1
|
Zeng B, Yin L, Liu R, Ju C, Zhang Q, Yang Z, Zheng S, Peng Q, Yang Q, Zhou Y, Liao M. Multiple Polarization States in Hf 1- xZr xO 2 Thin Films by Ferroelectric and Antiferroelectric Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411463. [PMID: 39713958 DOI: 10.1002/adma.202411463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Indexed: 12/24/2024]
Abstract
HfO2-based multi-bit ferroelectric memory combines non-volatility, speed, and energy efficiency, rendering it a promising technology for massive data storage and processing. However, some challenges remain, notably polarization variation, high operation voltage, and poor endurance performance. Here we show Hf1- xZrxO2 (x = 0.65 to 0.75) thin films grown through sequential atomic layer deposition (ALD) of HfO2 and ZrO2 exhibiting three-step domain switching characteristic in the form of triple-peak coercive electric field (EC) distribution. This long-sought behavior shows nearly no changes even at up to 125 °C and after 1 × 108 electric field cycling. By combining the electrical characterizations and integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM), we reveal that the triple-peak EC distribution is driven by the coupling of ferroelectric switching and reversible antiferroelectric-ferroelectric transition. We further demonstrate the 3-bit per cell operation of the Hf1- xZrxO2 capacitors with excellent device-to-device variation and long data retention, by the full switching of individual peaks in the triple-peak EC. The work represents a significant step in implementing reliable non-volatile multi-state ferroelectric devices.
Collapse
Affiliation(s)
- Binjian Zeng
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Lanyan Yin
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Ruiping Liu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Changfan Ju
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhibin Yang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Shuaizhi Zheng
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Qiangxiang Peng
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Qiong Yang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yichun Zhou
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - Min Liao
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| |
Collapse
|
2
|
Wang X, Zhang L, Zhao Y, Qin Z, Hu B, Zhang L, Jiang Y, Wang Q, Liang Z, Tang X, Wu J, Cao F, Bu L, Lei B, Lu G. Electro-Optically Configurable Synaptic Transistors With Cluster-Induced Photoactive Dielectric Layer for Visual Simulation and Biomotor Stimuli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406977. [PMID: 39223900 DOI: 10.1002/adma.202406977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Indexed: 09/04/2024]
Abstract
The integration of visual simulation and biorehabilitation devices promises great applications for sustainable electronics, on-demand integration and neuroscience. However, achieving a multifunctional synergistic biomimetic system with tunable optoelectronic properties at the individual device level remains a challenge. Here, an electro-optically configurable transistor employing conjugated-polymer as semiconductor layer and an insulating polymer (poly(1,8-octanediol-co-citrate) (POC)) with clusterization-triggered photoactive properties as dielectric layer is shown. These devices realize adeptly transition from electrical to optical synapses, featuring multiwavelength and multilevel optical synaptic memory properties exceeding 3 bits. Utilizing enhanced optical memory, the images learning and memory function for visual simulation are achieved. Benefiting from rapid electrical response akin to biological muscle activation, increased actuation occurs under increased stimulus frequency of gate voltage. Additionally, the transistor on POC substrate can be effectively degraded in NaOH solution due to degradation of POC. Pioneeringly, the electro-optically configurability stems from light absorption and photoluminescence of the aggregation cluster in POC layer after 200 °C annealing. The enhancement of optical synaptic plasticity and integration of motion-activation functions within a single device opens new avenues at the intersection of optoelectronics, synaptic computing, and bioengineering.
Collapse
Affiliation(s)
- Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yi Zhao
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Zongze Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Bin Hu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Long Zhang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yihang Jiang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Qingyu Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Zechen Liang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Xian Tang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Jingpeng Wu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Fan Cao
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 712046, China
| | - Bo Lei
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 712046, China
| |
Collapse
|
3
|
Li R, Yue Z, Luan H, Dong Y, Chen X, Gu M. Multimodal Artificial Synapses for Neuromorphic Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0427. [PMID: 39161534 PMCID: PMC11331013 DOI: 10.34133/research.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
The rapid development of neuromorphic computing has led to widespread investigation of artificial synapses. These synapses can perform parallel in-memory computing functions while transmitting signals, enabling low-energy and fast artificial intelligence. Robots are the most ideal endpoint for the application of artificial intelligence. In the human nervous system, there are different types of synapses for sensory input, allowing for signal preprocessing at the receiving end. Therefore, the development of anthropomorphic intelligent robots requires not only an artificial intelligence system as the brain but also the combination of multimodal artificial synapses for multisensory sensing, including visual, tactile, olfactory, auditory, and taste. This article reviews the working mechanisms of artificial synapses with different stimulation and response modalities, and presents their use in various neuromorphic tasks. We aim to provide researchers in this frontier field with a comprehensive understanding of multimodal artificial synapses.
Collapse
Affiliation(s)
- Runze Li
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute of Photonic Chips,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Pudong, Shanghai 201210, China
| | - Zengji Yue
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haitao Luan
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yibo Dong
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xi Chen
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Biswas S, Jang H, Lee Y, Choi H, Kim Y, Kim H, Zhu Y. Recent advancements in implantable neural links based on organic synaptic transistors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220150. [PMID: 38855618 PMCID: PMC11022612 DOI: 10.1002/exp.20220150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 06/11/2024]
Abstract
The progress of brain synaptic devices has witnessed an era of rapid and explosive growth. Because of their integrated storage, excellent plasticity and parallel computing, and system information processing abilities, various field effect transistors have been used to replicate the synapses of a human brain. Organic semiconductors are characterized by simplicity of processing, mechanical flexibility, low cost, biocompatibility, and flexibility, making them the most promising materials for implanted brain synaptic bioelectronics. Despite being used in numerous intelligent integrated circuits and implantable neural linkages with multiple terminals, organic synaptic transistors still face many obstacles that must be overcome to advance their development. A comprehensive review would be an excellent tool in this respect. Therefore, the latest advancements in implantable neural links based on organic synaptic transistors are outlined. First, the distinction between conventional and synaptic transistors are highlighted. Next, the existing implanted organic synaptic transistors and their applicability to the brain as a neural link are summarized. Finally, the potential research directions are discussed.
Collapse
Affiliation(s)
- Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Hyo‐won Jang
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Yongju Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| | - Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| | - Yoon Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
- Central Business, SENSOMEDICheongju‐siRepublic of Korea
- Institute of Sensor System, SENSOMEDICheongjuRepublic of Korea
- Energy FlexSeoulRepublic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Neu YC, Lin YS, Weng YH, Chen WC, Liu CL, Lin BH, Lin YC, Chen WC. Reversible Molecular Conformation Transitions of Smectic Liquid Crystals for Light/Bias-Gated Transistor Memory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7500-7511. [PMID: 38300744 PMCID: PMC10875644 DOI: 10.1021/acsami.3c16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
In recent years, organic photonic field-effect transistors have made remarkable progress with the rapid development of conjugated polycrystalline materials. Liquid crystals, with their smooth surface, defined layer thickness, and crystalline structures, are commonly used for these advantages. In this work, a series of smectic liquid crystalline molecules, 2,9-didecyl-dinaphtho-thienothiophene (C10-DNTT), 2,7-didecyl-benzothieno-benzothiopene (C10-BTBT), 3,9-didecyl-dinaphtho-thiophene (C10-DNT), and didecyl-sexithiophene (C10-6T), have been used in photonic transistor memory, functioning as both hole-transport channels and electron traps to investigate systematically the reasons and mechanisms behind the memory behavior of smectic liquid crystals. After thermal annealing, C10-BTBT and C10-6T/C10-DNTT are homeotropically aligned from the smectic A and smectic X phases, respectively. The 3D-ordered structure of these smectic-aligned crystals contributed to efficient photowriting and electrical erasing processes. Among them, the device performance of C10-BTBT was particularly significant, with a memory window of 21 V. The memory ratio could reach 1.5 × 106 and maintain a memory ratio of over 3 orders after 10,000 s, contributing to its smectic A structure. Through the research, we confirmed the memory and light/bias-gated behaviors of these smectic liquid crystalline molecules, attributing them to reversible molecular conformation transitions and the inherent structural inhomogeneity inside the polycrystalline channel layer.
Collapse
Affiliation(s)
- Yi-Chieh Neu
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yi-Sa Lin
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yi-Hsun Weng
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Wei-Cheng Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yan-Cheng Lin
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Wen-Chang Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Jeon Y, Kim S, Seo J, Yoo H. Contributions of Light to Novel Logic Concepts Using Optoelectronic Materials. SMALL METHODS 2024; 8:e2300391. [PMID: 37231569 DOI: 10.1002/smtd.202300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Instead of the current method of transmitting voltage or current signals in electronic circuit operation, light offers an alternative to conventional logic, allowing for the implementation of new logic concepts through interaction with light. This manuscript examines the use of light in implementing new logic concepts as an alternative to traditional logic circuits and as a future technology. This article provides an overview of how to implement logic operations using light rather than voltage or current signals using optoelectronic materials such as 2D materials, metal-oxides, carbon structures, polymers, small molecules, and perovskites. This review covers the various technologies and applications of using light to dope devices, implement logic gates, control logic circuits, and generate light as an output signal. Recent research on logic and the use of light to implement new functions is summarized. This review also highlights the potential of optoelectronic logic for future technological advancements.
Collapse
Affiliation(s)
- Yunchae Jeon
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Somi Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Juhyung Seo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| |
Collapse
|
7
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
8
|
Wang X, Yang S, Qin Z, Hu B, Bu L, Lu G. Enhanced Multiwavelength Response of Flexible Synaptic Transistors for Human Sunburned Skin Simulation and Neuromorphic Computation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303699. [PMID: 37358823 DOI: 10.1002/adma.202303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In biological species, optogenetics and bioimaging work together to regulate the function of neurons. Similarly, the light-controlled artificial synaptic system not only enhances computational speed but also simulates complex synaptic functions. However, reported synaptic properties are mainly limited to mimicking simple biological functions and single-wavelength responses. Therefore, the development of flexible synaptic devices with multiwavelength optical signal response and multifunctional simulation remains a challenge. Here, flexible organic light-stimulated synaptic transistors (LSSTs) enabled by alumina oxide (AlOX ), with a simple fabrication process, are reported. By embedding AlOX nanoparticles, the excitons separation efficiency is improved, allowing for multiple wavelength responses. Optimized LSSTs can respond to multiple optical and electrical signals in a highly synaptic manner. Multiwavelength optical synaptic plasticity, electrical synaptic plasticity, sunburned skin simulation, learning efficiency model controlled by photoelectric cooperative stimulation, neural network computing, "deer" picture learning and memory functions are successfully proposed, which promote the development for future artificial intelligent systems. Furthermore, as prepared flexible transistors exhibit mechanical flexibility with bending radius down to 2.5 mm and improved photosynaptic plasticity, which facilitating development of neuromorphic computing and multifunction integration systems at the device-level.
Collapse
Affiliation(s)
- Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shuting Yang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zongze Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bin Hu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
9
|
Qian X, Chen X, Zhu L, Zhang QM. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science 2023; 380:eadg0902. [PMID: 37167372 DOI: 10.1126/science.adg0902] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferroelectric materials are currently some of the most widely applied material systems and are constantly generating improved functions with higher efficiencies. Advancements in poly(vinylidene fluoride) (PVDF)-based polymer ferroelectrics provide flexural, coupling-efficient, and multifunctional material platforms for applications that demand portable, lightweight, wearable, and durable features. We highlight the recent advances in fluoropolymer ferroelectrics, their energetic cross-coupling effects, and emerging technologies, including wearable, highly efficient electromechanical actuators and sensors, electrocaloric refrigeration, and dielectric devices. These developments reveal that the molecular and nanostructure manipulations of the polarization-field interactions, through facile defect biasing, could introduce enhancements in the physical effects that would enable the realization of multisensory and multifunctional wearables for the emerging immersive virtual world and smart systems for a sustainable future.
Collapse
Affiliation(s)
- Xiaoshi Qian
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Centre, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Chen
- Materials Research Institute and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Q M Zhang
- Materials Research Institute and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Shin J, Yoo H. Photogating Effect-Driven Photodetectors and Their Emerging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:882. [PMID: 36903759 PMCID: PMC10005329 DOI: 10.3390/nano13050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rather than generating a photocurrent through photo-excited carriers by the photoelectric effect, the photogating effect enables us to detect sub-bandgap rays. The photogating effect is caused by trapped photo-induced charges that modulate the potential energy of the semiconductor/dielectric interface, where these trapped charges contribute an additional electrical gating-field, resulting in a shift in the threshold voltage. This approach clearly separates the drain current in dark versus bright exposures. In this review, we discuss the photogating effect-driven photodetectors with respect to emerging optoelectrical materials, device structures, and mechanisms. Representative examples that reported the photogating effect-based sub-bandgap photodetection are revisited. Furthermore, emerging applications using these photogating effects are highlighted. The potential and challenging aspects of next-generation photodetector devices are presented with an emphasis on the photogating effect.
Collapse
|
11
|
Yu SH, Hassan SZ, So C, Kang M, Chung DS. Molecular-Switch-Embedded Solution-Processed Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203401. [PMID: 35929102 DOI: 10.1002/adma.202203401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent improvements in the performance of solution-processed semiconductor materials and optoelectronic devices have shifted research interest to the diversification/advancement of their functionality. Embedding a molecular switch capable of transition between two or more metastable isomers by light stimuli is one of the most straightforward and widely accepted methods to potentially realize the multifunctionality of optoelectronic devices. A molecular switch embedded in a semiconductor can effectively control various parameters such as trap-level, dielectric constant, electrical resistance, charge mobility, and charge polarity, which can be utilized in photoprogrammable devices including transistors, memory, and diodes. This review classifies the mechanism of each optoelectronic transition driven by molecular switches regardless of the type of semiconductor material or molecular switch or device. In addition, the basic characteristics of molecular switches and the persisting technical/scientific issues corresponding to each mechanism are discussed to help researchers. Finally, interesting yet infrequently reported applications of molecular switches and their mechanisms are also described.
Collapse
Affiliation(s)
- Seong Hoon Yu
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingyun Kang
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Zhao Y, Wang W, He Z, Peng B, Di CA, Li H. High-performance and multifunctional organic field-effect transistors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Li Y, Pan Y, Zhang C, Shi Z, Ma C, Ling S, Teng M, Zhang Q, Jiang Y, Zhao R, Zhang Q. Molecular-Shape-Controlled Binary to Ternary Resistive Random-Access Memory Switching of N-Containing Heteroaromatic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44676-44684. [PMID: 36128726 DOI: 10.1021/acsami.2c11960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In organic resistive random-access memory (ReRAM) devices, deeply understanding how to control the performance of π-conjugated semiconductors through molecular-shape-engineering is important and highly desirable. Herein, we design a family of N-containing heteroaromatic semiconductors with molecular shapes moving from mono-branched 1Q to di-branched 2Q and tri-branched 3Q. We find that this molecular-shape engineering can induce reliable binary to ternary ReRAM switching, affording a highly enhanced device yield that satisfies the practical requirement. The density functional theory calculation and experimental evidence suggest that the increased multiple paired electroactive nitrogen sites from mono-branched 1Q to tri-branched 3Q are responsible for the multilevel resistance switching, offering stable bidentate coordination with the active metal atoms. This study sheds light on the prospect of N-containing heteroaromatic semiconductors for promising ultrahigh-density data-storage ReRAM application.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Zhiming Shi
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Min Teng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qijian Zhang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Odziomek M, Giusto P, Kossmann J, Tarakina NV, Heske J, Rivadeneira SM, Keil W, Schmidt C, Mazzanti S, Savateev O, Perdigón-Toro L, Neher D, Kühne TD, Antonietti M, López-Salas N. "Red Carbon": A Rediscovered Covalent Crystalline Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206405. [PMID: 35977414 DOI: 10.1002/adma.202206405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.
Collapse
Affiliation(s)
- Mateusz Odziomek
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Paolo Giusto
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Janina Kossmann
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nadezda V Tarakina
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Julian Heske
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Salvador M Rivadeneira
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Waldemar Keil
- Department of Chemistry, Physical Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Claudia Schmidt
- Department of Chemistry, Physical Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Stefano Mazzanti
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Oleksandr Savateev
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Lorena Perdigón-Toro
- Soft Matter Physics and Optoelectronics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Markus Antonietti
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
15
|
Ji J, Choi JH. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. NANOSCALE 2022; 14:10648-10689. [PMID: 35839069 DOI: 10.1039/d2nr01358d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) present extraordinary optoelectronic, electrochemical, and mechanical properties that have not been accessible in bulk semiconducting materials. Recently, a new research field, 2D hybrid heteromaterials, has emerged upon integrating TMDs with molecular systems, including organic molecules, polymers, metal-organic frameworks, and carbonaceous materials, that can tailor the TMD properties and exploit synergetic effects. TMD-based hybrid heterostructures can meet the demands of future optoelectronics, including supporting flexible, transparent, and ultrathin devices, and energy-based applications, offering high energy and power densities with long cycle lives. To realize such applications, it is necessary to understand the interactions between the hybrid components and to develop strategies for exploiting the distinct benefits of each component. Here, we provide an overview of the current understanding of the new phenomena and mechanisms involved in TMD/organic hybrids and potential applications harnessing such valuable materials in an insightful way. We highlight recent discoveries relating to multicomponent hybrid materials. Finally, we conclude this review by discussing challenges related to hybrid heteromaterials and presenting future directions and opportunities in this research field.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
16
|
Jiang Y, Zhang L, Wang R, Li H, Li L, Zhang S, Li X, Su J, Song X, Xia C. Asymmetric Ferroelectric-Gated Two-Dimensional Transistor Integrating Self-Rectifying Photoelectric Memory and Artificial Synapse. ACS NANO 2022; 16:11218-11226. [PMID: 35730563 DOI: 10.1021/acsnano.2c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferroelectric field-effect transistors (Fe-FET) are promising candidates for future information devices. However, they suffer from low endurance and short retention time, which retards the application of processing memory in the same physical processes. Here, inspired by the ferroelectric proximity effects, we design a reconfigurable two-dimensional (2D) MoS2 transistor featuring with asymmetric ferroelectric gate, exhibiting high memory and logic ability with a program/erase ratio of over 106 and a self-rectifying ratio of 103. Interestingly, the robust electric and optic cycling are obtained with a large switching ratio of 106 and nine distinct resistance states upon optical excitation with excellent nonvolatile characteristics. Meanwhile, the operation of memory mimics the synapse behavior in response to light spikes with different intensity and number. This design realizes an integration of robust processing memory in one single device, which demonstrates a considerable potential of an asymmetric ferroelectric gate in the development of Fe-FETs for logic processing and nonvolatile memory applications.
Collapse
Affiliation(s)
- Yurong Jiang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Linlin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Rui Wang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Hongzhi Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Lin Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Suicai Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Xueping Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Jian Su
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Xiaohui Song
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Congxin Xia
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Gui R, Liu Y, Chen Z, Wang T, Chen T, Shi R, Zhang K, Qin W, Ye L, Hao X, Yin H. Reproducibility in Time and Space-The Molecular Weight Effects of Polymeric Materials in Organic Photovoltaic Devices. SMALL METHODS 2022; 6:e2101548. [PMID: 35388986 DOI: 10.1002/smtd.202101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The reproducibility issue is one of the major challenges for the commercialization of large-area organic electronic devices. It involves both the device-to-device variation and opto-electronic properties in different positions of a single thin film. Herein, the molecular weight effects in polymeric semiconductors with three widely used photovoltaic donor materials P3HT, PBDB-T, and PM6 are systematically investigated. A simple but effective method is proposed to evaluate the uniformity of large-area devices by adopting the micron-level grid electrodes in organic thin films. An interesting phenomenon is observed that the device is gradually improved uniformly with the Mw range lower than 100 kg mol-1 . In neat films, both the mobility and energetic disorder values of hole carriers exhibit relatively lower coefficient of variation (cv ) in high molecular-weight systems. After blending with the electron-accepting materials, their bulk heterojunction films also enjoy more uniform hole transfer rates, fluorescence lifetimes, and power conversion efficiencies in single and different devices. This work not only proposes a facile approach to evaluate the electrical properties of large-area organic thin films, but also demonstrates the relationship between molecular weight and device reproducibility in polymer solar cells. This contribution provides a new insight into the commercial large-scale production of organic electronics.
Collapse
Affiliation(s)
- Ruohua Gui
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Yang Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhihao Chen
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Tong Wang
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Tao Chen
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Rui Shi
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Kangning Zhang
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Wei Qin
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Long Ye
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaotao Hao
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Hang Yin
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
18
|
Mukhopadhyay A, Liu K, Paulino V, Olivier JH. Modulating the Conduction Band Energies of Si Electrode Interfaces Functionalized with Monolayers of a Bay-Substituted Perylene Bisimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4266-4275. [PMID: 35353503 DOI: 10.1021/acs.langmuir.1c03423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The confinement of π-conjugated chromophores on silicon (Si) electrode surfaces is a powerful approach to engineer electroresponsive monolayers relevant to microelectronics, electrocatalysis, and information storage and processing. While common strategies to functionalize Si interfaces exploit molecularly dissolved building blocks, only a handful number of studies have leveraged the structure-function relationships of π-aggregates to tune the electronic structures of hybrid monolayers at Si interfaces. Herein, we show that the semiconducting properties of n-type monolayers constructed on Si electrodes are intimately correlated to the initial aggregation state of π-conjugated chromophore precursors derived from bay-substituted perylene bisimide (PBI) units. Specifically, our study unravels that for n-type monolayers engineered using PBI π-aggregates, the cathodic reduction potentials required to inject negative charge carriers into the conduction bands can be stabilized by 295 mV through reversible switching of the maximum anodic potential (MAP) that is applied during the oxidative cycles (+0.5 or +1.5 V vs Ag/AgCl). This redox-assisted stabilization effect is not observed with n-type monolayers derived from molecularly dissolved PBI cores and monolayers featuring a low surface density of the redox-active probes. These findings unequivocally point to the crucial role played by PBI π-aggregates in modulating the conduction band energies of n-type monolayers where a high MAP of +1.5 V enables the formation of electronic trap states that facilitate electron injection when sweeping back to cathodic potentials. Because the structure-function relationships of PBI π-aggregates are shown to modulate the semiconducting properties of hybrid n-type monolayers constructed at Si interfaces, our results hold promising opportunities to develop redox-switchable monolayers for engineering nonvolatile electronic memory devices.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
19
|
Lin Y, Li G, Yu P, Ercan E, Chen W. Organic liquid crystals in optoelectronic device applications:
Field‐effect
transistors, nonvolatile memory, and photovoltaics. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan‐Cheng Lin
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei Taiwan
| | - Guan‐Syuan Li
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Ping‐Jui Yu
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Ender Ercan
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei Taiwan
| | - Wen‐Chang Chen
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei Taiwan
| |
Collapse
|
20
|
Xue W, Jiang Q, Wang F, He R, Pang R, Yang H, Wang P, Yang R, Zhong Z, Zhai T, Xu X. Discovery of Robust Ferroelectricity in 2D Defective Semiconductor α-Ga 2 Se 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105599. [PMID: 34881497 DOI: 10.1002/smll.202105599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Indexed: 06/13/2023]
Abstract
2D ferroelectrics with robust polar order in the atomic-scale thickness at room temperature are needed to miniaturize ferroelectric devices and tackle challenges imposed by traditional ferroelectrics. These materials usually have polar point group structure regarding as a prerequisite of ferroelectricity. Yet, to introduce polar structure into otherwise nonpolar 2D materials for producing ferroelectricity remains a challenge. Here, by combining first-principles calculations and experimental studies, it is reported that the native Ga vacancy-defects located in the asymmetrical sites in cubic defective semiconductor α-Ga2 Se3 can induce polar structure. Meanwhile, the induced polarization can be switched in a moderate energy barrier. The switched polarization is observed in 2D α-Ga2 Se3 nanoflakes of ≈4 nm with a high switching temperature up to 450 K. Such polarization switching could arise from the displacement of Ga vacancy between neighboring asymmetrical sites by applying an electric field. This work removes the point group limit for ferroelectricity, expanding the range of 2D ferroelectrics into the native defective semiconductors.
Collapse
Affiliation(s)
- Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - Qitao Jiang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - Fakun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ri He
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ruixue Pang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - Huali Yang
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peng Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - Ruilong Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| |
Collapse
|
21
|
Lin YC, Yang WC, Chiang YC, Chen WC. Recent Advances in Organic Phototransistors: Nonvolatile Memory, Artificial Synapses, and Photodetectors. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
22
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
23
|
Lee S, Kim S, Yoo H. Contribution of Polymers to Electronic Memory Devices and Applications. Polymers (Basel) 2021; 13:3774. [PMID: 34771332 PMCID: PMC8588209 DOI: 10.3390/polym13213774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Electronic memory devices, such as memristors, charge trap memory, and floating-gate memory, have been developed over the last decade. The use of polymers in electronic memory devices enables new opportunities, including easy-to-fabricate processes, mechanical flexibility, and neuromorphic applications. This review revisits recent efforts on polymer-based electronic memory developments. The versatile contributions of polymers for emerging memory devices are classified, providing a timely overview of such unconventional functionalities with a strong emphasis on the merits of polymer utilization. Furthermore, this review discusses the opportunities and challenges of polymer-based memory devices with respect to their device performance and stability for practical applications.
Collapse
Affiliation(s)
| | | | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 1342, Korea; (S.L.); (S.K.)
| |
Collapse
|
24
|
Wang Y, Iglesias D, Gali SM, Beljonne D, Samorì P. Light-Programmable Logic-in-Memory in 2D Semiconductors Enabled by Supramolecular Functionalization: Photoresponsive Collective Effect of Aligned Molecular Dipoles. ACS NANO 2021; 15:13732-13741. [PMID: 34370431 DOI: 10.1021/acsnano.1c05167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, the unrelenting growth of the digital universe calls for radically novel strategies for data processing and storage. An extremely promising and powerful approach relies on the development of logic-in-memory (LiM) devices through the use of floating gate and ferroelectric technologies to write and erase data in a memory operating as a logic gate driven by electrical bias. In this work, we report an alternative approach to realize the logic-in-memory based on two-dimensional (2D) transition metal dichalcogenides (TMDs) where multiple memorized logic output states have been established via the interface with responsive molecular dipoles arranged in supramolecular arrays. The collective dynamic molecular dipole changes of the axial ligand coordinated onto self-assembled metal phthalocyanine nanostructures on the surface of 2D TMD enables large reversible modulation of the Fermi level of both n-type molybdenum disulfide (MoS2) and p-type tungsten diselenide (WSe2) field-effect transistors (FETs), to achieve multiple memory states by programming and erasing with ultraviolet (UV) and with visible light, respectively. As a result, logic-in-memory devices were built up with our supramolecular layer/2D TMD architecture where the output logic is encoded by the motion of the molecular dipoles. Our strategy relying on the dynamic control of the 2D electronics by harnessing the functions of molecular-dipole-induced memory in a supramolecular hybrid layer represents a versatile way to integrate the functional programmability of molecular science into the next generation nanoelectronics.
Collapse
Affiliation(s)
- Ye Wang
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Daniel Iglesias
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Paolo Samorì
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
25
|
Abstract
We developed solution-processed hybrid photodetectors with a poly (9-vinylcarbazole)/zinc oxide nanoparticle photoactive layer and a poly (vinylidene fluoride-co-trifluoroethylene) ferroelectric copolymer buffer layer on flexible plastic substrates. The presence of a ferroelectric-poling interface layer significantly enhanced the charge transfer and responsivity of the photodetectors under ultraviolet (UV, 365 nm) light exposure. The responsivity of the device reached 250 mA/W at a reverse bias of 5 V and incident light intensity of 27.5 μW/cm2. This responsivity was four times higher than that of a device without the ferroelectric copolymer layer (64 mA/W) under the same conditions. The response time of the device to incident UV light also improved from 322 to 34 ms with the addition of the ferroelectric copolymer layer. In addition, the flexible device exhibited a stable performance in an air environment up to a maximum strain of 0.3 under bending stress. Finally, a UV-light-responsive memory device was successfully fabricated by using the developed hybrid photodetector and liquid crystals. This device showed a colour change from white to black upon UV illumination, and the on-state of the device was maintained for 30 s without light exposure owing to the polarization of poly (vinylidene fluoride-co-trifluoroethylene).
Collapse
|