1
|
Zou B, Yang Y, Wang H, Li W, Wang L, Gao F, Zhang D, Gloginjić M, Erić M, Petrović S, Yang W, He H, Chen S. High-Responsivity Self-Powered Photoelectrochemical UV Photodetector Based on Integrated Self-Supporting SiC/ZnS Heterojunction Nanowire Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406308. [PMID: 39676498 DOI: 10.1002/smll.202406308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
In the realm of photodetector (PD) technology, photoelectrochemical (PEC) PDs have garnered attention owing to their inherent advantages. Advances in this field depend on functional nanostructured materials, which are pivotal in improving the separation and transport of photogenerated electron-hole pairs to improve device efficiency. Herein, a highly photosensitive PEC UV PD is built using integrated self-supporting SiC/ZnS heterojunction nanowire array photoelectrodes through anodization and chemical deposition. Compared with the original SiC nanoarrays, the optimized SiC/ZnS-25 nanoarrays exhibit high photocurrent density (Dph, 809.2 µA cm-2), rapid rise/decay times (τr/τd, 4/21 ms), high responsivity (Rλ, 1.226 A W-1), remarkable detectivity (D*, 2.517 × 1011 Jones), and large external quantum efficiency (EQE, 40.57%) under 375 nm UV light with a bias voltage of 0.6 V. Furthermore, SiC/ZnS-25 delivers excellent self-powered performance, with Rλ, D*, and EQE reaching 0.91 A W-1, 1.69 × 1011 Jones, and 30.24%, respectively. In addition, the device exhibits excellent long-term operation and aging stability under a bias voltage of 0.6 V and under self-powered conditions. The excellent photodetection behaviors of the SiC/ZnS PEC PD are mainly ascribed to the synergistic effect of the novel well-aligned nanowire geometry, heterojunction with ZnS nanofilms of optimal thickness, and integrated self-supporting configuration of the photoelectrode.
Collapse
Affiliation(s)
- Bocong Zou
- School of Resources, Environment, and Materials, Guangxi University, Nanning, 530004, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Yang Yang
- Ningbo Institute of Measurement and Testing, Ningbo, 315048, P. R. China
| | - Hulin Wang
- School of Resources, Environment, and Materials, Guangxi University, Nanning, 530004, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Weijun Li
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Lin Wang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Fengmei Gao
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Dongdong Zhang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Marko Gloginjić
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Marko Erić
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Srdjan Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Huan He
- School of Resources, Environment, and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Shanliang Chen
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| |
Collapse
|
2
|
Skorotetcky MS, Mir WJ, Sheikh T, Yorov KE, Saidzhonov BM, Daws S, Zhou R, Hedhili MN, Abulikemu M, Mohammed OF, Bakr OM. Si-H Hydrosilane Reducing Agents for Size- and Shape-Controlled InAs Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412105. [PMID: 39632455 DOI: 10.1002/adma.202412105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Indexed: 12/07/2024]
Abstract
InAs colloidal quantum dots (CQDs) are a promising heavy-metal-free material for infrared optoelectronic devices. However, their synthesis is limited by their reagents: the acutely toxic and difficult to source tris(trimethylsilyl)arsine ((TMS)3As), as well as the strong reducing agents (e.g., Super Hydride). A reducing agent is introduced based on hydrosilanes (Si-H) to address both challenges. A synthesis strategy with this agent is demonstrated, resulting in monodisperse InAs CQDs with a tunable first excitonic peak between 520 and 900 nm by hot injection, and between 900 and 1550 nm by continuous injection. Furthermore, by avoiding the use of carboxyl group-containing compounds, such as oleic acid or indium acetate, the synthesis minimizes surface oxidation during InAs CQDs formation. The synthesized InAs CQDs are of high optoelectronic quality, with a lower concentration of deep trap states, as evident by the remarkable characteristics of photodetectors fabricated from these CQDs: low dark current (≈150 nA cm-2), external quantum efficiency (32% at 900 nm), and a fast photoresponse time (≈4.4 µs). The elimination of (TMS)3As in the synthesis overcomes a key practical barrier for exploiting and exploring the properties of large InAs CQDs in optoelectronic applications.
Collapse
Affiliation(s)
- Maxim S Skorotetcky
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wasim J Mir
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tariq Sheikh
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Khursand E Yorov
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bedil M Saidzhonov
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sawsan Daws
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Renqian Zhou
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed N Hedhili
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Xu L, Liu H, Xu J, Zhou W, Yang Z, Xu W, Sun J. Spraying-Deposited Transparent p-Type Sn-Doped CuI Film and Its Ultrahigh-Speed Self-Powered Photodetector. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62326-62334. [PMID: 39497336 DOI: 10.1021/acsami.4c11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The exploitation of simply processed p-type semiconductors and photodetectors with promising optoelectrical properties remains challenging yet essential for current and future advanced optoelectronic applications. Transparent p-type CuI and Sn-doped CuI (Cu-Sn-I) films and their self-powered photodetectors have been successfully fabricated by the spraying method. It is found that the incorporation of Sn dopants enhances the optical, electrical, and photoelectric properties of CuI thin films as well as their corresponding self-powered heterojunction photodetectors. This improvement of the optoelectrical properties of the Cu-Sn-I film and its photodetector can be attributed to the adjustment of the acceptor defect level and increased hole concentration resulting from Sn doping. The Cu-Sn-I/n-Si photodetector exhibits a responsivity of 10.7 mA/W, a detectivity of 6.79 × 1011 Jones, and a response time of 77 μs/30 μs (0 V bias). The response time exhibits the fastest rise and decay times compared with the other CuI-based self-powered UV photodetectors in recent years, showcasing promising applications in the realm of transparent electronics moving forward. This study also presents an effective strategy for enhancing the electrical properties of p-type semiconductors and devices through effective doping.
Collapse
Affiliation(s)
- Li Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Haowei Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jianmei Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Wei Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Zhihong Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Wei Xu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jian Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
4
|
Tang X, Jiang H, Lin Z, Wang X, Wang W, Li G. Wafer-Scale Vertical 1D GaN Nanorods/2D MoS 2/PEDOT:PSS for Piezophototronic Effect-Enhanced Self-Powered Flexible Photodetectors. NANO-MICRO LETTERS 2024; 17:56. [PMID: 39497008 PMCID: PMC11534966 DOI: 10.1007/s40820-024-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024]
Abstract
van der Waals (vdW) heterostructures constructed by low-dimensional (0D, 1D, and 2D) materials are emerging as one of the most appealing systems in next-generation flexible photodetection. Currently, hand-stacked vdW-type photodetectors are not compatible with large-area-array fabrication and show unimpressive performance in self-powered mode. Herein, vertical 1D GaN nanorods arrays (NRAs)/2D MoS2/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly. The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W-1 and a high detectivity of 1.2 × 1011 Jones, as well as a fast response speed of 54/71 µs, thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction. Notably, the strain-tunable photodetection performances of device have been demonstrated. Impressively, the device at - 0.78% strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W-1, a detectivity of 2.6 × 1011 Jones, and response times of 40/45 µs, which are superior to the state-of-the-art self-powered flexible photodetectors. This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection, which performs well in flexible sensors.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zhengliang Lin
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xuan Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
5
|
Cheng T, Meng Y, Luo M, Xian J, Luo W, Wang W, Yue F, Ho JC, Yu C, Chu J. Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403129. [PMID: 39030967 PMCID: PMC11600706 DOI: 10.1002/smll.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Indexed: 07/22/2024]
Abstract
The strategic integration of low-dimensional InAs-based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs-based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single-atomic-layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs-based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs-based materials and the working principles of InAs-based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs-based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi-functional applications, and incorporating deep learning into first-principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures.
Collapse
Affiliation(s)
- Tiantian Cheng
- School of Microelectronics and School of Integrated CircuitsSchool of Information Science and TechnologyNantong UniversityNantong226019P. R. China
| | - Yuxin Meng
- School of Microelectronics and School of Integrated CircuitsSchool of Information Science and TechnologyNantong UniversityNantong226019P. R. China
| | - Man Luo
- School of Microelectronics and School of Integrated CircuitsSchool of Information Science and TechnologyNantong UniversityNantong226019P. R. China
- Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongHong Kong SAR999077P. R. China
| | - Jiachi Xian
- School of Microelectronics and School of Integrated CircuitsSchool of Information Science and TechnologyNantong UniversityNantong226019P. R. China
| | - Wenjin Luo
- Department of Physics and JILAUniversity of ColoradoBoulderCO80309USA
| | - Weijun Wang
- Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongHong Kong SAR999077P. R. China
| | - Fangyu Yue
- School of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Johnny C. Ho
- Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongHong Kong SAR999077P. R. China
| | - Chenhui Yu
- School of Microelectronics and School of Integrated CircuitsSchool of Information Science and TechnologyNantong UniversityNantong226019P. R. China
| | - Junhao Chu
- School of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
6
|
Majchrzak D, Kulinowski K, Olszewski W, Kuna R, Hlushchenko D, Piejko A, Grodzicki M, Hommel D, Kudrawiec R. Engineering of Interface Barrier in Hybrid MXene/GaN Heterostructures for Schottky Diode Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59567-59575. [PMID: 39422295 PMCID: PMC11533156 DOI: 10.1021/acsami.4c13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The Fermi level position at the interface of a heterostructure is a critical factor for device functionality, strongly influenced by surface-related phenomena. In this study, contactless electroreflectance (CER) was utilized for the first time to investigate the built-in electric field in MXene/GaN structures with the goal of understanding the carrier transfer across the MXene/GaN interface. Five MXenes with high work functions were examined: Cr2C, Mo2C, V2C, V4C3, and Ti3C2. The physicochemical properties of the MXene/GaN structures were analyzed by using X-ray and UV photoelectron spectroscopies. It was shown that upon the coverage of the GaN surface by all investigated MXenes, a shift in the position of the surface Fermi level occurs, consequently raising the interface barrier. Additionally, the physicochemical stability of MXenes on the GaN surface was studied after annealing the structures at 750 °C. Our findings indicate that the annealing process increases the barrier height and the ionization energies of all studied structures. Furthermore, it has been shown that removing excess MXene material from the surface did not significantly impact the built-in electric field, emphasizing the robust physicochemical stability of the MXenes on the GaN surface. To validate the potential of engineering of MXene/GaN interface barrier, Schottky diodes with MXenes exhibiting the highest barrier height (Mo2C and V2C) were demonstrated.
Collapse
Affiliation(s)
- Dominika Majchrzak
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Karol Kulinowski
- Department
of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Olszewski
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
- Institute
of Experimental Physics, University of Wrocław, Maksa Borna 9, 50-204 Wrocław, Poland
| | - Rafał Kuna
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Daria Hlushchenko
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
- Department
of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adrianna Piejko
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
- Department
of Nanometrology, Wroclaw University of
Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
| | - Miłosz Grodzicki
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
- Department
of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Detlef Hommel
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Robert Kudrawiec
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
- Department
of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
7
|
Chong WK, Ng BJ, Tan LL, Chai SP. A compendium of all-in-one solar-driven water splitting using ZnIn 2S 4-based photocatalysts: guiding the path from the past to the limitless future. Chem Soc Rev 2024; 53:10080-10146. [PMID: 39222069 DOI: 10.1039/d3cs01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Boon-Junn Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
8
|
Zhang H, Liang F, Yang L, Gao Z, Liang K, Liu S, Ye Y, Yu H, Chen W, Kang Y, Sun H. Superior AlGaN/GaN-Based Phototransistors and Arrays with Reconfigurable Triple-Mode Functionalities Enabled by Voltage-Programmed Two-Dimensional Electron Gas for High-Quality Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405874. [PMID: 38924239 DOI: 10.1002/adma.202405874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in the digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single-device platform are in demand but remain challenging to fabricate. Herein, an AlGaN/GaN-based double-heterostructure is reported, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electron gas (2DEGs). Owing to the programmable feature of the 2DEGs by the combined gate and drain voltage inputs, with a particular capability of electron separation, collection and storage under different light illumination, the phototransistor shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics. A self-powered mode with a responsivity over 100 A W-1 and a photoconductive mode with a responsivity of ≈108 A W-1 are achieved, with the ultimate demonstration of a 10 × 10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage ability. The demonstration of three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units.
Collapse
Affiliation(s)
- Haochen Zhang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Fangzhou Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Yang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhixiang Gao
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Si Liu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yankai Ye
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Huabin Yu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Chen
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Kang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Haiding Sun
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Wang H, Li W, Gloginjić M, Petrović S, Krupska TV, Turov VV, Zhao J, Yang W, Du Z, Chen S. High-Sensitivity Photoelectrochemical Ultraviolet Photodetector with Stable pH-Universal Adaptability Based on Whole Single-Crystal Integrated Self-Supporting 4H-SiC Nanoarrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400045. [PMID: 38453678 DOI: 10.1002/smll.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Emerging photoelectrochemical (PEC) photodetectors (PDs) have notable advantages over conventional PDs and have attracted extensive attention. However, harsh liquid environments, such as those with high corrosivity and attenuation, substantially restrict their widespread application. Moreover, most PEC PDs are constructed by assembling numerous nanostructures on current collector substrates, which inevitably contain abundant interfaces and defects, thus greatly weakening the properties of PDs. To address these challenges, a high-performance pH-universal PEC ultraviolet (UV) PD based on a whole single-crystal integrated self-supporting 4H-SiC nanopore array photoelectrode is constructed, which is fabricated using a two-step anodic oxidation approach. The PD exhibits excellent photodetection behavior, with high responsivity (218.77 mA W-1), detectivity (6.64 × 1013 Jones), external quantum efficiency (72.47%), and rapid rise/decay times (17/48 ms) under 375 nm light illumination with a low intensity of 0.15 mW cm-2 and a bias voltage of 0.6 V, which is fall in the state-of-the-art of the wide-bandgap semiconductor-based PDs reported thus far. Furthermore, the SiC PEC PD exhibits excellent photoresponse and long-term operational stability in pH-universal liquid environments. The improved photodetection performance of the SiC PEC PD is primarily attributed to the synergistic effect of the nanopore array structure, integrated self-supporting configuration, and single-crystal structure of the whole photoelectrode.
Collapse
Affiliation(s)
- Hulin Wang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Weijun Li
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Marko Gloginjić
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Srdjan Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Tetyana V Krupska
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
- Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NASU, Kyiv, 03164, Ukraine
| | - Vladimir V Turov
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
- Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NASU, Kyiv, 03164, Ukraine
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Zhentao Du
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
| | - Shanliang Chen
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| |
Collapse
|
10
|
Ha HJ, Kang SJ, Jeong JH, Ma JH, Park MH, Kim W, Ha A, Kim S, Park S, Kang SJ. Real-Time Ultraviolet Monitoring System with Low-Temperature Solution-Processed High-Transparent p-n Junction Photodiode with a Fast Responsive and High Rectification Ratio. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40139-40148. [PMID: 39024130 DOI: 10.1021/acsami.4c05494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We introduce an enhanced performance organic-inorganic hybrid p-n junction photodiode, utilizing poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) and ZnO, fabricated through a solution-based process at a low temperature under 100 °C. Improved interfacial electronic structure, characterized by shallower Gaussian standard deviation of the density-of-state distribution and a larger interface dipole, has resulted in a remarkable fold increase of ∼102 in signal-to-noise ratio for the device. This photodiode exhibits a high specific detectivity (2.32 × 1011 Jones, cm × Hz × W - 1 ) and exceptional rectification ratio (5.47 × 104 at ±1 V). The primary light response, concentrated in the optimal thickness of the PTAA layer, contributes to response over the entire UVA region and rapid response speed, with rise and fall times of 0.24 and 0.64 ms, respectively. Furthermore, this work demonstrates immense potential of our device for health monitoring applications by enabling real-time and continuous measurements of UV intensity.
Collapse
Affiliation(s)
- Hyoun Ji Ha
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seong Jae Kang
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun Hyung Jeong
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin Hyun Ma
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min Ho Park
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wonsik Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Aelim Ha
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seunghwan Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Soohyung Park
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seong Jun Kang
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
11
|
Song W, Sun Y, He X, Li S. Epitaxial Growth of the Large-Scale, Highly-Ordered 3D GaN-Truncated Pyramid Array Toward an Ultrahigh Rejection Ratio and Responsivity Visible-Blind Ultraviolet Photodetection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35323-35332. [PMID: 38946487 DOI: 10.1021/acsami.4c06060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The micro- and nanostructures of III-nitride semiconductors captivate strong interest owing to their distinctive properties and myriad potential applications. Nevertheless, challenges endure in managing the damage inflicted on crystals through top-down processes or achieving extensive control over the large-area growth of these microstructures via bottom-up methods, thereby impacting their optical and electronic properties. Here, we present novel epitaxially grown 3D GaN truncated pyramid arrays (TPAs) on patterned Si substrates, devoid of any catalyst. These GaN TPAs feature highly ordered, large-scale structures, attributed to the utilization of 3D Si substrates and thin AlN interlayers to alleviate epitaxial strains and limit dislocation formation. Comprehensive characterization via scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and cathodoluminescence attests to the superior structural and optical attributes of these crystals. Furthermore, photoluminescence and ultraviolet (UV)-visible diffuse reflectance spectroscopy reveal sharp band-edge emission and significant light trapping in the UV bands. Employing these GaN TPAs, we constructed metal-semiconductor-metal visible-blind UV photodetectors (PDs) incorporating Ti3C2 MXene as Schottky electrodes. These PDs display exceptional responsivity, achieving 5.32 × 103 mA/W at 255 nm and an ultrahigh UV/visible rejection ratio (R255nm/R450nm) approaching 106, which are 1-2 orders of magnitude higher than most recently reported works. This exploration showcases novel GaN-based microstructures characterized by uniformity, ordered geometry, and exemplary crystalline integrity, paving the way for developing optoelectronic applications.
Collapse
Affiliation(s)
- Weidong Song
- College of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
- Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, China
| | - Yiming Sun
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China
| | - Xin He
- College of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
- Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, China
| | - Shuti Li
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
12
|
Cai Z, He X, Wang K, Hou X, Mei Y, Ying L, Zhang B, Long H. Enhancing Performance of GaN/Ga 2O 3 P-N Junction Uvc Photodetectors via Interdigitated Structure. SMALL METHODS 2024; 8:e2301148. [PMID: 38072623 DOI: 10.1002/smtd.202301148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Indexed: 07/21/2024]
Abstract
Ga2O3-based Ultraviolet-C photodetector (UVCPD) is considered the most promising UVCPD at present and is divided into Metal-Semiconductor-Metal (MSM) and PN junction types. Compared with MSM-PDs, PN-PDs exhibit superior transient performance due to the built-in electric field. However, current Ga2O3-based PN-PDs lack consideration for carrier collection and electric field distribution. In this study, PN-PDs with an interdigital n-Ga2O3 layer and finger electrodes are fabricated on p-GaN/n-Ga2O3 epilayers. Ultrafast response times of 31 µs (1/e decay) and 2.76 µs (fast component) are realized, which outperforms all Ga2O3 UVC-PDs up to now. Under 0 V self-powered, the responsivity (0.25 A W-1) of interdigital PD is enhanced by the interdigital electrode structure due to increasing carriers' collection length. Under bias, the performances of interdigital PD with 41.7 A W-1 responsivity and 8243 selection ratios are significantly elevated by enhancing the built-in electric field in the Ga2O3 region, which is 34.76 and 39.4 times those of traditional PDs, respectively. The intrinsic enhancing mechanism of interdigital structure is also investigated by interdigital PDs with various electrode spacings and perimeters. In summary, this paper not only reports a highly performed interdigitated structure p-GaN/n-Ga2O3 UVCPDs, but also provides guidelines for structure design in Ga2O3-based PN-PDs.
Collapse
Affiliation(s)
- Ziling Cai
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiyao He
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaikai Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Xin Hou
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Yang Mei
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Leiying Ying
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Baoping Zhang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| | - Hao Long
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
13
|
Gao L, Yang B, Du J, Zhang C, Ma S, Guo Z, Wang Y, Wang J, Li X, Wu D, Lin P. A 1T'-MoTe 2/GaN van der Waals Schottky junction for self-powered UV imaging and optical communication. NANOSCALE 2024; 16:12228-12236. [PMID: 38847305 DOI: 10.1039/d4nr01366b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Schottky-type self-powered UV photodetectors are promising for next-generation imaging systems. Nevertheless, conventional device fabrication using high-energy metal deposition brings unintentional interface defects, leading to deteriorated device performance and inhomogeneities. Emerging two-dimensional (2D) metallic materials offer an alternative pathway to overcoming such limitations because of their naturally passivated surfaces and the ease of combining with mature bulk semiconductors via van der Waals (vdW) integration. Here, we report the controllable preparation of MoTe2 in the pure 1T' phase and the fabrication of a high-performance 1T'-MoTe2/GaN vdW Schottky photodiode. With the reduced interface states and suppressed dark current as low as 20 pA at zero bias, the photodiode exhibits a remarkable UV-to-visible (R350/R400) rejection ratio of 1.6 × 104, a stable photoresponsivity of ∼50 mA W-1 and a detectivity of 3.5 × 1012 Jones under 360 nm illumination. The photocurrent ON/OFF ratio reaches ∼4.9 × 106 under 10.5 mW irradiation (360 nm). In particular, the 1T'-MoTe2/GaN Schottky diode shows excellent weak-light detection capability, which could detect a 3 nW 360 nm laser and the light emission from a lighter with a pronounced Ilight/Idark ratio of ∼2. Finally, the applications of the device in self-powered UV imaging and optical communication are demonstrated. These results reveal the great prospects of 2D/3D integration in multifunctional optoelectronics, which may inspire novel 2D-related devices and expand their applications in widespread fields.
Collapse
Affiliation(s)
- Lenan Gao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Bangbang Yang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Junli Du
- State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China.
| | - Cheng Zhang
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Shihong Ma
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaowei Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Yu Wang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Jian Wang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Xinjian Li
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Di Wu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| | - Pei Lin
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Cao F, Liu Y, Liu M, Han Z, Xu X, Fan Q, Sun B. Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects. RESEARCH (WASHINGTON, D.C.) 2024; 7:0385. [PMID: 38803505 PMCID: PMC11128649 DOI: 10.34133/research.0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
Ultraviolet (UV) light, invisible to the human eye, possesses both benefits and risks. To harness its potential, UV photodetectors (PDs) have been engineered. These devices can convert UV photons into detectable signals, such as electrical impulses or visible light, enabling their application in diverse fields like environmental monitoring, healthcare, and aerospace. Wide bandgap semiconductors, with their high-efficiency UV light absorption and stable opto-electronic properties, stand out as ideal materials for UV PDs. This review comprehensively summarizes recent advancements in both traditional and emerging wide bandgap-based UV PDs, highlighting their roles in UV imaging, communication, and alarming. Moreover, it examines methods employed to enhance UV PD performance, delving into the advantages, challenges, and future research prospects in this area. By doing so, this review aims to spark innovation and guide the future development and application of UV PDs.
Collapse
Affiliation(s)
- Fa Cao
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Mei Liu
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Zeyao Han
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Xiaobao Xu
- School of Electronic Science and Engineering,
Southeast University, Nanjing 210000, P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| |
Collapse
|
15
|
Patel RP, Shah PV, Siraj S, Sahatiya P, Pataniya PM, Sumesh CK. Fabrication of a wearable and foldable photodetector based on a WSe 2-MXene 2D-2D heterostructure using a scalable handprint technique. NANOSCALE 2024; 16:10011-10029. [PMID: 38700054 DOI: 10.1039/d4nr00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Several studies on semiconductor material-based single-band, high-performance photosensitive, and chemically stable photodetectors are available; however, the lack of broad spectral response, device flexibility, and biodegradability prevents them from being used in wearable and flexible electronics. Apart from that, the selection of the device fabrication technique is a very crucial factor nowadays in terms of equipment utilization and environmental friendliness. This report presents a study demonstrating a straightforward solvent- and equipment-free handprint technique for the fabrication of WSe2-Ti3C2TX flexible, biodegradable, robust, and broadband (Vis-NIR) photodetectors. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirm the formation of a WSe2-Ti3C2TX film. The WSe2-Ti3C2TX van der Waals heterostructure plays a key role in enhancing the optoelectrical properties. The as-prepared photodetector exhibits efficient broadband response with a photoresponsivity and a detectivity of 0.3 mA W-1 and 6.8 × 1010 Jones, respectively, under NIR (780 nm) irradiation (1.0 V bias). Under various pressure and temperature conditions, the device's flexibility and durability were tested. The biodegradable photodetector prepared through the solvent- and equipment-free handprint technique has the potential to attract significant interest in wearable and flexible electronics in the future.
Collapse
Affiliation(s)
- Rahul P Patel
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| | - Parth V Shah
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| | - Sohel Siraj
- Department of Electrical and Electronic Engineering, BITS Pilani Hyderabad, Secunderabad-500078, India
| | - Parikshit Sahatiya
- Department of Electrical and Electronic Engineering, BITS Pilani Hyderabad, Secunderabad-500078, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| | - C K Sumesh
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| |
Collapse
|
16
|
Li S, Yan X, Lin Z, Kang L. Wide-Band Gap Binary Semiconductor P 3N 5 with Highly Anisotropic Optical Linearity and Nonlinearity. Inorg Chem 2024; 63:5220-5226. [PMID: 38456453 DOI: 10.1021/acs.inorgchem.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Wide-band gap binary semiconductors find extensive use in advanced optoelectronic devices due to their exceptional electronic, optical, and defect properties. This paper systematically investigates the linear and nonlinear optical and defect properties of two P3N5 structures as wide-band gap binary semiconductors and evaluates their responses to external pressure modulation using first-principles calculations. The research demonstrates that the high-pressure phase of P3N5 has a broad UV solar-blind band gap (Eg ∼ 4.9 eV) and displays highly anisotropic optical linearity and nonlinearity, including a significant second harmonic generation effect (d24 ∼ 1.8 pm/V) and large birefringence (Δn ∼ 0.12), exhibiting a relatively small change in amplitude against pressure due to unique lattice incompressibility. This material enables birefringent phase-matched second harmonic coherent output at a much shorter wavelength (down to 286 nm) than currently known wide-band gap binary semiconductors such as SiC, GaN, AlN, Ga2O3, and Si3N4. An in-depth study of the defect properties of P3N5 in relation to its UV optical properties is also provided. These results are important references for utilizing the optoelectronic functions of this binary material system.
Collapse
Affiliation(s)
- Shihang Li
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Yan
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Zheshuai Lin
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Kang
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Debnath S, Meyyappan M, Giri PK. Printed MoSe 2/GaAs Photodetector Enabling Ultrafast and Broadband Photodetection up to 1.5 μm. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9039-9050. [PMID: 38324453 DOI: 10.1021/acsami.3c17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of high-performance and low-cost photodetectors (PDs) capable of detecting a broad range of wavelengths, from ultraviolet (UV) to near-infrared (NIR), is crucial for applications in sensing, imaging, and communication systems. This work presents a novel approach for printing a broadband PD based on a heterostructure of two-dimensional (2D) molybdenum diselenide (MoSe2) and gallium arsenide (GaAs). The fabrication process involves a precise technique to print MoSe2 nanoflower (NF) ink onto a prepatterned GaAs substrate. The resulting heterostructure exhibits unique properties, leveraging the exceptional electronic and optical characteristics of both GaAs and 2D MoSe2. The fabricated PD achieves an astounding on-off ratio of ∼105 at 5 V bias while demonstrating an exceptional on-off ratio of ∼104 at 0 V. The depletion region between GaAs and MoSe2 facilitates efficient charge generation and separation and collection of photogenerated carriers. This significantly improves the performance of the PD, resulting in a notably high responsivity across the spectrum. The peak responsivity of the device is 5.25 A/W at 5 V bias under 808 nm laser excitation, which is more than an order of magnitude higher than that of any commercial NIR PDs. Furthermore, the device demonstrates an exceptional responsivity of 0.36 A/W under an external bias of 0 V. The printing technology used here offers several advantages including simplicity, scalability, and compatibility with large-scale production. Additionally, it enables precise control over the placement and integration of the MoSe2 NF onto the GaAs substrate, ensuring uniformity and reliability in device performance. The exceptional responsivity across a broad spectral range (360-1550 nm) and the success of the printing technique make our MoSe2/GaAs heterostructure PD promising for future low-cost and efficient optoelectronic devices.
Collapse
Affiliation(s)
- Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
18
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
19
|
Zhang Y, Liu S, Xu R, Ruan S, Liu C, Ma Y, Li X, Chen Y, Zhou J. Solar-blind ultraviolet photodetector based on Nb 2C/ β-Ga 2O 3heterojunction. NANOTECHNOLOGY 2024; 35:165502. [PMID: 38150735 DOI: 10.1088/1361-6528/ad18e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
β-Ga2O3has been widely investigated for its stability and thermochemical properties. However, the preparation ofβ-Ga2O3thin films requires complex growth techniques and high growth temperatures, and this has hindered the application ofβ-Ga2O3thin films. In this study,β-Ga2O3thin films with good crystalline quality were prepared using a green method, and an ultraviolet (UV) detector based onβ-Ga2O3with a photocurrent of 2.54 × 10-6A and a dark current of 1.19 × 10-8A has been developed. Two-dimensional materials have become premium materials for applications in optoelectronic devices due to their high conductivity. Here, we use the suitable energy band structure between Nb2C and Ga2O3to create a high carrier migration barrier, which reduces the dark current of the device by an order of magnitude. In addition, the device exhibits solar-blind detection, high responsiveness (28 A W-1) and good stability. Thus, the Nb2C/β-Ga2O3heterojunction is expected to be one of the promising devices in the field of UV photoelectric detection.
Collapse
Affiliation(s)
- Yongfeng Zhang
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Shuainan Liu
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Ruiliang Xu
- State Key Laboratory of High Power Semiconductor Lasers, School of Science, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Shengping Ruan
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Caixia Liu
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Yan Ma
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xin Li
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Yu Chen
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Jingran Zhou
- College of Electronic Science & Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
20
|
Wu Y, Sun M. Recent progress of MXene as an energy storage material. NANOSCALE HORIZONS 2024; 9:215-232. [PMID: 38180501 DOI: 10.1039/d3nh00402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Thanks to its adjustable interlayer distance, large specific surface area, abundant active sites, and diverse surface functional groups, MXene has always been regarded as an excellent candidate for energy storage materials, including supercapacitors and ion batteries. Recent studies have also shown that MXene can serve as an efficient hydrogen storage catalyst. This review aims to summarize the latest research achievements in the field of MXene, especially its performance and application in energy storage. Different synthesis techniques have different effects on the energy storage performance of MXene. In this review, various common synthesis methods and the latest innovations in synthesis methods are discussed. MXene is prone to oxidation, and how to resist oxidation is also an important topic in MXene research. This article introduces the research results on improving the chemical stability of MXene through annealing. In addition, it aims to gain a deeper understanding of the future development and potential of MXene.
Collapse
Affiliation(s)
- Yuqiang Wu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100086, P. R. China.
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100086, P. R. China.
| |
Collapse
|
21
|
Zhou M, Zhao Y, Zhang Q, Gu X, Zhang J, Jiang M, Lu S. Enhance the responsivity of self-driven ultraviolet photodetector by (Al,Ga)N nanowire/graphene/PVDF heterojunction with high stability. OPTICS LETTERS 2024; 49:338-341. [PMID: 38194555 DOI: 10.1364/ol.509752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
Due to the low-power consumption, self-driven ultraviolet (UV) photodetectors have great potentials in a broad range of applications, such as optical communication, ozone monitoring, bio-medicine, and flame detection. In this Letter, it is pretty novel to enhance the photocurrent and responsivity of self-driven UV photodetectors by (Al,Ga)N nanowire/graphene/polyvinylidene fluoride (PVDF) heterojunction successfully. Compared to those of the photodetector with only nanowire/graphene heterojunction, it is found that both the photocurrent and responsivity of the photodetector with nanowire/graphene/PVDF heterojunction can be enhanced more than 100%. It is proposed that PVDF could maintain the internal gain by increasing the number of carrier cycles. Furthermore, this photodetector can also have a high detectivity of 5.3×1011 Jones and fast response speed under 310 nm illumination. After preserving for one month without any special protection, both photocurrent and responsivity of the photodetector with nanowire/graphene/PVDF heterojunction are demonstrated to be quite stable. Therefore, this work paves an effective way to improve the performance of photodetectors for their applications in the fields of next-generation optoelectronic devices.
Collapse
|
22
|
Zhang N, Lin Z, Wang Z, Zhu S, Chen D, Qi H, Zheng W. Under-Seawater Immersion β-Ga 2O 3 Solar-Blind Ultraviolet Imaging Photodetector with High Photo-to-Dark Current Ratio and Fast Response. ACS NANO 2024; 18:652-661. [PMID: 38100077 DOI: 10.1021/acsnano.3c08814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This work displays a photovoltaic solar-blind UV photodetector based on a β-Ga2O3 photoelectrode/simulated seawater (NaCl). The photodetector exhibits extremely high photocurrent (6.70 μA); the responsivity can reach 23.47 mA W-1, and the fastest response rise time is 40 ms under 213 nm illumination at zero bias, the responsivity is 25.10 mA W-1 at 0.8 V, and the photo-to-dark current ratio reaches a maximum of 4663, whose responsivity can be effectively adjusted by changing electrolyte concentration, ensuring a good working stability of this device. In addition, with original seawater as the electrolyte, the detector still achieves a high switching ratio (754) and stable detection under zero bias, demonstrating its capability for practical uses. What's more, we present the capability of the photodetector in seawater imaging. This work provides a method for solar-blind UV detection in seawater, which compensates for the limited detection of most current seawater detectors in the visible band, and can provide certain guidance in the field of seawater detection.
Collapse
Affiliation(s)
- Naiji Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhuogeng Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Siqi Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Duanyang Chen
- Research Center of Laser Crystal, Shanghai Institute of Optics and fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongji Qi
- Research Center of Laser Crystal, Shanghai Institute of Optics and fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China
| | - Wei Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
23
|
Chen W, Wang D, Wang W, Kang Y, Liu X, Fang S, Li L, Luo Y, Liang K, Liu Y, Luo D, Memon MH, Yu H, Gu W, Liu Z, Hu W, Sun H. Manipulating Surface Band Bending of III-Nitride Nanowires with Ambipolar Charge-Transfer Characteristics: A Pathway Toward Advanced Photoswitching Logic Gates and Encrypted Optical Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307779. [PMID: 38009587 DOI: 10.1002/adma.202307779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 11/29/2023]
Abstract
The operational principle of semiconductor devices critically relies on the band structures that ultimately govern their charge-transfer characteristics. Indeed, the precise orchestration of band structure within semiconductor devices, notably at the semiconductor surface and corresponding interface, continues to pose a perennial conundrum. Herein, for the first time, this work reports a novel postepitaxy method: thickness-tunable carbon layer decoration to continuously manipulate the surface band bending of III-nitride semiconductors. Specifically, the surface band bending of p-type aluminum-gallium-nitride (p-AlGaN) nanowires grown on n-Si can be precisely controlled by depositing different carbon layers as guided by theoretical calculations, which eventually regulate the ambipolar charge-transfer behavior between the p-AlGaN/electrolyte and p-AlGaN/n-Si interface in an electrolyte environment. Enabled by the accurate modulation of the thickness of carbon layers, a spectrally distinctive bipolar photoresponse with a controllable polarity-switching-point over a wide spectrum range can be achieved, further demonstrating reprogrammable photoswitching logic gates "XOR", "NAND", "OR", and "NOT" in a single device. Finally, this work constructs a secured image transmission system where the optical signals are encrypted through the "XOR" logic operations. The proposed continuous surface band tuning strategy provides an effective avenue for the development of multifunctional integrated-photonics systems implemented with nanophotonics.
Collapse
Affiliation(s)
- Wei Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Danhao Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiyi Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liuan Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Kun Liang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Dongyang Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Huabin Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Wengang Gu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhenghui Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Wei Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
- Key Laboratory of Wireless-Optical Communications, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
24
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Wang F, Zhang T, Xie R, Liu A, Dai F, Chen Y, Xu T, Wang H, Wang Z, Liao L, Wang J, Zhou P, Hu W. Next-Generation Photodetectors beyond Van Der Waals Junctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301197. [PMID: 36960667 DOI: 10.1002/adma.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
With the continuous advancement of nanofabrication techniques, development of novel materials, and discovery of useful manipulation mechanisms in high-performance applications, especially photodetectors, the morphology of junction devices and the way junction devices are used are fundamentally revolutionized. Simultaneously, new types of photodetectors that do not rely on any junction, providing a high signal-to-noise ratio and multidimensional modulation, have also emerged. This review outlines a unique category of material systems supporting novel junction devices for high-performance detection, namely, the van der Waals materials, and systematically discusses new trends in the development of various types of devices beyond junctions. This field is far from mature and there are numerous methods to measure and evaluate photodetectors. Therefore, it is also aimed to provide a solution from the perspective of applications in this review. Finally, based on the insight into the unique properties of the material systems and the underlying microscopic mechanisms, emerging trends in junction devices are discussed, a new morphology of photodetectors is proposed, and some potential innovative directions in the subject area are suggested.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Anna Liu
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuxing Dai
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Xu
- School of Microelectronics, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Hailu Wang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Liao
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Jianlu Wang
- School of Microelectronics, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- School of Microelectronics, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Li L, Shen G. MXene based flexible photodetectors: progress, challenges, and opportunities. MATERIALS HORIZONS 2023; 10:5457-5473. [PMID: 37818551 DOI: 10.1039/d3mh01362f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The growing interest in applying 2D transition-metal carbides and nitrides (MXenes) to diverse application fields such as energy storage and harvesters, catalysts, sensors, optoelectronics, electromagnetic interference shielding and antennas since its first discovery in 2011 is clearly evident. Their intrinsic high conductivity limits the development of MXenes in photodetectors that rely on the semiconducting properties of active materials, while the abundant functional groups on the surface of MXenes provide opportunities for using MXenes as sensing materials in the fabrication of flexible photodetectors. Considerable studies on MXene based photodetectors have been carried out, but the main obstacles include seeking novel semiconducting materials in MXene families, the manufacturing technology, etc. This review highlights the progress, challenges and opportunities in MXene based flexible photodetectors and discusses novel materials, architectures, and approaches that capitalize on our growing understanding of MXenes.
Collapse
Affiliation(s)
- La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
27
|
Zhang X, Feng Y, Fu F, Wang H. Preparation of ZnO Nanosheet Array and Research on ZnO/PANI/ZnO Ultraviolet Photodetector. Polymers (Basel) 2023; 15:4399. [PMID: 38006124 PMCID: PMC10674185 DOI: 10.3390/polym15224399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
High-performance ultraviolet photodetectors have important scientific research significance and practical application value, which has been the focus of researchers. In this work, we have constructed a highly photosensitive UV photodetector with a unique "sandwich" structure, which was mainly composed of two layers of ZnO nanosheet arrays and one layer of polyaniline (PANI). The results showed that the UV current of ZnO/PANI devices was 100 times higher than that of pure ZnO devices under the same UV irradiation time. At a 365 nm wavelength, the device had excellent photocurrent responsiveness and photoconductivity. This high performance was attributed to the large specific surface area of ZnO nanosheets and the p-n junction formed between P-type PANI nano-porous film and N-type ZnO nanosheets. This provides a solid theoretical basis for the application of ZnO nanosheets in ultraviolet detection, and possesses significance for the development of ultraviolet photodetectors.
Collapse
Affiliation(s)
- Xuanzhen Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Interdisciplinary Health Management Studies, College of Physical Education, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Yunhui Feng
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Interdisciplinary Health Management Studies, College of Physical Education, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Fangbao Fu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Huan Wang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Interdisciplinary Health Management Studies, College of Physical Education, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| |
Collapse
|
28
|
Hu H, Zhen W, Yue Z, Niu R, Xu F, Zhu W, Jiao K, Long M, Xi C, Zhu W, Zhang C. A mixed-dimensional quasi-1D BiSeI nanowire-2D GaSe nanosheet p-n heterojunction for fast response optoelectronic devices. NANOSCALE ADVANCES 2023; 5:6210-6215. [PMID: 37941949 PMCID: PMC10629003 DOI: 10.1039/d3na00525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Due to the unique combination configuration and the formation of a built-in electric field, mixed-dimensional heterojunctions present fruitful possibilities for improving the optoelectronic performances of low-dimensional optoelectronic devices. However, the response times of most photodetectors built from mixed-dimensional heterojunctions are within the millisecond range, limiting their applications in fast response optoelectronic devices. Herein, a mixed-dimensional BiSeI/GaSe van der Waals heterostructure is designed, which exhibits visible light detection ability and competitive photoresponsivity of 750 A W-1 and specific detectivity of 2.25 × 1012 Jones under 520 nm laser excitation. Excitingly, the device displays a very fast response time, e.g., the rise time and decay time under 520 nm laser excitation are 65 μs and 190 μs, respectively. Our findings provide a prospective approach to mixed-dimensional heterojunction photodetection devices with rapid switching capabilities.
Collapse
Affiliation(s)
- Huijie Hu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Weili Zhen
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Zhilai Yue
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Feng Xu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wanli Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Keke Jiao
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Chuanying Xi
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wenka Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 China
| |
Collapse
|
29
|
Cao F, Hu Z, Yan T, Hong E, Deng X, Wu L, Fang X. A Dual-Functional Perovskite-Based Photodetector and Memristor for Visual Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304550. [PMID: 37467009 DOI: 10.1002/adma.202304550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The imitation of human visual memory demands the multifunctional integration of light sensors similar to the eyes, and image memory, similar to the brain. Although humans have already implemented electronic devices with visual memory functions, these devices require a combination of various components and logical circuits. However, the combination of visual perception and high-performance information storage capabilities into a single device to achieve visual memory remains challenging. In this study, inspired by the function of human visual memory, a dual-functional perovskite-based photodetector (PD) and memristor are designed to realize visual perception and memory capacities. As a PD, it realizes an ultrahigh self-powered responsivity of 276 mA W-1 , a high detectivity of 4.7 × 1011 Jones (530 nm; light intensities, 2.34 mW cm-2 ), and a high rectification ratio of ≈100 (±2 V). As a memristor, an ultrahigh on/off ratio (≈105 ), an ultralow power consumption of 3 × 10-11 W, a low setting voltage (0.15 V), and a long retention time (>7000 s) are realized. Moreover, the dual-functional device has the capacity to perceive and remember light paths and store data with good cyclic stability. This device exhibits perceptual and cyclic erasable memory functions, which provides new opportunities for mimicking human visual memory in future multifunctional applications.
Collapse
Affiliation(s)
- Fa Cao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zijun Hu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaolei Deng
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
30
|
Xiong Y, Chen T, Feng W. Broadband high-performance vertical WS 1.08Se 0.92/Si heterojunction photodetector with MXene electrode. NANOTECHNOLOGY 2023; 35:025201. [PMID: 37797612 DOI: 10.1088/1361-6528/ad005a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Vertical semiconductor van der Waals heterojunctions are essential for fabricating high-performance photodetectors. However, the range of the spectral response and defect states of semiconductor materials are two critical factors affecting the performance of photodetectors. In this work, the spectral response range of WS2was changed through WS2band gap regulation, and a self-powered vertical WS1.08Se0.92/Si heterojunction photodetector with MXene electrode was prepared by synthesizing WS1.08Se0.92film on Si substrate and vertically stacking Ti3C2TxMXene on the film. Due to the electron collection of MXene and the wonderful junction quality of WS1.08Se0.92/Si, the photodetector can detect near-infrared light in the range of 980-1310 nm, which exceed the detection limit of WS1.08Se0.92. And the device had high sensitivity in the broadband. The responsivity was 4.58 A W-1, the specific detectivity was 4.58 × 1011Jones, the on/off ratio was 4.95 × 103, and the fast response time was 9.81/9.03μs. These properties are superior to previously reported WS2-based photodetectors. Vertical structure, Energy band tuning, and MXene electrode provide a new idea for preparing broadband high-performance and self-powered photodetector.
Collapse
Affiliation(s)
- Yuexu Xiong
- School of Physics and Astronomy, China West Normal University, Nanchong 637009, People's Republic of China
| | - Taihong Chen
- School of Physics and Astronomy, China West Normal University, Nanchong 637009, People's Republic of China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing 400054, People's Republic of China
- Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing 400054, People's Republic of China
| |
Collapse
|
31
|
Xu Z, Luo Z, Lin X, Shen C, Wang X, Zhang J, Wang G, Jiang F, Chi N. 15.26Gb/s Si-substrate GaN high-speed visible light photodetector with super-lattice structure. OPTICS EXPRESS 2023; 31:33064-33076. [PMID: 37859094 DOI: 10.1364/oe.498632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 10/21/2023]
Abstract
In this paper, we studied a series of high-speed photodetectors (PD) with different super-lattice interlayer periods and the scale of the effective area to examine their communication performance. The mini-PDs are designed with a single 1 mm × 1 mm effective area. The mini-PDs have three different super-lattice (SL) periods in the interlayer: 8, 15, and 32. The micro-PD sample has multiple 50um by 50um photosensitive areas that form a 4 × 4 receiver array, which shares a common N electrode. Its SL period is 26. The experiment shows that mini-PDs have the advantages such as better tolerance to beam spot deviation, larger field of view (FoV), higher responsibility, and wider peak width in spectral response. But micro-LED samples outperform the others in communication capacity and wavelength selectivity. The 8, 15, and 32 SL mini-PD samples achieve 6.6, 7.3, and 8.8 Gb/s data rates, respectively. The micro-PD gains the maximum data rate of 14.38Gb/s without applying waveform level post-equalization, and 15.26Gb/s after using an NN-based post-equalizer. This experiment shows that with proper DSP, GaN-based PD would be suitable for high-speed VLC systems, especially for the short wavelength spectrum in visible light.
Collapse
|
32
|
Yan T, Ge J, Su L, Liu X, Fang X. Designing Ordered Organic Small-Molecule Domains for Ultraviolet Detection and Micrometer-Sized Flexible Imaging. NANO LETTERS 2023; 23:8295-8302. [PMID: 37638790 DOI: 10.1021/acs.nanolett.3c02511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Photodetectors displaying an ultraviolet (UV) spectral response window are typically based on wide-bandgap semiconductors that have long been dominated by inorganic materials that suffer from bottlenecks of low flexibility and a limited material family. Here, we synthesized a novel organic small molecule and controlled its crystallization to suppress leakage currents and facilitate separation of the carriers, and the relationship between the nanoscale phase separation morphology and the optoelectrical performance of the photodetectors is disclosed. Our optimized organic photodetector (OPD) presents a UV spectral response window, with superior self-powered responsivities of 45 mA/W (under 250 nm light) and 70 mA/W (under 300 nm light), outperforming the Si photodiode and rivaling other reported UV self-powered photodetectors. Finally, an imaging system was constructed to demonstrate the application potential of the OPD in UV flexible imaging with high-resolution arrays of 400 pixels × 400 pixels (5 μm × 5 μm per pixel), which could work in bent states and successfully output images of micrometer-sized objects.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai 200438, P. R. China
| | - Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Li Su
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai 200438, P. R. China
| | - Xinya Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai 200438, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
33
|
Lin S, Liu C, Chen X, Zhang Y, Lin H, Yu X, Bo Y, Lu Y. Self-Driven Photo-Polarized Water Molecule-Triggered Graphene-Based Photodetector. RESEARCH (WASHINGTON, D.C.) 2023; 6:0202. [PMID: 37529624 PMCID: PMC10389694 DOI: 10.34133/research.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
Flowing water can be used as an energy source for generators, providing a major part of the energy for daily life. However, water is rarely used for information or electronic devices. Herein, we present the feasibility of a polarized liquid-triggered photodetector in which polarized water is sandwiched between graphene and a semiconductor. Due to the polarization and depolarization processes of water molecules driven by photogenerated carriers, a photo-sensitive current can be repeatedly produced, resulting in a high-performance photodetector. The response wavelength of the photodetector can be fine-tuned as a result of the free choice of semiconductors as there is no requirement of lattice match between graphene and the semiconductors. Under zero voltage bias, the responsivity and specific detectivity of Gr/NaCl (0.5 M)W/N-GaN reach values of 130.7 mA/W and 2.3 × 109 Jones under 350 nm illumination, respectively. Meanwhile, using a polar liquid photodetector can successfully read the photoplethysmography signals to produce accurate oxygen blood saturation and heart rate. Compared with the commercial pulse oximetry sensor, the average errors of oxygen saturation and heart rate in the designed photoplethysmography sensor are ~1.9% and ~2.1%, respectively. This study reveals that water can be used as a high-performance photodetector in informative industries.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Hangzhou Gelanfeng Technology Co. Ltd, Hangzhou 310051, P. R. China
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chang Liu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xin Chen
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yi Zhang
- Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, HCSemitek Corporation, Yiwu 322009, P. R. China
| | - Hongtao Lin
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xutao Yu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujiao Bo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanghua Lu
- Hangzhou Gelanfeng Technology Co. Ltd, Hangzhou 310051, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| |
Collapse
|
34
|
Xu X, Lu C, Wang Y, Bai X, Liu Z, Zhang Y, Hua D. Two dimensional NbSe 2/Nb 2O 5 metal-semiconductor heterostructure-based photoelectrochemical photodetector with fast response and high flexibility. NANOSCALE HORIZONS 2023. [PMID: 37326422 DOI: 10.1039/d3nh00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two dimensional (2D) metal-semiconductor heterostructures are promising for high-performance optoelectronic devices due to fast carrier separation and transportation. Considering the superior metallic characteristics accompanied by high electrical conductivity in NbSe2, surface oxidation provides a facile way to form NbSe2/Nb2O5 metal-semiconductor heterostructures. Herein, size-dependent NbSe2/Nb2O5 nanosheets were achieved by a liquid phase exfoliation method and a gradient centrifugation strategy. These NbSe2/Nb2O5 heterostructure-based photodetectors show high responsivity with 23.21 μA W-1, fast response time of millisecond magnitude, and wide band detection ability in the UV-Vis region. It is noticeable that the photocurrent density is sensitive to the surface oxygen layer due to the oxygen-sensitized photoconduction mechanism. The flexible testing of the NbSe2/Nb2O5 heterostructure-based PEC-type photodetectors exhibits high photodetection performance even after bending and twisting. Beyond that, the solid-state PEC-type NbSe2/Nb2O5 photodetector also achieves relatively stable photodetection and high stability. This work promotes the application of 2D NbSe2/Nb2O5 metal-semiconductor heterostructures in flexible optoelectronic devices.
Collapse
Affiliation(s)
- Xiang Xu
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Chunhui Lu
- Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Ying Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Xing Bai
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Zenghui Liu
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Ying Zhang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Dengxin Hua
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
35
|
Wang C, Xu X, Tyagi S, Rout PC, Schwingenschlögl U, Sarkar B, Khandelwal V, Liu X, Gao L, Hedhili MN, Alshareef HN, Li X. Ti 3 C 2 T x MXene van der Waals Gate Contact for GaN High Electron Mobility Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211738. [PMID: 36942383 DOI: 10.1002/adma.202211738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Indexed: 06/02/2023]
Abstract
Gate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at the traditional metal-GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3 C2 Tx MXene films are integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions are formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibit an extremely low off-state current (IOFF ) of 10-7 mA mm-1 , a record high ION /IOFF current ratio of ≈1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off-state drain breakdown voltage of 1085 V, and a near-ideal subthreshold swing of 61 mV dec-1 . This work shows the great potential of MXene films as gate electrodes in wide-bandgap semiconductor devices.
Collapse
Affiliation(s)
- Chuanju Wang
- Advanced Semiconductor Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiangming Xu
- Physical Science, and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shubham Tyagi
- Physical Science, and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Paresh C Rout
- Physical Science, and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Physical Science, and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Biplab Sarkar
- Department of Electronics & Communication Engineering, IIT Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishal Khandelwal
- Advanced Semiconductor Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Microscale Optical Information Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, P. R. China
| | - Linfei Gao
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Microscale Optical Information Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, P. R. China
| | - Mohamed Nejib Hedhili
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Physical Science, and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaohang Li
- Advanced Semiconductor Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Yan Y, Li M, Xia K, Yang K, Wu D, Li L, Fei G, Gan W. A two-dimensional Te/ReS 2 van der Waals heterostructure photodetector with high photoresponsivity and fast photoresponse. NANOSCALE 2023; 15:7730-7736. [PMID: 37060126 DOI: 10.1039/d2nr07185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) semiconductors are the building blocks for high-performance optoelectronic devices. However, the performance of photoconductive photodetectors based on 2D semiconductors is hampered by low photoresponsivity and large dark current. Herein, a van der Waals heterostructure (vdWH) composed of rhenium disulfide (ReS2) and tellurium (Te) is fabricated. The Te/ReS2 vdWH photodetector exhibits a sensitive and broadband photoresponse and has high photoresponse on/off ratios under ultraviolet and visible light illumination, especially over 102 in visible light. The Te/ReS2 vdWH photodetector achieves the responsivity of 7.9 A W-1 at 365 nm, 3.02 A W-1 at 450 nm, 2.37 A W-1 at 532 nm, and 2.45 A W-1 at 660 nm. In addition, the device achieves a high specific detectivity of 1011 Jones and a fast photoresponse speed of 11.9 μs. Such high responsivity could be attributed to the efficient absorption of phonons by the Te/ReS2 vdWH and the high-quality heterostructure interfaces with a small amount of trap states. The highly crystalline structure of Te/ReS2 with a low density of defects reduces the grain boundary scattering, leading to the rapid diffusion of charge carriers. Moreover, the Te/ReS2 vdWH device exhibits a photovoltaic effect and can be employed as a self-powered photodetector (SPPD), which is sensitive to visible light of 450 nm, 532 nm, and 660 nm. Our findings demonstrate that the Te/ReS2 vdWH photodetector is an ideal building block for the next-generation electronic and optoelectronic devices in practical applications.
Collapse
Affiliation(s)
- Yafei Yan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Minxin Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Kai Xia
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Kemeng Yang
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Dun Wu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Liang Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guangtao Fei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Wei Gan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| |
Collapse
|
37
|
Zi Y, Hu Y, Pu J, Wang M, Huang W. Recent Progress in Interface Engineering of Nanostructures for Photoelectrochemical Energy Harvesting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208274. [PMID: 36776020 DOI: 10.1002/smll.202208274] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
With rapid and continuous consumption of nonrenewable energy, solar energy can be utilized to meet the energy requirement and mitigate environmental issues in the future. To attain a sustainable society with an energy mix predominately dependent on solar energy, photoelectrochemical (PEC) device, in which semiconductor nanostructure-based photocatalysts play important roles, is considered to be one of the most promising candidates to realize the sufficient utilization of solar energy in a low-cost, green, and environmentally friendly manner. Interface engineering of semiconductor nanostructures has been qualified in the efficient improvement of PEC performances including three basic steps, i.e., light absorption, charge transfer/separation, and surface catalytic reaction. In this review, recently developed interface engineering of semiconductor nanostructures for direct and high-efficiency conversion of sunlight into available forms (e.g., chemical fuels and electric power) are summarized in terms of their atomic constitution and morphology, electronic structure and promising potential for PEC applications. Extensive efforts toward the development of high-performance PEC applications (e.g., PEC water splitting, PEC photodetection, PEC catalysis, PEC degradation and PEC biosensors) are also presented and appraised. Last but not least, a brief summary and personal insights on the challenges and future directions in the community of next-generation PEC devices are also provided.
Collapse
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
38
|
Guo T, Xu X, Liu C, Wang Y, Lei Y, Fang B, Shi L, Liu H, Hota MK, Al-Jawhari HA, Zhang X, Alshareef HN. Large-Area Metal-Semiconductor Heterojunctions Realized via MXene-Induced Two-Dimensional Surface Polarization. ACS NANO 2023; 17:8324-8332. [PMID: 37079914 PMCID: PMC10173692 DOI: 10.1021/acsnano.2c12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Direct MXene deposition on large-area 2D semiconductor surfaces can provide design versatility for the fabrication of MXene-based electronic devices (MXetronics). However, it is challenging to deposit highly uniform wafer-scale hydrophilic MXene films (e.g., Ti3C2Tx) on hydrophobic 2D semiconductor channel materials (e.g., MoS2). Here, we demonstrate a modified drop-casting (MDC) process for the deposition of MXene on MoS2 without any pretreatment, which typically degrades the quality of either MXene or MoS2. Different from the traditional drop-casting method, which usually forms rough and thick films at the micrometer scale, our MDC method can form an ultrathin Ti3C2Tx film (ca. 10 nm) based on a MXene-introduced MoS2 surface polarization phenomenon. In addition, our MDC process does not require any pretreatment, unlike MXene spray-coating that usually requires a hydrophilic pretreatment of the substrate surface before deposition. This process offers a significant advantage for Ti3C2Tx film deposition on UV-ozone- or O2-plasma-sensitive surfaces. Using the MDC process, we fabricated wafer-scale n-type Ti3C2Tx-MoS2 van der Waals heterojunction transistors, achieving an average effective electron mobility of ∼40 cm2·V-1·s-1, on/off current ratios exceeding 104, and subthreshold swings of under 200 mV·dec-1. The proposed MDC process can considerably enhance the applications of MXenes, especially the design of MXene/semiconductor nanoelectronics.
Collapse
Affiliation(s)
- Tianchao Guo
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiangming Xu
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chen Liu
- Applied Physics, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bin Fang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lin Shi
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hang Liu
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mrinal K Hota
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hala A Al-Jawhari
- Department of Physics, King Abdulaziz University, Jeddah 21551 Saudi Arabia
| | - Xixiang Zhang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
Kundu S, George SJ, Kulkarni GU. Fabrication of High-Performance Visible-Blind Ultraviolet Photodetectors Using Electro-ionic Conducting Supramolecular Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19270-19278. [PMID: 36996388 DOI: 10.1021/acsami.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The detection of ultraviolet (UV) light is vital for various applications, such as chemical-biological analysis, communications, astronomical studies, and also for its adverse effects on human health. Organic UV photodetectors are gaining much attention in this scenario because they possess properties such as high spectral selectivity and mechanical flexibility. However, the achieved performance parameters are much more inferior than the inorganic counterparts because of the lower mobility of charge carriers in organic systems. Here, we report the fabrication of a high-performance visible-blind UV photodetector, using 1D supramolecular nanofibers. The nanofibers are visibly inactive and exhibit highly responsive behavior mainly for UV wavelengths (275-375 nm), the highest response being at ∼275 nm. The fabricated photodetectors demonstrate desired features, such as high responsivity and detectivity, high selectivity, low power consumption, and good mechanical flexibility, because of their unique electro-ionic behavior and 1D structure. The device performance is shown to be improved by several orders through the tweaking of both electronic and ionic conduction pathways while optimizing the electrode material, external humidity, applied voltage bias, and by introducing additional ions. We have achieved optimum responsivity and detectivity values of around 6265 A W-1 and 1.54 × 1014 Jones, respectively, which stand out compared with the previous organic UV photodetector reports. The present nanofiber system has great potential for integration in future generations of electronic gadgets.
Collapse
Affiliation(s)
- Suman Kundu
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India
| | - Subi J George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Giridhar U Kulkarni
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
40
|
Zhang Y, Almenabawy S, Kherani NP. Haynes-Shockley experiment analogs in surface and optoelectronics: Tunable surface electric field extracting nearly all photocarriers. SCIENCE ADVANCES 2023; 9:eadg2454. [PMID: 37043571 PMCID: PMC10096577 DOI: 10.1126/sciadv.adg2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Photocarriers predominantly recombine at semiconductor surfaces and interfaces, assuming high bulk carrier lifetime. Consequently, understanding the extraction of photocarriers via surfaces is critical to optoelectronics. Here, we propose Haynes-Shockley experiment analogs to investigate photocarrier surface extraction. A Schottky junction is used to tune the silicon near-surface electric field strength that varies over several orders of magnitude and simultaneously observe variations in broadband photocarrier extraction. Schottky barrier height and surface potential are both modulated. Work function tunable indium tin oxide (ITO) is developed to precisely regulate the barrier height and collect photocarriers at 0 V bias, thus avoiding the photocurrent gain effect. All experiments demonstrate >98% broadband internal quantum efficiency. The experiments are further extended to wave interference photonic crystals and random pyramids, paving a way to estimate the photogeneration rate of diverse surface light-trapping topologies by collecting nearly all photocarriers. The insights reported here provide a systematic experimental basis to investigate interfacial effects on photocarrier spatial generation and collection.
Collapse
Affiliation(s)
- Yibo Zhang
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4, Canada
| | - Sara Almenabawy
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4, Canada
| | - Nazir P. Kherani
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
41
|
Han Y, Wang Y, Fu S, Ma J, Xu H, Li B, Liu Y. Ultrahigh Detectivity Broad Spectrum UV Photodetector with Rapid Response Speed Based on p-β Ga 2 O 3 /n-GaN Heterojunction Fabricated by a Reversed Substitution Doping Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206664. [PMID: 36683220 DOI: 10.1002/smll.202206664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Indexed: 06/17/2023]
Abstract
An excellent broad-spectrum (220-380 nm) UV photodetector, covering the UVA-UVC wavelength range, with an ultrahigh detectivity of ≈1015 cm Hz1/2 W-1 , is reported. It is based on a p-β Ga2 O3 /n-GaN heterojunction, in which p-β Ga2 O3 is synthesized by thermal oxidation of GaN and a heterostructure is constructed with the bottom n-GaN. XRD shows the oxide layer is (-201) preferred oriented β-phase Ga2 O3 films. SIMS and XPS indicate that the residual N atoms as dopants remain in β Ga2 O3 . XPS also demonstrates that the Fermi level is 0.2 eV lower than the central level of the band gap, indicating that the dominant carriers are holes and the β Ga2 O3 is p-type conductive. Under a bias of -5 V, the photoresponsivity is 56 and 22 A W-1 for 255 and 360 nm, respectively. Correspondingly, the detectivities reach an ultrahigh value of 2.7 × 1015 cm Hz1/2 W-1 (255 nm) and 1.1 × 1015 cm Hz1/2 W-1 (360 nm). The high performance of this UV photodetector is attributed mainly to the continuous conduction band of the p-β Ga2 O3 /n-GaN heterojunction without a potential energy barrier, which is more helpful for photogenerated electron transport from the space charge region to the n-type GaN layer.
Collapse
Affiliation(s)
- Yurui Han
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yuefei Wang
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shihao Fu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jiangang Ma
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haiyang Xu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yichun Liu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
42
|
Tian Y, Li Y, Hu C, Yang Y, Chen D, Shen G. Air-Stable Flexible Photodetector Based on MXene-Cs 3Bi 2I 9 Microplate Schottky Junctions for Weak-Light Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13332-13342. [PMID: 36859765 DOI: 10.1021/acsami.2c22691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Weak-light detection technology is widely used in various fields, including industry, high-energy physics, precision analysis, and reflection imaging. Metal-semiconductor-metal (MSM) photodetectors demonstrate high detectivity and high response speed and are one of the suitable structures for the preparation of weak-light detectors. However, traditional MSM photodetectors tend to exhibit high dark currents, which are not conducive to performance improvement. Here, a MXene-Cs3Bi2I9-MXene weak-light detector is proposed. Based on the MXene-Cs3Bi2I9 Schottky junctions, the dark current is reduced by 2 orders of magnitude and the responsivity is significantly improved compared with the traditional Cr/Au-Cs3Bi2I9-Cr/Au MSM photodetector. The device demonstrates excellent photodetection capacity with a photoresponsivity of 6.45 A W-1, a specific detectivity of 9.45 × 1011 Jones, and a fast response speed of 0.27/2.32 ms. Especially, the device yielded a superior weak-light detectable limit of 10.66 nW cm-2 and demonstrated excellent optical communication capability. Moreover, such a flexible device shows little degradation in photodetection performance after extreme bending for 4500 cycles, proving remarkable bending endurance and flexibility. The obtained results highlight the great potential of such Cs3Bi2I9/MXene devices as a stable and environmentally friendly candidate for weak-light detection.
Collapse
Affiliation(s)
- Yue Tian
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Chuqiao Hu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Yaqian Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Di Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
43
|
Behnia S, Fathizadeh S, Hosseinnezhad P, Nemati F. Modulation of a DNA-based photodetector: Virus-Chromophore hybridization. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
44
|
Chen J, Zhao J, Feng S, Zhang L, Cheng Y, Liao H, Zheng Z, Chen X, Gao Z, Chen KJ, Hua M. Formation and Applications in Electronic Devices of Lattice-Aligned Gallium Oxynitride Nanolayer on Gallium Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208960. [PMID: 36609822 DOI: 10.1002/adma.202208960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Gallium nitride (GaN), a promising alternative semiconductor to Si, is widely used in photoelectronic and electronic technologies. However, the vulnerability of the GaN surface is a critical restriction that hinders the development of GaN-based devices, especially in terms of device stability and reliability. In this study, this challenge is overcome by converting the GaN surface into a gallium oxynitride (GaON) epitaxial nanolayer through an in situ two-step "oxidation-reconfiguration" process. The O plasma treatment overcomes the chemical inertness of the GaN surface, and sequential thermal annealing manipulates the kinetic-thermodynamic reaction pathways to create a metastable GaON nanolayer with a wurtzite lattice. The GaN-derived GaON nanolayer is a tailored structure for surface reinforcement and possesses several advantages, including a wide bandgap, high thermodynamic stability, and large valence band offset with a GaN substrate. These physical properties can be further leveraged to enhance the performance of GaN-based devices in various applications, such as power systems, complementary logic integrated circuits, photoelectrochemical water splitting, and ultraviolet photoelectric conversion.
Collapse
Affiliation(s)
- Junting Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Junlei Zhao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sirui Feng
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Li Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yan Cheng
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Hang Liao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zheyang Zheng
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Gao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kevin J Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Mengyuan Hua
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
45
|
Yang B, Gao W, Li H, Gao P, Yang M, Pan Y, Wang C, Yang Y, Huo N, Zheng Z, Li J. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging. NANOSCALE 2023; 15:3520-3531. [PMID: 36723020 DOI: 10.1039/d2nr06642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Broadband photodetectors are a category of optoelectronic devices that have important applications in modern communication information. γ-InSe is a newly developed two-dimensional (2D) layered semiconductor with an air-stable and low-symmetry crystal structure that is suitable for polarization-sensitive photodetection. Herein, we report a P-N photodiode based on 3D Ge/2D γ-InSe van der Waals heterojunction (vdWH). A built-in electric field is introduced at the p-Ge/n-InSe interface to suppress the dark current and accelerate the separation of photogenerated carriers. Moreover, the heterojunction belongs to the accumulation mode with a well-designed type-II band arrangement, which is suitable for the fast separation of photogenerated carriers. Driven by these advantages, the device exhibits excellent photovoltaic performance within the detection range of 400 to 1600 nm and shows a double photocurrent peak at around 405 and 1550 nm. In particular, the responsivity (R) is up to 9.78 A W-1 and the specific detectivity (D*) reaches 5.38 × 1011 Jones with a fast response speed of 46/32 μs under a 1550 nm laser. Under blackbody radiation, the room temperature R and D* in the mid-wavelength infrared region are 0.203 A W-1 and 5.6 × 108 Jones, respectively. Moreover, polarization-sensitive light detection from 405-1550 nm was achieved, with the dichroism ratios of 1.44, 3.01, 1.71, 1.41 and 1.34 at 405, 635, 808, 1310 and 1550 nm, respectively. In addition, high-resolution single-pixel imaging capability is demonstrated at visible and near-infrared wavelengths. This work reveals the great potential of the γ-InSe/Ge photodiode for high-performance, broadband, air-stable and polarization-sensitive photodetection.
Collapse
Affiliation(s)
- Baoxiang Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Wei Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Hengyi Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Peng Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yuan Pan
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Chuanglei Wang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yani Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Nengjie Huo
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Jingbo Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| |
Collapse
|
46
|
Huo J, Zou G, Xiao Y, Sun T, Feng B, Shen D, Lin L, Wang W, A Z, Liu L. High performance 1D-2D CuO/MoS 2 photodetectors enhanced by femtosecond laser-induced contact engineering. MATERIALS HORIZONS 2023; 10:524-535. [PMID: 36426652 DOI: 10.1039/d2mh01088g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integration of 2D materials with other dimensional materials opens up rich possibilities for both fundamental physics and exotic nanodevices. However, current mixed-dimensional heterostructures often suffer from interfacial contact issues and environment-induced degradation, which severely limits their performance in electronics/optoelectronics. Herein, we demonstrate a novel BN-encapsulated CuO/MoS2 2D-1D van der Waals heterostructure photodetector with an ultrahigh photoresponsivity which is 10-fold higher than its previous 2D-1D counterparts. The interfacial contact state and photodetection capabilities of 2D-1D heterojunctions are significantly improved via femtosecond laser irradiation induced MoS2 wrapping and contamination removal. These h-BN protected devices show highly sensitive, gate-tunable and robust photoelectronic properties. By controlling the gate and bias voltages, the device can achieve a photoresponsivity as high as 2500 A W-1 in the forward bias mode, or achieve a high detectivity of 6.5 × 1011 Jones and a typical rise time of 2.5 ms at reverse bias. Moreover, h-BN encapsulation effectively protects the mixed-dimensional photodetector from electrical depletion by gas molecules such as O2 and H2O during fs laser treatment or the operation process, thus greatly improving the stability and service life in harsh environments. This work provides a new way for the further development of high performance, low cost, and robust mixed-dimensional heterostructure photodetectors by femtosecond laser contact engineering.
Collapse
Affiliation(s)
- Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
- Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhanwen A
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
47
|
Tang K, Jiang M, Yang B, Xu T, Liu Z, Wan P, Kan C, Shi D. Enhancing UV photodetection performance of an individual ZnO microwire p-n homojunction via interfacial engineering. NANOSCALE 2023; 15:2292-2304. [PMID: 36636950 DOI: 10.1039/d2nr06431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a typical broad bandgap semiconductor, ZnO has received considerable attention for developing optoelectronic devices in ultraviolet wavelengths, but suffers from a lack of high-quality single-crystalline p-type ZnO. Herein, we report the realization of a homojunction ultraviolet photodetector, which involves a p-type Sb-doped ZnO microwire (ZnO:Sb MW) and n-type ZnO layer. The p-type conductivity of the as-synthesized ZnO:Sb MWs was evidenced using an individual wire field-effect transistor. Due to its good rectifying ability and excellent photovoltaic effect, the constructed p-ZnO:Sb MW/n-ZnO homojunction is able to work as an ultraviolet photodetector in self-biased and reversely biased manners. By appropriately engineering the band alignment of the p-ZnO:Sb/n-ZnO homojunction via a MgO interface modification layer, the optimized photodetector exhibits performance-enhanced ultraviolet detection capabilities, such as the light on/off ratio reaching up to 1.6 × 108, responsivity of over 267 mA W-1 and specific detectivity of approximately 1.2 × 1014 Jones upon 365 nm light illumination at 0 V. The detector also produces faster response with rise/recovery times of 102 μs/3.6 ms. This study not only employed a novel method to synthesize genuine p-type ZnO with excellent stability and reproducibility, but also opened up substantial opportunities for developing high-performance ZnO homojunction optoelectronic devices.
Collapse
Affiliation(s)
- Kai Tang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Bingwang Yang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Tong Xu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Zeng Liu
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Peng Wan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Caixia Kan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Daning Shi
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| |
Collapse
|
48
|
Li SX, Xia H, Liu TY, Zhu H, Feng JC, An Y, Zhang XL, Sun HB. In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207771. [PMID: 36341484 DOI: 10.1002/adma.202207771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nanostructures provide a simple, effective, and low-cost route to enhance the light-trapping capability of optoelectronic devices. In recent years, nano-optical structures have been widely used in perovskite optoelectronic devices to greatly enhance the device performance. However, the inherent instability of perovskite materials hinders the practical application of these nanostructured optoelectronic devices. Here, in situ encapsulated moiré lattice perovskite photodetectors (PDs) by two nanograting-structured soft templates with relative rotation angles is fabricated. The confinement growth of the two nanograting templates leads to crystal growth with moiré lattice structure, which improves the light-harvesting ability of the perovskite crystal, thereby improving the device performance. The PD exhibits responsivity to 1026.5 A W-1 . The Moiré lattice-perovskite-based PD maintained 95% of the initial performance after 223 days. After being continuously sprayed with water moist for 180 min, the performance is maintained at 95.7% of its initial level. The nanograting structure endows the device with high polarization sensitivity of Imax /Imin as high as 9.1.
Collapse
Affiliation(s)
- Shun-Xin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tian-Yu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - He Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jia-Cheng Feng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yang An
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xu-Lin Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Haidian district, Beijing, 100084, China
| |
Collapse
|
49
|
Highly Dispersed In‐Situ Grown Bi
2
O
3
Nanosheets on Ti
3
C
2
T
x
MXene for Selective Electroreduction of Nitrate to Ammonia. ChemElectroChem 2022. [DOI: 10.1002/celc.202201001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Huang PY, Chen HJ, Qin JK, Zhen L, Xu CY. A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT-MoS 2 heterostructures. NANOSCALE ADVANCES 2022; 4:5290-5296. [PMID: 36540126 PMCID: PMC9724606 DOI: 10.1039/d2na00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
Mixed-dimensional van der Waals (vdW) integration has been demonstrated to be effective for the modulation of the physical properties of homogeneous materials. Herein, we reported the enhancement of photothermal conversion and decrease of thermal conductivity in metallic single-walled carbon nanotube (SWCNT) films with the integration of chemical vapor deposition-grown monolayer MoS2 films. The induced temperature gradient in SWCNT-MoS2 hybrid films drives carrier diffusion to generate photocurrent via the photothermoelectric (PTE) effect, and a self-powered photodetector working in the visible band range from 405 to 785 nm was demonstrated. The maximum responsivity of the device increases by 6 times compared to that of the SWCNT counterpart. More importantly, the mixed-dimensional device exhibits polarization-dependent photogeneration, showing a large anisotropy ratio of 1.55. This work paves a way for developing high-performance, polarization-sensitive photodetectors by mixed-dimensional integration.
Collapse
Affiliation(s)
- Pei-Yu Huang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hong-Ji Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jing-Kai Qin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology Harbin 150080 China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology Harbin 150080 China
| |
Collapse
|