1
|
Chen XX, Ju YX, Zhang B, Ge XR, Liu EJ, Zhang DY, Wang J, Yao XH, Zhao WG, Chen T. High-performance supercapacitors based on coarse nanofiber bundle and ordered network hydrogels. Int J Biol Macromol 2024; 292:139208. [PMID: 39732266 DOI: 10.1016/j.ijbiomac.2024.139208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network. A coarse nanofiber bundle and ordered network skeleton was constructed by directional freezing and filled with polyvinyl alcohol (PVA) to serve as a soft matrix to prepare PVA-SNF-CNTs-PPy-3 hydrogel electrode, which has high tensile strength (6.22 MPa) and fatigue threshold (8759.8 J/m2). In addition, the loading of carbon nanotubes and polypyrrole onto the SNF-ordered network enabled the conductive material to form an ordered conductive energy storage network along the skeleton, providing an area-specific capacitance of up to 23.96 F/cm2. The coarse nanofiber bundle and ordered network provided supercapacitors with the least capacitance consumption under 150 % deformation, and the capacitance retention was >98.2 %. After repeated stretching (3000 times), the capacitance remained >91.45 %. This study provides new ideas for the development of flexible supercapacitors with high capacitance and high mechanical reliability.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yu-Xiong Ju
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Bei Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiao-Rui Ge
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - En-Jiang Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dong-Yang Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiao-Hui Yao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Wei-Guo Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Tao Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Wang M, Jiang X, Liu M, Deng B, Chen D, Cai Y, Ning J, Cui J, Zhang C, Meng H. Novel Thermoplastic Polyurethanes Enable Biaxially Stretchable Conductor for Supercapacitors with High Areal Capacitance. NANO LETTERS 2024; 24:16261-16269. [PMID: 39663853 DOI: 10.1021/acs.nanolett.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Stretchable supercapacitors are essential components in wearable electronics due to their low heat generation and seamless integration capabilities. Thermoplastic polyurethane elastomers, recognized for their dynamic hydrogen-bonding structure, exhibit excellent stretchability, making them well-suited for these applications. This study introduces fluorine-based interactions in the hard segments of thermoplastic polyurethanes, resulting in polyurethanes with a low elastic modulus, high fracture strength, exceptional fatigue resistance, and self-healing properties. By utilizing these polyurethanes as binders and meshed fabric as scaffolds, we developed highly stretchable conductors. These conductors maintain low resistance (∼26 ohms) under biaxial stretching and exhibit a stable bidirectional conductivity after 1600 stretching cycles. The fabricated supercapacitor electrode, incorporating fabric current collectors, polyurethane, and MXene, achieves an ultrahigh areal specific capacitance of 7200 mF cm-2 and retains 100% capacity after 2300 cycles. This material design strategy offers significant potential in elastic materials, stretchable conductors, and high-performance energy storage for wearable electronics.
Collapse
Affiliation(s)
- Meng Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Xin Jiang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Manyu Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Bin Deng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Dinghui Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yulu Cai
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jiaoyi Ning
- School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Shapingba District, Chongqing 400044, China
| | - Jixiang Cui
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Chaohong Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang R, Peng Y, Liu C, Zheng D, Yu J. Highly deformable bi-continuous conducting polymer hydrogels for electrochemical energy storage. J Colloid Interface Sci 2024; 673:143-152. [PMID: 38875785 DOI: 10.1016/j.jcis.2024.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Conducting polymer hydrogels with inherent flexibility, ionic conductivity and environment friendliness are promising materials in the fields of energy storage. However, a trade-off between mechanical and electrochemical properties has limited the development of flexible/stretchable conducting polymer hydrogel electrodes, owing to the intrinsic conflict among mechanical and electrical phases. Here, we report a reliable design to enable conducting polymer with both exceptional mechanical and electrical/electrochemical performance through the construction of bi-continuous conducting polymer crosslinked network. The resultant bi-continuous conducting polymer hydrogels (BCPH) demonstrate significantly improved mechanical and electrochemical properties compared to the conventional conducting polymer hydrogel (CPH) electrode. BCPH presents a high specific capacitance of 715 F g-1 at 0.5 A/g, a high mechanical strength (∼1 MPa) and a large stretchability (∼300%). Enabled by such intrinsically deformability and electrochemical properties, we further demonstrate its utility in flexible solid-state supercapacitor (FSSC), which exhibits an outstanding specific capacitance of 760 mF cm-2 at 2 mA cm-2, excellent electrochemical stability with 81% capacitance retention after 5000 charge/discharge cycles, and superior bending cycle stability. This simple and scalable strategy provides a platform for the fabrication of high-performance conducting hydrogel electrodes for various wearable electronic equipment.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
| |
Collapse
|
4
|
Zhang Y, Sun Y, Nan J, Yang F, Wang Z, Li Y, Wang C, Chu F, Liu Y, Wang C. In Situ Polymerization of Hydrogel Electrolyte on Electrodes Enabling the Flexible All-Hydrogel Supercapacitors with Low-Temperature Adaptability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309900. [PMID: 38312091 DOI: 10.1002/smll.202309900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.
Collapse
Affiliation(s)
- Yijing Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yue Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jingya Nan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Fusheng Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Zihao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Yuxi Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Chuchu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yupeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
5
|
Song C, Yu L, Liu H, Yang Z, Wu Y, Liu F, Zhang S, Gao S, Li M. Surfactant-assisted preparation of all-gel-state flexible supercapacitor with remarkable electrochemical performance based on polyaniline-polyacrylamide/sodium alginate hydrogels. Int J Biol Macromol 2024; 263:130449. [PMID: 38423422 DOI: 10.1016/j.ijbiomac.2024.130449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The electrochemical performance of polyaniline-based all-gel-state supercapacitor (AGSSC) is significantly depended on the dispersity and mass loaded of polyaniline (PANI). In this manuscript, inspired by the properties of surfactant, sodium dodecylbenzene sulfonate (SDBS) was introduced to prepare various PANI-polyacrylamide/sodium alginate/SDBS (PANIy-PSSx) AGSSCs. With presence of SDBS, the electrochemical performance of PANIy-PSSx AGSSCs was greatly improved, displaying a trend of initial rise and then decrease with increasing concentration of SDBS from 0 to 0.75 wt%. As the content of SDBS was 0.5 wt%, the resulting PANI1.0-PSS0.5 AGSSC displayed the optimum electrochemical properties with area capacitance and energy density of 913.79 mF/cm2 and 81.23 μWh/cm2, respectively. The capacitance rate of PANI1.0-PSS0.5 AGSSC was still more than 93 % after 2000 cycles of sequential CV scans at the scan rate of 200 mV/s. These data were greatly higher than many reported PANI-based AGSSCs. Moreover, the resultant PANI1.0-PSS0.5 AGSSC could maintain high electrochemical performance even after various operations, such as compression, puncture, fluctuating temperature, bending situations and various voltage windows and series-parallel connections. The resultant PANI1.0-PSS0.5 AGSSC had the wide potentials to satisfy the real application requirements. This study offered a facile strategy for design and preparation of flexible supercapacitor with excellent electrochemical performance.
Collapse
Affiliation(s)
- Chunlin Song
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Liqun Yu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Hailong Liu
- Shandong Dongyue Organic Silicon Materials Co., Ltd., Zibo 256401, Shandong, PR China
| | - Zhizhou Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Yue Wu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China.
| | - Fang Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, PR China
| | - Sheng Zhang
- Shandong Shengdu Energy Saving Technology Co., Ltd., Weifang, Jinan 261200, Shandong, PR China
| | - Sheng Gao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Mei Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| |
Collapse
|
6
|
Shin Y, Lee HS, Hong YJ, Sunwoo SH, Park OK, Choi SH, Kim DH, Lee S. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. SCIENCE ADVANCES 2024; 10:eadi7724. [PMID: 38507496 PMCID: PMC10954228 DOI: 10.1126/sciadv.adi7724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Stretchable bioelectronics has notably contributed to the advancement of continuous health monitoring and point-of-care type health care. However, microscale nonconformal contact and locally dehydrated interface limit performance, especially in dynamic environments. Therefore, hydrogels can be a promising interfacial material for the stretchable bioelectronics due to their unique advantages including tissue-like softness, water-rich property, and biocompatibility. However, there are still practical challenges in terms of their electrical performance, material homogeneity, and monolithic integration with stretchable devices. Here, we report the synthesis of a homogeneously conductive polyacrylamide hydrogel with an exceptionally low impedance (~21 ohms) and a reasonably high conductivity (~24 S/cm) by incorporating polyaniline-decorated poly(3,4-ethylenedioxythiophene:polystyrene). We also establish robust adhesion (interfacial toughness: ~296.7 J/m2) and reliable integration between the conductive hydrogel and the stretchable device through on-device polymerization as well as covalent and hydrogen bonding. These strategies enable the fabrication of a stretchable multichannel sensor array for the high-quality on-skin impedance and pH measurements under in vitro and in vivo circumstances.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sueng Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Li T, Qi H, Zhao Y, Kumar P, Zhao C, Li Z, Dong X, Guo X, Zhao M, Li X, Wang X, Ritchie RO, Zhai W. Robust and sensitive conductive nanocomposite hydrogel with bridge cross-linking-dominated hierarchical structural design. SCIENCE ADVANCES 2024; 10:eadk6643. [PMID: 38306426 PMCID: PMC10836727 DOI: 10.1126/sciadv.adk6643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024]
Abstract
Conductive hydrogels have a remarkable potential for applications in soft electronics and robotics, owing to their noteworthy attributes, including electrical conductivity, stretchability, biocompatibility, etc. However, the limited strength and toughness of these hydrogels have traditionally impeded their practical implementation. Inspired by the hierarchical architecture of high-performance biological composites found in nature, we successfully fabricate a robust and sensitive conductive nanocomposite hydrogel through self-assembly-induced bridge cross-linking of MgB2 nanosheets and polyvinyl alcohol hydrogels. By combining the hierarchical lamellar microstructure with robust molecular B─O─C covalent bonds, the resulting conductive hydrogel exhibits an exceptional strength and toughness. Moreover, the hydrogel demonstrates exceptional sensitivity (response/relaxation time, 20 milliseconds; detection lower limit, ~1 Pascal) under external deformation. Such characteristics enable the conductive hydrogel to exhibit superior performance in soft sensing applications. This study introduces a high-performance conductive hydrogel and opens up exciting possibilities for the development of soft electronics.
Collapse
Affiliation(s)
- Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Punit Kumar
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhenming Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiao Guo
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Miao Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xinwei Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
8
|
Peng Z, Zhou Y, Shu H, Yu C, Zhong W. Ultrahigh-Ionic-Conductivity, Antifreezing Poly(amidoxime)-Grafted Polyzwitterion Hydrogel for Facile Integrated into High-Performance Stretchable Flexible Supercapacitor. ACS OMEGA 2024; 9:2234-2249. [PMID: 38250425 PMCID: PMC10795038 DOI: 10.1021/acsomega.3c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Developing wearable supercapacitors (SCs) with high stretchability, arbitrary deformability, and antifreezing ability is still a challenge. In the present work, an ultrahigh-ionic-conductivity, antifreezing poly(amidoxime)-graft-polyzwitterion (PAO-g-PSBMA) hydrogel electrolyte is fabricated by grafting PSBMA in PAO. Owing to the abundant hydrophilic and high ionic adsorption capacity of amidoxime groups in PAO and zwitterion groups in PSBMA, the as-prepared PAO-g-PSBMA hydrogel can facilitate the dissociation of lithium salt and exhibit an ultrahigh ionic conductivity of 29.8 S m-1 at 25 °C and 3.4 S m-1 even at -30 °C. Employing mATi3C2Tx and mSTi3C2Tx, which contain small amounts of PAO-AGE and PAO-g-PSBMA dispersions, respectively, coated onto both sides of the PAO-g-PSBMA hydrogel, we followed a thermal treatment to facilely form integrated stretchable flexible SCs. The as-prepared SCs show an outstanding recoverable tensile stain of 80% and an excellent electrochemical stability under many types and times of arbitrary deformation. More importantly, as-prepared mATi3C2Tx- and mSTi3C2Tx-based SCs present fantastic antifreezing ability and excellent stability with 74.6 and 78.3% retention of the initial capacitance, respectively, even after 1000 times of stretching to 60% at -30 °C. This work offers a new strategy of using PAO-grafted polyzwitterion for obtaining an antifreezing stretchable SC, which shows a high potential for application in next-generation integrated stretchable devices in various fields.
Collapse
Affiliation(s)
- Zhiyuan Peng
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yutang Zhou
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Honghao Shu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuying Yu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenbin Zhong
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
9
|
Li L, Tian W, VahidMohammadi A, Rostami J, Chen B, Matthews K, Ram F, Pettersson T, Wågberg L, Benselfelt T, Gogotsi Y, Berglund LA, Hamedi MM. Ultrastrong Ionotronic Films Showing Electrochemical Osmotic Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301163. [PMID: 37491007 DOI: 10.1002/adma.202301163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/07/2023] [Indexed: 07/27/2023]
Abstract
A multifunctional soft material with high ionic and electrical conductivity, combined with high mechanical properties and the ability to change shape can enable bioinspired responsive devices and systems. The incorporation of all these characteristics in a single material is very challenging, as the improvement of one property tends to reduce other properties. Here, a nanocomposite film based on charged, high-aspect-ratio 1D flexible nanocellulose fibrils, and 2D Ti3 C2 Tx MXene is presented. The self-assembly process results in a stratified structure with the nanoparticles aligned in-plane, providing high ionotronic conductivity and mechanical strength, as well as large water uptake. In hydrogel form with 20 wt% liquid, the electrical conductivity is over 200 S cm-1 and the in-plane tensile strength is close to 100 MPa. This multifunctional performance results from the uniquely layered composite structure at nano- and mesoscales. A new type of electrical soft actuator is assembled where voltage as low as ±1 V resulted in osmotic effects and giant reversible out-of-plane swelling, reaching 85% strain.
Collapse
Affiliation(s)
- Lengwan Li
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Armin VahidMohammadi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jowan Rostami
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Bin Chen
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Kyle Matthews
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Farsa Ram
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lars A Berglund
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
10
|
Yao S, Zhang S, Zhang G, Tang Y, Zhu R, Peng Y, Chen Y, Pang H. Mesoporous Iron Family Element (Fe, Co, Ni) Molybdenum Disulfide/Carbon Nanohybrids for High-Performance Supercapacitors. Inorg Chem 2023; 62:16038-16046. [PMID: 37721422 DOI: 10.1021/acs.inorgchem.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
As the demand for fuel continues to increase, the development of energy devices with excellent performance is crucial. Supercapacitors (SCs) are attracting attention for their advantages of high specific energy and a long cycle life. At present, the development of high-performance electrode materials is the main point for research and development of SCs. Transition metal sulfides have the advantages of a large interlayer space and high theoretical capacity, making them promising electrode materials. Herein, we reported a series of ultrathin mesoporous iron family element (Fe, Co, Ni) molybdenum disulfide (MxMo1-xS2/C, M = Fe, Co, and Ni) by a template method. The original monolayer mesoporous structure of MoS2/C was maintained, and accumulation and agglomeration of MoS2/C were avoided. Based on our investigations, the best performance was that of CoxMo1-xS2/C nanohybrids. Furthermore, the concentrations of Co and Mo ions were modulated to obtain the best performance, in which Mo and Co ions were released at 1:1, 1:2, and 1:3 ratios and they were named CoxMo1-xS2/C-1, CoxMo1-xS2/C-2, and CoxMo1-xS2/C-3, respectively. Overall, these materials represent a significant improvement and show promise as high-performance SC electrode materials due to their enhanced capacitance and stability. At a current density of 0.5 A g-1, CoxMo1-xS2/C-2 has the optimal specific capacitance of 184 F g-1. CoxMo1-xS2/C-2 as an SC electrode exhibited better reversible capacity and cycling stability than MoS2/C, which is an improvement over MoS2/C regarding reversible capacity and cycling stability.
Collapse
Affiliation(s)
- Shiyi Yao
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yong Chen
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
11
|
Qi Y, Lv T, Chen Z, Duan Y, Li X, Tang W, Sun Q, Zhai D, Chen T. A novel catalyst derived from Co-ZIFs to grow N-doped carbon nanotubes for all-solid-state supercapacitors with high performance. NANOSCALE 2023; 15:13280-13288. [PMID: 37545477 DOI: 10.1039/d3nr01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Carbon nanotubes (CNTs) have been widely used as electrode materials for electrochemical energy storage devices (e.g., supercapacitors) due to their excellent chemical and physical properties. However, conventional approaches (e.g., electron-beam vapor deposition and atomic layer deposition) to fabricate catalysts for the growth of CNTs are complex and demand high energy consumption. Herein, we report a facile method to synthesize catalysts derived from cobalt-containing zeolitic imidazolate frameworks (Co-ZIFs), which is exploited to in situ construct the three-dimensional (3D) CNT hybrid materials for all-solid-state supercapacitors. In brief, Co-ZIFs with a controllable structure is first grown on the inner porous surface of carbon foams pyrolyzed from commercial melamine foams, followed by thermal annealing and chemical vapor deposition to grow CNTs, achieving 3D free-standing CNT-based hybrids. The well-distributed Co-ZIFs in the carbon foam enable the grown CNTs with uniform structures and morphologies. Using the fabricated CNT-based hybrid as electrodes, the assembled all-solid-state supercapacitors show a high specific capacitance of 19.4 mF cm-2 at a current density of 0.5 mA cm-2, which could be further optimized to as high as 871.8 mF cm-2 by incorporating the pseudocapacitive material of manganese dioxide in CNT-based hybrids. This study provides a facile solution approach to fabricate the catalyst for the growth of a CNT inner porous substrate; the resultant 3D free-standing hybrids could be used as efficient electrodes for high-performance energy storage devices beyond supercapacitors.
Collapse
Affiliation(s)
- Yunlong Qi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yu Duan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiao Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Weiyang Tang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Quanhu Sun
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Dongmei Zhai
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Wei F, Zhang T, Dong R, Wu Y, Li W, Fu J, Jing C, Cheng J, Feng X, Liu S. Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties. Nat Protoc 2023; 18:2459-2484. [PMID: 37460631 DOI: 10.1038/s41596-023-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/20/2023] [Indexed: 08/09/2023]
Abstract
Conducting polymers with conjugated backbones have been widely used in electrochemical energy storage, catalysts, gas sensors and biomedical devices. In particular, two-dimensional (2D) mesoporous conducting polymers combine the advantages of mesoporous structure and 2D nanosheet morphology with the inherent properties of conducting polymers, thus exhibiting improved electrochemical performance. Despite the use of bottom-up self-assembly approaches for the fabrication of a variety of mesoporous materials over the past decades, the synchronous control of the dimensionalities and mesoporous architectures for conducting polymer nanomaterials remains a challenge. Here, we detail a simple, general and robust route for the preparation of a series of 2D mesoporous conducting polymer nanosheets with adjustable pore size (5-20 nm) and thickness (13-45 nm) and controllable morphology and composition via solution-based self-assembly. The synthesis conditions and preparation procedures are detailed to ensure the reproducibility of the experiments. We describe the fabrication of over ten high-quality 2D-ordered mesoporous conducting polymers and sandwich-structured hybrids, with tunable thickness, porosity and large specific surface area, which can serve as potential candidates for high-performance electrode materials used in supercapacitors and alkali metal ion batteries, and so on. The preparation time of the 2D-ordered mesoporous conducting polymer is usually no more than 12 h. The subsequent supercapacitor testing takes ~24 h and the Na ion battery testing takes ~72 h. The procedure is suitable for users with expertise in physics, chemistry, materials and other related disciplines.
Collapse
Affiliation(s)
- Facai Wei
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Tingting Zhang
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yong Wu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Wenda Li
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, P.R. China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany.
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
13
|
Han J, Li DS, Jiang L. Scalable Quasi-Solid-State Supercapacitor for Wide-Temperature Wearable Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37279098 DOI: 10.1021/acsami.2c23303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quasi-solid-state supercapacitors have wide application prospects in flexible and scalable electronics, which require high capacity, simple form factor, and excellent mechanical robustness. However, it is a challenge to have all these benefits in one material. Addressing this, we report a composite hydrogel with excellent mechanical durability and freezing resistance. The designed composite hydrogel acts both as a load-bearing layer to maintain its structure during deformation and as a permeable binder to stimulate the interfacing between the conductive electrode and the electrolyte to reduce the interface resistance. Flexible supercapacitors are assembled with composite hydrogels and high-performance MnO2/carbon cloth, which has excellent performance and can store energy at different temperatures or bending states. These results show that the tough hydrogel facilitates the improvement of electrical and mechanical stability, showing great potential in wide-temperature wearable devices.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Dian-Sen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
14
|
Lin C, Zhang YF, Lu D, Silva A, Liu Z, Yang HY. Low-Temperature Resistant Stretchable Micro-Supercapacitor Based on 3D Printed Octet-Truss Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207634. [PMID: 36732912 DOI: 10.1002/smll.202207634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Indexed: 06/08/2023]
Abstract
Recently, stretchable micro-supercapacitors (MSCs) that can be easily integrated into electronic devices have attracted research and industrial attentions. In this work, three-dimensional (3D) stretchable MSCs with an octet-truss electrode (OTE) design have been demonstrated by a rapid digital light processing (DLP) process. The 3D-printed electrode structure is beneficial for electrode-electrolyte interface formation and consequently increases the number of ions adsorbed on the electrode surface. The designed MSCs can achieve a high capacitance as ≈74.76 mF cm-3 under 1 mA cm-3 at room temperature even under a high mechanical deformation, and can achieve 19.53 mF cm-3 under 0.1 mA cm-3 at a low temperature (-30 °C). Moreover, finite element analysis (FEA) reveals the OTE structure provides 8 times more contact area per unit volume at the electrode-electrolyte interface compared to the traditional interdigital electrode (IDE). This work combines structural design and 3D printing techniques, which provides new insights into highly stretchable MSCs for next-generation electronic devices.
Collapse
Affiliation(s)
- Congjian Lin
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Yuan-Fang Zhang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Dingjie Lu
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Arlindo Silva
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Zhuangjian Liu
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Hui Ying Yang
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
15
|
Ju Y, Song P, Wang P, Chen X, Chen T, Yao X, Zhao W, Zhang D. Cartilage structure-inspired elastic silk nanofiber network hydrogel for stretchable and high-performance supercapacitors. Int J Biol Macromol 2023; 242:124912. [PMID: 37207750 DOI: 10.1016/j.ijbiomac.2023.124912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Flexible supercapacitors are an important portable energy storage but suffer from low capacitance, inability to stretch, etc. Therefore, flexible supercapacitors must achieve higher capacitance, energy density, and mechanical robustness to expand the applications. Herein, a hydrogel electrode with excellent mechanical strength was created by simulating the collagen fiber network and proteoglycan in cartilage using silk nanofiber (SNF) network and polyvinyl alcohol (PVA). The Young's modulus and breaking strength of the hydrogel electrode increased by 205 % and 91 % compared with PVA hydrogel owing to the enhanced effect of the bionic structure, respectively, which are 1.22 MPa and 1.3 MPa. The fracture energy and fatigue threshold reached 1813.5 J/m2 and 1585.2 J/m2, respectively. The SNF network effectively connected carbon nanotubes (CNTs) and polypyrrole (PPy) in series, affording a capacitance of 13.62 F/cm2 and energy density of 1.2098 mWh/cm2. This capacitance is the highest among currently reported PVA hydrogel capacitors, which can maintain >95.2 % after 3000 charge-discharge cycles. This capacitance Notably, the cartilage-like structure endowed the supercapacitor with high resilience; thus, the capacitance remained >92.1 % under 150 % deformation and >93.35 % after repeated stretching (3000 times), which was far superior to that of other PVA-based supercapacitors. Overall, this effective bionic strategy can endow supercapacitors with ultrahigh capacitance and effectively ensure the mechanical reliability of flexible supercapacitors, which will help expand the applications of supercapacitors.
Collapse
Affiliation(s)
- Yuxiong Ju
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Peng Song
- College of Chemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Pingyue Wang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Xinxin Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Tao Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Xiaohui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Weiguo Zhao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Dongyang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
| |
Collapse
|
16
|
Xiao W, Liu J, Lu Z, Zhang P, Wei H, Yu Y. Simultaneous Polymerization Acceleration and Mechanical Enhancement for Printing a Biomimetic PEDOT Adhesive by Coordinative and Orthogonal Ruthenium Photochemistry. ACS Macro Lett 2023; 12:433-439. [PMID: 36930947 DOI: 10.1021/acsmacrolett.2c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Conductive hydrogels are promising material candidates in fields ranging from flexible sensors and electronic skin applications to personalized medical monitoring. However, developing intrinsically conductive polymer hydrogels (ICPHs) with high mechanical properties and excellent printability is still challenging. Here, we introduce a simultaneous polymerization acceleration and mechanical enhancement (SPAME) strategy to construct PEDOT-based ICPHs via the rational design of coordinative and orthogonal ruthenium photochemistry (CORP). This orthogonal photochemistry triggers the oxidative polymerization of EDOT and the coupling of phenols within seconds under blue light irradiation. Benefiting from the bifunctional EDTA-Fe design, the photoreleased Fe(III) accelerated the EDOT polymerization and shortened the preparation time of ICPHs to a few seconds. At the same time, the addition of EDTA-Fe enhanced their mechanical properties, and both the critical strains and maximum stresses of the hydrogel doubled. Furthermore, the introduction of phenol residues in PAA-Ph significantly shortened the gelation time from several minutes to about 7 s. Thus, this fast and controllable CORP chemistry is compatible with standard printing techniques for engineering hydrogels for complex multifunctional structures for multifunctional bioelectronics and devices.
Collapse
Affiliation(s)
- Wenqing Xiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zhe Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
17
|
Guo R, Yu D, Wang S, Fu L, Lin Y. Nanosheet-hydrogel composites: from preparation and fundamental properties to their promising applications. SOFT MATTER 2023; 19:1465-1481. [PMID: 36752168 DOI: 10.1039/d2sm01471h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels are an important class of soft materials with elastic and intelligent properties. Nevertheless, these traditional hydrogels usually possess poor mechanical properties and limited functions, which greatly restrict their further applications. With the rapid development of nanotechnology, there have been significant advances in the design and fabrication of functional nanocomposite hydrogels with unique properties and functions. Among various materials, nanosheets with planar topography, large specific surface areas, and versatile physicochemical properties have attracted intense research interest. Herein, this review summarises the synthesis mechanisms, fundamental properties, and promising applications of nanosheet-incorporated hydrogels. In particular, how the nanosheet structure is applied to improve the overall performance of the hydrogel in each application is emphasized. Additionally, the current challenges and prospects are briefly discussed in this area. We expect that the combination of nanosheets and hydrogels can attract more researchers' interest and bring new opportunities in the future.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Lianlian Fu
- College of Material Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
18
|
O'Neill SJK, Huang Z, Ahmed MH, Boys AJ, Velasco-Bosom S, Li J, Owens RM, McCune JA, Malliaras GG, Scherman OA. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207634. [PMID: 36314408 DOI: 10.1002/adma.202207634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced. Rational design of an ultrahigh affinity host-guest ternary complex led to binding affinities (>1013 M-2 ) of over an order of magnitude greater than previous reports. Embedding these complexes as dynamic cross-links, coupled with in situ synthesis of a conducting polymer, resulted in electrically conductive supramolecular polymer networks with tissue-mimetic Young's moduli (<5 kPa), high stretchability (>500%), rapid self-recovery and high water content (>84%). Achieving such properties enabled fabrication of intrinsically-stretchable stand-alone bioelectrodes, capable of accurately monitoring electromyography signals, free from any rigid materials.
Collapse
Affiliation(s)
- Stephen J K O'Neill
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zehuan Huang
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mohammed H Ahmed
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alexander J Boys
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Santiago Velasco-Bosom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jiaxuan Li
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Róisín M Owens
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| |
Collapse
|
19
|
Wang Y, Sun L, Chen G, Chen H, Zhao Y. Structural Color Ionic Hydrogel Patches for Wound Management. ACS NANO 2022; 17:1437-1447. [PMID: 36512760 DOI: 10.1021/acsnano.2c10142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ionic hydrogels have attracted extensive attention because of their wide applicability in electronic skins, biosensors, and other biomedical areas. Tremendous effort is dedicated to developing ionic hydrogels with improved detection accuracy and multifunctionality. Herein, we present an inverse opal scaffold-based structural color ionic hydrogel with the desired features as intelligent patches for wound management. The patches were composed of a polyacrylamide-poly(vinyl alcohol)-polyethylenimine-lithium chloride (PAM-PVA-PEI-LiCl) inverse opal scaffold and a vascular endothelial growth factor (VEGF) mixed methacrylated gelatin (GelMA) hydrogel filler surface. The scaffold imparted the composite patches with brilliant structural color, conductive property, and freezing resistance, while the VEGF-GelMA surface could not only prevent the ionic hydrogel from the interference of complex wound conditions but also contribute to the cell proliferation and tissue repair in the wounds. Thus, the hydrogel patches could serve as electronic skins for in vivo wound healing and monitoring with high accuracy and reliability. These features indicate that the proposed structural color ionic hydrogel patches have great potential for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Hanxu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
20
|
Shen J, Dai Y, Xia F, Zhang X. Role of divalent metal ions in the function and application of hydrogels. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Long Y, Wang Z, Xu F, Jiang B, Xiao J, Yang J, Wang ZL, Hu W. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203956. [PMID: 36228096 DOI: 10.1002/smll.202203956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Flexibility/wearable electronics such as strain/pressure sensors in human-machine interactions (HMI) are highly developed nowadays. However, challenges remain because of the lack of flexibility, fatigue resistance, and versatility, leading to mechanical damage to device materials during practical applications. In this work, a triple-network conductive hydrogel is fabricated by combining 2D Ti3 C2 Tx nanosheets with two kinds of 1D polymer chains, polyacrylamide, and polyvinyl alcohol. The Ti3 C2 Tx nanosheets act as the crosslinkers, which combine the two polymer chains of PAM and PVA via hydrogen bonds. Such a unique structure endows the hydrogel (MPP-hydrogel) with merits such as mechanical ultra-robust, super-elasticity, and excellent fatigue resistance. More importantly, the introduced Ti3 C2 Tx nanosheets not only enhance the hydrogel's conductivity but help form double electric layers (DELs) between the MXene nanosheets and the free water molecules inside the MPP-hydrogel. When the MPP-hydrogel is used as the electrode of the triboelectric nanogenerator (MPP-TENG), due to the dynamic balance of the DELs under the initial potential difference generated from the contact electrification as the driving force, an enhanced electrical output of the TENG is generated. Moreover, flexible strain/pressure sensors for tiny and low-frequency human motion detection are achieved. This work demonstrates a promising flexible electronic material for e-skin and HMI.
Collapse
Affiliation(s)
- Yong Long
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuo Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Junfeng Xiao
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
22
|
Carboxymethyl cellulose assisted PEDOT in polyacrylamide hydrogel for high performance supercapacitors and self-powered sensing system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Li Y, Gong Q, Han L, Liu X, Yang Y, Chen C, Qian C, Han Q. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Carbohydr Polym 2022; 298:120060. [DOI: 10.1016/j.carbpol.2022.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
|
24
|
Zhao Y, Liang Q, Mugo SM, An L, Zhang Q, Lu Y. Self-Healing and Shape-Editable Wearable Supercapacitors Based on Highly Stretchable Hydrogel Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201039. [PMID: 35754306 PMCID: PMC9405484 DOI: 10.1002/advs.202201039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Shape editability combined with a self-healing capability and long-term cycling durability are highly desirable properties for wearable supercapacitors. Most wearable supercapacitors have rigid architecture and lack the capacity for editability into desirable shapes. Through sandwiching hydrogel electrolytes between two electrodes, a suite of wearable supercapacitors that integrate desirable properties namely: repeated shape editability, excellent self-healing capability, and long-term cycling durability is demonstrated. A strategy is proposed to enhance the long-term cycling durability by utilizing hydrogel electrolytes with unique cross-linking structures. The dynamic crosslinking sites are formed by quadruple H bonds and hydrophobic association, stabilizing the supercapacitors from inorganic ion disruption during charge-discharge processes. The fabricated supercapacitors result in the capacitance retention rates of 99.6% and 95.8% after 5000 and 10 000 charge-discharge cycles, respectively, which are much higher than others reported in the literature. Furthermore, the supercapacitor sheets can be repeatedly processed into various shapes without any capacitance loss. The supercapacitors exhibit a 95% capacitance retention rate after five cutting/self-healing cycles, indicative of their excellent self-healing performance. To demonstrate real-life applicability, the wearable supercapacitors are successfully used to power a light-emitting diode and an electronic watch.
Collapse
Affiliation(s)
- Yizhou Zhao
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Quanduo Liang
- University of Science and Technology of ChinaHefei230026P. R. China
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Samuel M. Mugo
- Department of Physical SciencesMacEwan UniversityEdmontonABT5J4S2Canada
| | - Lijia An
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Qiang Zhang
- University of Science and Technology of ChinaHefei230026P. R. China
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| |
Collapse
|
25
|
Zhou Z, Tao Z, Zhang L, Zheng X, Xiao X, Liu Z, Li X, Liu G, Zhao P, Zhang P. Scalable Manufacturing of Solid Polymer Electrolytes with Superior Room-Temperature Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32994-33003. [PMID: 35819178 DOI: 10.1021/acsami.2c01416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A scalable manufacturing protocol is developed to prepare polymer-based solvent-free all-solid flexible energy storage devices based on a two-roll mill and adapted rubber mixing technology. The as-prepared solid polymer electrolytes (SPEs) consisting of commercial poly(methyl methacrylate)-grafted natural rubber (MG30) and lithium bis(trifluoromethanesulfonyl)imide achieve a superior ionic conductivity of 2.7 × 10-3 S cm-1 at 30 °C. The superior ionic conductivity is attributed to the formation of an ionic cluster network in the composite as proved by small-angle X-ray scattering and infrared spectroscopy measurements. Moreover, the as-prepared SPEs show good mechanical stability over a broad temperature range, that is , a storage modulus above 1 × 104 Pa from 30 to 120 °C as indicated by the rheology data. Furthermore, the SPEs were assembled with the carbon black-filled MG30 (i.e., MG30C) electrode into a flexible supercapacitor cell, which had a wide voltage window of 3.5 V, good energy density of 28.4 μW h·cm-2 at 160 °C, and good temperature tolerance up to 160 °C. This scaling-up manufacture strategy shows tremendous potential to the advancing of SPEs in applications of flexible energy storage device.
Collapse
Affiliation(s)
- Zekun Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengren Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Linyun Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueying Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xieyi Xiao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhen Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guangfeng Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Pengfei Zhao
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, P.R. China
| | - Peng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Tang Z, Bian S, Wei J, Xiao H, Zhang M, Liu K, Huang L, Chen L, Ni Y, Wu H. Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Colloids Surf B Biointerfaces 2022; 215:112509. [PMID: 35472651 DOI: 10.1016/j.colsurfb.2022.112509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Conductive hydrogels have attracted significant attention as a promising material in electrical and biomedical fields. However, the simultaneous realization of good conductivity, toughness, high tissue adhesiveness, excellent biocompatibility, and extreme environmental tolerance remains a challenge. Inspired by the antifreezing/antiheating behavior of natural plants, a calcium chloride/TEMPO-oxidized cellulose nanofiber-dopamine/ polyacrylamide (CaCl2/TOCNF-DOPA/PAM) glycerol/water organohydrogel with antifreezing and antiheating properties, good transparency, conductivity, stability, excellent biocompatibility, mechanical properties, and tissue adhesiveness was fabricated. The organohydrogel has about 700% stretchability, with about 90% transparency. The organohydrogel exhibits good conductivity of 4.9 × 10-4 S/cm and high tissue adhesiveness of 50 kPa, which can monitor various human activities. The organohydrogel displays excellent extreme environmental tolerance to maintain the conductivity and mechanical properties under an extremely wide temperature range (-24 to 50 °C) for a long period due to its water-locking effect between glycerol and water molecules. The biocompatible organohydrogel is able to protect the skin from frostbite or burns in harsh environments. The plant-inspired stable and durable organohydrogel is used as a wearable dressing for multifunctional sensors.
Collapse
Affiliation(s)
- Zuwu Tang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Shuai Bian
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, PR China.
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China.
| | - Kai Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
27
|
Liu J, Wang M, Gu C, Li J, Liang Y, Wang H, Cui Y, Liu C. Supramolecular Gel-Derived Highly Efficient Bifunctional Catalysts for Omnidirectionally Stretchable Zn-Air Batteries with Extreme Environmental Adaptability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200753. [PMID: 35522020 PMCID: PMC9284165 DOI: 10.1002/advs.202200753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Indexed: 06/01/2023]
Abstract
Most existing stretchable batteries can generally only be stretched uniaxially and suffer from poor mechanical and electrochemical robustness to withstand extreme mechanical and environmental challenges. A highly efficient bifunctional electrocatalyst is herein developed via the unique self-templated conversion of a guanosine-based supramolecular hydrogel and presents a fully integrated design strategy to successfully fabricate an omnidirectionally stretchable and extremely environment-adaptable Zn-air battery (ZAB) through the synergistic engineering of active materials and device architecture. The electrocatalyst demonstrates a very low reversible overpotential of only 0.68 V for oxygen reduction/evolution reactions (ORR/OER). This ZAB exhibits superior omnidirectional stretchability with a full-cell areal strain of >1000% and excellent durability, withstanding more than 10 000 stretching cycles. Promisingly, without any additional pre-treatment, the ZAB exhibits outstanding ultra-low temperature tolerance (down to -60 °C) and superior waterproofness, withstanding continuous water rinsing (>5 h) and immersion (>3 h). The present work offers a promising strategy for the design of omnidirectionally stretchable and high-performance energy storage devices for future on-skin wearable applications.
Collapse
Affiliation(s)
- Junpeng Liu
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| | - Mengke Wang
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| | - Chaonan Gu
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| | - Jingjing Li
- School of Chemistry and Chemical EngineeringHenan University of TechnologyZhengzhou450001China
| | - Yujia Liang
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| | - Hai Wang
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| | - Yihan Cui
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| | - Chun‐Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhou450002China
| |
Collapse
|
28
|
Tang C, Thomas B, Ramírez-Hernández M, Mikmeková EM, Asefa T. Metal-Functionalized Hydrogels as Efficient Oxygen Evolution Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20919-20929. [PMID: 35500300 DOI: 10.1021/acsami.2c01667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conductive polymer hydrogels have large surface areas and electrical conductivities. Their properties can be further tailored by functionalizing them with metals and nonmetals. However, the potential applications of metal-functionalized hydrogels for electrocatalysis have rarely been investigated. In this work, we report the synthesis of transition-metal-functionalized polyaniline-phytic acid (PANI-PA) hydrogels that show efficient electrocatalytic activities for the oxygen evolution reaction (OER). Among the many transition metals studied, Fe is accommodated by the hydrogel the most due to the favorable affinity of the PA groups in the hydrogel for Fe. Meanwhile, those containing both Fe and Co are found to be the most effective electrocatalysts for OER. The most optimized such hydrogel, NF@Hgel-Fe0.3Co0.1, which is made using a solution that has a 3:1 ratio of Fe and Co, needs an overpotential of only 280 mV to catalyze OER in 1 M KOH solution with a current density of 10 mV cm-2. Furthermore, these metal-functionalized PANI-PA hydrogels can easily be loaded on the nickel foam or carbon cloth via a simple soak-and-dry method to generate free-standing electrodes. Overall, this work demonstrates a facile synthesis and fabrication of sustainable and efficient OER electrocatalysts and electrodes that are composed of easily processable hydrogels functionalized with earth-abundant transition metals.
Collapse
Affiliation(s)
- Chaoyun Tang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen 518060, China
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Eliška M Mikmeková
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
29
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
30
|
Yan G, He S, Chen G, Ma S, Zeng A, Chen B, Yang S, Tang X, Sun Y, Xu F, Lin L, Zeng X. Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. NANO-MICRO LETTERS 2022; 14:84. [PMID: 35348885 PMCID: PMC8964865 DOI: 10.1007/s40820-022-00827-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/22/2022] [Indexed: 05/12/2023]
Abstract
Wood-based hydrogel with a unique anisotropic structure is an attractive soft material, but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible. In this study, an all-wood hydrogel was constructed by cross-linking cellulose fibers, polyvinyl alcohol (PVA) chains, and lignin molecules through the Hofmeister effect. The all-wood hydrogel shows a high tensile strength of 36.5 MPa and a strain up to ~ 438% in the longitudinal direction, which is much higher than its tensile strength (~ 2.6 MPa) and strain (~ 198%) in the radial direction, respectively. The high mechanical strength of all-wood hydrogels is mainly attributed to the strong hydrogen bonding, physical entanglement, and van der Waals forces between lignin molecules, cellulose nanofibers, and PVA chains. Thanks to its excellent flexibility, good conductivity, and sensitivity, the all-wood hydrogel can accurately distinguish diverse macroscale or subtle human movements, including finger flexion, pulse, and swallowing behavior. In particular, when "An Qi" was called four times within 15 s, two variations of the pronunciation could be identified. With recyclable, biodegradable, and adjustable mechanical properties, the all-wood hydrogel is a multifunctional soft material with promising applications, such as human motion monitoring, tissue engineering, and robotics materials.
Collapse
Affiliation(s)
- Guihua Yan
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper-Making Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Gaofeng Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Sen Ma
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Anqi Zeng
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Binglin Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
31
|
Chen R, Ling H, Huang Q, Yang Y, Wang X. Interface Engineering on Cellulose-Based Flexible Electrode Enables High Mass Loading Wearable Supercapacitor with Ultrahigh Capacitance and Energy Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106356. [PMID: 34918469 DOI: 10.1002/smll.202106356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Indexed: 05/07/2023]
Abstract
For practical energy storage devices, a bottleneck is to retain decent integrated performances while increasing the mass loading of active materials to the commercial level, which highlights an urgent need for novel electrode structure design strategies. Here, an active nitrogen-doped carbon interface with "high conductivity, high porosity, and high electrolyte affinity" on a flexible cellulose electrode surface is engineered to accommodate 1D active materials. The high conductivity of interface favors fast electron transport, while its high porosity and high electrolyte affinity properties benefit ion migration. As a result, the flexible anode accommodated by carbon nanotubes achieves an ultrahigh capacitance of 9501 mF cm-2 (315.6 F g-1 ) at a high mass loading of 30.1 mg cm-2 , and the flexible cathode accommodated by polypyrrole nanotubes realizes a remarkably high capacitance of 6212 mF cm-2 (248 F g-1 , 25 mg cm-2 ). The assembled flexible quasi-solid-state asymmetric supercapacitor delivers a maximum energy density of 1.42 mWh cm-2 (2.2 V, 2105 mF cm-2 ), representing the highest value among all reported flexible supercapacitors. This versatile design concept provides a new way to prepare high performance flexible energy storage devices.
Collapse
Affiliation(s)
- Ruwei Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hao Ling
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Quanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
32
|
Pan Z, Yang J, Kong J, Loh XJ, Wang J, Liu Z. "Porous and Yet Dense" Electrodes for High-Volumetric-Performance Electrochemical Capacitors: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103953. [PMID: 34796698 PMCID: PMC8811823 DOI: 10.1002/advs.202103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 06/13/2023]
Abstract
With the ever-rapid miniaturization of portable, wearable electronics and Internet of Things, the volumetric performance is becoming a much more pertinent figure-of-merit than the conventionally used gravimetric parameters to evaluate the charge-storage capacity of electrochemical capacitors (ECs). Thus, it is essential to design the ECs that can store as much energy as possible within a limited space. As the most critical component in ECs, "porous and yet dense" electrodes with large ion-accessible surface area and optimal packing density are crucial to realize desired high volumetric performance, which have demonstrated to be rather challenging. In this review, the principles and fundamentals of ECs are first observed, focusing on the key understandings of the different charge storage mechanisms in porous electrodes. The recent and latest advances in high-volumetric-performance ECs, developed by the rational design and fabrication of "porous and yet dense" electrodes are then examined. Particular emphasis of discussions then concentrates on the key factors impacting the volumetric performance of porous carbon-based electrodes. Finally, the currently faced challenges, further perspectives and opportunities on those purposely engineered porous electrodes for high-volumetric-performance EC are presented, aiming at providing a set of guidelines for further design of the next-generation energy storage devices.
Collapse
Affiliation(s)
- Zhenghui Pan
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Jie Yang
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)2 Fusionopolis WaySingapore138634Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)2 Fusionopolis WaySingapore138634Singapore
| | - John Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Zhaolin Liu
- Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)2 Fusionopolis WaySingapore138634Singapore
| |
Collapse
|
33
|
Jia M, Luo L, Rolandi M. Correlating Ionic Conductivity and Microstructure in Polyelectrolyte Hydrogels for Bioelectronic Devices. Macromol Rapid Commun 2022; 43:e2100687. [PMID: 35020249 DOI: 10.1002/marc.202100687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Indexed: 11/05/2022]
Abstract
Hydrogels have become the material of choice in bioelectronic devices because their high-water content leads to efficient ion transport and a conformal interface with biological tissue. While the morphology of hydrogels has been thoroughly studied, systematical studies on their ionic conductivity is less common. Here, we present an easy-to-implement strategy to characterize the ionic conductivity of a series of polyelectrolyte hydrogels with different amounts of monomer and crosslinker and correlate their ionic conductivity with microstructure. Higher monomer increases the ionic conductivity of the polyelectrolyte hydrogel due to the increased charge carrier density, but also leads to excessive swelling that may cause device failure upon integration with bioelectronic devices. Increasing the amount of crosslinker can reduce the swelling ratio by increasing the crosslinking density and reducing the mesh size of the hydrogel, which cuts down the ionic conductivity. Further investigation on the porosity and tortuosity of the swollen hydrogels correlates the microstructure with the ionic conductivity. These results are generalizable for various polyelectrolyte hydrogel systems with other ions as the charge carrier and provide a facile guidance to design polyelectrolyte hydrogel with desired ionic conductivity and microstructure for applications in bioelectronic devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Manping Jia
- M. Jia, L. Luo, M. Rolandi, Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, 95064, USA
| | - Le Luo
- M. Jia, L. Luo, M. Rolandi, Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, 95064, USA
| | - Marco Rolandi
- M. Jia, L. Luo, M. Rolandi, Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, 95064, USA
| |
Collapse
|
34
|
Gao M, Xue Y, Zhang Y, Zhu C, Yu H, Guo X, Sun S, Xiong S, Kong Q, Zhang J. Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00695b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reasonable design of electrode materials is crucial for tuning the electrochemical performances of advanced energy storage systems.
Collapse
Affiliation(s)
- Mingyue Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yanchun Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yutang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Chengxing Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiwei Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xingmei Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shasha Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shenglin Xiong
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|