicsChinese Academy of Sciences/Beijing National Laboratory for Condensed Matter PhysicsBeijing100190P. R. China
| | - Chengliang Wang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhan430074P. R. China
- Wenzhou Advanced Manufacturing InstituteHuazhong University of Science and Technology325035WenzhouP. R. China
| |
Collapse
|
27
|
Wang C, Kim JT, Wang C, Sun X. Progress and Prospects of Inorganic Solid-State Electrolyte-Based All-Solid-State Pouch Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209074. [PMID: 36398496 DOI: 10.1002/adma.202209074] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/13/2022] [Indexed: 05/12/2023]
Abstract
All-solid-state batteries have piqued global research interest because of their unprecedented safety and high energy density. Significant advances have been made in achieving high room-temperature ionic conductivity and good air stability of solid-state electrolytes (SSEs), mitigating the challenges at the electrode-electrolyte interface, and developing feasible manufacturing processes. Along with the advances in fundamental study, all-solid-state pouch cells using inorganic SSEs have been widely demonstrated, revealing their immense potential for industrialization. This review provides an overview of inorganic all-solid-state pouch cells, focusing on ultrathin SSE membranes, sheet-type thick solid-state electrodes, and bipolar stacking. Moreover, several critical parameters directly influencing the energy density of all-solid-state Li-ion and lithium-sulfur pouch cells are outlined. Finally, perspectives on all-solid-state pouch cells are provided and specific metrics to meet certain energy density targets are specified. This review looks to facilitate the development of inorganic all-solid-state pouch cells with high energy density and excellent safety.
Collapse
Affiliation(s)
- Changhong Wang
- Department of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 3K7, Canada
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Jung Tae Kim
- Department of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 3K7, Canada
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 3K7, Canada
| |
Collapse
|
28
|
Kang X, Jin Z, Peng H, Cheng Z, Liu L, Li X, Xie L, Zhang J, Dong Y. The role of selenium vacancies functionalized mediator of bimetal (Co, Fe) selenide for high-energy-density lithium-sulfur batteries. J Colloid Interface Sci 2023; 637:161-172. [PMID: 36701862 DOI: 10.1016/j.jcis.2023.01.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Lithium-sulfur (Li-S) batteries are currently only in the basic research stage and have not been commercialized, which is mainly affected by the poor conductivity of sulfur/lithium sulfide (S/Li2S), volume expansion effect of sulfur and the shuttle effect of lithium polysulfides (LiPSs). Herein, a three dimensional (3D) carbon nanotubes (CNTs) decorated cubic Co9Se8-x/FeSe2-y (0 < x < 8, 0 < y < 2) composite (Co9Se8-x/FeSe2-y@CNTs) is developed, and used as the functionalized mediator on polypropylene (PP) in Li-S batteries. Benefiting from the good electrical conductivity, large number of Se vacancies and the triple block/adsorption/catalytic effects of Co9Se8-x/FeSe2-y@CNTs, the cell with Co9Se8-x/FeSe2-y@CNTs//PP modified separator delivers a high reversible capacity (1103.5 mA h g-1) at 1C after three cycles activation at 0.5C and remains 446 mA g h-1 after 750 cycles with a 0.08% capacity decay rate each cycle. Moreover, at 0.2C, a high areal capacity of 3.63 mA h cm-2 after 100 cycles with a high sulfur loading of 4.1 mg cm-2 is obtained. The in-situ XRD tests revealing the transition path of α-S8 → Li2S → β-S8 during the first charge-discharge process, then β-S8 → Li2S → β-S8 conversion reaction in the next cycles, and firstly determine the sulfur-selenide active intermediates (Se1.1S6.9) during cycles. The work provides a new insight into the development of bimetallic selenide composites by defect engineering with highly adsorptive and catalytic properties for Li-S batteries.
Collapse
Affiliation(s)
- Xiyang Kang
- College of Science, Henan Agricultural University, Zhengzhou 450002, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ziqian Jin
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huaiqi Peng
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Li
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Lixia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
29
|
Wu J, Huang J, Cui Y, Miao D, Ke X, Lu Y, Wu D. Rough Endoplasmic Reticulum Inspired Polystyrene-Brush-Based Superhigh Sulfur Content Cathodes Enable Lithium-Sulfur Cells with High Mass and Capacity Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211471. [PMID: 36807410 DOI: 10.1002/adma.202211471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Indexed: 05/26/2023]
Abstract
The development of highly sophisticated biomimetic models is significant yet remains challenging in the electrochemical energy storage field. Lithium-sulfur (Li-S) cells with high sulfur content and high-sulfur-loading cathodes are urgently required to meet the fast-growing demand for electronic devices. Nevertheless, such cathode materials generally suffer from large sulfur agglomeration, nonporous structure, and insufficient conductivity, leading to rapid capacity decay and low sulfur utilization. Herein, inspired by rough endoplasmic reticulum, a 2D polystyrene (PS)-brush-based (G-g-PS) superhigh-sulfur-content (96 wt%) composite(G-g-sPS@S) is fabricated via the vulcanization reaction. The vulcanized PS side-chains and their S8 composites on the nanosheet surface can efficiently provide sulfur species, and the intersheet interstitial pores can provide rapid mass-transfer channels for redox reactions of sulfur species. Furthermore, the highly sulfophilic vulcanized PS side-chains are able to effectively inhibit the shuttle effect of polysulfides and regulate their redox process. With these merits, the cells with G-g-sPS@S cathodes exhibit an ultralow decay rate of 0.02% per cycle over 400 cycles at 2 C and deliver a superior areal capacity of 12.6 mAh cm-2 even with a high sulfur loading of 10.5 mg cm-2 .
Collapse
Affiliation(s)
- Jinlun Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Junlong Huang
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yin Cui
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dongtian Miao
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xianlan Ke
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuheng Lu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
30
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
31
|
Wei CD, Xue HT, Zhao XD, Tang FL. Insights into the electrochemical properties of Li 2FeS 2 after FeS 2 discharging. Phys Chem Chem Phys 2023; 25:8515-8523. [PMID: 36883530 DOI: 10.1039/d2cp05930d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
All-solid-state lithium-sulfur batteries (ASSLSBs) have high reversible characteristics owing to the high redox potential, high theoretical capacity, high electronic conductivity, and low Li+ diffusion energy barrier in the cathode. Monte Carlo simulations with cluster expansion, based on the first-principles high-throughput calculations, predicted a phase structure change from Li2FeS2 (P3̄M1) to FeS2 (PA3̄) during the charging process. LiFeS2 is the most stable phase structure. The structure of Li2FeS2 after charging was FeS2 (P3̄M1). By applying the first-principles calculations, we explored the electrochemical properties of Li2FeS2 after charging. The redox reaction potential of Li2FeS2 was 1.64 to 2.90 V, implying a high output voltage of ASSLSBs. Flatter voltage step plateaus are important for improving the electrochemical performance of the cathode. The charge voltage plateau was the highest from Li0.25FeS2 to FeS2 and followed from Li0.375FeS2 to Li0.25FeS2. The electrical properties of LixFeS2 remained metallic during the Li2FeS2 charging process. The intrinsic Li Frenkel defect of Li2FeS2 was more conducive to Li+ diffusion than that of the Li2S Schottky defect and had the largest Li+ diffusion coefficient. The good electronic conductivity and Li+ diffusion coefficient of the cathode implied a better charging/discharging rate performance of ASSLSBs. This work theoretically verified the FeS2 structure after Li2FeS2 charging and explored the electrochemical properties of Li2FeS2.
Collapse
Affiliation(s)
- Cheng-Dong Wei
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Hong-Tao Xue
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xu-Dong Zhao
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Fu-Ling Tang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
32
|
Huang Y, Lin L, Zhang Y, Liu L, Sa B, Lin J, Wang L, Peng DL, Xie Q. Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li-S Full Batteries. NANO-MICRO LETTERS 2023; 15:67. [PMID: 36918481 PMCID: PMC10014643 DOI: 10.1007/s40820-023-01037-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides (LiPSs) shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode. Herein, a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton (3DIO FCSe-QDs@NC) is elaborately designed for both sulfur cathode and Li metal anode. The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble LiPSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors. Simultaneously, the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites. Taking advantage of these merits, the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability (a low decay rate of 0.014% over 2,000 cycles at 2C). Remarkably, a promising areal capacity of 8.41 mAh cm-2 can be achieved at the sulfur loading up to 8.50 mg cm-2 with an ultra-low electrolyte/sulfur ratio of 4.1 μL mg-1. This work paves the bi-serve host design from systematic experimental and theoretical analysis, which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
Collapse
Affiliation(s)
- Youzhang Huang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Liang Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinggan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lie Liu
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Baisheng Sa
- College of Materials Science and Engineering, Multiscale Computational Materials Facility, Fuzhou University, Fuzhou, 350100, People's Republic of China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Dong-Liang Peng
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
33
|
Li J, Li F, Pan J, Pan J, Liao J, Li H, Dong H, Shi K, Liu Q. Hollow Co 3S 4 Nanocubes Interconnected with Carbon Nanotubes as Nanoreactors to Accelerate Polysulfide Conversion for High-Performance Lithium–Sulfur Batteries. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Junhao Li
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Fangyuan Li
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiajie Pan
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Junda Pan
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinyun Liao
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Hao Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kaixiang Shi
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
34
|
Deng Q, Dong X, Shen PK, Zhu J. Li-S Chemistry of Manganese Phosphides Nanoparticles With Optimized Phase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207470. [PMID: 36737850 PMCID: PMC10037994 DOI: 10.1002/advs.202207470] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The targeted synthesis of manganese phosphides with target phase remains a huge challenge because of their various stoichiometries and phase-dependent physicochemical properties. In this study, phosphorus-rich MnP, manganese-rich Mn2 P, and their heterostructure MnP-Mn2 P nanoparticles evenly dispersed on porous carbon are accurately synthesized by a convenient one-pot heat treatment of phosphate resin combined with Mn2+ . Moreover, their electrochemical properties are systematically investigated as sulfur hosts in lithium-sulfur batteries. Density functional theory calculations demonstrate the superior adsorption, catalysis capabilities, and electrical conductivity of MnP-Mn2 P/C, compared with MnP/C and Mn2 P/C. The MnP-Mn2 P/C@S exhibits an excellent capacity of 763.3 mAh g-1 at 5 C with a capacity decay rate of only 0.013% after 2000 cycles. A phase evolution product (MnS) of MnP-Mn2 P/C@S is detected during the catalysis of MnP-Mn2 P/C with polysulfides redox through in situ X-ray diffraction and Raman spectroscopy. At a sulfur loading of up to 8 mg cm-2 , the MnP-Mn2 P/C@S achieves an area capacity of 6.4 mAh cm-2 at 0.2 C. A pouch cell with the MnP-Mn2 P/C@S cathode exhibits an initial energy density of 360 Wh kg-1 .
Collapse
Affiliation(s)
- Qiao Deng
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Xinji Dong
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Pei Kang Shen
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Jinliang Zhu
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
35
|
Liu X, He Q, Liu J, Yu R, Zhang Y, Zhao Y, Xu X, Mai L, Zhou L. Dual Single-Atom Moieties Anchored on N-Doped Multilayer Graphene As a Catalytic Host for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9439-9446. [PMID: 36757864 DOI: 10.1021/acsami.2c21620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lithium-sulfur (Li-S) batteries are promising for energy storage, especially in the era of carbon neutrality. Nonetheless, the sluggish kinetics of converting soluble lithium polysulfides into solid lithium sulfide impedes its development. In this work, we design Fe and Co dual single-atom moieties anchored on N-doped multilayer graphene (FeCoNGr) as a catalytic sulfur cathode host for Li-S batteries. With an efficient catalytic role in converting soluble lithium polysulfides into solid Li2S, the FeCoNGr-based Li-S cell demonstrates a capacity of 878.7 mA h g-1 at 0.2 C and retains 77.4% of the initial value after 100 cycles. The first and retained capacities are ∼1.7 and ∼1.8 times those of the NGr (without single atoms)-based cell, respectively. Theoretical calculations reveal that the Fe-N4 moiety has a higher binding energy toward low-order lithium polysulfides, while the Co-N4 moiety has a higher binding energy toward high-order lithium polysulfides. The efficient catalytic conversion of soluble lithium polysulfides into solid lithium sulfides of FeCoNGr plays important roles in outperforming NGr. This work enhances our knowledge on the tandem role of dual single-atom moieties and confirmed the high catalytic efficiency of single-atom catalysts in Li-S batteries.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Qiu He
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jinshuai Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yuanyuan Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yan Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xu Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei 441000, China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei 441000, China
| |
Collapse
|
36
|
Folch JP, Lee RM, Shafei B, Walz D, Tsay C, van der Wilk M, Misener R. Combining multi-fidelity modelling and asynchronous batch Bayesian Optimization. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
37
|
Li W, Wang P, Zhang M, Pan H, He X, He P, Zhou H. Functional CNTs@EMIM + -Br - Electrode Enabling Polysulfides Confining and Deposition Regulating for Solid-State Li-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205809. [PMID: 36433840 DOI: 10.1002/smll.202205809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
With an extremely high theoretical energy density, poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur (Li-S) batteries are emerging as one of the most feasible and safest battery storage systems. However, the long-term cycling performance is severely impeded by polysulfides (Li2 Sn , n = 4-8) shuttling and terrible electrode passivation from the electronic insulating Li2 S. Here, a novel cathode through chemically grafted 1-Ethyl-3-methylimidazolium bromide (EMIM+ -Br- ) to carbon nanotube (CNTs) for PEO-based Li-S batteries is reported (CNTs@EMIM-Br/S). Concretely, bi-functional mediator EMIM+ -Br- not only inhibits the polysulfides shuttling by strong chemical interactions via EMIM+ , but also facilitates the electrochemical kinetics for promoting the formation of 3D particulate Li2 S through high donor anion (Br- ). Satisfactorily, dual-function CNTs@EMIM-Br/S cathode exhibits high sulfur utilization with the capacity of up to 1298 mAh g-1 , and keeps high capacity retention of 80.2% at 0.2 C after 350 cycles, exceeding that of many reported PEO-based solid-state Li-S batteries. This work will open a new door for rationally designed architecture to enable the practical applications of advanced Li-S batteries.
Collapse
Affiliation(s)
- Wei Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Pengfei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Menghang Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hui Pan
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xuewei He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
38
|
Sim K, Kwon J, Lee S, Song H, Cho KY, Kim S, Eom K. Realization of a 594 Wh kg -1 Lithium-Metal Battery Using a Lithium-Free V 2 O 5 Cathode with Enhanced Performances by Nanoarchitecturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205086. [PMID: 36354194 DOI: 10.1002/smll.202205086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
To realize a high-energy lithium metal battery (LMB) using a high-capacity Li-free cathode, in this work, nanoplate-stacked V2 O5 with dominantly exposed (010) facets and a relatively short [010] length is proposed to be used as a cathode. The V2 O5 nanostructure can be fabricated via a modified hydrothermal method, including a Li+ crystallization inhibitor, followed by heat treatment. In particular, the enlargement of the favorable Li+ diffusion pathway in the [010] direction and the formation of a robust hierarchical nanoplate-stacked structure in the modified V2 O5 improves the electrochemical kinetics and stability; as a result, the nanoplate-stacked V2 O5 electrode exhibits a higher capacity and rate performance (258 mAh g-1 at 50 mA g-1 [0.17 C], 140 mAh g-1 at 1 A g-1 [3.4 C]) and cycling capability (79% capacity retention after 100 cycles at 0.5 C) compared to the previously reported V2 O5 nanobelt electrode. Notably, the LMB composed of Li//nanoplate-stacked V2 O5 full-cells shows high specific energy densities of 594.1 and 296.2 Wh kg-1 at 0.1 and 1.0 C, respectively, and a high Coulombic efficiency of 99.6% during 50 cycles.
Collapse
Affiliation(s)
- Kiyeon Sim
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| | - JunHwa Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seungmin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hayong Song
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ki-Yeop Cho
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Subin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| | - KwangSup Eom
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
39
|
Teng W, Li Y, Ma T, Ren X, Nan D, Liu J, Wang X, Yang Q, Deng J. Uniform Lithium Deposition Induced by ZnF x(OH) y for High-Performance Sulfurized Polyacrylonitrile-Based Lithium-Sulfur Batteries. Polymers (Basel) 2022; 14:4494. [PMID: 36365488 PMCID: PMC9657706 DOI: 10.3390/polym14214494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023] Open
Abstract
Lithium metal batteries are emerging as the next generation of high-density electrochemical energy storage systems because of the ultra-high specific capacity and ultra-low electrochemical potential of the Li metal anode. However, the uneven Li deposition on commercial Cu current collectors result in low Coulombic efficiencies (CEs) and poor cycle life. In this research, we proposed the modification of ZnFx(OH)y on Cu foils to expand the lifespan. As-generated ZnLi alloy and LiF could promote uniform Li nucleation and deposition, thus resulting in an improved Li plating/stripping CE and extended cycle life. The Li-S battery with sulfurized polyacrylonitrile cathode and Li-ZnFx(OH)y@Cu anode (N/P ratio of 1.5:1) maintains 95% capacity after 60 cycles, proving the feasibility of ZnFx(OH)y@Cu for practical applications.
Collapse
Affiliation(s)
- Wanming Teng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Ting Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xiuyun Ren
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ding Nan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jun Liu
- Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xiaohu Wang
- Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
- Rising Graphite Applied Technology Research Institute, Chinese Graphite Industrial Park-Xinghe, Ulanqab 013650, China
| | - Qin Yang
- Shenzhen Key Laboratory on Power Battery Safety and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School (SIGS), Shenzhen 518071, China
| | - Jiaojiao Deng
- Shenzhen Key Laboratory on Power Battery Safety and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School (SIGS), Shenzhen 518071, China
| |
Collapse
|
40
|
Franz E, Stumm C, Waidhas F, Bertram M, Jevric M, Orrego-Hernández J, Hölzel H, Moth-Poulsen K, Brummel O, Libuda J. Tunable Energy Release in a Reversible Molecular Solar Thermal System. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evanie Franz
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany
| | - Corinna Stumm
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany
| | - Fabian Waidhas
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany
| | - Manon Bertram
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany
| | - Martyn Jevric
- Chalmers University of Technology, Kemivägen 4, Gothenburg 41296, Sweden
| | | | - Helen Hölzel
- Chalmers University of Technology, Kemivägen 4, Gothenburg 41296, Sweden
| | - Kasper Moth-Poulsen
- Chalmers University of Technology, Kemivägen 4, Gothenburg 41296, Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, Barcelona 08193, Spain
- Catalan Institution for Research & Advanced Studies, ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Olaf Brummel
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany
| |
Collapse
|
41
|
Wang C, Liang J, Kim JT, Sun X. Prospects of halide-based all-solid-state batteries: From material design to practical application. SCIENCE ADVANCES 2022; 8:eadc9516. [PMID: 36070390 PMCID: PMC9451152 DOI: 10.1126/sciadv.adc9516] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 05/22/2023]
Abstract
The safety of lithium-ion batteries has caused notable concerns about their widespread adoption in electric vehicles. A nascent but promising approach to enhancing battery safety is using solid-state electrolytes (SSEs) to develop all-solid-state batteries, which exhibit unrivaled safety and superior energy density. A new family of SSEs based on halogen chemistry has recently gained renewed interest because of their high ionic conductivity, high-voltage stability, good deformability, and cost-effective and scalable synthesis routes. Here, we provide a comprehensive review of halide SSEs concerning their crystal structures, ion transport kinetics, and viability for mass production. Furthermore, their moisture sensitivity and interfacial challenges are summarized with corresponding effective strategies. Last, halide-based all-solid-state Li-ion and Li-S pouch cells with energy density targets of 400 and 500 Wh kg-1 are projected to guide future endeavors. This work serves as a comprehensive guideline for developing halide SSEs from material design to practical application.
Collapse
Affiliation(s)
| | - Jianwen Liang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jung Tae Kim
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | | |
Collapse
|
42
|
Zhan H, Dong B, Zhang G, Lü C, Gu Y. Nanoscale Diamane Spiral Spring for High Mechanical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203887. [PMID: 35971189 DOI: 10.1002/smll.202203887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
A compact, stable, sustainable, and high-energy density power supply system is crucial for the engineering deployment of mobile electromechanical devices/systems either at the small- or large-scale. This work proposes a spiral-based mechanical energy storage scheme utilizing the newly synthesized 2D diamane. Atomistic simulations show that diamane spiral can achieve a high theoretical gravimetric energy density of about 564 Wh kg-1 , about 14 500 times the steel spring. The interlayer friction between diamane is found to cause a strong stick-slip effect that results in local stress/strain concentration. As such, the energy storage capacity of the diamane spiral can be tuned by suppressing the influence from the interlayer friction. Simulations affirm that higher gravimetric energy density can be achieved by reducing the turn number or adopting a low friction contact pair. The fundamental principles that dominate the energy storage capacity of the spiral spring are theoretically analyzed, respectively. The obtained insights suggest that the 2D vdW solids can be promising candidates to construct spiral structures with a high gravimetric energy density. This work should be beneficial for the design of reliable, stable, and sustainable nanoscale mechanical energy storage schemes that can be used as an alternative low-carbon footage energy supplier for novel micro-/nanoscale devices or systems.
Collapse
Affiliation(s)
- Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Bin Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Gang Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Chaofeng Lü
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, P. R. China
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, 315211, P. R. China
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| |
Collapse
|
43
|
Zhang BW, Sun B, Fu P, Liu F, Zhu C, Xu BM, Pan Y, Chen C. A Review of the Application of Modified Separators in Inhibiting the "shuttle effect" of Lithium-Sulfur Batteries. MEMBRANES 2022; 12:membranes12080790. [PMID: 36005705 PMCID: PMC9413873 DOI: 10.3390/membranes12080790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Lithium-sulfur batteries with high theoretical specific capacity and high energy density are considered to be one of the most promising energy storage devices. However, the "shuttle effect" caused by the soluble polysulphide intermediates migrating back and forth between the positive and negative electrodes significantly reduces the active substance content of the battery and hinders the commercial applications of lithium-sulfur batteries. The separator being far from the electrochemical reaction interface and in close contact with the electrode poses an important barrier to polysulfide shuttle. Therefore, the electrochemical performance including coulombic efficiency and cycle stability of lithium-sulfur batteries can be effectively improved by rationally designing the separator. In this paper, the research progress of the modification of lithium-sulfur battery separators is reviewed from the perspectives of adsorption effect, electrostatic effect, and steric hindrance effect, and a novel modification of the lithium-sulfur battery separator is prospected.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Bo Sun
- Shandong Zhongsheng Pharmaceutical Equipment Co., Ltd., Yantai 264010, China
| | - Pei Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Feng Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Chen Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Bao-Ming Xu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yong Pan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Chi Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
44
|
Li XY, Feng S, Zhao CX, Cheng Q, Chen ZX, Sun SY, Chen X, Zhang XQ, Li BQ, Huang JQ, Zhang Q. Regulating Lithium Salt to Inhibit Surface Gelation on an Electrocatalyst for High-Energy-Density Lithium-Sulfur Batteries. J Am Chem Soc 2022; 144:14638-14646. [PMID: 35791913 DOI: 10.1021/jacs.2c04176] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lithium-sulfur (Li-S) batteries have great potential as high-energy-density energy storage devices. Electrocatalysts are widely adopted to accelerate the cathodic sulfur redox kinetics. The interactions among the electrocatalysts, solvents, and lithium salts significantly determine the actual performance of working Li-S batteries. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a commonly used lithium salt, is identified to aggravate surface gelation on the MoS2 electrocatalyst. In detail, the trifluoromethanesulfonyl group in LiTFSI interacts with the Lewis acidic sites on the MoS2 electrocatalyst to generate an electron-deficient center. The electron-deficient center with high Lewis acidity triggers cationic polymerization of the 1,3-dioxolane solvent and generates a surface gel layer that reduces the electrocatalytic activity. To address the above issue, Lewis basic salt lithium iodide (LiI) is introduced to block the interaction between LiTFSI and MoS2 and inhibit the surface gelation. Consequently, the Li-S batteries with the MoS2 electrocatalyst and the LiI additive realize an ultrahigh actual energy density of 416 W h kg-1 at the pouch cell level. This work affords an effective lithium salt to boost the electrocatalytic activity in practical working Li-S batteries and deepens the fundamental understanding of the interactions among electrocatalysts, solvents, and salts in energy storage systems.
Collapse
Affiliation(s)
- Xi-Yao Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuai Feng
- College of Chemistry and Chemical Engineering, Taishan University, Shandong 271021, China
| | - Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Cheng
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zi-Xian Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Yu Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xue-Qiang Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.,School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Tu S, Chen Z, Zhang B, Wang X, Zhan R, Li C, Sun Y. Realizing High Utilization of High-Mass-Loading Sulfur Cathode via Electrode Nanopore Regulation. NANO LETTERS 2022; 22:5982-5989. [PMID: 35816451 DOI: 10.1021/acs.nanolett.2c02258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One main challenge of realizing high-energy-density lithium-sulfur batteries is low active materials utilization, excessive use of inert components, high electrolyte intake, and mechanical instability of high-mass-loading sulfur cathodes. Herein, chunky sulfur/graphene particle electrodes were designed, where active sulfur was confined in vertically aligned nanochannels (width ∼12 nm) of chunky graphene-based particles (∼70 μm) with N, O-containing groups. The short charge transport distance and low tortuosity enabled high utilization of active materials for high-mass-loading chunky sulfur/graphene particle electrodes. The intermediate polysulfide trapping effect by capillary effect and heteroatoms-containing groups, and a mechanically robust graphene framework, helped to realize stable electrode cycling. The as-designed electrode showed high areal capacity (10.9 mAh cm-2) and high sulfur utilization (72.4%) under the rigorous conditions of low electrolyte/active material ratio (∼2.5 μL mg-1) and high sulfur loading (9.0 mg cm-2), realizing high energy densities (520 Wh kg-1, 1635 Wh L-1).
Collapse
Affiliation(s)
- Shuibin Tu
- Wuhan National Laboratory for Optoelectrons and School of Optical and Electron Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihe Chen
- Wuhan National Laboratory for Optoelectrons and School of Optical and Electron Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bao Zhang
- Wuhan National Laboratory for Optoelectrons and School of Optical and Electron Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiancheng Wang
- Wuhan National Laboratory for Optoelectrons and School of Optical and Electron Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Renming Zhan
- Wuhan National Laboratory for Optoelectrons and School of Optical and Electron Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenhui Li
- Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongming Sun
- Wuhan National Laboratory for Optoelectrons and School of Optical and Electron Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
46
|
Hu X, Lin S, Chen R, Zhang G, Huang T, Li J, Yang X, Chung LH, Yu L, He J. Thiol-Containing Metal-Organic Framework-Decorated Carbon Cloth as an Integrated Interlayer-Current Collector for Enhanced Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31942-31950. [PMID: 35795893 DOI: 10.1021/acsami.2c06131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium-sulfur (Li-S) batteries hold great promise for new-generation energy storage technologies owing to their overwhelming energy density. However, the poor conductivity of active sulfur and the shuttle effect limit their widespread use. Herein, a carbon cloth decorated with thiol-containing UiO-66 nanoparticles (CC@UiO-66(SH)2) was developed to substitute the traditional interlayer and current collector for Li-S batteries. One side of CC@UiO-66(SH)2 acts as a current collector to load active materials, while the other side serves as an interlayer to further restrain polysulfide shuttling. This two-in-one integrated architecture endows the sulfur cathode with fast electron/ion transport and efficient chemical confinement of polysulfides. More importantly, rich thiol groups in the pores of UiO-66(SH)2 serve to tether polysulfides by both covalent interactions and lithium bonding. Therefore, the Li-S battery equipped with this integrated interlayer-current collector not only delivers an enhanced specific capability (1209 mAh g-1 at 0.1 C) but also exhibits prominent cycling stability (an attenuation rate of 0.037% per cycle for 1000 cycles at 1 C). Meanwhile, the battery achieves a high discharge capacity of 795 mAh g-1 at a sulfur loading of 3.83 mg cm-2. The new metal-organic framework (MOF)-based electrode material reported in this study undoubtedly provides insights into the exploration of functional MOFs for robust Li-S batteries.
Collapse
Affiliation(s)
- Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangjun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruwei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Gengyuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tian Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianrong Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianghua Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
47
|
Yang Z, Li Z, Liu Y, Song Z, Gao Z, Zhang J, Zheng Z. Carbon nanofiber frameworks for Li metal batteries: the synergistic effect of conductivity and lithiophilic-sites. NANOTECHNOLOGY 2022; 33:355402. [PMID: 35617930 DOI: 10.1088/1361-6528/ac73a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The utilization of carbon framework to guide the growth of the Li dendrites is an important theme for Li metal batteries. The conductivity and electronegative sites of carbon materials will greatly affect the nucleation of Li metal. However, how much these two contributing factors affect the Li plating/stripping stability should be considered. This work presents N, O doped carbon nanofiber framework (CNF) membrane as the interlayer for protecting the Li anode. The amounts of N and O elements and their ratios, the conductivity, the thickness of CNF membrane and their effects on the Li plating/stripping process have been fully analyzed. The voltage profile and the stability of Li plating/stripping process are evaluated by symmetric and asymmetrical coin cells. The lithiophilic heteroatom doped surface mainly works as an excellent guide during the Li plating process, whereas the conductivity and mechanical stability of CNF equalize the current density and confine the volume change in during cycling. With the optimized CNF membrane as the interlayer, both Li metal and Li-S full cells exhibit good capacity properties and cyclic stability.
Collapse
Affiliation(s)
- Zhen Yang
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zheng Li
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yanqi Liu
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhaohai Song
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhihao Gao
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jianmin Zhang
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zongmin Zheng
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University, Qingdao, 266071, People's Republic of China
| |
Collapse
|
48
|
Li Y, Wu H, Wu D, Wei H, Guo Y, Chen H, Li Z, Wang L, Xiong C, Meng Q, Liu H, Chan CK. High-Density Oxygen Doping of Conductive Metal Sulfides for Better Polysulfide Trapping and Li 2 S-S 8 Redox Kinetics in High Areal Capacity Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200840. [PMID: 35411708 PMCID: PMC9189686 DOI: 10.1002/advs.202200840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Indexed: 05/10/2023]
Abstract
Exploring new materials and methods to achieve high utilization of sulfur with lean electrolyte is still a common concern in lithium-sulfur batteries. Here, high-density oxygen doping chemistry is introduced for making highly conducting, chemically stable sulfides with a much higher affinity to lithium polysulfides. It is found that doping large amounts of oxygen into NiCo2 S4 is feasible and can make it outperform the pristine oxides and natively oxidized sulfides. Taking the advantages of high conductivity, chemical stability, the introduced large Li-O interactions, and activated Co (Ni) facets for catalyzing Sn 2- , the NiCo2 (O-S)4 is able to accelerate the Li2 S-S8 redox kinetics. Specifically, lithium-sulfur batteries using free-standing NiCo2 (O-S)4 paper and interlayer exhibit the highest capacity of 8.68 mAh cm-2 at 1.0 mA cm-2 even with a sulfur loading of 8.75 mg cm-2 and lean electrolyte of 3.8 µL g-1 . The high-density oxygen doping chemistry can be also applied to other metal compounds, suggesting a potential way for developing more powerful catalysts towards high performance of Li-S batteries.
Collapse
Affiliation(s)
- Yiyi Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Donghai Wu
- Henan Key Laboratory of Nanocomposites and ApplicationsInstitute of Nanostructured Functional MaterialsHuanghe Science and Technology CollegeZhengzhou450006P. R. China
| | - Hairu Wei
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Yanbo Guo
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| | - Zhijian Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Lei Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsSchool of Materials Science and EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Chuanyin Xiong
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Qingjun Meng
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Hanbin Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Candace K. Chan
- Materials Science and EngineeringSchool for Engineering of MatterTransport and EnergyArizona State UniversityTempe85287USA
| |
Collapse
|
49
|
Lei X, Liang X, Yang R, Zhang F, Wang C, Lee CS, Tang Y. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200418. [PMID: 35315220 DOI: 10.1002/smll.202200418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Rechargeable magnesium batteries (RMBs) are promising candidates to replace currently commercialized lithium-ion batteries (LIBs) in large-scale energy storage applications owing to their merits of abundant resources, low cost, high theoretical volumetric capacity, etc. However, the development of RMBs is still facing great challenges including the incompatibility of the electrolyte and the lack of suitable cathode materials with high reversible capacity and fast kinetics of Mg2+ . While tremendous efforts have been made to explore compatible electrolytes and appropriate electrode materials, the rational design of unconventional Mg-based battery systems is another effective strategy for achieving high electrochemical performance. This review specifically discusses the recent research progress of various Mg-based battery systems. First, the optimization of electrolyte and electrode materials for conventional RMBs is briefly discussed. Furthermore, various Mg-based battery systems, including Mg-chalcogen (S, Se, Te) batteries, Mg-halogen (Br2 , I2 ) batteries, hybrid-ion batteries, and Mg-based dual-ion batteries are systematically summarized. This review aims to provide a comprehensive understanding of different Mg-based battery systems, which can inspire latecomers to explore new strategies for the development of high-performance and practically available RMBs.
Collapse
Affiliation(s)
- Xin Lei
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Liang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Chenchen Wang
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
50
|
Lin Y, Huang S, Xiao M, Han D, Huang Z, Wang S, Meng Y. Excavating Anomalous Capacity Increase of Li-S Pouch Cells by Electrochemical Oscillation Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22197-22205. [PMID: 35522974 DOI: 10.1021/acsami.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The insufficient activation of a S/C cathode makes insufficient utilization of S in Li-S pouch cells, while the deep activation of a S/C cathode in a formation process is time-consuming and produces lithium polysulfides, which corrode a Li anode. Both situations lead to a low actual capacity of the Li-S pouch cells with a high S loading but are ignored for coin cells. In this work, electrochemical oscillation (EOS) formation employing hundreds of shallow discharge/charge cycles with high frequency was used to replace the resting and/or one deep discharge/charge cycle of traditional (TD) formation protocols. By controlling the discharge/charge capacity separately, symmetric oscillation (SOS) and asymmetric oscillation (ASOS) protocols were performed to facilitate the infiltration of electrolyte into the S cathode and restrict the formed lithium polysulfide in the cathode region. For SOS formation, the batteries were discharged/charged above 2.4 V with the same (symmetric) capacity with 2.78 × 10-3 Hz of oscillation frequency (∼1.4 mAh/g for SOS-500), in which the polysulfide dissolution was suppressed effectively. For ASOS formation, 100% discharge capacity (also ∼1.4 mAh/g for ASOS-500) and 92% charge capacity are set in each oscillation period, which leads to better activation effect but more shuttling polysulfides than SOS. Compared with SOS protocol, for ASOS protocol, more oxidative S (instead of polysulfides) inside original nonactivated cathode will be preferentially reduced in the next discharging process, but all the accumulated polysulfides during discharge of activation are oxidized into elemental S in the final charging process. These efficient formation protocols increase the practical capacity by up to 160% after 50 cycles without any change in pouch cell assembly.
Collapse
Affiliation(s)
- Yilong Lin
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongmei Han
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhiheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|