1
|
Su L, Hu Z, Yan T, Zhang X, Zhang D, Fang X. Light-Adapted Optoelectronic-Memristive Device for the Artificial Visual System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43742-43751. [PMID: 39114944 DOI: 10.1021/acsami.4c07976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
With the development of artificial intelligence systems, it is necessary to develop optoelectronic devices with photoresponse and storage capacity to simulate human visual perception systems. The key to an artificial visual perception system is to integrate components with both sensing and storage capabilities of illumination information. Although module integration components have made useful progress, they still face challenges such as multispectral response and high energy consumption. Here, we developed a light-adapted optoelectronic-memristive device integrated by an organic photodetector and ferroelectric-based memristor to simulate human visual perception. ITO/P3HT:PC71BM/Au as the light sensor unit shows a high on/off ratio (Iph/Id) reaching ∼5 × 104 at 0 V. The memristor unit, consisting of ITO/CBI@P(VDF-TrFE)/Cu, has a RON/ROFF ratio window of ∼106 under 0.05 V read voltage and ultralow power consumption of ∼1 pW. Moreover, the artificial visual perception unit shows stable light-adapted memory windows under different wavelengths of irradiation light (400, 500, and 600 nm; they meet the spectral range of human visual recognition) and can clearly identify the target image ("T" shape) because of the apparent contrast, which results from the high ROFF/RON ratio values. These results provide a potential design strategy for the development of intelligent artificial vision systems.
Collapse
Affiliation(s)
- Li Su
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology Shanghai 200093, P. R. China
| | - Zijun Hu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Xinglong Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology Shanghai 200093, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Shu F, Chen W, Chen Y, Liu G. 2D Atomic-Molecular Heterojunctions toward Brainoid Applications. Macromol Rapid Commun 2024:e2400529. [PMID: 39101667 DOI: 10.1002/marc.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Brainoid computing using 2D atomic crystals and their heterostructures, by emulating the human brain's remarkable efficiency and minimal energy consumption in information processing, poses a formidable solution to the energy-efficiency and processing speed constraints inherent in the von Neumann architecture. However, conventional 2D material based heterostructures employed in brainoid devices are beset with limitations, performance uniformity, fabrication intricacies, and weak interfacial adhesion, which restrain their broader application. The introduction of novel 2D atomic-molecular heterojunctions (2DAMH), achieved through covalent functionalization of 2D materials with functional molecules, ushers in a new era for brain-like devices by providing both stability and tunability of functionalities. This review chiefly delves into the electronic attributes of 2DAMH derived from the synergy of polymer materials with 2D materials, emphasizing the most recent advancements in their utilization within memristive devices, particularly their potential in replicating the functionality of biological synapses. Despite ongoing challenges pertaining to precision in modification, scalability in production, and the refinement of underlying theories, the proliferation of innovative research is actively pursuing solutions. These endeavors illuminate the vast potential for incorporating 2DAMH within brain-inspired intelligent systems, highlighting the prospect of achieving a more efficient and energy-conserving computing paradigm.
Collapse
Affiliation(s)
- Fan Shu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weilin Chen
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Kim YH, Jiang W, Lee D, Moon D, Choi HY, Shin JC, Jeong Y, Kim JC, Lee J, Huh W, Han CY, So JP, Kim TS, Kim SB, Koo HC, Wang G, Kang K, Park HG, Jeong HY, Im S, Lee GH, Low T, Lee CH. Boltzmann Switching MoS 2 Metal-Semiconductor Field-Effect Transistors Enabled by Monolithic-Oxide-Gapped Metal Gates at the Schottky-Mott Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314274. [PMID: 38647521 DOI: 10.1002/adma.202314274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.
Collapse
Affiliation(s)
- Yeon Ho Kim
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Wei Jiang
- Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, 55455, USA
| | - Donghun Lee
- Department of Chemistry, Kookmin University, Seoul, 02707, Republic of Korea
| | - Donghoon Moon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Young Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - June-Chul Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonsu Jeong
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Chan Kim
- UNIST Central Research Facilities (UCRF) and Department of Materials Science and Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaeho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woong Huh
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chang Yong Han
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Pil So
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong Been Kim
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyun Cheol Koo
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF) and Department of Materials Science and Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Seongil Im
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, 55455, USA
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Dan S, Paramanik S, Pal AJ. Introducing Chiro-optical Activities in Photonic Synapses for Neuromorphic Computing and In-Memory Logic Operations. ACS NANO 2024; 18:14457-14468. [PMID: 38764188 DOI: 10.1021/acsnano.4c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In artificial synaptic devices aimed at mimicking neuromorphic computing systems, electrical or optical pulses, or both, are generally used as stimuli. In this work, we introduce chiral materials for tailoring the characteristics of photonic synaptic devices to achieve handedness-dependent neuromorphic computing and in-memory logic gates. In devices based on a pair of chiral perovskites, the use of circularly polarized light (CPL) as the optical stimuli mimicked a series of electrical and opto-synaptic functionalities in order to emulate the multifunctional complex behavior of the human brain. Upon illumination in this two-terminal device, anisotropy in current has been observed due to the out-of-plane carrier transport, originating from spin-selective carrier transport. More importantly, the logic gate achieved in devices based on optoelectronic memristors turned out to be chirality-dependent; while an R-device functioned as an AND gate, the device based on the same perovskite of the opposite chirality (S-device) acted as a NOR gate toward in-memory logic operations. These findings in chiral perovskite-based artificial synapses can identify further strategies for future neuromorphic computing, vision simulation, and artificial intelligence.
Collapse
Affiliation(s)
- Soirik Dan
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subham Paramanik
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
5
|
Zhang R, Li X, Zhao M, Wan C, Luo X, Liu S, Zhang Y, Wang Y, Yu G, Han X. Probability-Distribution-Configurable True Random Number Generators Based on Spin-Orbit Torque Magnetic Tunnel Junctions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402182. [PMID: 38622896 PMCID: PMC11186041 DOI: 10.1002/advs.202402182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 04/17/2024]
Abstract
The incorporation of randomness into stochastic computing can provide ample opportunities for applications such as simulated annealing, non-polynomial hard problem solving, and Bayesian neuron networks. In these cases, a considerable number of random numbers with an accurate and configurable probability distribution function (PDF) are indispensable. Preferably, these random numbers are provided at the hardware level to improve speed, efficiency, and parallelism. In this paper, how spin-orbit torque magnetic tunnel junctions (SOT-MTJs) with high barriers are suitable candidates for the desired true random number generators is demonstrated. Not only do these SOT-MTJs perform excellently in speed and endurance, but their randomness can also be conveniently and precisely controlled by a writing voltage, which makes them a well-performed Bernoulli bit. By utilizing these SOT-MTJ-based Bernoulli bits, any PDF, including Gaussian, uniform, exponential, Chi-square, and even arbitrarily defined distributions can be realized. These PDF-configurable true random number generators can then promise to advance the development of stochastic computing and broaden the applications of the SOT-MTJs.
Collapse
Affiliation(s)
- Ran Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Xiaohan Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Mingkun Zhao
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Caihua Wan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Xuming Luo
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Shiqiang Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Yu Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Yizhan Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
6
|
Hur JS, Lee S, Moon J, Jung HG, Jeon J, Yoon SH, Park JH, Jeong JK. Oxide and 2D TMD semiconductors for 3D DRAM cell transistors. NANOSCALE HORIZONS 2024; 9:934-945. [PMID: 38563255 DOI: 10.1039/d4nh00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
As the downscaling of conventional dynamic random-access memory (DRAM) has reached its limits, 3D DRAM has been proposed as a next-generation DRAM cell architecture. However, incorporating silicon into 3D DRAM technology faces various challenges in securing cost-effective high cell transistor performance. Therefore, many researchers are exploring the application of next-generation semiconductor materials, such as transition oxide semiconductors (OSs) and metal dichalcogenides (TMDs), to address these challenges and to realize 3D DRAM. This study provides an overview of the proposed structures for 3D DRAM, compares the characteristics of OSs and TMDs, and discusses the feasibility of employing the OSs and TMDs as the channel material for 3D DRAM. Furthermore, we review recent progress in 3D DRAM using the OSs, discussing their potential to overcome challenges in silicon-based approaches.
Collapse
Affiliation(s)
- Jae Seok Hur
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sungsoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiwon Moon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hang-Gyo Jung
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongwook Jeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seong Hun Yoon
- Department of Display Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
- Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Kyeong Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
- Department of Display Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
Chen C, Zhou Y, Tong L, Pang Y, Xu J. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2400332. [PMID: 38739927 DOI: 10.1002/adma.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.
Collapse
Affiliation(s)
- Chunsheng Chen
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaoqiang Zhou
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lei Tong
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yue Pang
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Yang X, Xie X, Yang W, Wang X, Li M, Zheng F. Stacking-dependent interlayer magnetic interactions in CrSe 2. NANOTECHNOLOGY 2024; 35:305709. [PMID: 38648740 DOI: 10.1088/1361-6528/ad4156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Recently, CrSe2, a new ferromagnetic van der Waals two-dimensional material, was discovered to be highly stable under ambient conditions, making it an attractive candidate for fundamental research and potential device applications. Here, we study the interlayer interactions of bilayer CrSe2using first-principles calculations. We demonstrate that the interlayer interaction depends on the stacking structure. The AA and AB stackings exhibit antiferromagnetic (AFM) interlayer interactions, while the AC stacking exhibits ferromagnetic (FM) interlayer interaction. Furthermore, the interlayer interaction can be further tuned by tensile strain and charge doping. Specifically, under large tensile strain, most stacking structures exhibit FM interlayer interactions. Conversely, under heavy electron doping, all stacking structures exhibit AFM interlayer interactions. These findings are useful for designing spintronic devices based on CrSe2.
Collapse
Affiliation(s)
- Xinlong Yang
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaoyang Xie
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wenqi Yang
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaohui Wang
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Menglei Li
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Fawei Zheng
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
9
|
Lee C, Rahimifard L, Choi J, Park JI, Lee C, Kumar D, Shukla P, Lee SM, Trivedi AR, Yoo H, Im SG. Highly parallel and ultra-low-power probabilistic reasoning with programmable gaussian-like memory transistors. Nat Commun 2024; 15:2439. [PMID: 38499561 PMCID: PMC10948914 DOI: 10.1038/s41467-024-46681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Probabilistic inference in data-driven models is promising for predicting outputs and associated confidence levels, alleviating risks arising from overconfidence. However, implementing complex computations with minimal devices still remains challenging. Here, utilizing a heterojunction of p- and n-type semiconductors coupled with separate floating-gate configuration, a Gaussian-like memory transistor is proposed, where a programmable Gaussian-like current-voltage response is achieved within a single device. A separate floating-gate structure allows for exquisite control of the Gaussian-like current output to a significant extent through simple programming, with an over 10000 s retention performance and mechanical flexibility. This enables physical evaluation of complex distribution functions with the simplified circuit design and higher parallelism. Successful implementation for localization and obstacle avoidance tasks is demonstrated using Gaussian-like curves produced from Gaussian-like memory transistor. With its ultralow-power consumption, simplified design, and programmable Gaussian-like outputs, our 3-terminal Gaussian-like memory transistor holds potential as a hardware platform for probabilistic inference computing.
Collapse
Affiliation(s)
- Changhyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Leila Rahimifard
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Junhwan Choi
- Department of Chemical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do, 16890, Korea
| | - Jeong-Ik Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Chungryeol Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Divake Kumar
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Priyesh Shukla
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Seung Min Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Amit Ranjan Trivedi
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
10
|
Wu G, Xiang L, Wang W, Yao C, Yan Z, Zhang C, Wu J, Liu Y, Zheng B, Liu H, Hu C, Sun X, Zhu C, Wang Y, Xiong X, Wu Y, Gao L, Li D, Pan A, Li S. Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system. Sci Bull (Beijing) 2024; 69:473-482. [PMID: 38123429 DOI: 10.1016/j.scib.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The growth of data and Internet of Things challenges traditional hardware, which encounters efficiency and power issues owing to separate functional units for sensors, memory, and computation. In this study, we designed an α-phase indium selenide (α-In2Se3) transistor, which is a two-dimensional ferroelectric semiconductor as the channel material, to create artificial optic-neural and electro-neural synapses, enabling cutting-edge processing-in-sensor (PIS) and computing-in-memory (CIM) functionalities. As an optic-neural synapse for low-level sensory processing, the α-In2Se3 transistor exhibits a high photoresponsivity (2855 A/W) and detectivity (2.91 × 1014 Jones), facilitating efficient feature extraction. For high-level processing tasks as an electro-neural synapse, it offers a fast program/erase speed of 40 ns/50 µs and ultralow energy consumption of 0.37 aJ/spike. An AI vision system using α-In2Se3 transistors has been demonstrated. It achieved an impressive recognition accuracy of 92.63% within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities. This study demonstrates the potential of the α-In2Se3 transistor in future vision hardware, enhancing processing, power efficiency, and AI applications.
Collapse
Affiliation(s)
- Guangcheng Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Li Xiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Wenqiang Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Chengdong Yao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Zeyi Yan
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Cheng Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Jiaxin Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Yong Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Huawei Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Chengwei Hu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Xingxia Sun
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Chenguang Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Yizhe Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Xiong Xiong
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yanqing Wu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China.
| | - Shengman Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China.
| |
Collapse
|
11
|
Zhao Z, Kang J, Tunga A, Ryu H, Shukla A, Rakheja S, Zhu W. Content-Addressable Memories and Transformable Logic Circuits Based on Ferroelectric Reconfigurable Transistors for In-Memory Computing. ACS NANO 2024; 18:2763-2771. [PMID: 38232763 DOI: 10.1021/acsnano.3c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
As a promising alternative to the von Neumann architecture, in-memory computing holds the promise of delivering a high computing capacity while consuming low power. In this paper, we show that the ferroelectric reconfigurable transistor can serve as a versatile logic-in-memory unit that can perform logic operations and data storage concurrently. When functioning as memory, a ferroelectric reconfigurable transistor can implement content-addressable memory (CAM) with a 1-transistor-per-bit density. With the switchable polarity of the ferroelectric reconfigurable transistor, XOR/XNOR-like matching operation in CAM is realized in a single transistor, which can offer a significant improvement in area and energy efficiency compared to conventional CAMs. NAND- and NOR-arrays of CAMs are also demonstrated, which enable multibit matching in a single reading operation. In addition, the NOR array of CAM cells effectively measures the Hamming distance between the input query and the stored entries. When functioning as a logic element, a ferroelectric reconfigurable transistor can be switched between n- and p-type modes. Utilizing the switchable polarity of these ferroelectric Schottky barrier transistors, we demonstrate reconfigurable logic gates with NAND/NOR dual functions, whose input-output mapping can be transformed in real time without changing the layout, and the configuration is nonvolatile.
Collapse
Affiliation(s)
- Zijing Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junzhe Kang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ashwin Tunga
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hojoon Ryu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ankit Shukla
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shaloo Rakheja
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenjuan Zhu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Xiao Y, Zou G, Huo J, Sun T, Peng J, Li Z, Shen D, Liu L. Local modulation of Au/MoS 2 Schottky barriers using a top ZnO nanowire gate for high-performance photodetection. NANOSCALE HORIZONS 2024; 9:285-294. [PMID: 38063807 DOI: 10.1039/d3nh00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Schottky junctions are commonly used for fabricating heterojunction-based 2D transition metal dichalcogenide (TMD) photodetectors, characteristically offering a wide detection range, high sensitivity and fast response. However, these devices often suffer from reduced detectivity due to the high dark current, making it challenging to discover a simple and efficient universal way to improve the photoelectric performances. Here, we demonstrate a novel approach for integrating ZnO nanowire gates into a MoS2-Au Schottky junction to improve the photoelectric performances of photodetectors by locally controlling the Schottky barrier. This strategy remarkably reduces the dark current level of the device without affecting its photocurrent and the Schottky detectivity can be modified to a maximum detectivity of 1.4 × 1013 Jones with -20 V NG bias. This work provides potential possibilities for tuning the band structure of other materials and optimizing the performance of heterojunction photodetectors.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
13
|
Bai H, Yu Z, Feng J, Liu D, Li W, Pan H. Co 3X 8 (X = Cl and Br): multiple phases and magnetic properties of the Kagome lattice. NANOSCALE 2024; 16:1362-1370. [PMID: 38131608 DOI: 10.1039/d3nr04762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The unique magnetic properties of two-dimensional (2D) materials have demonstrated huge potential for applications in nanodevices and spintronics. In this work, we propose a new Kagome lattice, Co3X8 (X = Cl and Br), based on density functional theory (DFT) calculation. We find that Co/X in Co3X8 has spontaneous movement in the lattice, resulting in 156- and 12-phases of Co3X8 and diverse magnetic and electronic properties. We show that the magnetic and electronic properties of Co3X8 can be engineered by strain, and the magnetic properties of Co3X8 are highly related to the spontaneous movement of X. Moreover, the transmission property of 12-Co3X8 shows clear angle-dependent features due to the symmetry breaking as caused by the spontaneous movement of X. Our findings may provide not only a possible Kagome lattice with unique properties, but also a strategy for designing nanodevices and for spintronics.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
| | - Zhichao Yu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
| | - Weiqi Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
14
|
Liu C, Pan J, Yuan Q, Zhu C, Liu J, Ge F, Zhu J, Xie H, Zhou D, Zhang Z, Zhao P, Tian B, Huang W, Wang L. Highly Reliable Van Der Waals Memory Boosted by a Single 2D Charge Trap Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305580. [PMID: 37882079 DOI: 10.1002/adma.202305580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Charge trap materials that can store carriers efficiently and controllably are desired for memory applications. 2D materials are promising for highly compacted and reliable memory mainly due to their ease of constructing atomically uniform interfaces, however, remain unexplored as being charge trap media. Here it is discovered that 2D semiconducting PbI2 is an excellent charge trap material for nonvolatile memory and artificial synapses. It is simple to construct PbI2 -based charge trap devices since no complicated synthesis or additional defect manufacturing are required. As a demonstration, MoS2 /PbI2 device exhibits a large memory window of 120 V, fast write speed of 5 µs, high on-off ratio around 106 , multilevel memory of over 8 distinct states, high reliability with endurance up to 104 cycles and retention over 1.2 × 104 s. It is envisioned that PbI2 with ionic activity caused by the natively formed iodine vacancies is unique to combine with unlimited 2D materials for versatile van der Waals devices with high-integration and multifunctionality.
Collapse
Affiliation(s)
- Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jie Pan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qihui Yuan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jianquan Liu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jijie Zhu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Haitao Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicheng Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), North-Western Polytechnical University (NPU), Xi'an, 710072, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangdong, 518107, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
15
|
Yin L, Cheng R, Pan S, Xiong W, Chang S, Zhai B, Wen Y, Cai Y, Guo Y, Sendeku MG, Jiang J, Liao W, Wang Z, He J. Engineering Atomic-Scale Patterning and Resistive Switching in 2D Crystals and Application in Image Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306850. [PMID: 37688530 DOI: 10.1002/adma.202306850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The ultrathin thickness of 2D layered materials affords the control of their properties through defects, surface modification, and electrostatic fields more efficiently compared with bulk architecture. In particular, patterning design, such as moiré superlattice patterns and spatially periodic dielectric structures, are demonstrated to possess the ability to precisely control the local atomic and electronic environment at large scale, thus providing extra degrees of freedom to realize tailored material properties and device functionality. Here, the scalable atomic-scale patterning in superionic cuprous telluride by using the bonding difference at nonequivalent copper sites is reported. Moreover, benefitting from the natural coupling of ordered and disordered sublattices, controllable piezoelectricity-like multilevel switching and bipolar switching with the designed crystal structure and electrical contact is realized, and their application in image enhancement is demonstrated. This work extends the known classes of patternable crystals and atomic switching devices, and ushers in a frontier for image processing with memristors.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Shurong Pan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Sheng Chang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Institute of Semiconductors, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuchen Cai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | | | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Weitu Liao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
16
|
Zhang C, Ning J, Wang D, Zhang J, Hao Y. A review on advanced band-structure engineering with dynamic control for nonvolatile memory based 2D transistors. NANOTECHNOLOGY 2023; 35:042001. [PMID: 37524059 DOI: 10.1088/1361-6528/acebf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
With advancements in information technology, an enormous amount of data is being generated that must be quickly accessible. However, conventional Si memory cells are approaching their physical limits and will be unable to meet the requirements of intense applications in the future. Notably, 2D atomically thin materials have demonstrated multiple novel physical and chemical properties that can be used to investigate next-generation electronic devices and breakthrough physical limits to continue Moore's law. Band structure is an important semiconductor parameter that determines their electrical and optical properties. In particular, 2D materials have highly tunable bandgaps and Fermi levels that can be achieved through band structure engineering methods such as heterostructure, substrate engineering, chemical doping, intercalation, and electrostatic doping. In particular, dynamic control of band structure engineering can be used in recent advancements in 2D devices to realize nonvolatile storage performance. This study examines recent advancements in 2D memory devices that utilize band structure engineering. The operational mechanisms and memory characteristics are described for each band structure engineering method. Band structure engineering provides a platform for developing new structures and realizing superior performance with respect to nonvolatile memory.
Collapse
Affiliation(s)
- Chi Zhang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| | - Jing Ning
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| | - Dong Wang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
- Xidian-Wuhu Research Institute, Wuhu 241000, People's Republic of China
| | - Jincheng Zhang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| | - Yue Hao
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| |
Collapse
|
17
|
Cao F, Hu Z, Yan T, Hong E, Deng X, Wu L, Fang X. A Dual-Functional Perovskite-Based Photodetector and Memristor for Visual Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304550. [PMID: 37467009 DOI: 10.1002/adma.202304550] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The imitation of human visual memory demands the multifunctional integration of light sensors similar to the eyes, and image memory, similar to the brain. Although humans have already implemented electronic devices with visual memory functions, these devices require a combination of various components and logical circuits. However, the combination of visual perception and high-performance information storage capabilities into a single device to achieve visual memory remains challenging. In this study, inspired by the function of human visual memory, a dual-functional perovskite-based photodetector (PD) and memristor are designed to realize visual perception and memory capacities. As a PD, it realizes an ultrahigh self-powered responsivity of 276 mA W-1 , a high detectivity of 4.7 × 1011 Jones (530 nm; light intensities, 2.34 mW cm-2 ), and a high rectification ratio of ≈100 (±2 V). As a memristor, an ultrahigh on/off ratio (≈105 ), an ultralow power consumption of 3 × 10-11 W, a low setting voltage (0.15 V), and a long retention time (>7000 s) are realized. Moreover, the dual-functional device has the capacity to perceive and remember light paths and store data with good cyclic stability. This device exhibits perceptual and cyclic erasable memory functions, which provides new opportunities for mimicking human visual memory in future multifunctional applications.
Collapse
Affiliation(s)
- Fa Cao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zijun Hu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaolei Deng
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
18
|
Bai H, Liu D, Pan H. LaOMS 2 (M = Ti, V, and Cr): novel crystal spin valves without contact. MATERIALS HORIZONS 2023; 10:5126-5132. [PMID: 37695805 DOI: 10.1039/d3mh01182h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
2D materials are widely investigated for application in nanodevices and spintronics. Here, we demonstrate that a family of structures, LaOMS2 (M = Ti, V, and Cr), where a La2O2 layer is sandwiched between two magnetic MS2 layers, are suitable to be used as spin valves without contact. We show that they are stable and exhibit unique magnetic and electronic properties. We find that (1) each MS2 layer is ferromagnetic with the magnetic moment mainly contributed by the M ion and the coupling between the two MS2 layers in one structure is negligible due to the blocking of the La2O2 layer; (2) LaOMS2 can be a half-metal in the ferromagnetic (FM) state and a conductor in the interlayer antiferromagnetic (inter-AFM) state, and the total energies of the two states are almost identical; (3) the magnetic properties and exchange energy can be effectively controlled by contacting with other materials; and (4) a 100% spin current is achieved in FM LaOMS2. Our results provide not only novel structures for practical application in spintronics, but also strategies for designing new devices.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China.
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China.
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China.
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
19
|
Kumari P, Rani S, Kar S, Kamalakar MV, Ray SJ. Strain-controlled spin transport in a two-dimensional (2D) nanomagnet. Sci Rep 2023; 13:16599. [PMID: 37789039 PMCID: PMC10547692 DOI: 10.1038/s41598-023-43025-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Semiconductors with controllable electronic transport coupled with magnetic behaviour, offering programmable spin arrangements present enticing potential for next generation intelligent technologies. Integrating and linking these two properties has been a long standing challenge for material researchers. Recent discoveries in two-dimensional (2D) magnet shows an ability to tune and control the electronic and magnetic phases at ambient temperature. Here, we illustrate controlled spin transport within the magnetic phase of the 2D semiconductor CrOBr and reveal a substantial connection between its magnetic order and charge carriers. First, we systematically analyse the strain-induced electronic behaviour of 2D CrOBr using density functional theory calculations. Our study demonstrates the phase transition from a magnetic semiconductor → half metal → magnetic metal in the material under strain application, creating intriguing spin-resolved conductance with 100% spin polarisation and spin-injection efficiency. Additionally, the spin-polarised current-voltage (I-V) trend displayed conductance variations with high strain-assisted tunability and a peak-to-valley ratio as well as switching efficiency. Our study reveals that CrOBr can exhibit highly anisotropic behaviour with perfect spin filtering, offering new implications for strain engineered magneto-electronic devices.
Collapse
Affiliation(s)
- P Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta, 801103, India
| | - S Rani
- Department of Physics, Indian Institute of Technology Patna, Bihta, 801103, India
| | - S Kar
- Department of Physics, Indian Institute of Technology Patna, Bihta, 801103, India
| | - M Venkata Kamalakar
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden.
| | - S J Ray
- Department of Physics, Indian Institute of Technology Patna, Bihta, 801103, India.
| |
Collapse
|
20
|
Nikam RD, Lee J, Lee K, Hwang H. Exploring the Cutting-Edge Frontiers of Electrochemical Random Access Memories (ECRAMs) for Neuromorphic Computing: Revolutionary Advances in Material-to-Device Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302593. [PMID: 37300356 DOI: 10.1002/smll.202302593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Advanced materials and device engineering has played a crucial role in improving the performance of electrochemical random access memory (ECRAM) devices. ECRAM technology has been identified as a promising candidate for implementing artificial synapses in neuromorphic computing systems due to its ability to store analog values and its ease of programmability. ECRAM devices consist of an electrolyte and a channel material sandwiched between two electrodes, and the performance of these devices depends on the properties of the materials used. This review provides a comprehensive overview of material engineering strategies to optimize the electrolyte and channel materials' ionic conductivity, stability, and ionic diffusivity to improve the performance and reliability of ECRAM devices. Device engineering and scaling strategies are further discussed to enhance ECRAM performance. Last, perspectives on the current challenges and future directions in developing ECRAM-based artificial synapses in neuromorphic computing systems are provided.
Collapse
Affiliation(s)
- Revannath Dnyandeo Nikam
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Jongwon Lee
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Kyumin Lee
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyunsang Hwang
- Center for Single Atom-based Semiconductor Device, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| |
Collapse
|
21
|
Gong X, Zhou Y, Xia J, Zhang L, Zhang L, Yin LJ, Hu Y, Qin Z, Tian Y. Tunable non-volatile memories based on 2D InSe/ h-BN/GaSe heterostructures towards potential multifunctionality. NANOSCALE 2023; 15:14448-14457. [PMID: 37615579 DOI: 10.1039/d3nr02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Floating-gate memories based on two-dimensional van der Waal (2D vdW) heterostructures play an important role in the development of next-generation information technology. The diversity of 2D vdW materials and their heterostructures provides flexibility in the design of novel storage architectures. However, 2D InSe/h-BN/GaSe heterostructures are rarely reported in the field of tunable non-volatile memories, probably due to the quality limitation of materials and complex interfaces from stackings. Herein, a floating-gate 2D InSe/h-BN/GaSe memory with high performance and atmosphere stability is demonstrated. It exhibits both a large ON/OFF current ratio of ∼105 and a good extinction ratio of ∼103, with an estimated maximum storage capacity of 5.1 × 1012 cm-2. Moreover, the storage performance can be regulated by optimizing the thickness of the insulating h-BN layer. Different device configurations have been explored to validate the working mechanism. Furthermore, a simulation of biological synaptic behavior is achieved on the same prototype device. The enhanced non-volatile characteristics enable the exploration of the integrated 2D memory and potential multifunctionality.
Collapse
Affiliation(s)
- Xiang Gong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Yueying Zhou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Yuanyuan Hu
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, P.R. China.
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, China
| |
Collapse
|
22
|
Assi DS, Huang H, Karthikeyan V, Theja VCS, de Souza MM, Xi N, Li WJ, Roy VAL. Quantum Topological Neuristors for Advanced Neuromorphic Intelligent Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300791. [PMID: 37340871 PMCID: PMC10460853 DOI: 10.1002/advs.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Indexed: 06/22/2023]
Abstract
Neuromorphic artificial intelligence systems are the future of ultrahigh performance computing clusters to overcome complex scientific and economical challenges. Despite their importance, the advancement in quantum neuromorphic systems is slow without specific device design. To elucidate biomimicking mammalian brain synapses, a new class of quantum topological neuristors (QTN) with ultralow energy consumption (pJ) and higher switching speed (µs) is introduced. Bioinspired neural network characteristics of QTNs are the effects of edge state transport and tunable energy gap in the quantum topological insulator (QTI) materials. With augmented device and QTI material design, top notch neuromorphic behavior with effective learning-relearning-forgetting stages is demonstrated. Critically, to emulate the real-time neuromorphic efficiency, training of the QTNs is demonstrated with simple hand gesture game by interfacing them with artificial neural networks to perform decision-making operations. Strategically, the QTNs prove the possession of incomparable potential to realize next-gen neuromorphic computing for the development of intelligent machines and humanoids.
Collapse
Affiliation(s)
- Dani S. Assi
- Electronics and Nanoscale EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Hongli Huang
- Electronics and Nanoscale EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vaithinathan Karthikeyan
- Electronics and Nanoscale EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vaskuri C. S. Theja
- Materials Science and EngineeringCity University of Hong KongTat Chee AvenueHong KongHong Kong
| | | | - Ning Xi
- Industrial and Manufacturing Systems EngineeringThe University of Hong KongPokfulam RoadHong KongHong Kong
| | - Wen Jung Li
- Mechanical EngineeringCity University of Hong KongTat Chee AvenueHong KongHong Kong
| | - Vellaisamy A. L. Roy
- School of Science and TechnologyHong Kong Metropolitan UniversityHo Man TinHong KongHong Kong
| |
Collapse
|
23
|
Ahn W, Jeong HB, Oh J, Hong W, Cha JH, Jeong HY, Choi SY. A Highly Reliable Molybdenum Disulfide-Based Synaptic Memristor Using a Copper Migration-Controlled Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300223. [PMID: 37093184 DOI: 10.1002/smll.202300223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Memristors are drawing attention as neuromorphic hardware components because of their non-volatility and analog programmability. In particular, electrochemical metallization (ECM) memristors are extensively researched because of their linear conductance controllability. Two-dimensional materials as switching medium of ECM memristors give advantages of fast speed, low power consumption, and high switching uniformity. However, the multistate retention in the switching conductance range for the long-term reliable neuromorphic system has not been achieved using two-dimensional materials-based ECM memristors. In this study, the copper migration-controlled ECM memristor showing excellent multistate retention characteristics in the switching conductance range using molybdenum disulfide (MoS2 ) and aluminum oxide (Al2 O3 ) is proposed. The fabricated device exhibits gradual resistive switching with low switching voltage (<0.5 V), uniform switching (σ/µ ∼ 0.07), and a wide switching range (>12). Importantly, excellent reliabilities with robustness to cycling stress and retention over 104 s for more than 5-bit states in the switching conductance range are achieved. Moreover, the contribution of the Al2 O3 layer to the retention characteristic is investigated through filament morphology observation using transmission electron microscopy (TEM) and copper migration component analysis. This study provides a practical approach to developing highly reliable memristors with exceptional switching performance.
Collapse
Affiliation(s)
- Wonbae Ahn
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Han Beom Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungyeop Oh
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Woonggi Hong
- Convergence Semiconductor Research Center, School of Electronics and Electrical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Jun-Hwe Cha
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sung-Yool Choi
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Wang H, Wen Y, Zeng H, Xiong Z, Tu Y, Zhu H, Cheng R, Yin L, Jiang J, Zhai B, Liu C, Shan C, He J. 2D Ferroic Materials for Nonvolatile Memory Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305044. [PMID: 37486859 DOI: 10.1002/adma.202305044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The emerging nonvolatile memory technologies based on ferroic materials are promising for producing high-speed, low-power, and high-density memory in the field of integrated circuits. Long-range ferroic orders observed in 2D materials have triggered extensive research interest in 2D magnets, 2D ferroelectrics, 2D multiferroics, and their device applications. Devices based on 2D ferroic materials and heterostructures with an atomically smooth interface and ultrathin thickness have exhibited impressive properties and significant potential for developing advanced nonvolatile memory. In this context, a systematic review of emergent 2D ferroic materials is conducted here, emphasizing their recent research on nonvolatile memory applications, with a view to proposing brighter prospects for 2D magnetic materials, 2D ferroelectric materials, 2D multiferroic materials, and their relevant devices.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hui Zeng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ziren Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yangyuan Tu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430079, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
25
|
Sheng Z, Dong J, Hu W, Wang Y, Sun H, Zhang DW, Zhou P, Zhang Z. Reconfigurable Logic-in-Memory Computing Based on a Polarity-Controllable Two-Dimensional Transistor. NANO LETTERS 2023. [PMID: 37235483 DOI: 10.1021/acs.nanolett.3c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Logic-in-memory architecture holds great promise to meet the high-performance and energy-efficient requirements of data-intensive scenarios. Two-dimensional compacted transistors embedded with logic functions are expected to extend Moore's law toward advanced nodes. Here we demonstrate that a WSe2/h-BN/graphene based middle-floating-gate field-effect transistor can perform under diverse current levels due to the controllable polarity by the control gate, floating gate, and drain voltages. Such electrical tunable characteristics are employed for logic-in-memory architectures and can behave as reconfigurable logic functions of AND/XNOR within a single device. Compared to the conventional devices like floating-gate field-effect transistors, our design can greatly decrease the consumption of transistors. For AND/NAND, it can save 75% transistors by reducing the transistor number from 4 to 1; for XNOR/XOR, it is even up to 87.5% with the number being reduced from 8 to 1.
Collapse
Affiliation(s)
- Zhe Sheng
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jianguo Dong
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Wennan Hu
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yue Wang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Haoran Sun
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - David Wei Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, No.825 Zhangheng Road, Shanghai 201203, China
| | - Peng Zhou
- School of Microelectronics, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, No.825 Zhangheng Road, Shanghai 201203, China
| | - Zengxing Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, No.825 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
26
|
Wali A, Ravichandran H, Das S. Hardware Trojans based on two-dimensional memtransistors. NANOSCALE HORIZONS 2023; 8:603-615. [PMID: 37021644 DOI: 10.1039/d2nh00568a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hardware Trojans (HTs) have emerged as a major security threat for integrated circuits (ICs) owing to the involvement of untrustworthy actors in the globally distributed semiconductor supply chain. HTs are intentional malicious modifications, which remain undetectable through simple electrical measurements but can cause catastrophic failure in the functioning of ICs in mission critical applications. In this article, we show how two-dimensional (2D) material based in-memory computing elements such as memtransistors can be used as hardware Trojans. We found that logic gates based on 2D memtransistors can be made to malfunction by exploiting their inherent programming capabilities. While we use 2D memtransistor-based ICs as the testbed for our demonstration, the results are equally applicable to any state-of-the-art and emerging in-memory computing technologies.
Collapse
Affiliation(s)
- Akshay Wali
- Electrical Engineering and Computer Science, Penn State University, University Park, PA 16802, USA.
| | | | - Saptarshi Das
- Electrical Engineering and Computer Science, Penn State University, University Park, PA 16802, USA.
- Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Materials Science and Engineering, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Soliman M, Maity K, Gloppe A, Mahmoudi A, Ouerghi A, Doudin B, Kundys B, Dayen JF. Photoferroelectric All-van-der-Waals Heterostructure for Multimode Neuromorphic Ferroelectric Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15732-15744. [PMID: 36919904 PMCID: PMC10375436 DOI: 10.1021/acsami.3c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interface-driven effects in ferroelectric van der Waals (vdW) heterostructures provide fresh opportunities in the search for alternative device architectures toward overcoming the von Neumann bottleneck. However, their implementation is still in its infancy, mostly by electrical control. It is of utmost interest to develop strategies for additional optical and multistate control in the quest for novel neuromorphic architectures. Here, we demonstrate the electrical and optical control of the ferroelectric polarization states of ferroelectric field effect transistors (FeFET). The FeFETs, fully made of ReS2/hBN/CuInP2S6 vdW materials, achieve an on/off ratio exceeding 107, a hysteresis memory window up to 7 V wide, and multiple remanent states with a lifetime exceeding 103 s. Moreover, the ferroelectric polarization of the CuInP2S6 (CIPS) layer can be controlled by photoexciting the vdW heterostructure. We perform wavelength-dependent studies, which allow for identifying two mechanisms at play in the optical control of the polarization: band-to-band photocarrier generation into the 2D semiconductor ReS2 and photovoltaic voltage into the 2D ferroelectric CIPS. Finally, heterosynaptic plasticity is demonstrated by operating our FeFET in three different synaptic modes: electrically stimulated, optically stimulated, and optically assisted synapse. Key synaptic functionalities are emulated including electrical long-term plasticity, optoelectrical plasticity, optical potentiation, and spike rate-dependent plasticity. The simulated artificial neural networks demonstrate an excellent accuracy level of 91% close to ideal-model synapses. These results provide a fresh background for future research on photoferroelectric vdW systems and put ferroelectric vdW heterostructures on the roadmap for the next neuromorphic computing architectures.
Collapse
Affiliation(s)
- Mohamed Soliman
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Krishna Maity
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Arnaud Gloppe
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Aymen Mahmoudi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Abdelkarim Ouerghi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Bernard Doudin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 cedex 05 Paris, France
| | - Bohdan Kundys
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Jean-Francois Dayen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 cedex 05 Paris, France
| |
Collapse
|
28
|
Paramanik S, Pal AJ. Combining negative photoconductivity and resistive switching towards in-memory logic operations. NANOSCALE 2023; 15:5001-5010. [PMID: 36786743 DOI: 10.1039/d3nr00278k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A family of rudorffites based on silver-bismuth-iodide shows a transition from a conventional positive photoconductivity (PPC) to an unusual negative photoconductivity (NPC) upon variation in the precursor stoichiometry while forming the rudorffites. The NPC has arisen in silver-rich rudorffites due to the generation of illumination-induced trap-states which prompted the recombination of charge carriers and thereby a decrease in the conductivity of the compounds. In addition to photoconductivity, sandwiched devices based on all the rudorffites exhibited resistive switching between a pristine high resistive state (HRS) and a low resistive state (LRS) under a suitable voltage pulse; the switching process, which is reversible, is associated with a memory phenomenon. The devices based on NPC-exhibiting rudorffites switched to the HRS under illumination as well. That is, the resistive state of the devices could be controlled through both electrical and optical inputs. We employed such interesting optoelectronic properties of NPC-exhibiting rudorffites to exhibit OR logic gate operation. Because the devices could function as a logic gate and store the resistive state as well, we concluded that the materials could be an ideal candidate for in-memory logic operations.
Collapse
Affiliation(s)
- Subham Paramanik
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
29
|
Lanza M, Hui F, Wen C, Ferrari AC. Resistive Switching Crossbar Arrays Based on Layered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205402. [PMID: 36094019 DOI: 10.1002/adma.202205402] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Resistive switching (RS) devices are metal/insulator/metal cells that can change their electrical resistance when electrical stimuli are applied between the electrodes, and they can be used to store and compute data. Planar crossbar arrays of RS devices can offer a high integration density (>108 devices mm- 2 ) and this can be further enhanced by stacking them three-dimensionally. The advantage of using layered materials (LMs) in RS devices compared to traditional phase-change materials and metal oxides is that their electrical properties can be adjusted with a higher precision. Here, the key figures-of-merit and procedures to implement LM-based RS devices are defined. LM-based RS devices fabricated using methods compatible with industry are identified and discussed. The focus is on small devices (size < 9 µm2 ) arranged in crossbar structures, since larger devices may be affected by artifacts, such as grain boundaries and flake junctions. How to enhance device performance, so to accelerate the development of this technology, is also discussed.
Collapse
Affiliation(s)
- Mario Lanza
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fei Hui
- School of Materials Science and Engineering, The Key Laboratory of Material, Processing and Mold of the Ministry of Education, Henan Key Laboratory of Advanced, Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Wen
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| |
Collapse
|
30
|
Lai H, Lu Z, Lu Y, Yao X, Xu X, Chen J, Zhou Y, Liu P, Shi T, Wang X, Xie W. Fast, Multi-Bit, and Vis-Infrared Broadband Nonvolatile Optoelectronic Memory with MoS 2 /2D-Perovskite Van der Waals Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208664. [PMID: 36453570 DOI: 10.1002/adma.202208664] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS2 /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS2 into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS2 /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength.
Collapse
Affiliation(s)
- Haojie Lai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zhengli Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yueheng Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xuanchun Yao
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xin Xu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yang Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Tingting Shi
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
31
|
Ye Z, Tan C, Huang X, Ouyang Y, Yang L, Wang Z, Dong M. Emerging MoS 2 Wafer-Scale Technique for Integrated Circuits. NANO-MICRO LETTERS 2023; 15:38. [PMID: 36652150 PMCID: PMC9849648 DOI: 10.1007/s40820-022-01010-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
As an outstanding representative of layered materials, molybdenum disulfide (MoS2) has excellent physical properties, such as high carrier mobility, stability, and abundance on earth. Moreover, its reasonable band gap and microelectronic compatible fabrication characteristics makes it the most promising candidate in future advanced integrated circuits such as logical electronics, flexible electronics, and focal-plane photodetector. However, to realize the all-aspects application of MoS2, the research on obtaining high-quality and large-area films need to be continuously explored to promote its industrialization. Although the MoS2 grain size has already improved from several micrometers to sub-millimeters, the high-quality growth of wafer-scale MoS2 is still of great challenge. Herein, this review mainly focuses on the evolution of MoS2 by including chemical vapor deposition, metal-organic chemical vapor deposition, physical vapor deposition, and thermal conversion technology methods. The state-of-the-art research on the growth and optimization mechanism, including nucleation, orientation, grain, and defect engineering, is systematically summarized. Then, this review summarizes the wafer-scale application of MoS2 in a transistor, inverter, electronics, and photodetectors. Finally, the current challenges and future perspectives are outlined for the wafer-scale growth and application of MoS2.
Collapse
Affiliation(s)
- Zimeng Ye
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaolei Huang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yi Ouyang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
32
|
Panigrahi D, Hayakawa R, Zhong X, Aimi J, Wakayama Y. Optically Controllable Organic Logic-in-Memory: An Innovative Approach toward Ternary Data Processing and Storage. NANO LETTERS 2023; 23:319-325. [PMID: 36580275 DOI: 10.1021/acs.nanolett.2c04415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Logic-in-memory (LIM) has emerged as an energy-efficient computing technology, as it integrates logic and memory operations in a single device architecture. Herein, a concept of ternary LIM is established. First, a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) transistor is combined with an n-type PhC2H4-benzo[de]isoquinolino[1,8-gh]quinolone diimide (PhC2-BQQDI) transistor to obtain a binary memory inverter, in which a zinc phthalocyanine-cored polystyrene (ZnPc-PS4) layer serves as a floating gate. The contrasting photoresponse of the transistors toward visible and ultraviolet light and the efficient hole-trapping ability of ZnPc-PS4 enable us to achieve an optically controllable memory operation with a high memory window of 18 V. Then, a ternary memory inverter is developed using an anti-ambipolar transistor to achieve a three-level data processing and storage system for more advanced LIM applications. Finally, low-voltage operation of the devices is achieved by employing a high-k dielectric layer, which highlights the potential of the developed LIM units for next-generation low-power electronics.
Collapse
Affiliation(s)
- Debdatta Panigrahi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Ryoma Hayakawa
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xinhao Zhong
- Research Center for Functional Materials, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Junko Aimi
- Research Center for Functional Materials, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Yutaka Wakayama
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
33
|
Liu S, Wang J, Shao J, Ouyang D, Zhang W, Liu S, Li Y, Zhai T. Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200734. [PMID: 35501143 DOI: 10.1002/adma.202200734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the reduction of feature size and increase of integration density, traditional 3D semiconductors are unable to meet the future requirements of chip integration. The current semiconductor fabrication technologies are approaching their physical limits based on Moore's law. 2D materials such as graphene, transitional metal dichalcogenides, etc., are of great promise for future memory, logic, and photonic devices due to their unique and excellent properties. To prompt 2D materials and devices from the laboratory research stage to the industrial integrated circuit-level, it is necessary to develop advanced nanopatterning methods to obtain high-quality, wafer-scale, and patterned 2D products. Herein, the recent development of nanopatterning technologies, particularly toward realizing large-scale practical application of 2D materials is reviewed. Based on the technological progress, the unique requirement and advances of the 2D integration process for logic, memory, and optoelectronic devices are further summarized. Finally, the opportunities and challenges of nanopatterning technologies of 2D materials for future integrated chip devices are prospected.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiefan Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
34
|
Wang X, Chen X, Ma J, Gou S, Guo X, Tong L, Zhu J, Xia Y, Wang D, Sheng C, Chen H, Sun Z, Ma S, Riaud A, Xu Z, Cong C, Qiu Z, Zhou P, Xie Y, Bian L, Bao W. Pass-Transistor Logic Circuits Based on Wafer-Scale 2D Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202472. [PMID: 35728050 DOI: 10.1002/adma.202202472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
2D semiconductors, such as molybdenum disulfide (MoS2 ), have attracted tremendous attention in constructing advanced monolithic integrated circuits (ICs) for future flexible and energy-efficient electronics. However, the development of large-scale ICs based on 2D materials is still in its early stage, mainly due to the non-uniformity of the individual devices and little investigation of device and circuit-level optimization. Herein, a 4-inch high-quality monolayer MoS2 film is successfully synthesized, which is then used to fabricate top-gated (TG) MoS2 field-effect transistors with wafer-scale uniformity. Some basic circuits such as static random access memory and ring oscillators are examined. A pass-transistor logic configuration based on pseudo-NMOS is then employed to design more complex MoS2 logic circuits, which are successfully fabricated with proper logic functions tested. These preliminary integration efforts show the promising potential of wafer-scale 2D semiconductors for application in complex ICs.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Xinyu Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Jingyi Ma
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Saifei Gou
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Xiaojiao Guo
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Ling Tong
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Junqiang Zhu
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yin Xia
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Die Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Chuming Sheng
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Honglei Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Zhengzong Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Shunli Ma
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Antoine Riaud
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Zihan Xu
- Shenzhen Six Carbon Technology, Shenzhen, 518055, China
| | - Chunxiao Cong
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhijun Qiu
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Yufeng Xie
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Lifeng Bian
- Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Wenzhong Bao
- State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| |
Collapse
|
35
|
Wang S, Liu X, Zhou P. The Road for 2D Semiconductors in the Silicon Age. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106886. [PMID: 34741478 DOI: 10.1002/adma.202106886] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Continued reduction in transistor size can improve the performance of silicon integrated circuits (ICs). However, as Moore's law approaches physical limits, high-performance growth in silicon ICs becomes unsustainable, due to challenges of scaling, energy efficiency, and memory limitations. The ultrathin layers, diverse band structures, unique electronic properties, and silicon-compatible processes of 2D materials create the potential to consistently drive advanced performance in ICs. Here, the potential of fusing 2D materials with silicon ICs to minimize the challenges in silicon ICs, and to create technologies beyond the von Neumann architecture, is presented, and the killer applications for 2D materials in logic and memory devices to ease scaling, energy efficiency bottlenecks, and memory dilemmas encountered in silicon ICs are discussed. The fusion of 2D materials allows the creation of all-in-one perception, memory, and computation technologies beyond the von Neumann architecture to enhance system efficiency and remove computing power bottlenecks. Progress on the 2D ICs demonstration is summarized, as well as the technical hurdles it faces in terms of wafer-scale heterostructure growth, transfer, and compatible integration with silicon ICs. Finally, the promising pathways and obstacles to the technological advances in ICs due to the integration of 2D materials with silicon are presented.
Collapse
Affiliation(s)
- Shuiyuan Wang
- ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoxian Liu
- ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- ASIC & System State Key Lab, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Frontier Institute of Chip and System, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| |
Collapse
|
36
|
Jang HY, Kwon O, Nam JH, Kwon JD, Kim Y, Park W, Cho B. Highly Reproducible Heterosynaptic Plasticity Enabled by MoS 2/ZrO 2-x Heterostructure Memtransistor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52173-52181. [PMID: 36368778 DOI: 10.1021/acsami.2c15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrically tunable resistive switching of a polycrystalline MoS2-based memtransistor has attracted a great deal of attention as an essential synaptic component of neuromorphic circuitry because its switching characteristics from the field-induced migration of sulfur defects in the MoS2 grain boundaries can realize multilevel conductance tunability and heterosynaptic functionality. However, reproducible switching properties in the memtransistor are usually disturbed by the considerable difficulty in controlling the concentration and distribution of the intrinsically existing sulfur defects. Herein, we demonstrate reliable heterosynaptic characteristics using a memtransistor device with a MoS2/ZrO2-x heterostructure. Compared to the control device with the MoS2 semiconducting channel, the Schottky barrier height was more effectively modulated by the insertion of the insulating ZrO2-x layer below the MoS2, confirmed by an ultraviolet photoelectron spectroscopy analysis and the corresponding energy-band structures. The MoS2/ZrO2-x memtransistor accomplishes dual-terminal (drain and gate electrode) stimulated multilevel conductance owing to the tunable resistive switching behavior under varying gate voltages. Furthermore, the memtransistor exhibits long-term potentiation/depression endurance cycling over 7000 pulses and stable pulse cycling behavior by the pulse stimulus from different terminal regions. The promising candidate as an essential synaptic component of the MoS2/ZrO2-x memtransistors for neuromorphic systems results from the high recognition accuracy (∼92%) of the deep neural network simulation test, based on the training and inference of handwritten numbers (0-9). The simple memtransistor structure facilitates the implementation of complex neural circuitry.
Collapse
Affiliation(s)
- Hye Yeon Jang
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ojun Kwon
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae Hyeon Nam
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jung-Dae Kwon
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea
| | - Yonghun Kim
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea
| | - Woojin Park
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Byungjin Cho
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
37
|
Jin T, Mao J, Gao J, Han C, Loh KP, Wee ATS, Chen W. Ferroelectrics-Integrated Two-Dimensional Devices toward Next-Generation Electronics. ACS NANO 2022; 16:13595-13611. [PMID: 36099580 DOI: 10.1021/acsnano.2c07281] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferroelectric materials play an important role in a wide spectrum of semiconductor technologies and device applications. Two-dimensional (2D) van der Waals (vdW) ferroelectrics with surface-insensitive ferroelectricity that is significantly different from their traditional bulk counterparts have further inspired intensive interest. Integration of ferroelectrics into 2D-layered-material-based devices is expected to offer intriguing working principles and add desired functionalities for next-generation electronics. Herein, fundamental properties of ferroelectric materials that are compatible with 2D devices are introduced, followed by a critical review of recent advances on the integration of ferroelectrics into 2D devices. Representative device architectures and corresponding working mechanisms are discussed, such as ferroelectrics/2D semiconductor heterostructures, 2D ferroelectric tunnel junctions, and 2D ferroelectric diodes. By leveraging the favorable properties of ferroelectrics, a variety of functional 2D devices including ferroelectric-gated negative capacitance field-effect transistors, programmable devices, nonvolatile memories, and neuromorphic devices are highlighted, where the application of 2D vdW ferroelectrics is particularly emphasized. This review provides a comprehensive understanding of ferroelectrics-integrated 2D devices and discusses the challenges of applying them into commercial electronic circuits.
Collapse
Affiliation(s)
- Tengyu Jin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jingyu Mao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jing Gao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Cheng Han
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, P. R. China
| |
Collapse
|
38
|
Choi MS, Ali N, Ngo TD, Choi H, Oh B, Yang H, Yoo WJ. Recent Progress in 1D Contacts for 2D-Material-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202408. [PMID: 35594170 DOI: 10.1002/adma.202202408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have intensively examined 2D materials (2DMs) as promising materials for use in future quantum devices due to their atomic thinness. However, a major limitation occurs when 2DMs are in contact with metals: a van der Waals (vdW) gap is generated at the 2DM-metal interfaces, which induces metal-induced gap states that are responsible for an uncontrollable Schottky barrier (SB), Fermi-level pinning (FLP), and high contact resistance (RC ), thereby substantially lowering the electronic mobility of 2DM-based devices. Here, vdW-gap-free 1D edge contact is reviewed for use in 2D devices with substantially suppressed carrier scattering of 2DMs with hexagonal boron nitride (hBN) encapsulation. The 1D contact further enables uniform carrier transport across multilayered 2DM channels, high-density transistor integration independent of scaling, and the fabrication of double-gate transistors suitable for demonstrating unique quantum phenomena of 2DMs. The existing 1D contact methods are reviewed first. As a promising technology toward the large-scale production of 2D devices, seamless lateral contacts are reviewed in detail. The electronic, optoelectronic, and quantum devices developed via 1D contacts are subsequently discussed. Finally, the challenges regarding the reliability of 1D contacts are addressed, followed by an outlook of 1D contact methods.
Collapse
Affiliation(s)
- Min Sup Choi
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Nasir Ali
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Tien Dat Ngo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hyungyu Choi
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Byungdu Oh
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
39
|
Wang H, Shi J, Zhang J, Tao Z, Wang H, Yang Q, van Aken PA, Chen R. Pectin-assisted one-pot synthesis of MoS 2 nanocomposites for resistive switching memory application. NANOSCALE 2022; 14:12129-12135. [PMID: 35960001 DOI: 10.1039/d2nr02558b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing simple, large-scale, and environmentally-friendly ways to prepare two-dimensional (2D) semiconductive hexagonal phase MoS2 (2H-MoS2) nanocomposites remains a significant challenge. Herein, we propose a facile and green method for preparing few-layer MoS2 nanosheets via a pectin-assisted one-pot synthesis (PAOS), where pectin serves as the surfactant and stabilizer to assist the direct exfoliation of bulk MoS2 into few-layered semiconductive 2H-MoS2 nanosheets in water, as well as a second functional part to produce the 2H-MoS2/pectin nanocomposites simultaneously. Based on the facilely prepared 2H-MoS2/pectin nanocomposites, extraordinary flash memory devices with a typical bistable electrical switching and nonvolatile rewritable memory effect were realized, achieving a low threshold voltage below 2.0 V, a high ON/OFF ratio as high as 5 × 102, and a retention time longer than 104 s. Systematic investigations reveal that the electrical transition is due to the charge trapping and detrapping behaviors of the 2D 2H-MoS2/pectin nanocomposites. These findings through PAOS not only offer a general route for efficiently preparing 2H-MoS2 nanosheets and nanocomposites, but also reveal the great potential of 2D MoS2-based materials in rectifying the electronic properties for high-performance memory devices.
Collapse
Affiliation(s)
- Honglei Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jun Shi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Zhehao Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
| | - Qingqing Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
40
|
Tang L, Teng C, Xu R, Zhang Z, Khan U, Zhang R, Luo Y, Nong H, Liu B, Cheng HM. Controlled Growth of Wafer-Scale Transition Metal Dichalcogenides with a Vertical Composition Gradient for Artificial Synapses with High Linearity. ACS NANO 2022; 16:12318-12327. [PMID: 35913980 DOI: 10.1021/acsnano.2c03263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial synapses are promising for dealing with large amounts of data computing. Great progress has been made recently in terms of improving the on/off current ratio, the number of states, and the energy efficiency of synapse devices. However, the nonlinear weight update behavior of a synapse caused by the uncertain direction of the conductive filament leads to complex weight modulation, which degrades the delivery accuracy of information. Here we propose a strategy to improve the weight update behavior of synapses using chemical-vapor-deposition-grown transition metal dichalcogenides (TMDCs) with a vertical composition gradient, where the sulfur concentration decreases gradually along the thickness direction of TMDCs and thus forms a certain direction of the conduction filament for synapse devices. It is worth noting that the devices show an excellent linear conductance of potentiation and depression with a high linearity of 0.994 (surpassing most state-of-the-art synapses), have a large number of states, and are able to fabricate synapse arrays with wafer-scale. Furthermore, the devices based on the TMDCs with the vertical composition gradient exhibit an asymmetric feature of potentiation and depression behaviors with high linearity and follow the simulated linear Leaky ReLU function, resulting in a high recognition accuracy of 94.73%, which overcomes the unreliability issue in the Sigmoid function due to the vanishing gradient phenomenon. This study not only provides a universal method to grow TMDCs with a vertical composition gradient but also contributes to exploring highly linear synapses toward neuromorphic computing.
Collapse
Affiliation(s)
- Lei Tang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Changjiu Teng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Runzhang Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zehao Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Usman Khan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Rongjie Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Yuting Luo
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
- Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Faculty of Materials and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
41
|
Lai H, Zhou Y, Zhou H, Zhang N, Ding X, Liu P, Wang X, Xie W. Photoinduced Multi-Bit Nonvolatile Memory Based on a van der Waals Heterostructure with a 2D-Perovskite Floating Gate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110278. [PMID: 35289451 DOI: 10.1002/adma.202110278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The development of floating-gate nonvolatile memory (FGNVM) is limited by the charge storage, retention and transfer ability of the charge-trapping layer. Here, it is demonstrated that due to the unique alternate inorganic/organic chain structure and superior optical sensitivity, an insulating 2D Ruddlesden-Popper perovskite (2D-RPP) layer can function both as an excellent charge-storage layer and a photosensitive layer. Optoelectronic memory composed of a MoS2 /hBN/2D-RPP (MBR) van der Waals heterostructure is demonstrated. The MBR device exhibits unique light-controlled charge-storage characteristics, with maximum memory window up to 92 V, high on/off ratio of 104 , negligible degeneration over 103 s, >1000 program/erase cycles, and write speed of 500 µs. Dependent on the initial states, the MBR optoelectronic memory can be programmed in both positive photoconductivity (PPC) and negative photoconductivity (NPC) modes, with up to 11 and 22 distinct resistance states, respectively. The optical program power for each bit is as low as 36/10 pJ for PPC/NPC. The results not only reveal the potential of 2D-RPP as a superior charge-storage medium in floating-gate memory, but also provides an effective strategy toward fast, low-power and stable optical multi-bit storage and neuromorphic computing.
Collapse
Affiliation(s)
- Haojie Lai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yang Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huabin Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ning Zhang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xidong Ding
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
42
|
Li S, Zhang Z, Chen X, Deng W, Lu Y, Sui M, Gong F, Xu G, Li X, Liu F, You C, Chu F, Wu Y, Yan H, Zhang Y. A High-Performance In-Memory Photodetector Realized by Charge Storage in a van der Waals MISFET. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107734. [PMID: 35014726 DOI: 10.1002/adma.202107734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The emerging data-intensive applications in optoelectronics are driving innovation toward the fused integration of sensing, memory, and computing to break through the restrictions of the von Neumann architecture. However, the present photodetectors with only optoelectronic conversion functions cannot satisfy the growing demands of the multifunctions required in single devices. Here, a novel route for the integration of non-volatile memory into a photodetector is proposed, with a WSe2 /h-BN van der Waals heterostructure on a Si/SiO2 substrate to realize in-memory photodetection. This photodetector exhibits an ultrahigh readout photocurrent of 3.4 µA and photoresponsivity of 337.8 A W-1 in the solar-blind wavelength region, together with an extended retention time of more than 10 years. Furthermore, the charge-storage-based non-volatile mechanism of h-BN/SiO2 is successfully proven through a novel analysis of in situ optoelectronic electron energy-loss spectroscopy. These results represent a leap forward to future applications and insightful mechanisms of in-memory photodetection.
Collapse
Affiliation(s)
- Songyu Li
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Zeyu Zhang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoqing Chen
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wenjie Deng
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Yue Lu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Manling Sui
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Fan Gong
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Guoliang Xu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xuhong Li
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Famin Liu
- School of Physics, Beihang University, Beijing, 100191, China
| | - Congya You
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Feihong Chu
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Yi Wu
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Hui Yan
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhe Zhang
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
43
|
Yin L, Cheng R, Wen Y, Zhai B, Jiang J, Wang H, Liu C, He J. High-Performance Memristors Based on Ultrathin 2D Copper Chalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108313. [PMID: 34989444 DOI: 10.1002/adma.202108313] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Copper chalcogenides represent a class of materials with unique crystal structures, high electrical conductivity, and earth abundance, and are recognized as promising candidates for next-generation green electronics. However, their 2D structures and the corresponding electronic properties have rarely been touched. Herein, a series of ultrathin copper chalcogenide nanosheets with thicknesses down to two unit cells are successfully synthesized, including layered Cu2 Te, as well as nonlayered CuSe and Cu9 S5 , via van der Waals epitaxy, and their nonvolatile memristive behavior is investigated for the first time. Benefiting from the highly active Cu ions with low migration barriers, the memristors based on ultrathin 2D copper chalcogenide crystals exhibit relatively small switching voltage (≈0.4 V), fast switching speed, high switching uniformity, and wide operating temperature range (from 80 to 420 K), as well as stable retention and good cyclic endurance. These results demonstrate their tangible applications in future low-power, cryogenic, and high temperature harsh electronics.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
44
|
Mukherjee S, Koren E. Indium Selenide (In
2
Se
3
) – An Emerging Van‐der‐Waals Material for Photodetection and Non‐Volatile Memory Applications. Isr J Chem 2022. [DOI: 10.1002/ijch.202100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhrajit Mukherjee
- Nanoscale Electronic Materials & Devices Laboratory, Faculty of Materials Science and Engineering, Technion – Israel Institute of Technology 3200003 Haifa Israel
| | - Elad Koren
- Nanoscale Electronic Materials & Devices Laboratory, Faculty of Materials Science and Engineering, Technion – Israel Institute of Technology 3200003 Haifa Israel
| |
Collapse
|