1
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
2
|
Otarbayeva S, Berillo D. Poly(Vinyl Alcohol) Drug and PVA-Drug-Surfactant Complex Organogel with Dimethyl Sulfoxide as a Drug Delivery System. Gels 2024; 10:753. [PMID: 39590109 PMCID: PMC11593573 DOI: 10.3390/gels10110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The relevance of active research lies in the need to develop new technologies to improve drug delivery methods for the effective treatment of wound healing. Additionally, the potential application of organogels in other areas of biomedicine, such as creating medical patches with controlled drug delivery, indicates a wide range of possibilities for using this technology. This study focuses on developing controlled drug delivery systems using organogels as carriers for ceftriaxone and ofloxacin. By selecting optimal formulations, organogels were created to immobilize the drugs, facilitating their effective and sustained release. The swelling behavior of the hydrogels was studied, showing a swelling coefficient between 16 and 32%, indicating their ability to absorb liquid relative to their weight. Drug release studies demonstrated that ceftriaxone was released 1.8 times slower than ofloxacin, ensuring a more controlled delivery. Microbiological tests confirmed that the organogels containing ofloxacin exhibited antimicrobial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. However, it was a challenge to estimate activity for the model antibiotic ceftriaxone due to bacterial resistance to it. Organogel poly(vinyl alcohol) (PVA)-DMSO-alginate modifications with surfactant cetylpyridinium bromide led to the formation of a polyelectrolyte complex on the interphase, allowing further enhanced the prolonged release of the drugs. The research identified that the optimal compositions for sustained drug release were organogels with compositions PVA (10%)-PVP (1%) DMSO (50%) and PVA (10%)-DMSO (50%) formulations, illustrating the transparent nature of these organogels making them suitable for ophthalmological application. Various organogels compositions (PVA-DMSO, PVA-poly(vinylpyrrolidone)-DMSO, PVA-DMSO-alginate, PVA-DMSO-PLGA, PVA-DMSO-drug-surfactant) loaded with ceftriaxone, ofloxacin, and surfactant were prepared and characterized, highlighting their potential use in antibiotic patches for wound healing. These organogels illustrate promising results for localized treatment of infections in wounds, cuts, burns, and other skin lesions.
Collapse
Affiliation(s)
- Sabina Otarbayeva
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Dmitriy Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
3
|
Shen H, Li M, Cui W, Ran R. Temperature-Governed Microstructure of Poly(vinyl alcohol) Hydrogels Prepared through Mixed-Solvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62732-62742. [PMID: 39491477 DOI: 10.1021/acsami.4c14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The formation of phase-separated structures in hydrogels plays a crucial role in determining their optical and mechanical properties. Traditionally, phase-separated hydrogels are prepared through a two-step process involving initial hydrogel synthesis followed by post-treatment. In this study, we present an approach for temperature-governed phase separation microstructure modulation in hydrogels, harnessing the cononsolvency effect. This method allows the phase-separated structure to develop during hydrogel synthesis, significantly simplifying the preparation process. Importantly, we found that the preparation temperature has a substantial effect on the internal structure of the phase-separated hydrogel. We systematically investigated how the temperature influences the phase structure, optical properties, and mechanical performance of these hydrogels. The resulting hydrogels demonstrate excellent moisturizing and antifreezing capabilities. Additionally, the incorporation of sodium chloride imparts remarkable electrical conductivity to the hydrogels, making them suitable for strain sensing applications across a wide temperature range.
Collapse
Affiliation(s)
- Huanwei Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Min Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Wu J, He W, Xu R, Li Y, Wu D, Yang Z, Li Y. Asymmetric porous hydrogel encapsulating vulcanized molecular brushes with anti-bacterial adhesion, anti-infection, and pro-healing properties towards infected wound treatment. NANOSCALE 2024; 16:20489-20495. [PMID: 39420797 DOI: 10.1039/d4nr02343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.
Collapse
Affiliation(s)
- Jinlun Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ruijun Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Wang Y, Liu Z, Liu Y, Yan J, Wu H, Zhang H, Li H, Wang J, Xue H, Wang L, Shi Y, Tang L, Song P, Gao J. Strong, tough and environment-tolerant organohydrogels for flaw-insensitive strain sensing. MATERIALS HORIZONS 2024; 11:5662-5673. [PMID: 39221913 DOI: 10.1039/d4mh00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conductive organohydrogels are promising for strain sensing, while their weak mechanical properties, poor crack propagation resistance and unstable sensing signals during long-term use have seriously limited their applications as high-performance strain sensors. Here, we propose a facile method, i.e., solvent exchange assisted hot-pressing, to prepare strong yet tough, transparent and anti-fatigue ionically conductive organohydrogels (ICOHs). The densified polymeric network and improved crystallinity endow ICOHs with excellent mechanical properties. The tensile strength, toughness, fracture energy and fatigue threshold of ICOHs can reach 36.12 ± 4.15 MPa, 54.57 ± 2.89 MJ m-3, 43.44 ± 8.54 kJ m-2 and 1212.86 ± 57.20 J m-2, respectively, with a satisfactory fracture strain of 266 ± 33%. In addition, ICOH strain sensors with freezing and drying resistance exhibit excellent cycling stability (10 000 cycles). More importantly, the fatigue resistance allows the notched strain sensor to work normally with no crack propagation and output stable and reliable sensing signals. Overall, the unique flaw-insensitive strain sensing makes ICOHs promising in the field of wearable and durable electronics.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yuntao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Huamin Li
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Junjie Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
6
|
Zhao G, Zhang A, Chen X, Xiang G, Jiang T, Zhao X. Barnacle inspired strategy combined with solvent exchange for enhancing wet adhesion of hydrogels to promote seawater-immersed wound healing. Bioact Mater 2024; 41:46-60. [PMID: 39101027 PMCID: PMC11296073 DOI: 10.1016/j.bioactmat.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Hydrogels are promising materials for wound protection, but in wet, or underwater environments, the hydration layer and swelling of hydrogels can seriously reduce adhesion and limit their application. In this study, inspired by the structural characteristics of strong barnacle wet adhesion and combined with solvent exchange, a robust wet adhesive hydrogel (CP-Gel) based on chitosan and 2-phenoxyethyl acrylate was obtained by breaking the hydration layer and resisting swelling. As a result, CP-Gel exhibited strong wet adhesion to various interfaces even underwater, adapted to joint movement and skin twisting, resisted sustained rushing water, and sealed damaged organs. More importantly, on-demand detachment and controllable adhesion were achieved by promoting swelling. In addition, CP-Gel with good biosafety significantly promotes seawater-immersed wound healing and is promising for use in water-contact wound care, organ sealing, and marine emergency rescue.
Collapse
Affiliation(s)
- Guiyuan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Aijia Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
7
|
Su Y, Liu S, Zhu W, Huang K, Huang D, Jiang P, Liu J, Yang G, He Z, Wang J. Regulating Molecular Interactions in Polybenzimidazole Membrane for Efficient Vanadium Redox Flow Battery. CHEMSUSCHEM 2024:e202401576. [PMID: 39445655 DOI: 10.1002/cssc.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The tightly bonded structure of polybenzimidazole (PBI) membrane is the origin of its poor proton conductivity, which severely hinders achieving a cost-effective membrane for vanadium redox flow battery (VRFB). It desires a strategy to relax the membrane structure to significantly improve the proton conductivity and maintain its structure stability. Therefore, this work proposes a novel strategy through regulating molecular interactions within PBI membrane to loosen up the structure of PBI membrane and dramatically enhance the proton conductivity. The interactions in PBI membrane are switched by DMSO/water and acid through sequentially treating membrane with these solutions. The efficient PBI membrane prepared using this strategy demonstrates an outstanding performance for VRFB, with the proton conductivity enhanced by 3850 % (from 1.9 to 76.3 mS cm-1), and VRFB achieves a high energy efficiency of 80.5 % under 200 mA cm-2. More importantly, this work shed lights on the structure-property relationship of PBI membrane, and the mechanism in enhancing proton conductivity is unraveled, which is of great significance for the development of VRFB membranes.
Collapse
Affiliation(s)
- Yuke Su
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kui Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Da Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Peng Jiang
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Jianhui Liu
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Guang Yang
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
8
|
Deng J, Chen N, Yang S, Xie S, Guo K, Song J, Tao Y, Liu J, Wang Z. Supercooling-Driven Homogenization and Strengthening of Hydrogel Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54587-54596. [PMID: 39321391 DOI: 10.1021/acsami.4c11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
By leveraging principles from metal grain refinement, we introduce a transformative technique for fabricating poly(vinyl alcohol) (PVA) hydrogels via supercooling-coupled wet annealing, significantly enhancing their mechanical robustness and isotropy while maintaining their exceptionally high water content. Our methodology involves the dissolving PVA in water at elevated temperatures, mirroring the homogeneity achieved with a molten metal, in order to ensure a uniform distribution of polymer chains. This uniformity facilitates a rapid cooling phase that generates ultrafine ice crystals, setting the stage for a crucial solvent exchange with ethylene glycol (EG). The EG-mediated supercooling technique ensures the polymer homogeneity and structure integrity and induces the PVA chains to aggregate and form high-density hydrogen bonds, leading to a uniformly distributed, interconnected PVA network with high crystallinity. The process is further strengthened by EG-enabled wet annealing, which promotes the formation of densely packed crystalline domains within the polymer network. This rigorous process yields PVA hydrogels with superior mechanical properties, including a tensile strength of 13.65 MPa and a fracture toughness of 35.39 MJ m-3, alongside remarkable water content nearing 80%. These advances not only surpass the capabilities of conventional hydrogels but also broaden their application potential, highlighting the innovative integration of supercooling principles in polymer science.
Collapse
Affiliation(s)
- Jie Deng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Ningxin Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shanchen Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Sida Xie
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jinwei Song
- Zhejiang Fulai New Materials Co., Ltd, Jiashan County 314100, China
| | - Yue Tao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaohui Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Meng L, Hu Y, Li W, Zhou Z, Cui S, Wang M, Chen Z, Wu Q. Molecular Chain Rearrangement-Induced In Situ Formation of Nanofibers for Improving the Strength and Toughness of Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53007-53021. [PMID: 39303004 DOI: 10.1021/acsami.4c13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Although poly(vinyl alcohol) (PVA) hydrogel has high elasticity and is suitable for cartilage tissue engineering, it is difficult to have both high strength and toughness. In this study, a simple and universal strategy is proposed to prepare strong and tough PVA hydrogels by in situ forming nanofibers on the original network structure induced by a molecular chain rearrangement. Quenching-tempering alteratively in ethanol and water several times is carried out to strengthen PVA hydrogels (PVA-Etn hydrogels) due to the advantages of noncovalent bonds in adjustability and reversibility. The results show that, after three quenching-tempering cycles, PVA-Et3 hydrogel with water content up to 79 wt % shows comprehensive improved mechanical properties. The compression modulus, tensile modulus, fracture strength, tensile strain, and tear energy of the PVA-Et3 hydrogel are 270, 250, 260, 130, and 180% of the initial PVA hydrogel, respectively. The improved mechanical properties of the PVA-Et3 hydrogel are attributed to the strong cross-linked PVA chains and hydrogen bond-reinforced nanofibers. This study not only provides a simple and efficient solution for the preparation of strong and tough polymer scaffolds in tissue engineering but also provides new insights for understanding the mechanism of improving the mechanical properties of polymer hydrogels by adjusting the molecular structure.
Collapse
Affiliation(s)
- Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zilin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shuojie Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Meng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zebin Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
10
|
Luo H, Mu Q, Zhu R, Li M, Shen H, Lu H, Hu L, Tian J, Cui W, Ran R. An Organic-Inorganic Hydrogel with Exceptional Mechanical Properties via Anion-Induced Synergistic Toughening for Accelerating Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403322. [PMID: 38898720 DOI: 10.1002/smll.202403322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mineralized bio-tissues achieve exceptional mechanical properties through the assembly of rigid inorganic minerals and soft organic matrices, providing abundant inspiration for synthetic materials. Hydrogels, serving as an ideal candidate to mimic the organic matrix in bio-tissues, can be strengthened by the direct introduction of minerals. However, this enhancement often comes at the expense of toughness due to interfacial mismatch. This study reveals that extreme toughening of hydrogels can be realized through simultaneous in situ mineralization and salting-out, without the need for special chemical modification or additional reinforcements. The key to this strategy lies in harnessing the kosmotropic and precipitation behavior of specific anions as they penetrate a hydrogel system containing both anion-sensitive polymers and multivalent cations. The resulting mineralized hydrogels demonstrate significant improvements in fracture stress, fracture energy, and fatigue threshold due to a multiscale energy dissipation mechanism, with optimal values reaching 12 MPa, 49 kJ m-2, and 2.98 kJ m-2. This simple strategy also proves to be generalizable to other anions, resulting in tough hydrogels with osteoconductivity for promoting in vitro mineralization of human adipose-derived mesenchymal stem cells. This work introduces a universal route to toughen hydrogels without compromising other parameters, holding promise for biological applications demanding integrated mechanical properties.
Collapse
Affiliation(s)
- Hongmei Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qifeng Mu
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ruijie Zhu
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Min Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Huanwei Shen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Honglang Lu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Longyu Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiajun Tian
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Zhang S, Guo F, Gao X, Yang M, Huang X, Zhang D, Li X, Zhang Y, Shang Y, Cao A. High-Strength, Antiswelling Directional Layered PVA/MXene Hydrogel for Wearable Devices and Underwater Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405880. [PMID: 39162177 PMCID: PMC11496995 DOI: 10.1002/advs.202405880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Hydrogel sensors are widely utilized in soft robotics and tissue engineering due to their excellent mechanical properties and biocompatibility. However, in high-water environments, traditional hydrogels can experience significant swelling, leading to decreased mechanical and electrical performance, potentially losing shape, and sensing capabilities. This study addresses these challenges by leveraging the Hofmeister effect, coupled with directional freezing and salting-out techniques, to develop a layered, high-strength, tough, and antiswelling PVA/MXene hydrogel. In particular, the salting-out process enhances the self-entanglement of PVA, resulting in an S-PM hydrogel with a tensile strength of up to 2.87 MPa. Furthermore, the S-PM hydrogel retains its structure and strength after 7 d of swelling, with only a 6% change in resistance. Importantly, its sensing performance is improved postswelling, a capability rarely achievable in traditional hydrogels. Moreover, the S-PM hydrogel demonstrates faster response times and more stable resistance change rates in underwater tests, making it crucial for long-term continuous monitoring in challenging aquatic environments, ensuring sustained operation and monitoring.
Collapse
Affiliation(s)
- Shipeng Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Fengmei Guo
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xue Gao
- Luoyang Institute of Science and TechnologySchool of Intelligent ManufacturingLuoyang471023China
| | - Mengdan Yang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xinguang Huang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Ding Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xinjian Li
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Yingjiu Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Yuanyuan Shang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Anyuan Cao
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
12
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Ye T, Chai M, Wang Z, Shao T, Liu J, Shi X. 3D-Printed Hydrogels with Engineered Nanocrystalline Domains as Functional Vascular Constructs. ACS NANO 2024; 18:25765-25777. [PMID: 39231281 DOI: 10.1021/acsnano.4c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Three-dimensionally printed (3DP) hydrogel-based vascular constructs have been investigated in response to the impaired function of blood vessels or organs by replicating exactly the 3D structural geometry to approach their function. However, they are still challenged by their intrinsic brittleness, which could not sustain the suture piercing and enable the long-term structural and functional stability during the direct contact with blood. Here, we reported the high-fidelity digital light processing (DLP) 3D printing of hydrogel-based vascular constructs from poly(vinyl alcohol)-based inks, followed by mechanical strengthening through engineering the nanocrystalline domains and subsequent surface modification. The as-prepared high-precision hydrogel vascular constructs were imparted with highly desirable mechanical robustness, suture tolerance, swelling resistance, antithrombosis, and long-term patency. Notably, the hydrogel-based bionic vein grafts, with precise valve structures, exhibited excellent control over the unidirectional flow and successfully fulfilled the biological functionalities and patency during a 4-week implantation within the deep veins of beagles, thus corroborating the promising potential for treating chronic venous insufficiency.
Collapse
Affiliation(s)
- Tan Ye
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Muyuan Chai
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523000, P. R. China
| | - Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingru Shao
- Department of Oral & Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
14
|
Huang L, Li H, Wen S, Xia P, Zeng F, Peng C, Yang J, Tan Y, Liu J, Jiang L, Wang J. Control nucleation for strong and tough crystalline hydrogels with high water content. Nat Commun 2024; 15:7777. [PMID: 39237555 PMCID: PMC11377714 DOI: 10.1038/s41467-024-52264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Hydrogels, provided that they integrate strength and toughness at desired high content of water, promise in load-bearing tissues such as articular cartilage, ligaments, tendons. Many developed strategies impart hydrogels with some mechanical properties akin to natural tissues, but compromise water content. Herein, a strategy deprotonation-complexation-reprotonation is proposed to prepare polyvinyl alcohol hydrogels with water content as high as ~80% and favorable mechanical properties, including tensile strength of 7.4 MPa, elongation of around 1350%, and fracture toughness of 12.4 kJ m-2. The key to water holding yet improved mechanical properties lies in controllable nucleation for refinement of crystalline morphology. With nearly constant water content, mechanical properties of as-prepared hydrogels are successfully tailored by tuning crystal nuclei density via deprotonation degree and their distribution uniformity via complexation temperature. This work provides a nucleation concept to design robust hydrogels with desired water content, holding implications for practical application in tissue engineering.
Collapse
Affiliation(s)
- Limei Huang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Hao Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, China
| | - Shunxi Wen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Penghui Xia
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Fanzhan Zeng
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Chaoyi Peng
- Zhuzhou Times New Material Technology CO., LTD., Zhuzhou, China
| | - Jun Yang
- Zhuzhou Times New Material Technology CO., LTD., Zhuzhou, China
| | - Yun Tan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China.
| |
Collapse
|
15
|
Pan X, Li X, Wang Z, Ni Y, Wang Q. Nanolignin-Facilitated Robust Hydrogels. ACS NANO 2024; 18:24095-24104. [PMID: 39150717 DOI: 10.1021/acsnano.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Recently, certain challenges and accompanying drawbacks have emerged in the preparation of high-strength and tough polymer hydrogels. Insights from wood science highlight the role of the intertwined molecular structure of lignin and crystalline cellulose in contributing to wood's strength. Herein, we immersed prestretched poly(vinyl alcohol) (PVA) polymer hydrogels into a solution of nanosized lignosulfonate sodium (LS), a water-soluble anionic polyelectrolyte, to creatively reconstruct this similar structure at the molecular scale in hydrogels. The nanosized LS effectively fixed and bundled the prestretched PVA polymers while inducing the formation of dense crystalline domains within the polymer matrix. Consequently, the interwoven structure of crystalline PVA and LS conferred good strength to the composite hydrogels, exhibiting a tensile strength of up to ∼23 MPa, a fracture strain of ∼350%, Young's modulus of ∼17 MPa, toughness of ∼47 MJ/m3, and fracture energy of ∼42 kJ/m2. This hydrogel far outperformed previous hydrogels composed directly of lignin and PVA (tensile strength <1.5 MPa). Additionally, the composite hydrogels demonstrated excellent antifreezing properties (<-80 °C). Notably, the LS-assisted reconstruction technology offers opportunities for the secondary fixation of PVA hydrogel shapes and high-strength welding of hydrogel components. This work introduces an approach for the high-value utilization of LS, a green byproduct of pulp production. LS's profound biomimetic strategy will be applied in multifunctional hydrogel fields.
Collapse
Affiliation(s)
- Xiaofeng Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P.R. China
| | - Xiang Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Qinhua Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
16
|
Yang J, Yuan G, Shen Y, Guo C, Li Z, Yan F, Chen X, Mei L, Wang T. Pushing Pressure Detection Sensitivity to New Limits by Modulus-Tunable Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403779. [PMID: 38978349 PMCID: PMC11425887 DOI: 10.1002/advs.202403779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Only microstructures are used to improve the sensitivity of iontronic pressure sensors. By modulating the compressive modulus, a breakthrough in the sensitivity of the iontronic pressure sensor is achieved. Furthermore, it allows for programmatic tailoring of sensor performance according to the requirements of different applications. Such a new strategy pushes the sensitivity up to a record-high of 25 548.24 kPa-1 and expands the linear pressure range from 15 to 127 kPa. Additionally, the sensor demonstrates excellent mechanical stability over 10 000 compression-release cycles. Based on this, a well-controlled robotic hand that precisely tracks the pressure behavior inside a balloon to autonomously regulate the gripping angle is developed. This paves the way for the application of iontronic pressure sensors in precise sensing scenarios.
Collapse
Affiliation(s)
- Jing Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Guojiang Yuan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong Shen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Caili Guo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhibin Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Fengling Yan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lin Mei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Taihong Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
17
|
Pan X, Pan J, Li X, Wang Z, Ni Y, Wang Q. Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406671. [PMID: 38988151 DOI: 10.1002/adma.202406671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.
Collapse
Affiliation(s)
- Xiaofeng Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350108, P. R. China
| | - Jiawei Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Xiang Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Qinhua Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| |
Collapse
|
18
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
19
|
Yan Y, Wei L, Shao J, Qiu X, Zhang X, Cui X, Huang J, Ge S. A Near-Infrared Photothermal-Responsive Underwater Adhesive with Tough Adhesion and Antibacterial Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310870. [PMID: 38453669 DOI: 10.1002/smll.202310870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Developing tunable underwater adhesives that possess tough adhesion in service and easy detachment when required remains challenging. Herein, a strategy is proposed to design a near infrared (NIR) photothermal-responsive underwater adhesive by incorporating MXene (Ti3C2Tx)-based nanoparticles within isocyanate-modified polydimethylsiloxane (PDMS) polymer chains. The developed adhesive exhibits long-term and tough adhesion with an underwater adhesion strength reaching 5.478 MPa. Such strong adhesion is mainly attributed to the covalent bonds and hydrogen bonds at the adhesive-substrate interface. By making use of the photothermal-response of MXene-based nanoparticles and the thermal response of PDMS-based chains, the adhesive possesses photothermal-responsive performance, exhibiting sharply diminished adhesion under NIR irradiation. Such NIR-triggered tunable adhesion allows for easy and active detachment of the adhesive when needed. Moreover, the underwater adhesive exhibits photothermal antibacterial property, making it highly desirable for underwater applications. This work enhances the understanding of photothermal-responsive underwater adhesion, enabling the design of tunable underwater adhesives for biomedical and engineering applications.
Collapse
Affiliation(s)
- Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| | - Luxing Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jinlong Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
20
|
Tang Y, Lu C, Xiong R. Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering. ACS NANO 2024; 18:14629-14639. [PMID: 38776427 DOI: 10.1021/acsnano.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale. The hierarchical structural engineering of long-range ordered cellulose nanocrystals' bouligand structure, well-defined poly(vinyl alcohol) nanocrystalline domains, and dynamic interfacial interaction synergistically contributes to the integration of high strength (23.3 MPa), superior modulus (264 MPa), and high toughness (54.7 MJ m-3), as well as extraordinary impact resistance, which far exceed their natural counterparts and synthetic photonic hydrogels. More importantly, seamless chiroptical and solvent-responsive patterns with high resolution can also be scalably integrated into the hydrogel by localized manipulation of the photonic band, while maintaining good ionic conductivity. Such exceptional mechanical-photonic combination holds tremendous potential for applications in wearable sensors, encryption, displays, and soft robotics.
Collapse
Affiliation(s)
- Yulu Tang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Sun X, Mao Y, Yu Z, Yang P, Jiang F. A Biomimetic "Salting Out-Alignment-Locking" Tactic to Design Strong and Tough Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400084. [PMID: 38517475 DOI: 10.1002/adma.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Recently, hydrogel-based soft materials have demonstrated huge potential in soft robotics, flexible electronics as well as artificial skins. Although various methods are developed to prepare tough and strong hydrogels, it is still challenging to simultaneously enhance the strength and toughness of hydrogels, especially for protein-based hydrogels. Herein, a biomimetic "salting out-alignment-locking" tactic (SALT) is introduced for enhancing mechanical properties through the synergy of alignment and the salting out effect. As a typical example, tensile strength and modulus of initially brittle gelatin hydrogels increase 940 folds to 10.12 ± 0.50 MPa and 2830 folds to 34.26 ± 3.94 MPa, respectively, and the toughness increases up to 1785 folds to 14.28 ± 3.13 MJ m-3. The obtained strength and toughness hold records for the previously reported gelatin-based hydrogel and are close to the tendons. It is further elucidated that the salting out effect engenders hydrophobic domains, while prestretching facilitates chain alignment, both synergistically contributing to the outstanding mechanical properties. It is noteworthy that the SALT demonstrates remarkable versatility across different salt types and polymer systems, thus opening up new avenues for engineering strong, tough, and stiff hydrogels.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, MD, 20742, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
22
|
Li S, Zhi L, Chen Q, Zhao W, Zhao C. Reversibly Adhesive, Anti-Swelling, and Antibacterial Hydrogels for Tooth-Extraction Wound Healing. Adv Healthc Mater 2024; 13:e2400089. [PMID: 38354105 DOI: 10.1002/adhm.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Oral wound treatment faces challenges due to the complex oral environment, thus, sealing the wound quickly becomes necessary. Although some materials have achieved adhesion and sterilization, how to effectively solve the contradiction between strong adhesion and on-demand removal remains a challenge. Herein, a reversibly adhesive hydrogel is designed by free radical copolymerization of cationic monomer [2-(acryloyloxy) ethyl] trimethylammonium chloride (ATAC), hydrophobic monomer ethylene glycol phenyl ether acrylate (PEA) and N-isopropylacrylamide (NIPAAm). The cationic quaternary ammonium salts provide electrostatic interactions, the hydrophobic groups provide hydrophobic interactions, and the PNIPAAm chain segments provide hydrogen bonding, leading to strong adhesion. Therefore, the hydrogel obtains an adhesion strength of 18.67 KPa to oral mucosa and can seal wounds fast within 10 s. Furthermore, unlike pure PNIPAAm, the hydrogel has a lower critical solution temperature of 40.3 °C due to the contribution of ATAC and PEA, enabling rapid removal with 40 °C water after treatment. In addition, the hydrogel realizes excellent anti-swelling ratio (≈80%) and antibacterial efficiency (over 90%). Animal experiments prove that the hydrogel effectively reduces inflammation infiltration, promotes collagen deposition and vascular regeneration. Thus, hydrogel as a multi-functional dressing has great application prospects in oral wound management.
Collapse
Affiliation(s)
- Siyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lunhao Zhi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qin Chen
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
23
|
Chen Y, Yu M, Liu M, Sun Y, Ling C, Yu M, Zhang W, Zhang W, Peng X. A Solvent Exchange Induced Robust Wet Adhesive Hydrogels to Treat Solid Tumor Through Synchronous Ethanol Ablation and Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309760. [PMID: 38582506 PMCID: PMC11200021 DOI: 10.1002/advs.202309760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The treatment of tumors in developing countries, especially those with poor medical conditions, remains a significant challenge. Herein, a novel solvent-exchange strategy to prepare adhesive hydrogels for the concurrent treatment of tumors through synchronous ethanol ablation and local chemotherapy is reported. First, a poly (gallic acid-lipoic acid) (PGL) ethanol gel is prepared that can undergo solvent exchange with water to form a hydrogel in situ. PGL ethanol gel deposited on the wet tissue can form a hydrogel in situ to effectively repel interfacial water and establish a tight contact between the hydrogel and tissue. Additionally, the functional groups between the hydrogels and tissues can form covalent and non-covalent bonds, resulting in robust adhesion. Furthermore, this PGL ethanol gel demonstrates exceptional capacity to effectively load antitumor drugs, allowing for controlled and sustained release of the drugs locally and sustainably both in vitro and in vivo. In addition, the PGL ethanol gel can combine ethanol ablation and local chemotherapy to enhance the antitumor efficacy in vitro and in vivo. The PGL ethanol gel-derived hydrogel shows robust wet bioadhesion, drug loading, sustained release, good biocompatibility and biodegradability, easy preparation and usage, and cost-effectiveness, which make it a promising bioadhesive for diverse biomedical applications.
Collapse
Affiliation(s)
- Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Meng Yu
- Department of NeonatologyThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Department of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Yang Sun
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Department of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Chengxian Ling
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Mingyu Yu
- Department of OrthopedicsThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Wenwen Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Wenkai Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| |
Collapse
|
24
|
Sha D, Ding D, Tang S, Ma Z, Liu C, Yuan Y. Solvent-Triggered, Ultra-Adhesive, Conductive, and Biocompatible Transition Gels for Wearable Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310731. [PMID: 38247187 DOI: 10.1002/smll.202310731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/23/2024]
Abstract
The development of robust adhesive, conductive, and flexible materials has garnered significant attention in the realm of human-machine interface and electronic devices. Conventional preparation methods to achieve these exceptional properties rely on incorporating highly polar raw materials, multiple components, or solvents. However, the overexposure of functional groups and the inherent toxicity of organic solvents often render gels non-stick or potentially biocompatible making them unsuitable for human-contact devices. In this study, a straightforward three-step strategy is devised for preparing responsive adhesive gels without complex components. Structurally conductive poly(N-(2-hydroxyethyl)-acrylamide-co-p-styrene sulfonate hydrate) (PHEAA-NaSS) gels are synthesized by integrating ionic and hydrophilic networks with distinct solvent effects. Initially, the in-suit formed PHEAA-NaSS networks are activated by dimethyl sulfoxide, which substantially increases intramolecular hydrogen bonding and enhances the matrix stretchability and interfacial adhesion. Subsequently, ethanol exchange reduced solvent impact and led to a compact network that limited surface exposure of ionic and hydrophilic groups, resulting in nonstick, robust for convenient storage. Finally, upon contacting with water, the network demonstrates rehydration, resulting in favorable adhesion, biocompatibility, and conductivity. The proposed PHEAA-NaSS/W gels can stably and reliably capture joint motion and electrophysiological signals. Furthermore, this uncomplicated gel preparation method is also applicable to other electrolyte monomers.
Collapse
Affiliation(s)
- Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ding Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuaimin Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhen Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
25
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
26
|
Wu S, Liu Z, Gong C, Li W, Xu S, Wen R, Feng W, Qiu Z, Yan Y. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties. Nat Commun 2024; 15:4441. [PMID: 38789409 PMCID: PMC11126733 DOI: 10.1038/s41467-024-48745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Ideal hydrogel fibers with high toughness and environmental tolerance are indispensable for their long-term application in flexible electronics as actuating and sensing elements. However, current hydrogel fibers exhibit poor mechanical properties and environmental instability due to their intrinsically weak molecular (chain) interactions. Inspired by the multilevel adjustment of spider silk network structure by ions, bionic hydrogel fibers with elaborated ionic crosslinking and crystalline domains are constructed. Bionic hydrogel fibers show a toughness of 162.25 ± 21.99 megajoules per cubic meter, comparable to that of spider silks. The demonstrated bionic structural engineering strategy can be generalized to other polymers and inorganic salts for fabricating hydrogel fibers with broadly tunable mechanical properties. In addition, the introduction of inorganic salt/glycerol/water ternary solvent during constructing bionic structures endows hydrogel fibers with anti-freezing, water retention, and self-regeneration properties. This work provides ideas to fabricate hydrogel fibers with high mechanical properties and stability for flexible electronics.
Collapse
Affiliation(s)
- Shaoji Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Zhao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Caihong Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Wanjiang Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Sijia Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Rui Wen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Wen Feng
- Guangdong Medical Products Administration Key Laboratory for Quality Research and Evaluation of Medical Textile Products, Guangzhou, 511447, PR China.
| | - Zhiming Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou, 510640, PR China.
| |
Collapse
|
27
|
Yang Y, Jiang W, Wang Y, Wu C, Chen H, Lyu G, Ma J, Ni Y, Liu Y. Preparation of strong and tough conductive hydrogel based on Grafting, Fe 3+-Catechol complexations and salting out for triboelectric nanogenerators. J Colloid Interface Sci 2024; 661:450-459. [PMID: 38308885 DOI: 10.1016/j.jcis.2024.01.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The development of a strong and tough conductive hydrogel capable of meeting the strict requirements of the electrode of a hydrogel-based triboelectric nanogenerator (H-TENG) remains an enormous challenge. Herein, a robust conductive polyvinyl alcohol (PVA) hydrogel is designed via a three-step method: (1) grafting with 3,4-dihydroxy benzaldehyde, (2) metal complexation using ferric chloride (FeCl3) and (3) salting-out using sodium citrate. The hydrogel contains robust crystalline PVA domains and reversible/high-density non-covalent interactions, such as hydrogen bonding, π-π interactions and Fe3+-catechol complexations. Benefiting from the crystalline domains, the hydrogel can resist external forces to the hydrogel network; meanwhile, the reversible/high-density of non-covalent interactions can impart gradual and persistent energy dissipation during deformation. The hydrogel possesses multiple cross-linked networks, with 6.47 MPa tensile stress, 1000 % strain, 35.24 MJ/m3 toughness and 37.59 kJ/m2 fracture energy. Furthermore, the inter-connected porous hydrogel has an ideal structure for ionic-conducing channels. The hydrogel is assembled into an H-TENG, which can generate open circuit voltage of ∼ 150 V, short-circuit current of ∼ 3.0 μA, with superb damage immunity. Subsequently, road traffic monitoring systems are innovatively developed and demonstrated by using the H-TENG. This study provides a novel strategy to prepare superiorly strong and tough hydrogels that can meet the high demand for H-TENGs.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Weikun Jiang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Yang Wang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Chen Wu
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Honglei Chen
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Gaojin Lyu
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
| | - Yu Liu
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China; Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| |
Collapse
|
28
|
Ji D, Zhang Z, Sun J, Cao W, Wang Z, Wang X, Cao T, Han J, Zhu J. Strong, Tough, and Biocompatible Poly(vinyl alcohol)-Poly(vinylpyrrolidone) Multiscale Network Hydrogels Reinforced by Aramid Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38654450 DOI: 10.1021/acsami.4c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels are water-rich, three-dimensional (3D) network materials that are similar to the tissue structure of living organisms. This feature gives hydrogels a wide range of potential applications, including drug delivery systems, articular cartilage regeneration, and tissue engineering. Due to the large amount of water contained in hydrogels, achieving hydrogels with comprehensive properties remains a major challenge, especially for isotropic hydrogels. This study innovatively prepares a multiscale-reinforced PVA hydrogel from molecular-level coupling to nanoscale enhancement by chemically cross-linking poly(vinylpyrrolidone) (PVP) and in situ assembled aromatic polyamide nanofibers (ANFs). The optimized ANFs-PVA-PVP (APP) hydrogels have a tensile strength of ≈9.7 MPa, an elongation at break of ≈585%, a toughness of ≈31.84 MJ/m3, a compressive strength of ≈10.6 MPa, and a high-water content of ≈80%. It is excellent among all reported PVA hydrogels and even comparable to some anisotropic hydrogels. System characterizations show that those performances are attributed to the particular multiscale load-bearing structure and multiple interactions between ANFs and PVA. Moreover, APP hydrogels exhibit excellent biocompatibility and a low friction coefficient (≈0.4). These valuable performances pave the way for broad potential in many advanced applications such as biological tissue replacement, flexible wearable devices, electronic skin, and in vivo sensors.
Collapse
Affiliation(s)
- Dongchao Ji
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Zhibo Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Jingxuan Sun
- School of Stomatology, Harbin Medical University, Harbin 150001, P. R. China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| | - Zhuochao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Tengyue Cao
- Beijing No. 80 High School, Beijing 100000, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, P. R. China
| |
Collapse
|
29
|
Vo TH, Lam PK, Hsiao TF, Chin CJM, Sheng YJ, Tsao HK. One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels. J Colloid Interface Sci 2024; 659:495-502. [PMID: 38184992 DOI: 10.1016/j.jcis.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
HYPOTHESIS Despite their non-volatility, low cost, and recyclability, physical eutectogels' appeal is hindered by the intricate fabrication process and the involvement of hazardous chemicals. The network of polyvinyl alcohol (PVA) in deep eutectic solvent (choline chloride and glycerol) might be developed by the addition of microgels of polyacrylic acid (Carbopol). EXPERIMENTS Hydrogen-bond interactions between Carbopol and PVA are revealed through Fourier-transform infrared spectroscopy. The impact of microgels on crystalline domains and the polymer network can be observed using X-ray diffraction and scanning electron microscopy. The physical properties of the eutectogel, including mechanical strength and ionic conductivity, are investigated as well. Finally, the strain-sensing ability and remarkable recyclability of the eutectogel are demonstrated. FINDINGS The physical eutectogel can be obtained through a one-step fabrication process using only green and low-cost materials. It demonstrates robust strength (1.02 MPa) and remarkable stretchability (1000 % strain). This is attributed to the uniform dispersion of PVA crystalline domains within the deep eutectic solvent, facilitated by the hydrogen bonds and space restriction effects between PVA and Carbopol. Furthermore, the physical eutectogel with recyclability can consistently generate electrical resistance signals, highlighting its potential as a reliable strain sensor.
Collapse
Affiliation(s)
- Trung Hieu Vo
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Phuc Khanh Lam
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Tsung-Fang Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Ching-Ju Monica Chin
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
30
|
Imani KBC, Dodda JM, Yoon J, Torres FG, Imran AB, Deen GR, Al‐Ansari R. Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306784. [PMID: 38240470 PMCID: PMC10987148 DOI: 10.1002/advs.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 04/04/2024]
Abstract
Conductive hydrogels (CHs) have received significant attention for use in wearable devices because they retain their softness and flexibility while maintaining high conductivity. CHs are well suited for applications in skin-contact electronics and biomedical devices owing to their high biocompatibility and conformality. Although highly conductive hydrogels for smart wearable devices are extensively researched, a detailed summary of the outstanding results of CHs is required for a comprehensive understanding. In this review, the recent progress in the preparation and fabrication of CHs is summarized for smart wearable devices. Improvements in the mechanical, electrical, and functional properties of high-performance wearable devices are also discussed. Furthermore, recent examples of innovative and highly functional devices based on CHs that can be seamlessly integrated into daily lives are reviewed.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West Bohemia, Univerzitní 8Pilsen301 00Czech Republic
| | - Jinhwan Yoon
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Fernando G. Torres
- Department of Mechanical EngineeringPontificia Universidad Catolica del Peru. Av. Universitaria 1801Lima15088Peru
| | - Abu Bin Imran
- Department of ChemistryBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - G. Roshan Deen
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| | - Renad Al‐Ansari
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| |
Collapse
|
31
|
Li J, Cheng X, He B, Li L, Zhang H, Ju J, Yao X. Double-Network Organohydrogels Toughened by Solvent Exchange. Macromol Rapid Commun 2024; 45:e2300650. [PMID: 38158795 DOI: 10.1002/marc.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Double-network hydrogels based on calcium alginate are extensively exploited. Unfortunately, their low strength and unstable constitution to open environments limit their application potential. Herein, a new type of double-network organohydrogel (OHG) is proposed. By solvent exchange, a stable physical network is established based on dimethyl sulfoxide (DMSO)-alginate in the presence of a polyacrylamide network. The DMSO content endows tunable mechanical properties, with a maximum tensile strength of ≈1.7 MPa. Importantly, the OHG shows much better environmental stability compared to the conventional double-network hydrogels. Due to the reversible association of hydrogen bonds, the OHG possesses some unique properties, including free-shapeability, shape-memory, and self-adhesion, that offers several promising ways to utilize alginate-based gels for wide applications.
Collapse
Affiliation(s)
- Jianan Li
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Xue Cheng
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Bingbing He
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Longhui Li
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Huan Zhang
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Jie Ju
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Xi Yao
- Key Laboratory for Special Functional Materials for Ministry of Education, School of Materials, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| |
Collapse
|
32
|
Guo X, Zhao X, Yuan L, Ming H, Li Z, Li J, Luo F, Tan H. Bioinspired Injectable Polyurethane Underwater Adhesive with Fast Bonding and Hemostatic Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308538. [PMID: 38350723 DOI: 10.1002/advs.202308538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Indexed: 02/15/2024]
Abstract
Underwater adhesives with injectable, organic solvent-free, strong, fast adhesion, and hemostatic properties have become an urgent need in biomedical field. Herein, a novel polyurethane underwater adhesive (PUWA) inspired by mussels is developed utilizing the rapid post-cure reaction of isocyanate esterification without organic solvents. The PUWA is created through the injectable two component curing process of component A (biocompatible polyurethane prepolymer) and component B (dopamine modified lysine derivatives: chain extender-LDA and crosslinker-L3DA). The two-component adhesive cures quickly and firmly underwater, with an impressive bonding strength of 40 kPa on pork skin and excellent burst pressure of 394 mmHg. Moreover, the PUWA exhibits robust adhesion strength in hostile environments with acid, alkali and saline solutions. Combined with excellent biocompatibility and hemostatic performance, the PUWA demonstrates effectively sealing wounds and promoting healing. With the ability to bond diverse substrates rapidly and strongly, the PUWA holds significant potential for application in both biomedical and industrial fields.
Collapse
Affiliation(s)
- Xiaolei Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Hao Ming
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Li C, Li Q, Wu Z, Wang Y, Zhang R, Cui H, Hou Y, Liu J, Huang Z, Zhi C. Completely Activated and Phase-Transformed KFeMnHCF for Zn/K Hybrid Batteries with 14 500 Cycles by an OH-Rich Hydrogel Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304878. [PMID: 37401112 DOI: 10.1002/adma.202304878] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Metal hexacyanoferrates are recognized as superior cathode materials for zinc and zinc hybrid batteries, particularly the Prussian blue analog (PBA). However, PBA development is hindered by several limitations, including small capacities (<70 mAh g-1) and short lifespans (<1000 cycles). These limitations generally arise due to incomplete activation of redox sites and structure collapse during intercalation/deintercalation of metal ions in PBAs. According to this study, the adoption of a hydroxyl-rich (OH-rich) hydrogel electrolyte with extended electrochemical stability windows (ESWs) can effectively activate the redox site of low-spin Fe of the KxFeyMn1-y[Fe(CN)6]w·zH2O (KFeMnHCF) cathode while tuning its structure. Additionally, the strong adhesion of the hydrogel electrolyte inhibits KFeMnHCF particles from falling off the cathode and dissolving. The easy desolvation of metal ions in the developed OH-rich hydrogel electrolytes can lead to a fast and reversible intercalation/deintercalation of metal ions in the PBA cathode. As a result, the Zn||KFeMnHCF hybrid batteries achieve the unprecedented characteristics of 14 500 cycles, a 1.7 V discharge plateau, and a 100 mAh g-1 discharge capacity. The results of this study provide a new understanding of the development of zinc hybrid batteries with PBA cathode materials and present a promising new electrolyte material for this application.
Collapse
Affiliation(s)
- Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Zhuoxi Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Jiahua Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
34
|
Zhang Z, Kong Y, Gao J, Han X, Lian Z, Liu J, Wang WJ, Yang X. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. NANOSCALE 2024. [PMID: 38465763 DOI: 10.1039/d3nr06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
With the goal of sustainable development, manufacturing continuous high-performance fibers based on sustainable resources is an emerging research direction. However, compared to traditional synthetic fibers, plant fibers have limited length/diameter and uncontrollable natural defects, while regenerated cellulose fibers such as viscose and Lyocell suffer from inferior mechanical properties. Wet-spun fibers based on nanocelluloses especially cellulose nanofibrils (CNFs) offer superior mechanical performance since CNFs are the fundamental high-performance building blocks of plant cell walls. This review aims to summarize the progress of making CNF wet-spun fibers, emphasizing on the whole wet spinning process including spinning suspension preparation, spinning, coagulation, washing, drying and post-stretching steps. By establishing the relationships between the nano-scale assembling structure and the macroscopic changes in the CNF dope from gels to dried fibers, effective methods and strategies to improve the mechanical properties of the final fibers are analyzed and proposed. Based on this, the opportunities and challenges for potential industrial-scale production are discussed.
Collapse
Affiliation(s)
- Zihuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Yuying Kong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Junqi Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xiao Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Zechun Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jiamin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Wen-Jun Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| |
Collapse
|
35
|
Wu Y, Zhang Y, Liao Z, Wen J, Zhang H, Wu H, Liu Z, Shi Y, Song P, Tang L, Xue H, Gao J. Water vapor assisted aramid nanofiber reinforcement for strong, tough and ionically conductive organohydrogels as high-performance strain sensors. MATERIALS HORIZONS 2024; 11:1272-1282. [PMID: 38165275 DOI: 10.1039/d3mh01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Conductive organohydrogels have gained increasing attention in wearable sensors, flexible batteries, and soft robots due to their exceptional environment adaptability and controllable conductivity. However, it is still difficult for conductive organohydrogels to achieve simultaneous improvement in mechanical and electrical properties. Here, we propose a novel "water vapor assisted aramid nanofiber (ANF) reinforcement" strategy to prepare robust and ionically conductive organohydrogels. Water vapor diffusion can induce the pre-gelation of the polymer solution and ensure the uniform dispersion of ANFs in organohydrogels. ANF reinforced organohydrogels have remarkable mechanical properties with a tensile strength, stretchability and toughness of up to 1.88 ± 0.04 MPa, 633 ± 30%, and 6.75 ± 0.38 MJ m-3, respectively. Furthermore, the organohydrogels exhibit great crack propagation resistance with the fracture energy and fatigue threshold as high as 3793 ± 167 J m-2 and ∼328 J m-2, respectively. As strain sensors, the conductive organohydrogel demonstrates a short response time of 112 ms, a large working strain and superior cycling stability (1200 cycles at 40% strain), enabling effective monitoring of a wide range of complex human motions. This study provides a new yet effective design strategy for high performance and multi-functional nanofiller reinforced organohydrogels.
Collapse
Affiliation(s)
- Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zimin Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
36
|
Li Z, Liu P, Chen S, Wang B, Liu S, Cui E, Li F, Yu Y, Pan W, Tang N, Gu Y. Polyvinyl alcohol/chitosan based nanocomposite organohydrogel flexible wearable strain sensors for sports monitoring and underwater communication rescue. Int J Biol Macromol 2024; 258:129054. [PMID: 38159708 DOI: 10.1016/j.ijbiomac.2023.129054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Hydrogel-based flexible wearable sensors have garnered significant attention in recent years. However, the use of hydrogel, a biomaterial known for its high toughness, environmental friendliness, and frost resistance, poses a considerable challenge. In this study, we propose a stepwise construction and multiple non-covalent interaction matching strategy to successfully prepare dynamically physically crosslinked multifunctional conductive hydrogels. These hydrogels self-assembled to form a rigid crosslinked network through intermolecular hydrogen bonding and metal ion coordination chelation. Furthermore, the freeze-thawing process promoted the formation of poly(vinyl alcohol) microcrystalline domains within the amorphous hydrogel network system, resulting in exceptional mechanical properties, including a tensile strength (2.09 ± 0.01 MPa) and elongation at break of 562 ± 12 %. It can lift 10,000 times its own weight. Additionally, these hydrogels exhibit excellent resistance to swelling and maintain good toughness even at temperatures as low as -60 °C. As a wearable strain sensor with remarkable sensing ability (GF = 1.46), it can be effectively utilized in water and underwater environments. Moreover, it demonstrates excellent antimicrobial properties against Escherichia coli (Gram-negative bacteria). Leveraging its impressive sensing ability, we combine signal recognition with a deep learning model by incorporating Morse code for encryption and decryption, enabling information transmission.
Collapse
Affiliation(s)
- Zhenchun Li
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Peng Liu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Shaowei Chen
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Bingzhen Wang
- College of Guangxi, Guangxi University, Nanning, Guangxi 530000, China
| | - Shiyuan Liu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Enyuan Cui
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Feihong Li
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yunwu Yu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Wenhao Pan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Ning Tang
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yaxin Gu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
37
|
An H, Zhang M, Huang Z, Xu Y, Ji S, Gu Z, Zhang P, Wen Y. Hydrophobic Cross-Linked Chains Regulate High Wet Tissue Adhesion Hydrogel with Toughness, Anti-hydration for Dynamic Tissue Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310164. [PMID: 37925614 DOI: 10.1002/adma.202310164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center ofStomatology & National Clinical Research Center for Oral Diseases & NationalEngineering Laboratory for Digital and Material Technology of Stomatology & BeijingKey Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratoryfor Dental Materials, Beijing, 100081, China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
38
|
Ji F, Li Y, Zhao H, Wang X, Li W. Solvent-Exchange Triggered Solidification of Peptide/POM Coacervates for Enhancing the On-Site Underwater Adhesion. Molecules 2024; 29:681. [PMID: 38338427 PMCID: PMC10856236 DOI: 10.3390/molecules29030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Peptide-based biomimetic underwater adhesives are emerging candidates for understanding the adhesion mechanism of natural proteins secreted by sessile organisms. However, there is a grand challenge in the functional recapitulation of the on-site interfacial spreading, adhesion and spontaneous solidification of native proteins in water using peptide adhesives without applied compressing pressure. Here, a solvent-exchange strategy was utilized to exert the underwater injection, on-site spreading, adhesion and sequential solidification of a series of peptide/polyoxometalate coacervates. The coacervates were first prepared in a mixed solution of water and organic solvents by rationally suppressing the non-covalent interactions. After switching to a water environment, the solvent exchange between bulk water and the organic solvent embedded in the matrix of the peptide/polyoxometalate coacervates recovered the hydrophobic effect by increasing the dielectric constant, resulting in a phase transition from soft coacervates to hard solid with enhanced bulk cohesion and thus compelling underwater adhesive performance. The key to this approach is the introduction of suitable organic solvents, which facilitate the control of the intermolecular interactions and the cross-linking density of the peptide/polyoxometalate adhesives in the course of solidification under the water line. The solvent-exchange method displays fascinating universality and compatibility with different peptide segments.
Collapse
Affiliation(s)
| | | | | | | | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (F.J.); (Y.L.); (H.Z.); (X.W.)
| |
Collapse
|
39
|
Tang N, Jiang Y, Wei K, Zheng Z, Zhang H, Hu J. Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309576. [PMID: 37939373 DOI: 10.1002/adma.202309576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Gel materials are appealing due to their diverse applications in biomedicine, soft electronics, sensors, and actuators. Nevertheless, the existing synthetic gels are often plagued by feeble network structures and inherent defects associated with solvents, which compromise their mechanical load-bearing capacity and cast persistent doubts about their reliability. Herein, combined with attractive deep eutectic solvent (DES), a stepwise-enhanced strategy is presented to fabricate ultrarobust eutectogels. It focuses on the continuous modulation and optimization of polymer networks through complementary annealing and solvent exchange processes, which drives a progressive increase in both quantity and mass of the interconnected polymer chains at microscopic scale, hence contributing to the evolutionary enhancement of network structure. The resultant eutectogel exhibits superb mechanical properties, including record-breaking strength (31.8 MPa), toughness (76.0 MJ m-3 ), and Young's modulus (25.6 MPa), together with exceptional resistance ability to tear and crack propagation. Moreover, this eutectogel is able to be further programmed through photolithography to in situ create patterned eutectogel for imparting specific functionalities. Enhanced by its broad applicability to various DES combinations, this stepwise-enhanced strategy is poised to serve as a crucial template and methodology for the future development of robust gels.
Collapse
Affiliation(s)
- Ning Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yujia Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Kailun Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Hao Zhang
- Department of Mechanical Engineering, Tsinghua University, Shuangqing Road 30, Haidian District, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
40
|
Wang Y, Xu T, Xu L, Miao G, Li F, Miao X, Lu J, Hou Z, Ren G, Zhu X. Mechanical Robust GO/PVA Hydrogel for Strong and Recyclable Adhesion in Air, Underwater, and Underoil Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38287225 DOI: 10.1021/acs.langmuir.3c03366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Adhesive hydrogels are considered to be promising interfacial adhesive materials for various applications; however, their adhesive strength is significantly reduced when immersed in liquid environments (water and oil) due to obstruction of the liquid layer or swelling in liquid, and they could not always be reused when the failure of the adhesive performance occurred. Herein, a graphite oxide/poly(vinyl alcohol) (GO/PVA) hydrogel with strong adhesion in air and under liquid environments was developed by rationally regulating the interactions of water and dimethyl sulfoxide (DMSO) in the binary liquid system. The strong interaction between water and DMSO allowed the water layer of the GO/PVA hydrogel on the hydrogel surface to act as a shield to repel oil in air, under water, and even when immersed in oil, and it also endowed the obtained hydrogel with antiswelling property when immersed in water and oil. Importantly, the GO/PVA hydrogel could serve as an advanced adhesive to firmly bond different substrates in air, under water, and under oil, and interestingly, its dry and wet adhesive performance was repeatable and recyclable. This work is expected to be an important addition to the field of adhesive soft materials.
Collapse
Affiliation(s)
- Yumin Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Ting Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Lide Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiqiang Hou
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| |
Collapse
|
41
|
Wan H, Wu B, Hou L, Wu P. Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307290. [PMID: 37683287 DOI: 10.1002/adma.202307290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Herein, the fabrication of amphibious polymer materials with outstanding mechanical performances, both underwater and in the air is reported. A polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) composite with multiscale nanostructures is prepared by combining solvent exchange and thermal annealing strategies, which contributes to nanophase separation with rigid PVA-rich and soft PMEA-rich phases and high-density crystalline domains of PVA chains, respectively. Benefiting from the multiscale nanostructure, the PVA/PMEA hydrogel demonstrates excellent stability in harsh (such as acidic, alkaline, and saline) aqueous solutions, as well as superior mechanical behavior with a breaking strength of up to 34.8 MPa and toughness of up to 214.2 MJ m-3 . Dehydrating the PVA/PMEA hydrogel results in an extremely robust plastic with a breaking strength of 65.4 MPa and toughness of 430.9 MJ m-3 . This study provides a promising phase-structure engineering route for constructing high-performance polymer materials for complex load-bearing environments.
Collapse
Affiliation(s)
- Hongbo Wan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
42
|
Li L, Yang G, Lyu J, Sheng Z, Ma F, Zhang X. Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat Commun 2023; 14:8450. [PMID: 38114508 PMCID: PMC10730912 DOI: 10.1038/s41467-023-44156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels.
Collapse
Affiliation(s)
- Lishan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Guandu Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Fengguo Ma
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China.
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
43
|
Wu S, Gong C, Wang Z, Xu S, Feng W, Qiu Z, Yan Y. Continuous Spinning of High-Tough Hydrogel Fibers for Flexible Electronics by Using Regional Heterogeneous Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305226. [PMID: 37888848 PMCID: PMC10754135 DOI: 10.1002/advs.202305226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 10/28/2023]
Abstract
Hydrogel fibers have attracted substantial interest for application in flexible electronics due to their ionic conductivity, high specific surface area, and ease of constructing multidimensional structures. However, universal continuous spinning methods for hydrogel fibers are yet lacking. Based on the hydrophobic mold induced regional heterogeneous polymerization, a universal self-lubricating spinning (SLS) strategy for the continuous fabrication of hydrogel fibers from monomers is developed. The universality of the SLS strategy is demonstrated by the successful spinning of 10 vinyl monomer-based hydrogel fibers. Benefiting from the universality of the SLS strategy, the SLS strategy can be combined with pre-gel design and post-treatment toughening to prepare highly entangled polyacrylamide (PAM) and ionic crosslinked poly(acrylamide-co-acrylic acid)/Fe3+ (W-PAMAA/Fe3+ ) hydrogel fibers, respectively. In particular, the W-PAMAA/Fe3+ hydrogel fiber exhibited excellent mechanical properties (tensile stress > 4 MPa, tensile strain > 400%) even after 120 days of swelling in the pH of 3-9. Furthermore, owing to the excellent multi-faceted performance and one-dimensionality of W-PAMAA/Fe3+ hydrogel fibers, flexible sensors with different dimensions and functions can be constructed bottom-up, including the one-dimensional (1D) strain sensor, two-dimensional (2D) direction sensor, three-dimensional (3D) pressure sensor, and underwater communication sensor to present the great potential of hydrogel fibers in flexible electronics.
Collapse
Affiliation(s)
- Shaoji Wu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Caihong Gong
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Zichao Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Sijia Xu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Wen Feng
- Guangzhou Fiber Product Testing InstituteGuangzhou511447P. R. China
| | - Zhiming Qiu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Yurong Yan
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
- Key Lab of Guangdong High Property & Functional Polymer MaterialsGuangzhou510640P. R. China
| |
Collapse
|
44
|
Hou Z, Zeng S, Shen K, Healey PR, Schipper HJ, Zhang L, Zhang M, Jones MD, Sun L. Interactive deformable electroluminescent devices enabled by an adaptable hydrogel system with optical/photothermal/mechanical tunability. MATERIALS HORIZONS 2023; 10:5931-5941. [PMID: 37873969 DOI: 10.1039/d3mh01412f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Deformable electroluminescent devices (DELDs) with mechanical adaptability are promising for new applications in smart soft electronics. However, current DELDs still present some limitations, including having stimuli-insensitive electroluminescence (EL), untunable mechanical properties, and a lack of versatile stimuli response properties. Herein, a facile approach for fabricating in situ interactive and multi-stimuli responsive DELDs with optical/photothermal/mechanical tunability was proposed. A polyvinyl alcohol (PVA)/polydopamine (PDA)/graphene oxide (GO) adaptable hydrogel exhibiting optical/photothermal/mechanical tunability was used as the top ionic conductor (TIC). The TIC can transform from a viscoelastic state to an elastic state via a special freezing-salting out-rehydration (FSR) process. Meanwhile, it endows the DELDs with a photothermal response and thickness-dependent light shielding properties, allowing them to dynamically demonstrate "on" or "off" or "gradually change" EL response to various mechanical/photothermal stimuli. Thereafter, the DELDs with a viscoelastic TIC can be utilized as pressure-responsive EL devices and laser-engravable EL devices. The DELDs with an elastic TIC can withstand both linear and out-of-plane deformation, enabling the designs of various interactive EL devices/sensors to monitor linear sliders, human finger bending, and pneumatically controllable bulging. This work offers new opportunities for developing next-generation EL-responsive devices with widespread application based on adaptable hydrogel systems.
Collapse
Affiliation(s)
- Zaili Hou
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Songshan Zeng
- Macao Institute of Materials Science and Engineering, Zhuhai MUST Science and Technology Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Patrick R Healey
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Holly J Schipper
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Luqi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Miranda Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael D Jones
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
45
|
Weng G, Yang X, Wang Z, Xu Y, Liu R. Hydrogel Electrolyte Enabled High-Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303949. [PMID: 37530198 DOI: 10.1002/smll.202303949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Indexed: 08/03/2023]
Abstract
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
Collapse
Affiliation(s)
- Gao Weng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhiqi Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yan Xu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
46
|
Ding X, Fan L, Wang L, Zhou M, Wang Y, Zhao Y. Designing self-healing hydrogels for biomedical applications. MATERIALS HORIZONS 2023; 10:3929-3947. [PMID: 37577809 DOI: 10.1039/d3mh00891f] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Self-healing hydrogels have emerged as the most promising alternatives to conventional brittle hydrogels used in the biomedical field due to the features of long-term stability and durability. However, the incompatibility between the fast self-healing property and enough mechanical strength of hydrogels remains a challenge. Therefore, hydrogels that possess not only mechanical toughness but also autonomous self-healing capacity are sought after. This review presents a comprehensive summary of the latest self-healing mechanisms. Specifically, we review various systems based on dynamic bonds, ranging from dynamic covalent bonds to non-covalent bonds. Additionally, this review presents different characterization methods for self-healing hydrogels, and also highlights their potential applications in the biomedical field, such as tissue engineering, drug delivery, cell therapy, and wound dressing. Furthermore, this review aims to provide valuable guidance for constructing diverse self-healing hydrogels with tailored functions.
Collapse
Affiliation(s)
- Xiaoya Ding
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yongxiang Wang
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225001, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| |
Collapse
|
47
|
Yang X, Xu L, Wang C, Wu J, Zhu B, Meng X, Qiu D. Reinforcing Hydrogel by Nonsolvent-Quenching-Facilitated In Situ Nanofibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303728. [PMID: 37448332 DOI: 10.1002/adma.202303728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Nanofibrous hydrogels are pervasive in load-bearing soft tissues, which are believed to be key to their extraordinary mechanical properties. Enlighted by this phenomenon, a novel reinforcing strategy for polymeric hydrogels is proposed, where polymer segments in the hydrogels are induced to form nanofibers in situ by bolstering their controllable aggregation at the nanoscale level. Poly(vinyl alcohol) hydrogels are chosen to demonstrate the virtue of this strategy. A nonsolvent-quenching step is introduced into the conventional solvent-exchange hydrogel preparation approach, which readily promotes the formation of nanofibrous hydrogels in the following solvent-tempering process. The resultant nanofibrous hydrogels demonstrate significantly improved mechanical properties and swelling resistance, compared to the conventional solvent-exchange hydrogels with identical compositions. This work validates the hypothesis that bundling polymer chains to form nanofibers can lead to nanofibrous hydrogels with remarkably enhanced mechanical performances, which may open a new horizon for single-component hydrogel reinforcement.
Collapse
Affiliation(s)
- Xule Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Bin Zhu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Zhang Z, Wang L, Liu J, Yu H, Zhang X, Yin J, Luan S, Shi H. Water-Triggered Segment Orientation of Long-Lasting Anti-Biofouling Polyurethane Coatings on Biomedical Catheters via Solvent Exchange Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304379. [PMID: 37365958 DOI: 10.1002/smll.202304379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumens are demonstrated to have the potential in reducing complications. However, their effectiveness is constrained by poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethane (SUPU) with strong mechanical stability and long-term anti-biofouling is developed by controlling the ratio of sulfobetaine-diol and ureido-pyrimidinone. Once immersed in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain much higher durability than its direct drying one, even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing, and shearing, in PBS at 37 °C for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion, and long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment are validated in blood circulation through an ex vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricating stable hydrophilic coating through a simple solvent exchange to reduce thrombosis and infection of biomedical catheters.
Collapse
Affiliation(s)
- Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jiaying Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
49
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
50
|
Chen S, Feng J. Facile Solvent Regulation for Highly Strong and Tough Physical Eutectogels with Remarkable Strain Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44752-44762. [PMID: 37702740 DOI: 10.1021/acsami.3c09079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Physical eutectogels have great potential for applications in many fields due to their electrical conductivity, broad temperature stability, and biocompatibility. However, the preparation of high-performance physical eutectogels in a simple, efficient, and cost-effective way remains a challenge. In this study, a facile but efficient solvent regulation strategy was proposed to construct a highly robust poly(vinyl alcohol) (PVA) physical eutectogel. Hydrogen bonds within the polymer-containing deep eutectic solvent system were dynamically regulated by the introduction-removal of water to induce the formation of a uniform and dense polymer cross-linked network, which imparted excellent mechanical properties to the resulting eutectogel. For the eutectogel with 15 wt % PVA, the tensile strength and toughness were 1.67 MPa and 6.81 MJ m-3, respectively, which were at a high level among existing physical eutectogels. This high-performance eutectogel was available as a strain sensor and exhibited high sensitivity. In addition, this eutectogel can be endowed with a directional muscle-like stretching performance through convenient mechanical training. The easy scalability and low cost made our method an effective strategy for developing high-performance physical eutectogels, which would further promote the application of such materials in areas such as wearable electronics and soft robotics.
Collapse
Affiliation(s)
- Sijia Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiachun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang 322000, China
| |
Collapse
|