1
|
Zhang Y, Tan X, Han Z, Wang Y, Jiang H, Zhang F, Zhu X, Meng C, Huang C. Dual modification of cobalt silicate nanobelts by Co 3O 4 nanoparticles and phosphorization boosting oxygen evolution reaction properties. J Colloid Interface Sci 2025; 679:1036-1045. [PMID: 39418891 DOI: 10.1016/j.jcis.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Oxygen evolution reaction (OER) process is the "bottleneck" of water splitting, and the low-cost and high-efficient OER catalysts are of great importance and attractive but they are still challenging. Herein, a dual modification strategy is developed to tune and enrich the structure of cobalt silicate (Co2SiO4) showing boosted OER properties. Cobalt oxide (Co3O4) decorated Co2SiO4 nanobelts, denoted as CS, is firstly prepared using a Co-based precursor by a facile hydrothermal reaction. Then, cobalt phosphide (CoP) nanoparticles are in-situ grown on CS (denoted as CS-P) by the phosphorization process, which provide many active sites and boost the surface reactivity. The experimental results and density function theory (DFT) calculations both reveal that the CoP on CS can improve the conductivity and ensure fast kinetics, thus leading to boost the OER properties of Co2SiO4. When the phosphorization temperature is at 400 °C (CS-P400), it gains the lowest overpotential of 297 mV, which is much lower than CS (340 mV) and Co2SiO4 (409 mV) at 10 mA·cm-2, and even superior to the state-of-the-art transition metal silicates. CS-P400 also achieves high electrochemical active surface area (ECSA) and small Tafel slope owing to its porous structures with large specific surface area and nanosheet-like structures which are good for exposing many active sites and favorable to the fast kinetics. This work not only provides a dual modification route to boost catalytic activity of Co2SiO4 (CS-P400), but also sheds light on a new avenue for developing highly dispersed CoP on silicates to boost OER performances.
Collapse
Affiliation(s)
- Yifu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Xianfang Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhixuan Han
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hanmei Jiang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Fangfang Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xiaoming Zhu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Cheng YZ, Bao X, Jiang D, Ji W, Yang DH, Ding X, Liu X, He Y, Han BH. Light-Promoted Extraction of Precious Metals Using a Porphyrin-Integrated One-Dimensional Covalent Organic Framework. Angew Chem Int Ed Engl 2025; 64:e202414943. [PMID: 39375148 DOI: 10.1002/anie.202414943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/09/2024]
Abstract
Precious metals are valuable materials for the chemical industry, but they are scarce and pose a risk of supply disruption. Recycling precious metals from waste is a promising strategy, here we tactfully utilize light irradiation as an environmental-friendly and energy-saving adjunctive strategy to promote the reduction of precious metal ions, thereby improving the adsorption capacity and kinetics. A newly light-sensitive covalent organic framework (PP-COF) was synthesized to illustrate the effectiveness and feasibility of this light auxiliary strategy. The equilibrium adsorption capacities of PP-COF with light irradiation towards gold, platinum, and silver ions are 4729, 573, and 519 mg g-1, which are 3.3, 1.9, and 1.2 times the adsorption capacities under dark condition. Significantly, a filtration column with PP-COF can recover more than 99.8 % of the gold ions in the simulated e-waste leachates with light irradiation, and 1 gram of PP-COF can recover gold from up to 0.15 tonne of e-waste leachates. Interestingly, the captured precious metals by PP-COF with light irradiation mainly exist in the micron-sized particles, which can be easily separated by extraction. We believe this work can contribute to precious metal recovery and circular economy for recycling resources.
Collapse
Affiliation(s)
- Yuan-Zhe Cheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotian Bao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Di Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Shao H, Zhong L, Wu X, Wang YX, Smith SC, Tan X. Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion. Chem Commun (Camb) 2025. [PMID: 39760522 DOI: 10.1039/d4cc05900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal-sulfur batteries (Li-S and Na-S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.
Collapse
Affiliation(s)
- Hengjia Shao
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Li Zhong
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Xingqiao Wu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.
| | - Xin Tan
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Gong H, Zhang D, Liu T, Kuang P, Yu J. d-Band Center Engineering of Nickel Nanoparticles Accelerates Water Dissociation for Hydrogen Evolution in Neutral NaCl Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407790. [PMID: 39460413 DOI: 10.1002/smll.202407790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/20/2024] [Indexed: 10/28/2024]
Abstract
While Pt is highly efficient for hydrogen evolution reaction (HER), its widespread use is limited by scarcity and high cost. Herein, a vertically aligned electrocatalyst is present comprising Ni3S2 nanotube arrays (NTAs) and Ni nanoparticles (NPs) (Ni3S2/Ni NTAs) for neutral HER. In a neutral 4 wt.% NaCl solution (pH = 7), the Ni3S2/Ni NTAs achieves a current density of 100 mA cm-2 at a low overpotential of 540 mV, outperforming both Ni3S2 NTAs and Ni NTAs and even the commercial Pt plate. The hollow tubular structure offers ample mass transfer channels, and strong electronic interaction between Ni3S2 and Ni is observed. Theoretical studies reveal that the lowered d-band center (ɛd) of Ni 3d orbital significantly reduces the activation energy for H2O dissociation and facilitates the movement of an H atom in H2O away from OH to form a transition state, consequently promoting H2 evolution. When Ni3S2/Ni NTAs is used as the cathode in a two-electrode diaphragm-free electrolyzer with a RuSnTi anode, efficient H2 production and energy-saving Cl2 evolution are achieved. This work highlights the potential of uniquely structured electrocatalysts for HER in neutral NaCl solutions.
Collapse
Affiliation(s)
- Haiming Gong
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Dianzhi Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
5
|
Li H, Li Y, Zhao Y, Ji D, Li G, Zhao X. Insights into the roles of nitrogen and phosphorus co-doping for efficient methanol electrooxidation. J Colloid Interface Sci 2025; 677:331-341. [PMID: 39151226 DOI: 10.1016/j.jcis.2024.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Anchoring Pt onto multi-heteroatom doped carbon materials has been recognized as an effective approach to improve the performance of electrocatalytic methanol oxidation. However, distinct contributions and specific behavior mechanisms of different heteroatoms, notably N and P, the specific behavior mechanisms in synergistically promoting Pt NPs remain elusive. In this work, we construct 1D N and P co-doped carbon nanotube (N, P-CNTs) supports with abundant defect anchors for Pt. The as-prepared Pt/N, P-CNTs exhibit outstanding activity and exceptional stability in methanol oxidation reaction (MOR), achieving high mass activity up to 6481.3 mA mg-1Pt. Moreover, they can retain 90.5 % of their initial current density even after 800 cycles tests. Detailed characterizations and theoretical calculations indicate that the robust strong metal-support interactions (SMSI) effect caused by N doping within the unique N and P co-doped coordination structure controllably regulate the coordination environment of Pt, reduce the d-band center of Pt, thus promoting the adsorption and decomposition of CH3OH. However, P doping weakens the adsorption strength of CO on the Pt active site by sacrificing partial electron transfer, accelerating the oxidative conversion of the CO-like poisoning species (COads). Significantly, the synergistic mechanism of N and P species on the modification of Pt's electronic structure and its subsequent impact on the electrocatalytic methanol oxidation behaviors on the Pt surface was thoroughly elucidated, providing a constructive route for designing robust MOR electrocatalysts with high MOR activity and durability.
Collapse
Affiliation(s)
- Hongwei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
| | - Yanru Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
| | - Yan Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China
| | - Dong Ji
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China
| | - Guixian Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China
| | - Xinhong Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
| |
Collapse
|
6
|
Wang Y, Zhong M, Ma F, Wang C, Lu X. Shell-induced enhancement of Fenton-like catalytic performance towards advanced oxidation processes: Concept, mechanism, and properties. WATER RESEARCH 2025; 268:122655. [PMID: 39461218 DOI: 10.1016/j.watres.2024.122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.
Collapse
Affiliation(s)
- Yuezhu Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 China.
| | - Fuqiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Tian J, Xia M, Cheng X, Mao C, Chen Y, Zhang Y, Zhou C, Xu F, Yang L, Wang XZ, Wu Q, Hu Z. Understanding Pt Active Sites on Nitrogen-Doped Carbon Nanocages for Industrial Hydrogen Evolution with Ultralow Pt Usage. J Am Chem Soc 2024; 146:33640-33650. [PMID: 39586791 DOI: 10.1021/jacs.4c11445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Engineering microstructures of Pt and understanding the related catalytic mechanism are critical to optimizing the performance for hydrogen evolution reaction (HER). Herein, Pt dispersion and coordination are precisely regulated on hierarchical nitrogen-doped carbon nanocages (hNCNCs) by a thermal-driven Pt migration, from edge-hosted Pt-N2Cl2 single sites in the initial Pt1/hNCNC-70 °C catalyst to Pt clusters/nanoparticles and back to in-plane Pt-NxC4-x single sites. Thereinto, Pt-N2Cl2 presents the optimal HER activity (6 mV@10 mA cm-2) while Pt-NxC4-x shows poor HER activity (321 mV@10 mA cm-2) due to their different Pt coordination. Operando characterizations demonstrate that the low-coordinated Pt-N2 intermediates derived from Pt-N2Cl2 under the working condition are the real active sites for HER, which enable the multi-H adsorption mechanism with an ideal H* adsorption energy of nearly 0 eV, thereby the high activity, as revealed by theoretical calculations. In contrast, the high-coordinated Pt-NxC4-x sites only allow the single-H adsorption with a positive adsorption energy and thereby the low HER activity. Accordingly, with an ultralow Pt loading of only 25 μgPt cm-2, the proton exchange membrane water electrolyzer assembled using Pt1/hNCNC-70 °C as the cathodic catalyst achieves an industrial-level current density of 1.0 A cm-2 at a low cell voltage of 1.66 V and high durability, showing great potential applications.
Collapse
Affiliation(s)
- Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changkai Zhou
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Zhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Chen S, Ma C, Xu J, Du X, Liu Y, Sham TK, Zhang H, Peng Y, Huang Y, Wågberg T, Han X. Subnanometric Pt-W Bimetallic Clusters for Efficient Alkaline Hydrogen Evolution Electrocatalysis. ACS NANO 2024; 18:33696-33705. [PMID: 39607946 DOI: 10.1021/acsnano.4c13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Rational design and synthesis of subnanometric bimetallic clusters (SBCs) within a narrow size distribution, along with achieving full SBCs exposure on supporting materials, are formidable challenges that must be overcome to realize potential applications. This work details a facile strategy to synthesize fully exposed PtW SBCs with an average size of 0.81 nm on the surface of spherical N-doped carbon (PtW/NC), which is underpinned by the electrostatic interactions between the negatively charged [H3PtW6O24]5- polyanions and the positively charged closed-pore metal-organic framework (MOF) [Zn5(OH)2(AmTRZ)6]2+. The PtW/NC exhibits significant electrocatalytic performance and stability for the alkaline hydrogen evolution reaction with an ultralow overpotential of 4 mV at 10 mA cm-2, a low Tafel slope of 29 mV dec-1, and a long-term electrolysis stability exceeding 140 h. The Pt mass activity of PtW/NC is 34 times higher than that of commercial 20 wt % Pt/C at the 100 mV overpotential. Both theoretical calculations and electrochemical measurements indicate that a synergistic effect between Pt and W is responsible for this notable catalytic performance. The synthetic approach outlined in this work can be applied to other MOFs and coordination networks that lack pores or have limited porosity.
Collapse
Affiliation(s)
- Shoushun Chen
- Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cong Ma
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, China
| | - Jiabin Xu
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Xin Du
- Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuzhen Liu
- Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Hong Zhang
- Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Electron Microscopy Center, Yunnan University, Kunming 650091, China
| | - Yong Peng
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, China
| | - Yining Huang
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 90187, Sweden
| | - Xinbao Han
- Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
10
|
Quan Y, Li R, Li X, Chen R, Ng YH, Huang J, Hu J, Lai Y. S-Modified Graphitic Carbon Nitride with Double Defect Sites For Efficient Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406576. [PMID: 39363674 DOI: 10.1002/smll.202406576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Graphitic carbon nitride (gC3N4) is an attractive photocatalyst for solar energy conversion due to its unique electronic structure and chemical stability. However, gC3N4 generally suffers from insufficient light absorption and rapid compounding of photogenerated charges. The introduction of defects and atomic doping can optimize the electronic structure of gC3N4 and improve the light absorption and carrier separation efficiency. Herein, the high efficiency of carbon nitride photocatalysis for hydrogen evolution in visible light is achieved by an S-modified double-deficient site strategy. Defect engineering forms abundant unsaturated sites and cyano (─C≡N), which promotes strong interlayer C─N bonding interactions and accelerates charge transport in gC3N4. S doping tunes the electronic structure of the semiconductors, and the formation of C─S─C bonds optimizes the electron-transfer paths of the C─N bonding, which enhances the absorption of visible light. Meanwhile,C≡N acts as an electron trap to capture photoexcited electrons, providing the active site for the reduction of H+ to hydrogen. The photocatalytic hydrogen evolution efficiency of SDCN (1613.5 µmol g-1 h-1) is 31.5 times higher than that of pristine MCN (51.2 µmol g-1 h-1). The charge separation situation and charge transfer mechanism of the photocatalysts are investigated in detail by a combination of experimental and theoretical calculations.
Collapse
Affiliation(s)
- Yongkang Quan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ruidong Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Xingzhou Li
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rongxing Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
11
|
Sarkar C, De A, Maji S, Kłak J, Kundu S, Bera M. Design, Synthesis, Magnetic Properties, and Hydrogen Evolution Reaction of a Butterfly-like Heterometallic Trinuclear [Cu II2Mn II] Cluster. Inorg Chem 2024. [PMID: 39556317 DOI: 10.1021/acs.inorgchem.4c03723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A novel heterometallic trinuclear cluster [CuII2MnII(cpdp)(NO3)2(Cl)] (1) has been designed and synthesized by employing a molecular library approach that uses CuCl2·2H2O and Mn(NO3)2·4H2O as inorganic metal salts and H3cpdp as a multifunctional organic scaffold (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of 1, revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center. Formation of this cluster is accomplished by a self-assembly process through functionalization of 1 with one μ2:η1:η1-nitrate and two μ2:η2:η1-benzoate groups via the CuII(μ2-NO3)CuII} and {CuII(μ2-O2CC6H5)MnII} linkages, respectively. Variable-temperature SQUID magnetometry revealed the coexistence of ferromagnetic and antiferromagnetic interactions in 1. The observed magnetic behavior in 1 is unexpected because of a large Cu-O-Mn angle with a value of 132.05°, indicating that the correlation between coupling constants and the structural parameters is a multifactor problem. This cluster shows excellent electrocatalytic performance for the HER attaining a current density of 10 mA/cm2 with a Tafel slope of 183 mV dec-1 at a 310 mV overpotential value. Essentially, cluster 1 shows exceptional electrochemical stability at ambient temperature, accompanied by minimal degradation of the current density as examined by chronoamperometric studies. Density functional theory calculations establish the mechanistic insight into the HER process, indicating that the CuII-OCO-MnII site is the active site for formation of molecular hydrogen.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Aditi De
- Process Engineering (EPE) Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Julia Kłak
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50383, Poland
| | - Subrata Kundu
- Process Engineering (EPE) Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
12
|
Li M, Dong X, Li Q, Liu Y, Cao S, Hou CC, Sun T. Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction. SMALL METHODS 2024:e2401569. [PMID: 39529541 DOI: 10.1002/smtd.202401569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Indexed: 11/16/2024]
Abstract
MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti3C2Tx MXene (Ti3C2Ox) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti3C2Ox. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec-1 at a current density of -10 mA cm-2 in 0.5 m H2SO4 solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti3C2Ox. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.
Collapse
Affiliation(s)
- Mengrui Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaoxiao Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Qinzhu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yaru Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
13
|
Wang ZD, Han Y, Wang YY, Zang SQ, Peng P. Pyrolysis-Free Synthesis of Synergistic Single-Atom/Nanocluster Electrocatalysts for Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202416973. [PMID: 39503347 DOI: 10.1002/anie.202416973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/21/2024]
Abstract
Constructing catalysts that simultaneously contain single atom/metal nanocluster active sites is a promising strategy to enhance the original catalytic behavior and accelerate the catalysis involving multi-electron reactions or multi-intermediates. Herein, the pyrolysis-free synthetic method is developed to integrate single atoms and nanoclusters towards highly satisfactory catalytic performances for both acidic and alkaline hydrogen electrocatalysis. The controllable pyrolysis-free strategy allows the precise modulation of the active centers, realizing the optimization of the adsorption energy and the regulation of the synergistic active components. Specially, the as-prepared catalysts with hybrid single-atom/nanocluster sites exhibited superior catalytic activities for hydrogen evolution in both acidic and alkaline media with low over-potentials at -10 mA cm-2 of 25 mV and 8.6 mV, respectively, combining with outstanding durability towards high current density and methanol poisoning. This work developed a universal synthetic strategy for the single atom/nanocluster synergy systems and addressed the superiority of hybrid single-atom/nanocluster sites.
Collapse
Affiliation(s)
- Zhao-Di Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying-Ying Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Li H, Zhang M, Wang M, Du M, Wang Z, Zou Y, Pan G, Zhang J. Balancing Edge Defects and Graphitization in a Pt-Fe/Carbon Electrocatalyst for High-Power-Density and Durable Flow Seawater-Al/Acid Hybrid Fuel Cells and Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308923. [PMID: 39238125 PMCID: PMC11538727 DOI: 10.1002/advs.202308923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/30/2024] [Indexed: 09/07/2024]
Abstract
Overcoming the trade-off between the graphitization of the carbon substrate and enhanced electronic metal-support interaction (EMSI) and intrinsic activity of Pt-C catalysts remains a major challenge for ensuring the durable operation of energy conversion devices. This article presents a hybrid catalyst consisting of PtFe nanoparticles and single Pt and Fe atoms supported on N-doped carbon (PtFeNPs@PtFeSAs-N-C), which exhibits improved activities in hydrogen evolution and oxygen reduction reactions (HER and ORR, respectively) and has excellent durability owing to the high graphitization, rich edge defects, and porosity of the carbon in PtFeNPs@PtFeSAs-N-C, as well as strong EMSI between the PtFe nanoparticles and edge-defective carbon embedded with Pt and Fe atoms. According to theoretical calculations, the strong EMSI optimizes the H* adsorption-desorption and facilitates the adsorption OOH*, accelerating the HER and ORR processes. A novel flow seawater-Al/acid hybrid fuel cell using the PtFeNPs@PtFeSAs-N-C cathode can serve as a high-efficiency energy conversion device that delivers a high power density of 109.5 mW cm-2 while producing H2 at a significantly high rate of 271.6 L m-2 h-1. Moreover, PtFeNPs@PtFeSAs-N-C exhibits a remarkable performance (high power density of 298.0 mW cm-2 and long-term durability of 1000 h) in a flow Zn-air battery.
Collapse
Affiliation(s)
- Hao Li
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| | - Mengtian Zhang
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
| | - Mi Wang
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| | - Minghao Du
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| | - Zijian Wang
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| | - Yongxing Zou
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| | - Guangxing Pan
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart MaterialsHarbin Institute of Technology (Shenzhen)Shenzhen518055China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and EngineeringHarbin Institute of TechnologyShenzhen518055China
| |
Collapse
|
15
|
Shen J, Pan Z. A supported Ni 2 dual-atoms site hollow urchin-like carbon catalyst for synergistic CO 2 electroreduction. J Colloid Interface Sci 2024; 673:486-495. [PMID: 38879990 DOI: 10.1016/j.jcis.2024.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Dual-atoms catalysts (DACs), while inheriting the advantages of maximum atom utilization ratio and excellent selectivity of single-atom catalysts (SACs), can better enhance the catalytic activity through the synergy of adjacent atoms. Therefore, DACs are considered to be very potential catalysts for CO2 to CO conversion. Its catalytic activity is greatly influenced by the coordination environment and morphology. Here, hollow urchin-like NiNC catalysts (Ni-NC(HU)-x, x = 100, 50, 25, 0) were synthesized using urchin-like nickel particles as template. By adjusting the amount of additional nitrogen source, the percentage content of pyridinic-N was adjusted as well as further affecting the coordination environment. Among them, Ni-NC(HU)-50, which had the highest content of pyridinic-N, formed a dual-atoms coordination structure and had the best catalytic performance that the CO Faradaic efficiency (FECO) reached 97.2 % at -0.9 V vs. reversible hydrogen electrode (RHE) and sustained above 95 % within 50 h. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations showed that Ni-NC(HU)-50 exhibited the best performance of CO2 reduction reaction (CO2RR) by lowering the *COOH formation free energy barrier and its favorable dual desorption mechanism of *COL and *COB.
Collapse
Affiliation(s)
- Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhenping Pan
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
17
|
Fang Z, Wang G, Guan C, Zhang J, Xiang Q. Reducing Dielectric Confinement Effect Enhances Carrier Separation in Two-Dimensional Hybrid Perovskite Photocatalysts. Angew Chem Int Ed Engl 2024; 63:e202411219. [PMID: 39020249 DOI: 10.1002/anie.202411219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Two-dimensional organic-inorganic hybrid perovskites (OIHPs) with alternating structure of the organic and inorganic layers have a natural quantum well structure. The difference of dielectric constants between organic and inorganic layers in this structure results in the enhancement of dielectric confinement effect, which exhibits a large exciton binding energy and hinders the separation of electron-hole pairs. Herein, a strategy to reduce the dielectric confinement effect by narrowing the dielectric difference between organic amine molecule and [PbBr6]4- octahedron is put forward. The Ethanolamine (EOA) contains hydroxyl groups, resulting in the positive and negative charge centers of O and H non-overlapping, which generated a larger polarity and dielectric constant. The reduced dielectric constant produces a smaller exciton binding energy (71.03 meV) of (C2H7NO)2PbBr4 ((EOA)2PbBr4) than (C8H11N)2PbBr4 ((PEA)2PbBr4 (156.07 meV), and promotes the dissociation of electrons and holes. The increasing of lifetime of photogenerated carrier in (EOA)2PbBr4 are proved by femtosecond transient absorption spectra. Density functional theory (DFT) calculations have also indicated that the small energy shift of the total density of states (DOS) between the C/H/N and the Pb/Br in (EOA)2PbBr4 favors the separation of electrons and holes. In addition, this work demonstrates the application of (PEA)2PbBr4 and (EOA)2PbBr4 in the field of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zhaohui Fang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of, Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guohong Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Chen Guan
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of, Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of, Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
18
|
Zhang D, Gong H, Liu T, Yu J, Kuang P. Engineering antibonding orbital occupancy of NiMoO 4-supported Ru nanoparticles for enhanced chlorine evolution reaction. J Colloid Interface Sci 2024; 672:423-430. [PMID: 38850867 DOI: 10.1016/j.jcis.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chlorine evolution reaction (CER) is crucial for industrial-scale production of high-purity Cl2. Despite the development of classical dimensionally stable anodes to enhance CER efficiency, the competitive oxygen evolution reaction (OER) remains a barrier to achieving high Cl2 selectivity. Herein, a binder-free electrode, Ru nanoparticles (NPs)-decorated NiMoO4 nanorod arrays (NRAs) supported on Ti foam (Ru-NiMoO4/Ti), was designed for active CER in saturated NaCl solution (pH = 2). The Ru-NiMoO4/Ti electrode exhibits a low overpotential of 20 mV at 10 mA cm-2 current density, a high Cl2 selectivity exceeding 90%, and robust durability for 90h operation. The marked difference in Tafel slopes between CER and OER indicates the high Cl2 selectivity and superior reaction kinetics of Ru-NiMoO4/Ti electrode. Further studies reveal a strong metal-support interaction (SMSI) between Ru and NiMoO4, facilitating electron transfer through the Ru-O bridge bond and increasing the Ru 3d-Cl 2p antibonding orbital occupancy, which eventually results in weakened Ru-Cl bonding, promoted Cl desorption, and enhanced Cl2 evolution. Our findings provide new insights into developing electrodes with enhanced CER performance through antibonding orbital occupancy engineering.
Collapse
Affiliation(s)
- Dianzhi Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Haiming Gong
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China.
| |
Collapse
|
19
|
Najam T, Shah SSA, Yin H, Xiao X, Talib S, Ji Q, Deng Y, Javed MS, Hu J, Zhao R, Du A, Cai X, Xu Q. Second-shell modulation on porphyrin-like Pt single atom catalysts for boosting oxygen reduction reaction. Chem Sci 2024; 15:d4sc03369h. [PMID: 39430928 PMCID: PMC11485142 DOI: 10.1039/d4sc03369h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
The first coordination shell is considered crucial in determining the performance of single atom catalysts (SACs), but the significance of the second coordination shell has been overlooked. In this study, we developed a post-doping strategy to realize predictable and controlled modulation on the second coordination shell. By incorporating a P atom into the second coordination shell of a porphyrin-like Pt SAC, the charge density at the Fermi level of Pt single atom increases, enhancing its intrinsic activity. Moreover, the P atom shows stronger adsorption towards large size anions (ClO4 -) than Pt atoms, preventing the Pt site poisoning in acid. As a result, the Pt-N4P-C catalyst exhibits significantly higher activity than the Pt-N4-C catalyst. It even outperforms commercial Pt/C (20 wt% Pt) with a Pt content of only 0.22 wt% in both alkaline and acidic solutions. This work indicates the second coordination shell modulation also greatly impacts the performance of SACs.
Collapse
Affiliation(s)
- Tayyaba Najam
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology Islamabad 44000 Pakistan
| | - Hanqing Yin
- QUT Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane 4000 Australia
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Shamraiz Talib
- Advanced Materials Chemistry Centre (AMCC), SAN Campus, Khalifa University Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Qianqian Ji
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Yonggui Deng
- College of Mechatronics and Control Engineering, Shenzhen University Shenzhen 518060 PR China
| | | | - Jie Hu
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Ruo Zhao
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Aijun Du
- QUT Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane 4000 Australia
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
20
|
Song M, Yang M, Yang S, Wang K, Cao C, Li H, Wang X, Gao P, Qian P. First-Principles Calculations and Machine Learning of Hydrogen Evolution Reaction Activity of Nonmetallic Doped β-Mo 2C Support Pt Single-Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39367813 DOI: 10.1021/acsami.4c10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The most widely used catalyst for the hydrogen evolution reaction (HER) is Pt, but the high cost and low abundance of Pt need to be urgently addressed. Single-atom catalysts (SACs) have been an effective means of improving the utilization of Pt atoms. In this work, we used a nonmetal (NM = B, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I) doped β-Mo2C (100) C-termination surface as the support, with Pt atoms dispersed on the support surface to construct Pt@NM-Mo2C. Using density functional theory (DFT) calculations, we selected catalysts with excellent HER activity. Among 117 candidate catalysts, 49 catalysts exhibited ideal catalytic performance with Gibbs free energy of hydrogen intermediate (H*) adsorption (ΔGH*) values less than 0.2 eV. The ΔGH* values of 16 catalysts were even lower than that of Pt (ΔGH* ≈ 0.09 eV), with PtI@N2/4-a-Mo2C demonstrating the best performance (ΔGH* = -0.01 eV). Combined with electronic structure analysis, we could understand the impact of charge transfer between Pt and the underlying NM atoms on the strength of the Pt-H bond, thereby promoting HER activity. Using machine learning (ML), we identified that the primary influencing factors of the HER catalytic activity in the Pt@NM-Mo2C system were the Bader charge transfer of Pt (NePt), the d-band center of Pt (εdPt), and the atomic radius of NM (RNM), with NePt having the greatest impact on the HER catalytic activity.
Collapse
Affiliation(s)
- Minhui Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Mei Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuo Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenyang Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongfei Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoxu Wang
- DP Technology, Beijing 100080, China
- AI for Science Institute, Beijing 100084, China
| | - Panpan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
21
|
Li R, Xie F, Kuang P, Liu T, Yu J. Amino-Induced CO 2 Spillover to Boost the Electrochemical Reduction Activity of CdS for CO Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402867. [PMID: 38850185 DOI: 10.1002/smll.202402867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Indexed: 06/10/2024]
Abstract
A considerable challenge in CO2 reduction reaction (CO2RR) to produce high-value-added chemicals comes from the adsorption and activation of CO2 to form intermediates. Herein, an amino-induced spillover strategy aimed at significantly enhancing the CO2 adsorption and activation capabilities of CdS supported on N-doped mesoporous hollow carbon sphere (NH2-CdS/NMHCS) for highly efficient CO2RR is presented. The prepared NH2-CdS/NMHCS exhibits a high CO Faradaic efficiency (FECO) exceeding 90% from -0.8 to -1.1 V versus reversible hydrogen electrode (RHE) with the highest FECO of 95% at -0.9 V versus RHE in H cell. Additional experimental and theoretical investigations demonstrate that the alkaline -NH2 group functions as a potent trapping site, effectively adsorbing the acidic CO2, and subsequently triggering CO2 spillover to CdS. The amino modification-induced CO2 spillover, combined with electron redistribution between CdS and NMHCS, not only readily achieves the spontaneous activation of CO2 to *COOH but also greatly reduces the energy required for the conversion of *COOH to *CO intermediate, thus endowing NH2-CdS/NMHCS with significantly improved reaction kinetics and reduced overpotential for CO2-to-CO conversion. It is believed that this research can provide valuable insights into the development of electrocatalysts with superior CO2 adsorption and activation capabilities for CO2RR application.
Collapse
Affiliation(s)
- Ruina Li
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Fei Xie
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
22
|
Xu A, Liu T, Liu D, Li W, Huang H, Wang S, Xu L, Liu X, Jiang S, Chen Y, Sun M, Luo Q, Ding T, Yao T. Edge-Rich Pt-O-Ce Sites in CeO 2 Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202410545. [PMID: 38940407 DOI: 10.1002/anie.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electronic metal-support interaction for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.
Collapse
Affiliation(s)
- Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Wenzhi Li
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Sicong Wang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Li Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Yudan Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Mei Sun
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
23
|
Wang Z, Yue X, Liao Y, Xiang Q. Indium Oxide Layer Dual Functional Modified Bismuth Vanadate Photoanode Promotes Photoelectrochemical Oxidation of Water to Hydrogen Peroxide. CHEMSUSCHEM 2024:e202401810. [PMID: 39347590 DOI: 10.1002/cssc.202401810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/01/2024]
Abstract
The photoelectrochemical (PEC) dual-electron pathway for water oxidation to produce hydrogen peroxide (H2O2) shows promising prospects. However, the dominance of the four-electron pathway leading to O2 evolution competes with this reaction, severely limiting the efficiency of H2O2 production. Here, we report a In2O3 passivator-coated BiVO4 (BVO) photoanode, which effectively enhances the selectivity and yield of H2O2 production via PEC water oxidation. Based on XPS spectra and DFT calculations, a heterojunction is formed between In2O3 and BVO, promoting the effective separation of interface and surface charges. More importantly, Mott-Schottky analysis and open-circuit potential measurements demonstrate that the In2O3 passivation layer on the BVO photoanode shifts the hole quasi-Fermi level towards the anodic direction, enhancing the oxidation level of holes. Additionally, the widening of the depletion layer and the flattening of the band bending on the In2O3-coated BVO photoanode favor the generation of H2O2 while suppressing the competitive O2 evolution reaction. In addition, the coating of In2O3 can also inhibit the decomposition of H2O2 and improve the stability of the photoanode. This work provides new perspectives on regulating PEC two/four-electron transfer for selective H2O2 production via water oxidation.
Collapse
Affiliation(s)
- Ziming Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaoyang Yue
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yulong Liao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
24
|
Zhang M, Su M, Zhang C, Gao F, Lu Q. Platinum/Platinum Sulfide on Sulfur-Doped Carbon Nanosheets with Multiple Interfaces toward High Hydrogen Evolution Activity. Molecules 2024; 29:4570. [PMID: 39407500 PMCID: PMC11477529 DOI: 10.3390/molecules29194570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Platinum (Pt)-based materials are among the most competitive electrocatalysts for the hydrogen evolution reaction (HER) due to suitable hydrogen adsorption energy. Due to the rarity of Pt, it is desirable to develop cost-effective Pt-based electrocatalysts with low Pt loading. Herein, Pt/PtS electrocatalysts on S-doped carbon nanofilms (PPS/C) have been successfully fabricated through a precursor reduction route with a complex of Pt and 1-dodecanethiol (1-DDT) as the precursor. The PPS/C achieved at 400 °C (PPS/C-400) exhibits excellent HER performances with an ultralow overpotential of 41.3 mV, a low Tafel slope of 43.1 mV dec-1 at a current density of 10 mA cm-2, and a long-term stability of 10 h, superior to many recently reported Pt-based HER electrocatalysts. More importantly, PPS/C-400 shows a high mass-specific activity of 0.362 A mgPt-1 at 30 mV, which is 1.88 times of that of commercial 20% Pt/C (0.193 A mgPt-1). The introduction of sulfur leads to the formation of PtS, which not only reduces the content of Pt but also realizes the interface regulation of Pt/PtS, as well as the doping of carbon. Both regulations make the resulting catalyst have abundant active centers and rapid electron transfer/transport, which is conducive to balancing the adsorption and resolution of intermediate products, and finally achieving great mass-specific activity and stability. The research work may provide ideas for designing effective Pt-based multi-interface electrocatalysts.
Collapse
Affiliation(s)
- Mou Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunyan Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Gao
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Quintal J, McGuire C, Shi T, Huang WH, Chow D, Hung CK, Jiang DT, Hwang BJ, Chen A. Substrate-Assisted Atomic Dispersion of Cobalt for Alkaline Water Electrolysis. J Phys Chem Lett 2024; 15:9208-9215. [PMID: 39225476 DOI: 10.1021/acs.jpclett.4c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atomically dispersed single-atom catalysts have recently attracted broad research interest due to their high atom efficiency and unique catalytic performance. In this study, atomic dispersion of cobalt is achieved using a chemical bath deposition method on a highly stable alkali titanate film (Ti/KTiO). These films were characterized using a variety of techniques, with atomic dispersion confirmed via grazing incidence X-ray absorption spectroscopy and ab initio modeling of single-atom systems. This modeling indicated that the alkali ion incorporated into the film facilitates atomic dispersion. Experimentally, the Ti/KTiO-supported Co(OH)2 catalysts exhibited remarkable electrochemical performance, with an overpotential of 163 mV to achieve a current density of 10 mA cm-2 with a catalyst loading of ∼0.1 mg cm-2 and high stability. These results show the potential of Ti/KTiO/Co(OH)2 catalysts for atomically efficient hydrogen production.
Collapse
Affiliation(s)
- Jonathan Quintal
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Cameron McGuire
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Tony Shi
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Darren Chow
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Chi-Kai Hung
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - De-Tong Jiang
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Bing Joe Hwang
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, No. 43 Keelung Road, Section 4, Da'an District, Taipei City 106335, Taiwan
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
26
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
27
|
Cai J, Hao X, Bian Z, Wu Y, Wei C, Yin X, Liu B, Fang M, Lv Y, Xie Y, Fang Y, Wang G. Elucidating the Discrepancy between the Intrinsic Structural Instability and the Apparent Catalytic Steadiness of M-N-C Catalysts toward Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202409079. [PMID: 38874984 DOI: 10.1002/anie.202409079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Despite the widespread investigations on the M-N-C type single atom catalysts (SACs) for oxygen evolution reaction (OER), an internal conflict between its intrinsic thermodynamically structural instability and apparent catalytic steadiness has long been ignored. Clearly unfolding this contradiction is necessary and meaningful for understanding the real structure-property relation of SACs. Herein, by using the well-designed pH-dependent metal leaching experiments and X-ray absorption spectroscopy, an unconventional structure reconstruction of M-N-C catalyst during OER process was observed. Combining with density functional theory calculations, the initial Ni-N coordination is easily broken in the presence of adsorbed OH*, leading to favorable formation of Ni-O coordination. The formed Ni-O works stably as the real active center for OER catalysis in alkaline media but unstably in acid, which clearly explains the existing conflict. Unveiling the internal contradiction between structural instability and catalytic steadiness provides valuable insights for rational design of single atom OER catalysts.
Collapse
Affiliation(s)
- Jinyan Cai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaobin Hao
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, Anhui, 239000, P. R. China
| | - Zenan Bian
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yishang Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Cong Wei
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuanwei Yin
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bo Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ming Fang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Youming Lv
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yufang Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanyan Fang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongming Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
28
|
Wei S, Ma W, Sun M, Xiang P, Tian Z, Mao L, Gao L, Li Y. Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity. Nat Commun 2024; 15:6888. [PMID: 39134525 PMCID: PMC11319669 DOI: 10.1038/s41467-024-51022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Pan Xiang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
29
|
Liu D, Zhang C, Shi J, Shi Y, Nga TTT, Liu M, Shen S, Dong CL. Defect Engineering Simultaneously Regulating Exciton Dissociation in Carbon Nitride and Local Electron Density in Pt Single Atoms Toward Highly Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310289. [PMID: 38597769 DOI: 10.1002/smll.202310289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The high exciton binding energy (Eb) and sluggish surface reaction kinetics have severely limited the photocatalytic hydrogen production activity of carbon nitride (CN). Herein, a hybrid system consisting of nitrogen defects and Pt single atoms is constructed through a facile self-assembly and photodeposition strategy. Due to the acceleration of exciton dissociation and regulation of local electron density of Pt single atoms along with the introduction of nitrogen defects, the optimized Pt-MCT-3 exhibits a hydrogen production rate of 172.0 µmol h-1 (λ ≥ 420 nm), ≈41 times higher than pristine CN. The apparent quantum yield for the hydrogen production is determined to be 27.1% at 420 nm. The experimental characterizations and theoretical calculations demonstrate that the nitrogen defects act as the electron traps for the exciton dissociation, resulting in a decrease of Eb from 86.92 to 43.20 meV. Simultaneously, the stronger interaction between neighboring nitrogen defects and Pt single atoms directionally drives free electrons to aggregate around Pt single atoms, and tailors the d-band electrons of Pt, forming a moderate binding strength between Pt atoms and H* intermediates.
Collapse
Affiliation(s)
- Dongjie Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Chunyang Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
- Integrated Energy Institute, Sichuan Digital Economy Industry Development Research Institute, 88 Jiefang Road, Chengdu, 610036, China
| | - Yuchuan Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Maochang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Shaohua Shen
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Chun-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| |
Collapse
|
30
|
Küspert S, Campbell IE, Zeng Z, Balaghi SE, Ortlieb N, Thomann R, Knäbbeler-Buß M, Allen CS, Mohney SE, Fischer A. Ultrasmall and Highly Dispersed Pt Entities Deposited on Mesoporous N-doped Carbon Nanospheres by Pulsed CVD for Improved HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311260. [PMID: 38634299 DOI: 10.1002/smll.202311260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Vapor-based deposition techniques are emerging approaches for the design of carbon-supported metal powder electrocatalysts with tailored catalyst entities, sizes, and dispersions. Herein, a pulsed CVD (Pt-pCVD) approach is employed to deposit different Pt entities on mesoporous N-doped carbon (MPNC) nanospheres to design high-performance hydrogen evolution reaction (HER) electrocatalysts. The influence of consecutive precursor pulse number (50-250) and deposition temperature (225-300 °C) are investigated. The Pt-pCVD process results in highly dispersed ultrasmall Pt clusters (≈1 nm in size) and Pt single atoms, while under certain conditions few larger Pt nanoparticles are formed. The best MPNC-Pt-pCVD electrocatalyst prepared in this work (250 pulses, 250 °C) reveals a Pt HER mass activity of 22.2 ± 1.2 A mg-1 Pt at -50 mV versus the reversible hydrogen electrode (RHE), thereby outperforming a commercially available Pt/C electrocatalyst by 40% as a result of the increased Pt utilization. Remarkably, after optimization of the Pt electrode loading, an ultrahigh Pt mass activity of 56 ± 2 A mg-1 Pt at -50 mV versus RHE is found, which is among the highest Pt mass activities of Pt single atom and cluster-based electrocatalysts reported so far.
Collapse
Affiliation(s)
- Sven Küspert
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Ian E Campbell
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Zhiqiang Zeng
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
| | - S Esmael Balaghi
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Niklas Ortlieb
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Markus Knäbbeler-Buß
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Suzanne E Mohney
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
31
|
Chen L, Yang Z, Yan C, Yin Y, Xue Z, Yao Y, Wang S, Sun F, Mu T. Modulating Ni-S coordination in Ni 3S 2 to promote electrocatalytic oxidation of 5-hydroxymethylfurfural at ampere-level current density. Chem Sci 2024; 15:12047-12057. [PMID: 39092092 PMCID: PMC11290336 DOI: 10.1039/d4sc03470h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Electricity-driven oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a highly attractive strategy for biomass transformation. However, achieving industrial-grade current densities remains a great challenge. Herein, by modulating the water content in a solvothermal system, Ni3S2/NF with stabilized and shorter Ni-S bonds as well as a tunable coordination environment of Ni sites was fabricated. The prepared Ni3S2/NF was highly efficient for electrocatalytic oxidation of HMF to produce FDCA, and the FDCA yield and Faraday efficiency could reach 98.8% and 97.6% at the HMF complete conversion. More importantly, an industrial-grade current density of 1000 mA cm-2 could be achieved at a potential of only 1.45 V vs. RHE for HMFOR and the current density could exceed 500 mA cm-2 with other bio-based compounds as the reactants. The excellent performance of Ni3S2/NF originated from the shorter Ni-S bonds and its better electrochemical properties, which significantly promoted the dehydrogenation step of oxidizing HMF. Besides, the gram-scale FDCA production could be realized on Ni3S2/NF in a MEA reactor. This work provides a robust electrocatalyst with high potential for practical applications for the electrocatalytic oxidation of biomass-derived compounds.
Collapse
Affiliation(s)
- Lan Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
- State Key Laboratory of Efficient Production of Forest Resources Beijing 100083 China
| | - Zhaohui Yang
- School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| | - Chuanyu Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
- State Key Laboratory of Efficient Production of Forest Resources Beijing 100083 China
| | - Yijun Yin
- School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
- State Key Laboratory of Efficient Production of Forest Resources Beijing 100083 China
| | - Yiting Yao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
- State Key Laboratory of Efficient Production of Forest Resources Beijing 100083 China
| | - Shao Wang
- School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201204 China
| | - Tiancheng Mu
- School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China
| |
Collapse
|
32
|
Wu J, Gao X, Liu G, Qiu X, Xia Q, Wang X, Zhu W, He T, Zhou Y, Feng K, Wang J, Huang H, Liu Y, Shao M, Kang Z, Zhang X. Immobilizing Ordered Oxophilic Indium Sites on Platinum Enabling Efficient Hydrogen Oxidation in Alkaline Electrolyte. J Am Chem Soc 2024; 146:20323-20332. [PMID: 38995375 DOI: 10.1021/jacs.4c05844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Addressing the sluggish kinetics in the alkaline hydrogen oxidation reaction (HOR) is a pivotal yet challenging step toward the commercialization of anion-exchange membrane fuel cells (AEMFCs). Here, we have successfully immobilized indium (In) atoms in an orderly fashion into platinum (Pt) nanoparticles supported by reduced graphene oxide (denoted as O-Pt3In/rGO), significantly enhancing alkaline HOR kinetics. We have revealed that the ordered atomic matrix enables uniform and optimized hydrogen binding energy (HBE), hydroxyl binding energy (OHBE), and carbon monoxide binding energy (COBE) across the catalyst. With a mass activity of 2.3066 A mg-1 at an overpotential of 50 mV, over 10 times greater than that of Pt/C, the catalyst also demonstrates admirable CO resistance and stability. Importantly, the AEMFC implementing this catalyst as the anode catalyst has achieved an impressive power output compared to Pt/C. This work not only highlights the significance of constructing ordered oxophilic sites for alkaline HOR but also sheds light on the design of well-structured catalysts for energy conversion.
Collapse
Affiliation(s)
- Jie Wu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xin Gao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Guimei Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xiaoyi Qiu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xinzhong Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tiwei He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiaxuan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- CAS-HK Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, Guangdong 511458, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
33
|
Wang Z, Wu J, Liu L, Wu W, Wang Y, Huang H, Deng F, Liu X. Platinum Cluster Decoration on Hollow Carbon Spheres for High-Efficiency Hydrogen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15031-15037. [PMID: 38988010 DOI: 10.1021/acs.langmuir.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Currently, platinum (Pt)/carbon support composite materials have tremendous application prospects in the hydrogen evolution reaction (HER). However, one of the primary challenges for boosting their performance is designing a substrate with the desired microstructure. Herein, the intact hollow carbon spheres (HCSs) were prepared via template method. Based on the morphology variation of the as-prepared HCSs-x, we conjectured that the polydopamine (PDA) core was generated first and then slowly grew into a complete overburden (SiO2@PDA). Afterward, Pt atomic clusters were anchored on the outer shells of HCSs-4 to construct composite electrocatalysts (Pty/HCSs-4) by a chemical reduction method. Due to the low charge-transfer resistance, the HCSs have a large electrochemical surface area and provide a continuous electron transport pathway, boosting the atom utilization efficiency during hydrogen production and release. The synthesized Pt2.5/HCSs-4 electrocatalysts exhibit excellent HER activity in acidic media, which can be ascribed to the compositional modulation and delicate structural design. Specifically, when the overpotential is 10 A g-1, the overpotential can achieve 92 mV. This work opens a new route to fabricate Pt-based electrocatalysts and brings a new understanding of the formation mechanism of HCSs.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Jingjing Wu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Limin Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Wenchi Wu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Yinfeng Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Haigen Huang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Fei Deng
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Xuexia Liu
- School of Forensic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
34
|
Wang Y, Li C, Han X, Bai J, Wang X, Zheng L, Hong C, Li Z, Bai J, Leng K, Lin Y, Qu Y. General negative pressure annealing approach for creating ultra-high-loading single atom catalyst libraries. Nat Commun 2024; 15:5675. [PMID: 38971885 PMCID: PMC11227521 DOI: 10.1038/s41467-024-50061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Catalyst systems populated by high-density single atoms are crucial for improving catalytic activity and selectivity, which can potentially maximize the industrial prospects of heterogeneous single-atom catalysts (SACs). However, achieving high-loading SACs with metal contents above 10 wt% remains challenging. Here we describe a general negative pressure annealing strategy to fabricate ultrahigh-loading SACs with metal contents up to 27.3-44.8 wt% for 13 different metals on a typical carbon nitride matrix. Furthermore, our approach enables the synthesis of high-entropy single-atom catalysts (HESACs) that exhibit the coexistence of multiple metal single atoms with high metal contents. In-situ aberration-corrected HAADF-STEM (AC-STEM) combined with ex-situ X-ray absorption fine structure (XAFS) demonstrate that the negative pressure annealing treatment accelerates the removal of anionic ligand in metal precursors and boosts the bonding of metal species with N defective sites, enabling the formation of dense N-coordinated metal sites. Increasing metal loading on a platinum (Pt) SAC to 41.8 wt% significantly enhances the activity of propane oxidation towards liquid products, including acetone, methanol, and acetic acid et al. This work presents a straightforward and universal approach for achieving many low-cost and high-density SACs for efficient catalytic transformations.
Collapse
Affiliation(s)
- Yi Wang
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chongao Li
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiao Han
- Department of Chemistry, Department of Applied Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jintao Bai
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710000, China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing, 100039, China
| | - Chunxia Hong
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Zhijun Li
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Jinbo Bai
- Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette, 91190, France
| | - Kunyue Leng
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yue Lin
- Department of Chemistry, Department of Applied Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yunteng Qu
- International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
35
|
Wang XY, Pan YZ, Yang J, Li WH, Gan T, Pan YM, Tang HT, Wang D. Single-Atom Iron Catalyst as an Advanced Redox Mediator for Anodic Oxidation of Organic Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202404295. [PMID: 38649323 DOI: 10.1002/anie.202404295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. Moreover, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Zhou Pan
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Qiu Y, Zhang Y, Yu M, Li X, Wang Y, Ma Z, Liu S. Ni─Co─O─S Derived Catalysts on Hierarchical N-doped Carbon Supports with Strong Interfacial Interactions for Improved Hybrid Water Splitting Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310087. [PMID: 38530052 DOI: 10.1002/smll.202310087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/20/2024] [Indexed: 03/27/2024]
Abstract
Simultaneously improving electrochemical activity and stability is a long-term goal for water splitting. Herein, hierarchical N-doped carbon nanotubes on carbon nanowires derived from PPy are grown on carbon cloth, serving as a support for NiCo oxides/sulfides. The hierarchical electrodes annealed in N2 or H2/N2 display improved intrinsic activity and stability for hydrogen evolution reaction (HER) and glucose oxidation reaction. Compared with Pt/C||Ir/C in alkaline media, the glucose electrolysis assembled with electrodes exhibits a cell voltage of 1.38 V at 10 mA cm-2, durability for >12 h at 50 mA cm-2, and resistance to glucose/gluconic acid poisoning. In addition, electrocatalysts can also be applied in ethanol oxidation reactions. Systematic characterizations reveal the strong interactions between NiCo and N-doped carbon support-induced partial charge transfer at the interface and regulate the local electronic structure of active sites. Density functional theory calculations demonstrate that the synergistic effect between N-doped carbon supports, metallic NiCo, and NiCo oxides/sulfides optimize the adsorption energy of H2O and the H* free energy for HER. The energy barrier of the dehydrogenation of glucose effectively decreased. This work will attract attention to the role of metal-support interactions in enhancing the intrinsic activity and stability of electrocatalysts.
Collapse
Affiliation(s)
- Yunfeng Qiu
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Yongxia Zhang
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Miao Yu
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Xinyi Li
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Yanxia Wang
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, 150001, China
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| |
Collapse
|
37
|
Guo W, Li J, Chai D, Guo D, Sui G, Li Y, Luo D, Tan L. Iron Active Center Coordination Reconstruction in Iron Carbide Modified on Porous Carbon for Superior Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401455. [PMID: 38659236 PMCID: PMC11220683 DOI: 10.1002/advs.202401455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
In this work, a novel liquid nitrogen quenching strategy is engineered to fulfill iron active center coordination reconstruction within iron carbide (Fe3C) modified on biomass-derived nitrogen-doped porous carbon (NC) for initiating rapid hydrogen and oxygen evolution, where the chrysanthemum tea (elm seeds, corn leaves, and shaddock peel, etc.) is treated as biomass carbon source within Fe3C and NC. Moreover, the original thermodynamic stability is changed through the corresponding force generated by liquid nitrogen quenching and the phase transformation is induced with rich carbon vacancies with the increasing instantaneous temperature drop amplitude. Noteworthy, the optimizing intermediate absorption/desorption is achieved by new phases, Fe coordination, and carbon vacancies. The Fe3C/NC-550 (550 refers to quenching temperature) demonstrates outstanding overpotential for hydrogen evolution reaction (26.3 mV at -10 mA cm-2) and oxygen evolution reaction (281.4 mV at 10 mA cm-2), favorable overall water splitting activity (1.57 V at 10 mA cm-2). Density functional theory (DFT) calculations further confirm that liquid nitrogen quenching treatment can enhance the intrinsic electrocatalytic activity efficiently by optimizing the adsorption free energy of reaction intermediates. Overall, the above results authenticate that liquid nitrogen quenching strategy open up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.
Collapse
Affiliation(s)
- Wenxin Guo
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Jinlong Li
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Dong‐Feng Chai
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Dongxuan Guo
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Guozhe Sui
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Yue Li
- School of Polymer Science & EngineeringQingdao University of Science & TechnologyQingdao266000China
| | - Dan Luo
- Department of Chemical EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Lichao Tan
- Institute of Carbon NeutralityZhejiang Wanli UniversityNingbo315100China
| |
Collapse
|
38
|
Li R, Tung CW, Zhu B, Lin Y, Tian FZ, Liu T, Chen HM, Kuang P, Yu J. d-band center engineering of single Cu atom and atomic Ni clusters for enhancing electrochemical CO 2 reduction to CO. J Colloid Interface Sci 2024; 674:326-335. [PMID: 38936089 DOI: 10.1016/j.jcis.2024.06.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The rational design of catalysts with atomic dispersion and a deep understanding of the catalytic mechanism is crucial for achieving high performance in CO2 reduction reaction (CO2RR). Herein, we present an atomically dispersed electrocatalyst with single Cu atom and atomic Ni clusters supported on N-doped mesoporous hollow carbon sphere (CuSANiAC/NMHCS) for highly efficient CO2RR. CuSANiAC/NMHCS demonstrates a remarkable CO Faradaic efficiency (FECO) exceeding 90% across a potential range of -0.6 to -1.2 V vs. reversible hydrogen electrode (RHE) and achieves its peak FECO of 98% at -0.9 V vs. RHE. Theoretical studies reveal that the electron redistribution and modulated electronic structure-notably the positive shift in d-band center of Ni 3d orbital-resulting from the combination of single Cu atom and atomic Ni clusters markedly enhance the CO2 adsorption, facilitate the formation of *COOH intermediate, and thus promote the CO production activity. This study offers fresh perspectives on fabricating atomically dispersed catalysts with superior CO2RR performance.
Collapse
Affiliation(s)
- Ruina Li
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Feng-Ze Tian
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China.
| |
Collapse
|
39
|
Kang Y, Li S, Cretu O, Kimoto K, Zhao Y, Zhu L, Wei X, Fu L, Jiang D, Wan C, Jiang B, Asahi T, Zhang D, Li H, Yamauchi Y. Mesoporous amorphous non-noble metals as versatile substrates for high loading and uniform dispersion of Pt-group single atoms. SCIENCE ADVANCES 2024; 10:eado2442. [PMID: 38905333 PMCID: PMC11192073 DOI: 10.1126/sciadv.ado2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Atomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.7 to 12.2 wt %). The effect of the morphology, composition, and crystal phase of the Ni-B host on the growth and dispersion of Pt atoms is discussed. The resulting amorphous Pt-Ni-B mesoporous nanospheres exhibit superior electrocatalytic H2 evolution performance in acidic media. This strategy holds the potential to synthesize a diverse library of mesoporous amorphous Pt-group SAAs, by leveraging functional amorphous nanostructured 3d transition-metal borides as substrates, thereby proposing a comprehensive strategy to control atomically dispersed Pt-group metals.
Collapse
Affiliation(s)
- Yunqing Kang
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, Henan, China
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ovidiu Cretu
- Electron Microscopy Group, Center for Basic Research on Materials, NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Koji Kimoto
- Electron Microscopy Group, Center for Basic Research on Materials, NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Liyang Zhu
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Xiaoqian Wei
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Lei Fu
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dong Jiang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Chao Wan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
| |
Collapse
|
40
|
Pan Q, Wang Y, Chen B, Zhang X, Lin D, Yan S, Han F, Zhao H, Meng G. Pt Single-Atoms on Structurally-Integrated 3D N-Doped Carbon Tubes Grid for Ampere-Level Current Density Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309067. [PMID: 38189642 DOI: 10.1002/smll.202309067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Indexed: 01/09/2024]
Abstract
To date, the excellent mass-catalytic activities of Pt single-atoms catalysts (Pt-SACs) toward hydrogen evolution reaction (HER) are categorically confirmed; however, their high current density performance remains a challenge for practical applications. Here, a binder-free approach is exemplified to fabricate self-standing superhydrophilic-superaerphobic Pt-SACs cathodes by directly anchoring Pt-SAs via Pt-NxC4-x coordination bonds to the structurally-integrated 3D nitrogen-doped carbon tubes (N-CTs) array grid (denoted as Pt@N-CTs). The 3D Pt@N-CTs cathode with optimal Pt-SACs loading is capable of operating at a high current density of 1000 mA cm-2 with an ultralow overpotential of 157.9 mV with remarkable long-term stability over 11 days at 500 mA cm-2. The 3D super-wettable free-standing Pt@N-CTs possess interconnected vertical and lateral N-CTs with hierarchical-sized open channels, which facilitates the mass transfer. The binder-free immobilization adding to the large surface area and 3D-interconnected open channels endow Pt@N-CTs cathodes with high accessible active sites, electrical conductivity, and structural stability that maximize the utilization efficiency of Pt-SAs to achieve ampere-level current density HER at low overpotentials.
Collapse
Affiliation(s)
- Qijun Pan
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yuguang Wang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Bin Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Dou Lin
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Sisi Yan
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Fangming Han
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Guowen Meng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Liang K, Nan F, Wang J, Zhang Y, Li J, Xue X, Chen T, Hao Y, Wang P, Ge J. A Versatile Nanozyme-Based NADH Circulating Oxidation Reactor for Tumor Therapy through Triple Cellular Metabolism Disruption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311027. [PMID: 38263719 DOI: 10.1002/smll.202311027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Nanozyme-based metabolic regulation triggered by tumor-specific endogenous stimuli has emerged as a promising therapeutic strategy for tumors. The current efficacy, however, is constrained by the limited concentration of endogenous substrates and the metabolic plasticity of tumors. Consequently, the implementation of efficient metabolic regulation in tumor therapy is urgently needed. Herein, a versatile nanozyme-based nicotinamide adenine dinucleotide (NADH) circulating oxidation nanoreactor is reported. First, the synthesized cobalt-doped hollow carbon spheres (Co-HCS) possess NADH oxidase (NOX)-mimicking activity for the NADH oxidation to disrupt oxidative phosphorylation (OXPHOS) pathway of tumor cells. Second, the substrate-cycle manner of Co-HCS can be used for NADH circulating oxidation to overcome the limitation of substrate deficiency. Finally, 2-Deoxy-D-glucose (2-DG) and 6-aminonicotinamide (6-AN) are introduced to block glycolysis and pentose phosphate pathway (PPP), thus creating a versatile nanozyme-based NADH circulating oxidation nanoreactor (Co-HCS/D/A) for tumor therapy through triple cellular metabolism disruption. In vitro and in vivo results demonstrate that the designed nanoreactor not only enhances the catalytic efficiency but also disrupts the tumor metabolic homeostasis, leading to efficient therapy outcome. This study develops a novel NADH circulating oxidation nanoreactor for tumor therapy through triple cellular metabolism disruption, which addresses the limitations of current nanozyme-based metabolism regulation for tumor therapy.
Collapse
Affiliation(s)
- Ke Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuchun Nan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxiu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaokuang Xue
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiejin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongliang Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou, Shandong, 256606, China
| |
Collapse
|
42
|
Liu Y, Liu G, Chen X, Xue C, Sun M, Liu Y, Kang J, Sun X, Guo L. Achieving Negatively Charged Pt Single Atoms on Amorphous Ni(OH) 2 Nanosheets with Promoted Hydrogen Absorption in Hydrogen Evolution. NANO-MICRO LETTERS 2024; 16:202. [PMID: 38782778 PMCID: PMC11116366 DOI: 10.1007/s40820-024-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-atom (SA) catalysts with nearly 100% atom utilization have been widely employed in electrolysis for decades, due to the outperforming catalytic activity and selectivity. However, most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates, which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts. In this work, Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)2 nanosheet arrays. Based on the X-ray absorption fine structure analysis and first-principles calculations, Pt SA was bonded with Ni sites of amorphous Ni(OH)2, rather than conventional O sites, resulting in negatively charged Ptδ-. In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms, which were the essential intermediate for alkaline hydrogen evolution reaction. The hydrogen spillover process was revealed from amorphous Ni(OH)2 that effectively cleave the H-O-H bond of H2O and produce H atom to the Pt SA sites, leading to a low overpotential of 48 mV in alkaline electrolyte at -1000 mA cm-2 mg-1Pt, evidently better than commercial Pt/C catalysts. This work provided new strategy for the controllable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
- School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| | - Gui Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Xiangyu Chen
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Chuang Xue
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Mingke Sun
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Yifei Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Jianxin Kang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China.
| | - Xiujuan Sun
- School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China.
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
43
|
Luo X, Yuan P, Xiao H, Li S, Luo J, Li J, Lai W, Chen Y, Li D. Effects of Intrinsic Defects in Pt-Based Carbon Supports on Alkaline Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26044-26056. [PMID: 38717586 DOI: 10.1021/acsami.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Carbon material has widely been utilized in the synthesis of efficient carbon-supported Pt (Pt/C) catalysts, in which the structural properties greatly influence the electrocatalytic performances of Pt/C catalysts. However, the effects of intrinsic defects in carbon supports on the performance of the alkaline hydrogen evolution reaction (HER) have not been systematically investigated. Herein, porous carbon supports with different degrees of intrinsic defects were prepared by a simple template-assisted strategy, and the resulting samples were systematically studied by various analytical methods. The results suggested that the presence of abundant intrinsic defects (vacancy and topological defects) in the carbon support was advantageous in terms of favoring the dispersion and anchoring of Pt species, promoting electron transfer between Pt atoms and the carbon support, and tuning the electronic states of Pt species. These features improved the HER performance of Pt/C catalysts. Compared to the nontemplate-assisted carbon-supported Pt catalyst (Pt/NTC) with an overpotential of 178 mV, the optimized template-assisted carbon-supported Pt catalyst (Pt/TC) exhibited a lower overpotential of 58 mV at 10 mA cm-2. Besides, the Pt/TC catalyst displayed better HER durability than the Pt/NTC catalyst owing to its strong metal-support interaction. The DFT calculations confirmed the important role played by intrinsic defects (vacancy and topological defects) in stabilizing Pt atoms, with Pt-C3 coordination identified as the most favorable structure for improving the HER performance of Pt. Overall, novel insights on the significant contribution of intrinsic defects in porous carbon supports on the HER performances of Pt/C catalysts were provided, useful for future design and fabrication of advanced carbon-supported catalysts or other carbon-based electrode materials.
Collapse
Affiliation(s)
- Xianyou Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Ping Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haoming Xiao
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Shengwei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Junhui Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Junyi Li
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Wende Lai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
44
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
45
|
Zhang Z, Wu W, Chen S, Wang Z, Tan Y, Chen W, Guo F, Chen R, Cheng N. Directed Dual Charge Pumping Tunes the d-Orbital Configuration of Pt Cluster Boosting Hydrogen Evolution Kinetic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307135. [PMID: 38126901 DOI: 10.1002/smll.202307135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Achieving high catalytic activity with a minimum amount of platinum (Pt) is crucial for accelerating the cathodic hydrogen evolution reaction (HER) in proton exchange membrane (PEM) water electrolysis, yet it remains a significant challenge. Herein, a directed dual-charge pumping strategy to tune the d-orbital electronic distribution of Pt nanoclusters for efficient HER catalysis is proposed. Theoretical analysis reveals that the ligand effect and electronic metal-support interactions (EMSI) create an effective directional electron transfer channel for the d-orbital electrons of Pt, which in turn optimizes the binding strength to H*, thereby significantly enhancing HER efficiency of the Pt site. Experimentally, this directed dual-charge pumping strategy is validated by elaborating Sb-doped SnO2 (ATO) supported Fe-doped PtSn heterostructure catalysts (Fe-PtSn/ATO). The synthesized 3%Fe-PtSn/ATO catalysts exhibit lower overpotential (requiring only 10.5 mV to reach a current density of 10 mA cm- 2), higher mass activity (28.6 times higher than commercial 20 wt.% Pt/C), and stability in the HER process in acidic media. This innovative strategy presents a promising pathway for the development of highly efficient HER catalysts with low Pt loading.
Collapse
Affiliation(s)
- Zeyi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fei Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
46
|
Zhao Q, Zhang Y, Ke C, Yang W, Yue J, Yang X, Xiao W. Pt nanoparticles anchored by oxygen vacancies in MXenes for efficient electrocatalytic hydrogen evolution reaction. NANOSCALE 2024; 16:8020-8027. [PMID: 38545879 DOI: 10.1039/d4nr00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The improvement of the hydrogen evolution reaction (HER) performance of nanomaterials is associated with the interfacial synergistic interaction and their hydrogen adsorption kinetics. Nevertheless, it is still a challenge to accelerate the proton transfer and optimize the HER kinetics by constructing Pt-supported heterostructures based on the hydrogen spillover phenomenon. Herein, oxygen vacancies on the surface of MXene nanosheets were constructed via a high-temperature annealing method, which was employed to anchor/stabilize Pt nanoparticles and fabricate a Pt/MXene heterostructure. EPR and XPS analyses verified the presence of oxygen vacancies, which could enhance the intrinsic HER activity of the MXene. The HER catalytic performance was investigated by taking into account the surface structure of the MXene affected by the annealing temperature, the concentration of Pt and the number of deposition cycles. Electrochemical results showed that Pt/MXene with higher utilization of Pt was obtained at 900 °C and 0.05 mgPt mL-1. The 0.05-Pt/MXene-900 obtained at deposition of 60 cycles in 0.5 M H2SO4 solution exhibited the optimized HER activity. The overpotential was 22 mV at a current density of 10 mA cm-2 and the Tafel slope was 42.41 mV dec-1. Furthermore, the accelerated HER kinetics was mainly due to the electron trapping ability of the MXene, small particles of Pt, as well as the enhanced charge transfer between the oxygen vacancies of the MXene and Pt. This strategy for constructing Pt-supported heterostructures based on the vacancy anchoring effects provides new ideas for the design of well-defined electrocatalysts toward the HER.
Collapse
Affiliation(s)
- Qin Zhao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yue Zhang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Changwang Ke
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weilin Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianshu Yue
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiping Xiao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Cheng X, Mao C, Tian J, Xia M, Yang L, Wang X, Wu Q, Hu Z. Correlation between Heteroatom Coordination and Hydrogen Evolution for Single-site Pt on Carbon-based Nanocages. Angew Chem Int Ed Engl 2024; 63:e202401304. [PMID: 38465477 DOI: 10.1002/anie.202401304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
The electrocatalytic performance of single-site catalysts (SSCs) is closely correlated with the electronic structure of metal atoms. Herein we construct a series of Pt SSCs on heteroatom-doped hierarchical carbon nanocages, which exhibit increasing hydrogen evolution reaction (HER) activities along S-doped, P-doped, undoped and N-doped supports. Theoretical simulation indicates a multi-H-atom adsorption process on Pt SSCs due to the low coordination, and a reasonable descriptor is figured out to evaluate the HER activities. Relative to C-coordinated Pt, N-coordinated Pt has higher reactivity due to the electron transfer of N-to-Pt, which enriches the density of states of Pt 5d orbital near the Fermi level and facilitates the capturing of protons, just the opposite to the situations for P- and S-coordinated ones. The stable N-coordinated Pt originates from the kinetic stability throughout the multi-H-atom adsorption process. This finding provides a significant guidance for rational design of advanced Pt SSCs on carbon-based supports.
Collapse
Affiliation(s)
- Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
48
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
49
|
Gao M, Ma J, Li Y, Lin X, Wu L, Zou Y, Deng Y. Bottom-Up Construction of Mesoporous Cerium-Doped Titania with Stably Dispersed Pt Nanocluster for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17563-17573. [PMID: 38551503 DOI: 10.1021/acsami.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Hydrogen generation is one of the crucial technologies to realize sustainable energy development, and the design of advanced catalysts with efficient interfacial sites and fast mass transfer is significant for hydrogen evolution. Herein, an in situ coassembly strategy was proposed to engineer a cerium-doped ordered mesoporous titanium oxide (mpCe/TiO2), of which the abundant oxygen vacancies (Ov) and highly exposed active pore walls contribute to good stability of ultrasmall Pt nanoclusters (NCs, ∼ 1.0 nm in diameter) anchored in the uniform mesopores (ca. 20 nm). Consequently, the tailored mpCe/TiO2 with 0.5 mol % Ce-doping-supported Pt NCs (Pt-mpCe/TiO2-0.5) exhibits superior H2 evolution performance toward the water-gas shift reaction with a 0.73 molH2·s-1·molPt-1 H2 evolution rate at 200 °C, which is almost 6-fold higher than the Pt-mpTiO2 (0.13 molH2·s-1·molPt-1 H2). Density functional theory calculations confirm that the structure of Ce-doped TiO2 with Ce coordinated to six O atoms by substituting Ti atoms is thermodynamically favorable without the deformation of Ti-O bonds. The Ov generated by the six O atom-coordinated Ce doping is highly active for H2O dissociation with an energy barrier of 2.18 eV, which is obviously lower than the 2.37 eV for the control TiO2. In comparison with TiO2, the resultant Ce/TiO2 support acts as a superior electron acceptor for Pt NCs and causes electron deficiency at the Pt/support interface with a 0.17 eV downshift of the Pt d-band center, showing extremely obvious electronic metal-support interaction (EMSI). As a result, abundant and hyperactive Ti3+-Ov(-Ce3+)-Ptδ+ interfacial sites are formed to significantly promote the generation of CO2 and H2 evolution. In addition, the stronger EMSI between Pt NCs and mpCe/TiO2-0.5 than that between Pt and mpTiO2 contributes to the superior self-enhanced catalytic performance during the cyclic test, where the CO conversion at 200 °C increases from 72% for the fresh catalyst to 99% for the used one. These findings reveal the subtle relationship between the mesoporous metal oxide-metal composite catalysts with unique chemical microenvironments and their catalytic performance, which is expected to inspire the design of efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Meiqi Gao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Ximao Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Yidong Zou
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
50
|
Zheng ZL, Wu MM, Zeng X, Zhu XW, Luo D, Chen XL, Chen YF, Yang GZ, Bin DS, Zhou XP, Li D. Facile Fabrication of Hollow Nanoporous Carbon Architectures by Controlling MOF Crystalline Inhomogeneity for Ultra-Stable Na-Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202400012. [PMID: 38340327 DOI: 10.1002/anie.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.
Collapse
Affiliation(s)
- Ze-Lin Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ming-Min Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xian Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xue-Ling Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yan-Fei Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Guo-Zhan Yang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|