1
|
Khezerlou A, Tavassoli M, Abedi-Firoozjah R, Alizadeh Sani M, Ehsani A, Varma RS. MOFs-based adsorbents for the removal of tetracycline from water and food samples. Sci Rep 2025; 15:502. [PMID: 39747525 DOI: 10.1038/s41598-024-84122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Tetracyclines (TCs) are widely employed for the prevention and treatment of diseases in animals besides being deployed to promote animal growth and weight gain. Such practices result in trace amounts of TCs occurrence in water and foodstuffs of animal origin, including eggs and milk, thus posing severe health risks to humans. To ensure the food and water safety and to avoid exposure to humans, the removal of TC residues from food and water has recently garnered a considerable attention. Metal-organic frameworks (MOFs), endowed with unique structural and surface properties with high affinity toward TCs, are recognized as excellent absorbents for removal of TCs from food and water samples. Herein, the utilization of MOFs in the adsorption of TC from food and water samples is deliberated including the underlying mechanisms and various factors that affect the adsorption and degradation of TCs. The strategy may be extendible to other pollutants as well.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran
| | - Milad Tavassoli
- Department of Nutrition, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Science, Yasuj, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotics Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|
2
|
Taffa DH, Brim E, Rücker KK, Hayes D, Lorenz J, Bisen O, Risch M, Harms C, Richards RM, Wark M. Influence of Annealing Temperature on the OER Activity of NiO(111) Nanosheets Prepared via Microwave and Solvothermal Synthesis Approaches. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62142-62154. [PMID: 39487042 PMCID: PMC11565572 DOI: 10.1021/acsami.4c14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Earth-abundant transition metal oxides are promising alternatives to precious metal oxides as electrocatalysts for the oxygen evolution reaction (OER) and are intensively investigated for alkaline water electrolysis. OER electrocatalysis, like most other catalytic reactions, is surface-initiated, and the catalyst performance is fundamentally determined by the surface properties. Most transition metal oxide catalysts show OER activities that depend on the predominantly exposed crystal facets/surface structure. Therefore, the design of synthetic strategies to obtain the most active crystal facets is of significant research interest. In this work, rock salt NiO OER catalysts with (111) predominantly exposed facets were synthesized by a solvothermal (ST) method either heated under supercritical or microwave-assisted (MW) conditions. Particular emphasis was placed on the influence of the post annealing temperature on the structural configuration and OER activity to compare their catalytic performances. The as-prepared electrocatalysts are pure α-Ni hydroxides which were converted to rock salt NiO (111) nanosheets with hexagonal pores after heat treatment at different temperatures. The OER activity of the electrodes has been evaluated in 0.1 M KOH using geometric and intrinsic current densities via normalization by the disk area and BET area, respectively. The lowest overpotential at a geometric current density of 10 mA/cm2 is found for samples pretreated by heating between 400 and 500 °C with a catalyst loading of 115 μg/cm2. Despite the very similar nature of the catalysts obtained from the two methods, the ST electrodes show a higher geometric and intrinsic current density for 500 °C pretreatment. The MW electrodes, however, achieve an optimal geometric current density for 400 °C pretreatment, while their intrinsic current density requires pretreatment over 600 °C. Interestingly, pretreated electrodes show consistently higher OER activity as compared to the poorly crystalline/less ordered hydroxide as-prepared electrocatalysts. Thus, our study highlights the importance of the synthesis method and pretreatment at an optimal temperature.
Collapse
Affiliation(s)
- Dereje H. Taffa
- Institute
of Chemistry, Chemical Technology I, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Elliot Brim
- Department
of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| | - Konstantin K. Rücker
- Institute
of Chemistry, Chemical Technology I, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Institute
of Engineering Thermodynamics, German Aerospace
Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Darius Hayes
- Department
of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| | - Julian Lorenz
- Institute
of Engineering Thermodynamics, German Aerospace
Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Omeshwari Bisen
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marcel Risch
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Corinna Harms
- Institute
of Engineering Thermodynamics, German Aerospace
Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Ryan M. Richards
- Department
of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
- Chemical
and Material Sciences Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael Wark
- Institute
of Chemistry, Chemical Technology I, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Hawash HB, Hagar M, Elkady MF, Moneer AA, El-Qelish M, El-Tahawy MMT, Kassem TS. Microwave-assisted supramolecular double crosslinked chitosan-based molecularly imprinted polymer for synergistic recognition and selective recovery of Cd(II) and As(V) from water: Performance and mechanistic insights. Int J Biol Macromol 2024; 281:136263. [PMID: 39383905 DOI: 10.1016/j.ijbiomac.2024.136263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
A novel model of the sustainable double crosslinked molecularly imprinted polymer (D-Crosslinked MIP) represented as a supramolecular imprinted polymer was synthesized via the bulk polymerization method. The primary crosslinking was fabricated using biomacromolecule chitosan as a functional monomer and glutaraldehyde as a crosslinker. The primary crosslinked was subjected to dynamic interactions in a secondary crosslinking by binding Al2O3-NPs and TiO2-NPs, forming the supramolecular D-Crosslinked-MIP. The dually crosslinked formed from combining three distinct crosslinkers in one system for the interaction with As(V) and Cd(II). A microwave was employed to evaluate the performance of the designed material in selectivity and extraction of metal ions from water. The FT-IR, XRD, TG/DTA, SEM-EDX, TEM, and XPS were used to verify the characteristics of (D-nano-Al2O3@Crosslinked Chitosan@D-nano-TiO2). The type of solvents, selectivity, interferences, microwave-contact time, pH, temperatures, concentrations, and regeneration were investigated. By using the D-Crosslinked-MIP, at 15 s, Cd(II) revealed a recovery capacity of 99.03 %, Qmax 862.07 mg/g, while As(V) demonstrated a recovery capacity of 99.06 %, Qmax 850.75 mg/g. The D-Crosslinked-MIP exhibited BETs of 69.01 m2/g with a pore volume of 0.2340 cm3/g owing to polymeric crosslinking by metal oxide NPs. The kinetics, isotherm models, and mechanisms of dually crosslinking and extraction of toxic metals were discussed.
Collapse
Affiliation(s)
- Hamada B Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. 21321, Alexandria, Egypt
| | - Marwa F Elkady
- Department of Chemical and Petrochemicals Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt; Fabrication Technology Department, Advanced Technology and New Materials and Research Institute (ATNMRI), the City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Abeer A Moneer
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON N6A 5B9, Canada; Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Mohsen M T El-Tahawy
- Chemistry Department, Faculty of Science, Damanhour University, P.O. Box 22511, Damanhour, Egypt
| | - Taher S Kassem
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. 21321, Alexandria, Egypt
| |
Collapse
|
4
|
Devesa S, Graça MPF, Pereira WO, Santos GL, da Silva Neto JF, Amaral FMB, Hammami I, Mendes F, Macêdo AAM. Dielectric Characterization of Solutions of Galactomannan Extracted from Adenanthera pavonina L.: Effects of Purification and Ethanol Concentration. Polymers (Basel) 2024; 16:1476. [PMID: 38891423 PMCID: PMC11174883 DOI: 10.3390/polym16111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Galactomannans are polysaccharides obtained from legume seed extraction. They present a chemical structure consisting of D-mannose chains linked by glycosidic bonds and galactose branches. The main focus lies in their use as thickeners in the food industry, aimed at improving the dielectric properties of food during heating processes within the radiofrequency and microwave ranges. In this work, the prepared galactomannan samples were electrically analyzed through impedance spectroscopy, which is a powerful physical technique. From the experimental measurements, the dielectric permittivity and loss tangent of the galactomannan solutions were analyzed and the electrical modulus formalism was used to study the dielectric relaxations. Crude galactomannans exhibited higher values of permittivity, conductivity, and losses compared to purified galactomannans. Increasing ethanol concentration in galactomannan purification causes an increase in the permittivity and conductivity of galactomannan solutions. In a 1% solution, at 1 kHz, the permittivity increased from 378.56 to 538.09, while in the 2% solution, this increase was from 656.22 to 1103.24. Regarding the conductivity, at the same frequency, the increase was from 1.6 × 10-3 to 3.3 × 10-3 Ω-1m-1 and from 2.9 × 10-3 to 5.5 × 10-3 Ω-1m-1, respectively. The rise of the ethanol concentration in galactomannan purification led to a decrease in the relaxation time, from 448.56 to 159.15 μs and from 224.81 to 89.50 μs in the solution with 1 and 2%, respectively. The results suggest that galactomannan from Adenanthera pavonina L. has potential for use in the food industry.
Collapse
Affiliation(s)
- Susana Devesa
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Manuel P. F. Graça
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (F.M.B.A.); (I.H.)
| | - Walajhone O. Pereira
- Instituto Federal do Maranhão (IFMA)—Campus Imperatriz, Imperatriz 65906-335, MA, Brazil; (W.O.P.); (G.L.S.); (J.F.d.S.N.); (A.A.M.M.)
| | - Guilherme L. Santos
- Instituto Federal do Maranhão (IFMA)—Campus Imperatriz, Imperatriz 65906-335, MA, Brazil; (W.O.P.); (G.L.S.); (J.F.d.S.N.); (A.A.M.M.)
| | - João F. da Silva Neto
- Instituto Federal do Maranhão (IFMA)—Campus Imperatriz, Imperatriz 65906-335, MA, Brazil; (W.O.P.); (G.L.S.); (J.F.d.S.N.); (A.A.M.M.)
| | - Filipe M. B. Amaral
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (F.M.B.A.); (I.H.)
- Polytechnic Institute of Coimbra, Coimbra Health School (ESTeSC), 3046-854 Coimbra, Portugal
| | - Imen Hammami
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (F.M.B.A.); (I.H.)
| | - Fernando Mendes
- Polytechnic University of Coimbra, ESTESC, UCPCBL, 3046-854 Coimbra, Portugal;
- H&TRC—Health and Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
- Biophysics Institute of Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal, Polytechnic University of Coimbra, ESTESC, UCPNS, SM Bispo, 3045-093 Coimbra, Portugal
- European Association for Professions in Biomedical Sciences, 1000 Brussels, Belgium
| | - Ana A. M. Macêdo
- Instituto Federal do Maranhão (IFMA)—Campus Imperatriz, Imperatriz 65906-335, MA, Brazil; (W.O.P.); (G.L.S.); (J.F.d.S.N.); (A.A.M.M.)
| |
Collapse
|
5
|
Son JY, Choe S, Jang YJ, Kim H. Waste paper-derived porous carbon via microwave-assisted activation for energy storage and water purification. CHEMOSPHERE 2024; 355:141798. [PMID: 38548074 DOI: 10.1016/j.chemosphere.2024.141798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The reuse of waste papers by conversion into valuable carbon materials has received considerable attention for diverse applications such as energy storage and water purification. However, traditional methods for converting waste papers into materials with suitable properties for specific applications are often complex and ineffective, involving consecutive carbonization and activation steps. Herein, we propose a simple one-step microwave (MW)-assisted synthesis for preparing waste paper-derived porous carbons (WPCs) for energy storage and water purification. Through a 30-min synthesis, WPCs with graphitic structure and high specific surface area were successfully produced. The fabricated WPCs exhibited outstanding charge storage capability with a maximum specific capacitance of 237.7 F g-1. Additionally, the WPC demonstrates a high removal efficiency for various dyes, achieving a maximum removal efficiency of 95.0% for methylene blue. The developed one-step MW synthesis not only enables the production of porous carbon from waste paper, but also offers a viable approach to address solid waste management challenges while simultaneously yielding valuable materials.
Collapse
Affiliation(s)
- Josue Yaedalm Son
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seokwoo Choe
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hyejeong Kim
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea; Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Elhassan A, Lv X, Abdalla I, Yu J, Li Z, Ding B. Efficient Synthesis of Fe 3O 4/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption. Polymers (Basel) 2024; 16:1160. [PMID: 38675079 PMCID: PMC11053598 DOI: 10.3390/polym16081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Ever-increasing electromagnetic pollution largely affects human health, sensitive electronic equipment, and even military security, but current strategies used for developing functional attenuation materials cannot be achieved in a facile and cost-effective way. Here, a unique core-shell-like composite was successfully synthesized by a simple chemical approach and a rapid microwave-assisted carbonization process. The obtained composites show exceptional electromagnetic wave absorption (EMWA) properties, including a wide effective absorption band (EAB) of 4.64 GHz and a minimum reflection loss (RLmin) of -26 dB at 1.6 mm. The excellent performance can be attributed to the synergistic effects of conductive loss, dielectric loss, magnetic loss, and multiple reflection loss within the graphene-based core-shell-like composite. This work demonstrates a convenient, rapid, eco-friendly, and cost-effective method for synthesizing high-performance microwave absorption materials (MAMs).
Collapse
Affiliation(s)
- Ahmed Elhassan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
| | - Xiaoshuang Lv
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ibrahim Abdalla
- Shanghai Key Laboratory for Development and Application of Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Zhaoling Li
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Tai’an 271000, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
7
|
Yang L, Wang K, Guo L, Hu X, Zhou M. Unveiling the potential of HKUST-1: synthesis, activation, advantages and biomedical applications. J Mater Chem B 2024; 12:2670-2690. [PMID: 38411271 DOI: 10.1039/d3tb02929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as a unique class of nanostructured materials, resulting from the self-assembly of metal ions or clusters with organic ligands, offering a wide range of applications in fields such as drug delivery, gas catalysis, and electrochemical sensing. Among them, HKUST-1, a copper-based MOF, has gained substantial attention due to its remarkable three-dimensional porous structure. Comprising copper ions and benzene-1,3,5-tricarboxylic acid, HKUST-1 exhibits an extraordinary specific surface area and pronounced porosity, making it a promising candidate in biomedicine. Notably, the incorporation of copper ions endows HKUST-1 with noteworthy activities, including antitumor, antibacterial, and wound healing-promoting properties. In this comprehensive review, we delve into the various synthesis methods and activation pathways employed in the preparation of HKUST-1. We also explore the distinct advantages of HKUST-1 in terms of its structural properties and functionalities. Furthermore, we investigate the exciting and rapidly evolving biomedical applications of HKUST-1. From its role in tumor treatment to its antibacterial effects and its ability to promote wound healing, we showcase the multifaceted potential of HKUST-1 in addressing critical challenges in biomedicine.
Collapse
Affiliation(s)
- Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiao Hu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Wen M, Sun N, Jiao L, Zang SQ, Jiang HL. Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO 2 Electroreduction at Ampere-Level Current. Angew Chem Int Ed Engl 2024; 63:e202318338. [PMID: 38230982 DOI: 10.1002/anie.202318338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3 min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.
Collapse
Affiliation(s)
- Ming Wen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Nana Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
9
|
Yu SH, Feng XY, Fan MY, Zhang YZ, Wang Y. Efficient removal of phosphorus and nitrogen from aquatic environment using sepiolite-MgO nanocomposites: preparation, characterization, removal performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17481-17493. [PMID: 38342832 DOI: 10.1007/s11356-024-32346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.
Collapse
Affiliation(s)
- Sheng-Hui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xin-Yi Feng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Mei-Ying Fan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yuan-Zhao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
10
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Fang X, Zhang D, Chang Z, Li R, Meng S. Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress. ENVIRONMENTAL RESEARCH 2024; 243:117816. [PMID: 38056614 DOI: 10.1016/j.envres.2023.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Efficacious phosphate removal is essential for mitigating eutrophication in aquatic ecosystems and complying with increasingly stringent phosphate emission regulations. Chemical adsorption, characterized by simplicity, prominent treatment efficiency, and convenient recovery, is extensively employed for profound phosphorus removal. Metal-organic frameworks (MOFs)-derived metal/carbon composites, surpassing the limitations of separate components, exhibit synergistic effects, rendering them tremendously promising for environmental remediation. This comprehensive review systematically summarizes MOFs-based materials' properties and their structure-property relationships tailored for phosphate adsorption, thereby enhancing specificity towards phosphate. Furthermore, it elucidates the primary mechanisms influencing phosphate adsorption by MOFs-based composites. Additionally, the review introduces strategies for designing and synthesizing efficacious phosphorus capture and regeneration materials. Lastly, it discusses and illuminates future research challenges and prospects in this field. This summary provides novel insights for future research on superlative MOFs-based adsorbents for phosphate removal.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Black Soil Protection and Restoration, Harbin, Heilongjiang, 150030, China.
| | - Zhenfeng Chang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ruoyan Li
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shuangshuang Meng
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
12
|
Wang Q, Liu X, Tao S, Wang H, Lu S, Xiang Y, Zhang J. Machine Learning Study on Microwave-Assisted Batch Preparation and Oxygen Reduction Performance of Fe-N-C Catalysts. J Phys Chem Lett 2023; 14:9082-9089. [PMID: 37788256 DOI: 10.1021/acs.jpclett.3c02308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Fe-N-C catalyst represents one of the most promising candidates for replacing platinum-based catalysts toward the oxygen reduction reaction. The pivotal factor in the successful integration of Fe-N-C catalysts within applications is the attainment of a large-scale production capability. Microwave-assisted pyrolysis offers various advantages, including enhanced energy and time efficiency, uniform heating, and high yield in single-batch processes. These characteristics render it exceptionally suitable for the mass production of catalysts. Through a synergistic approach involving machine learning techniques and microscopic characterization, we discerned performance trends and underlying mechanisms within batch-synthesized Fe-N-C catalysts under microwave-assisted preparation conditions. Machine learning analysis revealed that the precursor mass exerts the most substantial influence on product performance. Furthermore, microscopic characterization unveiled that these influencing factors impact catalyst performance by modulating the degree of agglomeration. Our research introduces an efficacious machine learning model for prognosticating performance and dissecting the influencing factors pertinent to Fe-N-C catalyst synthesis within a microwave system.
Collapse
Affiliation(s)
- Qingxin Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Xinrui Liu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Siying Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| |
Collapse
|
13
|
Yu Z, Xiong Y, Fan M, Li J, Liang K. Metronidazole and Ketoprofen-Loaded Mesoporous Magnesium Carbonate for Rapid Treatment of Acute Periodontitis In Vitro. ACS OMEGA 2023; 8:25441-25452. [PMID: 37483201 PMCID: PMC10357566 DOI: 10.1021/acsomega.3c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
In the clinical pharmacological treatment of acute periodontitis, local periodontal administration is expected to be preferable to systemic administration. However, the action of the active medicine component is hindered and diminished by the limitation of drug solubility, which does not provide timely relief of the enormous pain being suffered by patients. This study aimed to develop a mesoporous magnesium carbonate (MMC) medicine loading system consisting of MMC, metronidazole (MET), and ketoprofen (KET), which was noted as MET-KET@MMC. A solvent evaporation process was utilized to load MET and KET in MMC. Scanning electron microscopy, nitrogen sorption, thermogravimetric analysis, and X-ray diffraction were performed on the MET-KET@MMC. The rapid drug release properties were also investigated through the drug release curve. The rapid antiseptic property against Porphyromonas gingivalis (P. gingivalis) and the rapid anti-inflammatory property (within 1 min) were analyzed in vitro. The cytotoxicity of MET-KET@MMC was tested in direct contact with human gingival cells and human oral keratinocytes. Crystallizations of MET and KET were completely suppressed in MMC. As compared to crystalline MET and KET, MMC induced higher apparent solubility and rapid drug release, resulting in 8.76 times and 3.43 times higher release percentages of the drugs, respectively. Over 70.11% of MET and 85.97% of KET were released from MMC within 1 min, resisting bacteria and reducing inflammation. MET-KET@MMC nanoparticles enhanced the solubility of drugs and possess rapid antimicrobial and anti-inflammatory properties. The MET-KET@MMC is a promising candidate for the pharmacotherapy of acute periodontitis with drugs, highlighting a significant clinical potential of MMC-based immediate drug release systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Xiong
- Orthopedic
Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menglin Fan
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
15
|
Rodríguez-Carríllo C, Benítez M, El Haskouri J, Amorós P, Ros-Lis JV. Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules 2023; 28:molecules28073112. [PMID: 37049875 PMCID: PMC10096173 DOI: 10.3390/molecules28073112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Covalent organic frameworks (COFs) have emerged as a new type of crystalline porous polymers of great interest. However, their preparation requires long reaction times. Microwave-assisted synthesis (MAS) offers an interesting approach to increasing the reaction rate of chemical processes. Thus, microwaves can be a key tool for the fast and scalable synthesis of COFs. Since our previous review on the topic, the preparation of COFs with microwaves has been evolving. Herein, we present a compilation of COFs studies and experiments published in the last three years on the synthesis of COFs using microwave-assisted synthesis as a source of energy. The articles include imine, triazine, and other 2D COFs synthesized using MAS. The 3D COFs have also been compiled. The chemical structure of the monomers and the COFs and their main parameters of synthesis and application are summarized for each article.
Collapse
Affiliation(s)
- Cristina Rodríguez-Carríllo
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| | - Miriam Benítez
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071 Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071 Valencia, Spain
| | - Jose V. Ros-Lis
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| |
Collapse
|
16
|
Díaz de Greñu B, Muñoz-Pina S, de Los Reyes R, Benitez M, El Haskouri J, Amorós P, Ros-Lis JV. Fast Microwave-Assisted Synthesis, Calcination and Functionalization of a Silica Mesoporous Nanomaterial: UVM-7. CHEMSUSCHEM 2023:e202300123. [PMID: 36883559 DOI: 10.1002/cssc.202300123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
We report here, for the first time, the use of a solid state microwave source for the synthesis, calcination and functionalization of a UVM-7 based hybrid mesoporous silica material. The synthesis of the UVM-7 material is obtained in 2 min at low power (50 W) by the combination of a microwave irradiation and the atrane route. Moreover, it has been successfully calcined and functionalized in just 13 and 4 min respectively with microwave assisted procedures. A total synthesis comprising each individually optimized step, can be executed in only 4 h including work-up, by contrast to a typical synthesis that comprises several days. Savings higher than one order or magnitude are obtained in time and energy. Our example is a proof of concept of the potential use of solid state microwave generators for the ultrafast on-command preparation of hybrid nanomaterials due to their accurate control and accelerating properties.
Collapse
Affiliation(s)
- Borja Díaz de Greñu
- REDOLI research group, Universitat de Valencia Address, Burjassot, Valencia, 46100, Spain
| | - Sara Muñoz-Pina
- REDOLI research group, Universitat de Valencia Address, Burjassot, Valencia, 46100, Spain
| | | | - Miriam Benitez
- REDOLI research group, Universitat de Valencia Address, Burjassot, Valencia, 46100, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València P.O. Box 22085, Valencia, 46071, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València P.O. Box 22085, Valencia, 46071, Spain
| | - Jose V Ros-Lis
- REDOLI research group, Universitat de Valencia Address, Burjassot, Valencia, 46100, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
17
|
Microwave-induced vapor-liquid mass transfer separation technology — full of breakthrough opportunities in electrified chemical processes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Dubadi R, Huang SD, Jaroniec M. Mechanochemical Synthesis of Nanoparticles for Potential Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1460. [PMID: 36837091 PMCID: PMC9961116 DOI: 10.3390/ma16041460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
There is an increased interest in porous materials due to their unique properties such as high surface area, enhanced catalytic properties, and biological applications. Various solvent-based approaches have been already used to synthesize porous materials. However, the use of large volume of solvents, their toxicity, and time-consuming synthesis make this process less effective, at least in terms of principles of green chemistry. Mechanochemical synthesis is one of the effective eco-friendly alternatives to the conventional synthesis. It adopts the efficient mixing of reactants using ball milling without or with a very small volume of solvents, gives smaller size nanoparticles (NPs) and larger surface area, and facilitates their functionalization, which is highly beneficial for antimicrobial applications. A large variety of nanomaterials for different applications have already been synthesized by this method. This review emphasizes the comparison between the solvent-based and mechanochemical methods for the synthesis of mainly inorganic NPs for potential antimicrobial applications, although some metal-organic framework NPs are briefly presented too.
Collapse
Affiliation(s)
| | | | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
19
|
Yuwen C, Liu B, Rong Q, Hou K, Zhang L, Guo S. Mechanism of microwave-assisted iron-based catalyst pyrolysis of discarded COVID-19 masks. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:77-86. [PMID: 36356433 DOI: 10.1016/j.wasman.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Inexpensive iron-based catalysts are the most promising catalysts for microwave pyrolysis of waste plastics, especially a large number of disposable medical masks (DMMs) with biological hazards produced by spread of COVID-19. However, most synthesized iron-based catalysts have very low microwave heating efficiency due to the enrichment state of iron. Here, we prepared FeAlOx catalysts using the microwave heating method and found that the microwave heating efficiency of amorphous iron and hematite is very low, indeed, these materials can hardly initiate pyrolysis at room temperature, which limits the application of iron-based catalysts in microwave pyrolysis. By contrast, a mixture of DMMs and low-valent iron oxides produced by hydrogen reduction at 500 °C can be heated by microwaves to temperatures above 900 °C under the same conditions. When the hydrogen reduction temperature was incerased to 800 °C, the content of metallic iron in the catalyst gradually increased from 0.34 to 21.43%, which enhanced the microwave response ability of the catalyst, and decreased the gas content in the pyrolysis product from 78.91 to 70.93 wt%; corresponding hydrogen yield also decreased from 29.03 to 25.02 mmolH2·g-1DMMs. Moreover, the morphology of the deposited solid carbon gradually changed from multi-walled CNTs to bamboo-like CNTs. This study clarifies the pyrolysis mechanism of microwave-assisted iron catalysts and lays a theoretical foundation for their application in microwave pyrolysis.
Collapse
Affiliation(s)
- Chao Yuwen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Bingguo Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Qian Rong
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, Yunnan, China
| | - Keren Hou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shenghui Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
20
|
Microwave enhanced catalytic hydration of acrolein to 3-hydroxypropionaldehyde using simultaneous cooling: Experimental and theoretical studies. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Yusuf V, Malek NI, Kailasa SK. Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS OMEGA 2022; 7:44507-44531. [PMID: 36530292 PMCID: PMC9753116 DOI: 10.1021/acsomega.2c05310] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 05/31/2023]
Abstract
Metal ions or clusters that have been bonded with organic linkers to create one- or more-dimensional structures are referred to as metal-organic frameworks (MOFs). Reticular synthesis also forms MOFs with properly designated components that can result in crystals with high porosities and great chemical and thermal stability. Due to the wider surface area, huge pore size, crystalline nature, and tunability, numerous MOFs have been shown to be potential candidates in various fields like gas storage and delivery, energy storage, catalysis, and chemical/biosensing. This study provides a quick overview of the current MOF synthesis techniques in order to familiarize newcomers in the chemical sciences field with the fast-growing MOF research. Beginning with the classification and nomenclature of MOFs, synthesis approaches of MOFs have been demonstrated. We also emphasize the potential applications of MOFs in numerous fields such as gas storage, drug delivery, rechargeable batteries, supercapacitors, and separation membranes. Lastly, the future scope is discussed along with prospective opportunities for the synthesis and application of nano-MOFs, which will help promote their uses in multidisciplinary research.
Collapse
Affiliation(s)
- Vadia
Foziya Yusuf
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Naved I. Malek
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| |
Collapse
|
22
|
An in situ study of the thermal decomposition of 2,2′-azobis(2-methylpropionitrile) radical chemistry using a dual-mode EPR resonator. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA custom-built dual-mode EPR resonator was used to study the radical chemistry of AIBN thermal decomposition. This resonator enables both simultaneous in situ heating using microwaves and EPR measurements to be performed. The thermal decomposition of AIBN was compared following conventional heating methods and microwave-induced (or dielectric) heating methods. Under both heating conditions, the radicals formed and detected by EPR include the 2-cyano-2-propyl (CP●) and 2-cyano-2-propoxyl (CPO●) radicals. Under aerobic conditions, the observed relative distribution of these radicals as observed by EPR is similar following slow heating by conventional or dielectric methods. In both conditions, the kinetically favoured CPO● radicals and their adducts dominate the EPR spectra up to temperatures of approximately 80–90 °C. Under anaerobic conditions, the distribution can be altered as less CPO● is available. However, the observed results are notably different when rapid heating (primarily applied using a MW-induced T-jump) is applied. As the higher reaction temperatures are achieved on a faster timescale, none of the ST●-CPO adducts are actually visible in the EPR spectra. The more rapid and facile heating capabilities created by microwaves may therefore lead to the non-detection of radical intermediates compared to experiments performed using conventional heating methods.
Collapse
|
23
|
Chang TH, Chang YC, Lee CI, Lin YR, Ko FH. Optimization Temperature Programming of Microwave-Assisted Synthesis ZnO Nanoneedle Arrays for Optical and Surface-Enhanced Raman Scattering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3989. [PMID: 36432278 PMCID: PMC9696083 DOI: 10.3390/nano12223989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This study used a rapid and simple microwave-assisted synthesis method to grow ZnO nanoneedle arrays on the silicon substrate with the ZnO seed layer. The effects of reaction temperature and time on the lengths of ZnO nanoneedle arrays were investigated. The appropriate temperature programming step can grow the longer ZnO nanoneedle arrays at the same reaction time (25 min), which is 2.08 times higher than without the temperature programming step. The geometry of the ZnO nanoneedle arrays features a gradual decrease from the Si substrate to the surface, which provides an excellent progressive refractive index between Si and air, resulting in excellent antireflection properties over an extensive wavelength range. In addition, the ZnO nanoneedle arrays exhibit a suitable structure for uniform deposition of Ag nanoparticles, which can provide three-dimensional hot spots and surface active sites, resulting in higher surface-enhanced Raman scattering (SERS) enhancement, high uniformity, high reusability, and low detection limit for R6G molecule. The ZnO/Ag nanoneedle arrays can also reveal a superior SERS-active substrate detecting amoxicillin (10-8 M). These results are promising for applying the SERS technique for rapid low-concentration determination in different fields.
Collapse
Affiliation(s)
- Tung-Hao Chang
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Radiological Technology, Yuanpei University, Hsinchu 30015, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Chung-I Lee
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ying-Ru Lin
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
24
|
Aluminum oxide quantum dots (Al2O3): An Immediate Sensing aptitude for the detection of urea. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022; 190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
Since the first report in 1989, Metal-Organic Frameworks (MOFs) self-assembled from metal ions or clusters, as well as organic linkers, have attracted extensive attention. Due to their flexible composition, large surface areas, modifiable surface properties, and their degradability, there has been an exponential increase in the study of MOFs materials, specifically in drug delivery system areas such as infection, diabetes, pulmonary disease, ocular disease, imaging, tumor therapy, and especially cancer theranostics. In this review, we discuss the trends in MOFs biosafety, from "green" synthesis to applications in drug delivery systems. Firstly, we present the different "green" synthesis approaches used to prepare MOFs materials. Secondly, we detail the methods for the functional coating, either through grafting targeting units, poly(ethylene glycol) (PEG) chains or by using cell membranes. Then, we discuss drug encapsulation strategies, host-guest interactions, as well as drug release mechanisms. Lastly, we report on the drug delivery applications of nanoscale MOFs. In particular, we discuss MOFs-based imaging techniques, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and fluorescence imaging. MOFs-based cancer therapy methods are also presented, such as photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy (RT), chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Wenbo Liu
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
26
|
Xu X, Tian X, Bo G, Su X, Yan J, Yan Y. Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe 3O 4 Composite Foam: Structure Analysis and Absorption Mechanism. Int J Mol Sci 2022; 23:ijms232012301. [PMID: 36293150 PMCID: PMC9603621 DOI: 10.3390/ijms232012301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe3O4-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe3O4 nanoparticles. The effective reflection loss (RL ≤ −10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe3O4 nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm2 at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials.
Collapse
|
27
|
Fu Z, Liu W, Huang C, Mei T. A Review of Performance Prediction Based on Machine Learning in Materials Science. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172957. [PMID: 36079994 PMCID: PMC9457802 DOI: 10.3390/nano12172957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 05/11/2023]
Abstract
With increasing demand in many areas, materials are constantly evolving. However, they still have numerous practical constraints. The rational design and discovery of new materials can create a huge technological and social impact. However, such rational design and discovery require a holistic, multi-stage design process, including the design of the material composition, material structure, material properties as well as process design and engineering. Such a complex exploration using traditional scientific methods is not only blind but also a huge waste of time and resources. Machine learning (ML), which is used across data to find correlations in material properties and understand the chemical properties of materials, is being considered a new way to explore the materials field. This paper reviews some of the major recent advances and applications of ML in the field of properties prediction of materials and discusses the key challenges and opportunities in this cross-cutting area.
Collapse
Affiliation(s)
- Ziyang Fu
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Huang
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| | - Tao Mei
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| |
Collapse
|
28
|
Synthesis of Covalent Organic Frameworks (COFs)-Nanocellulose Composite and Its Thermal Degradation Studied by TGA/FTIR. Polymers (Basel) 2022; 14:polym14153158. [PMID: 35956673 PMCID: PMC9371198 DOI: 10.3390/polym14153158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
At present, the synthesis methods of crystalline porous materials often involve powder products, which not only affects the practical application but also has complex synthesis operations and limited scale. Based on the mechanochemical method, we choose COF-TpPa-1, preparing TpPa-1-DANC composites. Covalent organic frameworks (COFs) are a kind of crystalline material formed by covalent bonds of light elements. COFs possess well pore structure and high thermal stability. However, the state of synthesized powders limits their application. Cellulose nanocrystals (CNCs) are promising renewable micron materials with abundant hydroxyl groups on their surface. It is possible to prepare high-strength materials such as film, water, and aerogel. Firstly, the nanocellulose was oxidized by the sodium periodate method to obtain aldehyde cellulose nanocrystals (DANC). TpPa-1-DANC not only had the crystal characteristic peak of COFs at 2θ ≈ 5° but also had a BET surface area of 247 m2/g. The chemical bonds between COFs and DANC formed by Schiff base reaction appeared in FTIR and XPS. The pyrolysis behavior of the composite was characterized by TG-IR, which showed that the composite had good thermal stability. With the advantages of nanocellulose as a material in every dimension, we believe that this method can be conducive to the large-scale synthesis of COFs composites, and has the possibility of multi-form synthesis of COFs.
Collapse
|
29
|
Mansar A, Serier-Brault H. Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Lei Y, Yang H, Qiu J, Yong C, Gao F, Fan X, Peng S, Hu H, Wan R, Li Y. Microwave Synthesis and Enhanced Thermoelectric Performance of p-Type Bi 0.90Pb 0.10Cu 1-xFe xSeO Oxyselenides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27902-27910. [PMID: 35675519 DOI: 10.1021/acsami.2c05731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BiCuSeO oxyselenide, one of the best oxygen-containing thermoelectric materials, is promising with great potential applications. In this work, we present a high ZT of >1.3 in Bi0.90Pb0.10Cu0.96Fe0.04SeO fabricated via microwave synthesis and subsequent spark plasma sintering (SPS). We added 3-4 atom % Fe to the Pb-doped BiCuSeO to regulate the hole carrier concentration and mobility to 0.8-1.0 × 1020 cm-3 and ∼40 cm2 V-1 S-1, respectively, achieving moderate electrical conductivity, high Seebeck coefficient, and low carrier thermal conductivity simultaneously in a dual-doped sample. Under the synergistic enhancement by stress field, dislocation, and nanophase, the lattice thermal conductivity of Bi0.90Pb0.10Cu0.96Fe0.04SeO is limited to 0.24-0.49 W m-1 K-1 at 300-873 K. The development of efficient preparation methods for high-performance thermoelectric materials is significant to promote the application of thermoelectric conversion technology.
Collapse
Affiliation(s)
- Ying Lei
- School of Chemistry and Resources Engineering, Honghe University, Mengzi 661199, China
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230041, China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haoyue Yang
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Jin Qiu
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Chao Yong
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Feng Gao
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Xingxiang Fan
- School of Chemistry and Resources Engineering, Honghe University, Mengzi 661199, China
| | - Sui Peng
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Huaichuan Hu
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230041, China
| | - Rundong Wan
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yu Li
- School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| |
Collapse
|
31
|
Laha S, Dwarkanath N, Sharma A, Rambabu D, Balasubramanian S, Maji TK. Tailoring a robust Al-MOF for trapping C 2H 6 and C 2H 2 towards efficient C 2H 4 purification from quaternary mixtures. Chem Sci 2022; 13:7172-7180. [PMID: 35799813 PMCID: PMC9214891 DOI: 10.1039/d2sc01180h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/15/2022] [Indexed: 01/23/2023] Open
Abstract
Light hydrocarbon separation is considered one of the most industrially challenging and desired chemical separation processes and is highly essential in polymer and chemical industries. Among them, separating ethylene (C2H4) from C2 hydrocarbon mixtures such as ethane (C2H6), acetylene (C2H2), and other natural gas elements (CO2, CH4) is of paramount importance and poses significant difficulty. We demonstrate such separations using an Al-MOF synthesised earlier as a non-porous material, but herein endowed with hierarchical porosity created under microwave conditions in an equimolar water/ethanol solution. The material possessing a large surface area (793 m2 g−1) exhibits an excellent uptake capacity for major industrial hydrocarbons in the order of C2H2 > C2H6 > CO2 > C2H4 > CH4 under ambient conditions. It shows an outstanding dynamic breakthrough separation of ethylene (C2H4) not only for a binary mixture (C2H6/C2H4) but also for a quaternary combination (C2H4/C2H6/C2H2/CO2 and C2H4/C2H6/C2H2/CH4) of varying concentrations. The detailed separation/purification mechanism was unveiled by gas adsorption isotherms, mixed-gas adsorption calculations, selectivity estimations, advanced computer simulations such as density functional theory (DFT), grand canonical Monte Carlo (GCMC) and ab initio molecular dynamics (AIMD), and stepwise multicomponent dynamic breakthrough experiments. Industrially important C2H4 purification from multi-component hydrocarbon mixtures.![]()
Collapse
Affiliation(s)
- Subhajit Laha
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Post Bangalore 560064 India https://www.jncasr.ac.in/tmaji
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Post Bangalore 560064 India https://www.jncasr.ac.in/tmaji
| | - Abhishek Sharma
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Post Bangalore 560064 India https://www.jncasr.ac.in/tmaji
| | - Darsi Rambabu
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Post Bangalore 560064 India https://www.jncasr.ac.in/tmaji
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Post Bangalore 560064 India https://www.jncasr.ac.in/tmaji
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Post Bangalore 560064 India https://www.jncasr.ac.in/tmaji
| |
Collapse
|
32
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Wang J, Wu W, Kondo H, Fan T, Zhou H. Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. NANOTECHNOLOGY 2022; 33:342002. [PMID: 35508114 DOI: 10.1088/1361-6528/ac6c97] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
On the urgency of metal-free catalysts, two-dimensional materials (2DMs) have caused extensive researches because of distinctive optical and electronic properties. In the last decade, microwave methods have emerged in rapid and effective preparations of 2DMs for catalysis. Microwave heating offers several advantages namely direct, fast, selective heating and uniform reaction temperature compared to conventional heating methods, thus bringing about high-yield and high-purity products in minutes or even seconds. This review summarizes recent advances in microwave-assisted preparations of 2DMs-based catalysts and their state-of-the-art catalytic performances. Microwave heating mechanisms are briefly introduced mainly focusing on microwave-matter interactions, which can guide the choice of precursors, liquid media, substrates, auxiliaries and experiment parameters during microwave radiation. We especially provide a detailed insight into various microwave-assisted procedures, classified as exfoliation, synthesis, doping, modification and construction towards different 2DMs nanomaterials. We also discuss how microwave affects the synthetic composition and microstructure of 2DMs-based catalysts, thereby deeply influencing their optical and electronic properties and the catalytic performances. Finally, advantages, challenges and prospects of microwave-assisted approaches for 2DMs nanomaterials are summarized to inspire the effective and large-scale fabrication of novel 2DMs-based catalysts.
Collapse
Affiliation(s)
- Jiayue Wang
- State Key Laboratory of Metal Matrix Composites, Department of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Wu
- State Key Laboratory of Metal Matrix Composites, Department of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hiroki Kondo
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
| | - Tongxiang Fan
- State Key Laboratory of Metal Matrix Composites, Department of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Han Zhou
- State Key Laboratory of Metal Matrix Composites, Department of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
34
|
Saoud HAA, Sprynskyy M, Pashaei R, Kawalec M, Pomastowski P, Buszewski B. Diatom biosilica: Source, Physical-chemical characterization, modification, and application. J Sep Sci 2022; 45:3362-3376. [PMID: 35652201 DOI: 10.1002/jssc.202100981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
Growing research interest in the use of diatomaceous biosilica results from its unique properties, such as chemical inertness, biocompatibility, high mechanical and thermal stability, low thermal conductivity, homogeneous porous structure with a large specific surface. Unlike the production of synthetic silica materials with a micro- or nano-scale structure in an expensive conventional manufacturing process, diatomaceous biosilica can be produced in huge quantities without significant expenditure of energy and materials. This fact makes it an unlimited, easily accessible, natural, inexpensive, and renewable material. Moreover, the production of bio-silica is extremely environmentally friendly, as there is essentially no toxic waste, and the process does not require more energy compared to the production of synthetic silica-based materials. For all these reasons, diatoms are an intriguing alternative to synthetic materials in developing cheap biomaterials used in a different branch of industry. In review has been reported the state-of-art of biosilica materials, their characteristics approaches, and possible way of application. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hussam A Al Saoud
- Bialystok University of Technology, Faculty of mechanical engineering, Department of Materials Engineering and Production, Wiejska 45C, Bialystok, 15-351, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun, 87-100, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun, 87-100, Poland
| | - Reza Pashaei
- Marine Research Institute of Klaipeda University, H. Manto 84, Klaipeda, LT-9229, Lithuania
| | - Michał Kawalec
- Bialystok University of Technology, Faculty of mechanical engineering, Department of Materials Engineering and Production, Wiejska 45C, Bialystok, 15-351, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, Toruń, 87-100, Poland
| | - Boguslaw Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun, 87-100, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, Toruń, 87-100, Poland
| |
Collapse
|
35
|
Hadden M, Martinez-Martin D, Yong KT, Ramaswamy Y, Singh G. Recent Advancements in the Fabrication of Functional Nanoporous Materials and Their Biomedical Applications. MATERIALS 2022; 15:ma15062111. [PMID: 35329563 PMCID: PMC8950633 DOI: 10.3390/ma15062111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Functional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. The purpose of this review is to provide recent advances in synthesis strategies for designing ordered or hierarchical nanoporous materials of tunable porosity and complex architectures. Furthermore, we briefly highlight working principles, potential pitfalls, experimental challenges, and limitations associated with nanoporous material fabrication strategies. Finally, we give a forward look at how digitally controlled additive manufacturing may overcome existing obstacles to guide the design and development of next-generation nanoporous materials with predefined properties for industrial manufacturing and applications.
Collapse
Affiliation(s)
- Matthew Hadden
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
| | - David Martinez-Martin
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ken-Tye Yong
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (Y.R.); (G.S.)
| | - Gurvinder Singh
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (Y.R.); (G.S.)
| |
Collapse
|
36
|
Gao B, Yu X, Wang T, Gong H, Fan X, Xue H, Jiang C, Chang K, Huang X, He J. Promoting charge separation by rational integration of a covalent organic framework on a BiVO 4 photoanode. Chem Commun (Camb) 2022; 58:1796-1799. [PMID: 35040459 DOI: 10.1039/d1cc07047a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, covalent organic frameworks (COF-TpPa and COF-TpPaC) are selected to combine with the BiVO4 photoanode through a covalent bond. The heterojunction and covalent connection of COFs and BiVO4 can promote the separation of carriers, and the -CH3 on the benzene ring in COF-TpPaC as an electron donor group can increase the carrier concentration of the photoanode. As a result, the TpPaC/BiVO4 photoanode shows the best performance. This covalent hybridization strategy opens a new insight into the development of COF-modified photoanodes.
Collapse
Affiliation(s)
- Bin Gao
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Xingyu Yu
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Tao Wang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China
| | - Hairong Xue
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Cheng Jiang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Kun Chang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Xianli Huang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| | - Jianping He
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
| |
Collapse
|
37
|
Liu YY, Shi XK, Wu CD. Generation of local redox potential from confined nano-bimetals in porous metal silicate materials for high-performance catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confining nano-bimetals in porous metal silicate materials could improve the stabiliy and facilitate electron and charge transfer in catalysis, demonstrating great potential to replace noble metal-based catalysts for industrial applications.
Collapse
Affiliation(s)
- Yang-Yang Liu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao-Ke Shi
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
38
|
Fan Z, Ho HN, Szczesny R, Liu WR, Gregory D. Rapid, Energy-Efficient and Pseudomorphic Microwave-Induced-Metal-Plasma (MIMP) Synthesis of Mg2Si and Mg2Ge. CrystEngComm 2022. [DOI: 10.1039/d2ce00721e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycrystalline magnesium silicide, Mg2Si and magnesium germanide, Mg2Ge were synthesised from the elemental powders via the microwave-induced-metal-plasma (MIMP) approach at 200 W within 1 min in vacuo for the first...
Collapse
|
39
|
Kandoor S, Dhar S, Kumar L, Arackal S, Sai R, Shivashankar SA. Engineering chemical pathways for phase-tuned nanocrystalline iron oxides in microwave-assisted solvothermal synthesis. Phys Chem Chem Phys 2022; 24:28333-28342. [DOI: 10.1039/d2cp03864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Study of the chemistry governing the microwave assisted synthesis of iron oxides from iron acetylacetonate in decanol and its mixture with ethanol and water aids in understanding and tuning the formation of crystallographic arrangements of the oxide.
Collapse
Affiliation(s)
- Shalini Kandoor
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sukanya Dhar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Lavanya Kumar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sarath Arackal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Ranajit Sai
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | |
Collapse
|
40
|
Zhao Z, Shen X, Li H, Liu K, Wu H, Li X, Gao X. Watching Microwave‐Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixed‐Metal Organic Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Xi Shen
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Hong Li
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Kai Liu
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Haoyu Wu
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Xingang Li
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Xin Gao
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| |
Collapse
|
41
|
Zhao Z, Shen X, Li H, Liu K, Wu H, Li X, Gao X. Watching Microwave-Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixed-Metal Organic Complexes. Angew Chem Int Ed Engl 2021; 61:e202114340. [PMID: 34866299 DOI: 10.1002/anie.202114340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The hypothesis of microscopic hot spots is widely used to explain the unique microwave (MW) effect in materials science and chemical engineering, but it has not yet been directly measured. Herein we use Eu/Tb mixed-metal organic complexes as nano thermometers to probe the intrinsic temperature of MW-absorbing particles in MW fields based on the thermosensitive fluorescent spectra. According to the measurements of the temperature gradient at the solid/liquid interphase, we derive an MW-irradiated energy transfer model to predict the extent of microscopic hot spots. The fluorescence results agree with the model predictions that the MW-induced temperature gradient can be enlarged by increasing MW intensity, as well as the dielectric loss and size of particles. Conversely, the increase in the thermal conductivity and the dielectric loss of the liquid lowers the temperature gradient. This study enables control of MW-assisted synthesis and MW-responsive techniques.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xi Shen
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Hong Li
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Kai Liu
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Haoyu Wu
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xingang Li
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xin Gao
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|