1
|
El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. Nanosponge hydrogel of octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate of Alcaligenes faecalis. Appl Microbiol Biotechnol 2024; 108:100. [PMID: 38217256 PMCID: PMC10786974 DOI: 10.1007/s00253-023-12819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (ODHP) was extracted in a previous study from the culture broth of soil isolate Alcaligenes faecalis MT332429 and showed a promising antimycotic activity. This study was aimed to formulate ODHP loaded β-cyclodextrins (CD) nanosponge (NS) hydrogel (HG) to control skin fungal ailments since nanosponges augment the retention of tested agents in the skin. Box-Behnken design was used to produce the optimized NS formulation, where entrapment efficiency percent (EE%), polydispersity index (PDI), and particle size (PS) were assigned as dependent parameters, while the independent process parameters were polyvinyl alcohol % (w/v %), polymer-linker ratio, homogenization time, and speed. The carbopol 940 hydrogel was then created by incorporating the nanosponges. The hydrogel fit Higuchi's kinetic release model the best, according to in vitro drug release. Stability and photodegradation studies revealed that the NS-HG remained stable under tested conditions. The formulation also showed higher in vitro antifungal activity against Candida albicans compared to the control fluconazole. In vivo study showed that ODHP-NS-HG increased survival rates, wound contraction, and healing of wound gap and inhibited the inflammation process compared to the other control groups. The histopathological examinations and Masson's trichrome staining showed improved healing and higher records of collagen deposition. Moreover, the permeability of ODHP-NS-HG was higher through rats' skin by 1.5-folds compared to the control isoconazole 1%. Therefore, based on these results, NS-HG formulation is a potential carrier for enhanced and improved topical delivery of ODHP. Our study is a pioneering research on the development of a formulation for ODHP produced naturally from soil bacteria. KEY POINTS: • Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate was successfully formulated as a nanosponge hydrogel and statistically optimized. • The new formula exhibited in vitro good stability, drug release, and higher antifungal activity against C. albicans as compared to the fluconazole. • Ex vivo showed enhanced skin permeability, and in vivo analysis showed high antifungal activity as evidenced by measurement of various biochemical parameters and histopathological examination.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Gu S, Zhao X, Wan F, Gu D, Xie W, Gao C. Intracellularly Gelated Macrophages Loaded with Probiotics for Therapy of Colitis. NANO LETTERS 2024; 24:13504-13512. [PMID: 39418594 DOI: 10.1021/acs.nanolett.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Probiotics therapy has garnered significant attention in the treatment of inflammatory bowel disease (IBD). However, a large number of oral administrated probiotics are inactivated after passing through the gastric acid environment, and their ability to colonize in the intestine is also weak. Herein, this study develops a novel probiotics formulation (GM-EcN) by incorporating Escherichia coli Nissle 1917 (EcN) into intracellularly gelated macrophages (GM). Intracellular hydrogel is designed to load and prevent EcN from digestion in gastric juice, and GM acts as a macrophage-like carrier to carry the attached probiotics to colonize in the inflammatory intestine. In addition, hydrogel serves as an ideal cytoskeletal structure to maintain the intact cell morphology and membrane structure of GM, comparable to source macrophages. Due to the receptor-ligand interaction, inflammation-related membrane proteins enable GM as a cell sponge to sequestrate and neutralize multiple inflammatory cytokines. In vivo treatment demonstrates that GM-EcN efficiently alleviates IBD symptoms and enhances gut microbiota recovery.
Collapse
Affiliation(s)
- Siyao Gu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaona Zhao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Guangxi University of Chinese Medicine, 530004 Nanning, China
| | - Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Gao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Kai M, Shen WT, Wang D, Yu Y, Zhang JA, Sun L, Fang RH, Gao W, Zhang L. Aptamer-Encapsulated Cellular Nanoparticles for Neurotoxin Neutralization. Adv Healthc Mater 2024:e2403539. [PMID: 39460406 DOI: 10.1002/adhm.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Aptamers are single-stranded oligonucleotides that fold into defined architectures for specific target binding. In this study, aptamers are selected that specifically bind to small-molecule neurotoxins and encapsulate them into cell membrane-coated nanoparticles (referred to as 'cellular nanoparticles' or 'CNPs') for effective neutralization of neurotoxins. Specifically, six different aptamers are selected that bind to saxitoxin (STX) or tetrodotoxin (TTX) and encapsulate them into metal-organic framework cores, which are then coated with neuronal cell membrane. The resulting CNPs exhibit high colloidal stability, minimal aptamer leakage, and effective protection of aptamer payloads against enzyme degradation. This detoxification platform combines membrane-enabled broad-spectrum neutralization with aptamer-based specific toxin binding, offering dual-modal neutralization mechanisms for efficient neurotoxin neutralization. The in vitro neutralization efficacy is demonstrated using a neuron osmotic swelling assay, a Na+ flux fluorescence assay, and a cytotoxicity assay. The in vivo neutralization efficacy is further validated using mouse models of STX and TTX intoxication in both therapeutic and preventative regimens. Overall, integrating aptamers with CNPs combines the strengths of both technologies, resulting in a robust solution for broad-spectrum toxin-neutralization applications.
Collapse
Affiliation(s)
- Mingxuan Kai
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Zhang JA, Feng K, Shen WT, Gao W, Zhang L. Research Advances of Cellular Nanoparticles as Multiplex Countermeasures. ACS NANO 2024. [PMID: 39441568 DOI: 10.1021/acsnano.4c09830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cellular nanoparticles (CNPs), fabricated by coating natural cell membranes onto nanoparticle cores, have been widely used to replicate cellular functions for various therapeutic applications. Specifically, CNPs act as cell decoys, binding harmful molecules or infectious pathogens and neutralizing their bioactivity. This neutralization strategy leverages the target's functional properties rather than its structure, resulting in broad-spectrum efficacy. Since their inception, CNP platforms have undergone significant advancements to enhance their neutralizing capabilities and efficiency. This review traces the research advances of CNP technology as multiplex countermeasures across four categories with progressive functions: neutralization through cell membrane binding, simultaneous neutralization using both cell membrane and nanoparticle core, continuous neutralization via enzymatic degradation, and enhanced neutralization through membrane modification. The review highlights the structure-property relationship in CNP designs, showing the functional advances of each category of CNP. By providing an overview of CNPs in multiplex neutralization of a wide range of chemical and biological threat agents, this article aims to inspire the development of more advanced CNP nanoformulations and uncover innovative applications to address unresolved medical challenges.
Collapse
Affiliation(s)
- Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Kailin Feng
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Jiang XQ, Wang WX, Dong W, Xie QM, Liu Q, Guo Z, Chen N, Song SM, Jiang W, Wu HM. Targeted Modulation of Redox and Immune Homeostasis in Acute Lung Injury Using a Thioether-Functionalized Dendrimer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402146. [PMID: 38888130 DOI: 10.1002/smll.202402146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Acute lung injury (ALI) is the pathophysiological precursor of acute respiratory distress syndrome. It is characterized by increased oxidative stress and exaggerated inflammatory response that disrupts redox reactions and immune homeostasis in the lungs, thereby posing significant clinical challenges. In this study, an internally functionalized thioether-enriched dendrimer Sr-G4-PEG is developed, to scavenge both proinflammatory cytokines and reactive oxygen species (ROS) and restore homeostasis during ALI treatment. The dendrimers are synthesized using an efficient and orthogonal thiol-ene "click" chemistry approach that involves incorporating thioether moieties within the dendritic architectures to neutralize the ROS. The ROS scavenging of Sr-G4-PEG manifests in its capacity to sequester proinflammatory cytokines. The synergistic effects of scavenging ROS and sequestering inflammatory cytokines by Sr-G4-PEG contribute to redox remodeling and immune homeostasis, along with the modulation of the NLRP3-pyroptosis pathway. Treatment with Sr-G4-PEG enhances the therapeutic efficacy of ALIs by alleviating alveolar bleeding, reducing inflammatory cell infiltration, and suppressing the release of inflammatory cytokines. These results suggest that Sr-G4-PEG is a potent nanotechnological candidate for remodeling redox and immune homeostasis in the treatment of ALIs, demonstrating the great potential of dendrimer-based nanomedicine for the treatment of respiratory pathologies.
Collapse
Affiliation(s)
- Xu-Qin Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wu-Xuan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Wang Dong
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zixuan Guo
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
6
|
Du Y, Ding H, Chen Y, Gao B, Mao Z, Wang W, Ding Y. A Genetically Engineered Biomimetic Nanodecoy for the Treatment of Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405026. [PMID: 39206941 PMCID: PMC11516072 DOI: 10.1002/advs.202405026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Liver fibrosis, arising from factors such as viral infections or metabolic disorders, represents an ongoing global health challenge and is a major risk factor for hepatocellular carcinoma. Unfortunately, there are no clinically approved drugs available for its treatment. Recent studies have illuminated the pivotal role of macrophage recruitment in the pathogenesis of liver fibrosis, presenting a potential therapeutic target. Therefore, it holds great promise to develop novel anti-fibrotic therapies capable of inhibiting this process. Herein, a drug-loaded biomimetic nanodecoy (CNV-C) is developed by harnessing genetically engineered cellular vesicles for the treatment of liver fibrosis. CNV-C is equipped with a C-C motif chemokine receptor 2 (CCR2)-overexpressed surface, enabling it to selectively neutralize elevated levels of C-C motif chemokine ligand 2 (CCL2), thereby reducing macrophage infiltration and the subsequent production of the fibrogenic cytokine transforming growth factor β (TGF-β). Moreover, curcumin, an anti-fibrotic agent, is loaded into CNV-C and delivered to the liver, facilitating its efficacy in suppressing the activation of hepatic stellate cells by blocking the downstream TGF-β/Smad signaling. This combinational therapy ultimately culminates in the alleviation of liver fibrosis in a mouse model induced by carbon tetrachloride. Collectively, the findings provide groundbreaking proof-of-concept for employing genetically modified nanodecoys to manage liver fibrosis, which may usher in a new era of anti-fibrotic treatments.
Collapse
Affiliation(s)
- Yang Du
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Hao Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
- State Key Laboratory of Transvascular Implantation DevicesHangzhou310009China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| |
Collapse
|
7
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Zhou Z, Mukundan N, Zhang JA, Wu Y, Zhang Q, Wang D, Fang RH, Gao W, Zhang L. Macrophage-Mimicking Cellular Nanoparticles Scavenge Proinflammatory Cytokines in Specimens of Patients with Inflammatory Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401423. [PMID: 38884169 PMCID: PMC11336921 DOI: 10.1002/advs.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Indexed: 06/18/2024]
Abstract
Effectively neutralizing inflammatory cytokines is crucial for managing a variety of inflammatory disorders. Current techniques that target only a subset of cytokines often fall short due to the intricate nature of redundant and compensatory cytokine networks. A promising solution to this challenge is using cell membrane-coated nanoparticles (CNPs). These nanoparticles replicate the complex interactions between cells and cytokines observed in disease pathology, providing a potential avenue for multiplex cytokine scavenging. While the development of CNPs using experimental animal models has shown great promise, their effectiveness in scavenging multiple cytokines in human diseases has yet to be demonstrated. To bridge this gap, this study selected macrophage membrane-coated CNPs (MФ-CNPs) and assessed their ability to scavenge inflammatory cytokines in serum samples from patients with COVID-19, sepsis, acute pancreatitis, or type-1 diabetes, along with synovial fluid samples from patients with rheumatoid arthritis. The results show that MФ-CNPs effectively scavenge critical inflammatory cytokines, including interleukin (IL)-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in a dose-dependent manner. Overall, this study demonstrates MФ-CNPs as a multiplex cytokine scavenging formulation with promising applications in clinical settings to treat a range of inflammatory disorders.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Nilesh Mukundan
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Jiayuan Alex Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - You‐Ting Wu
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Qiangzhe Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Dan Wang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Ronnie H. Fang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Weiwei Gao
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
9
|
Jiang Y, Nie D, Hu Z, Zhang C, Chang L, Li Y, Li Z, Hu W, Li H, Li S, Xu C, Liu S, Yang F, Wen W, Han D, Zhang K, Qin W. Macrophage-Derived Nanosponges Adsorb Cytokines and Modulate Macrophage Polarization for Renal Cell Carcinoma Immunotherapy. Adv Healthc Mater 2024; 13:e2400303. [PMID: 38647150 DOI: 10.1002/adhm.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Renal cell carcinoma (RCC) is a hot tumor infiltrated by large numbers of CD8+ T cells and is highly sensitive to immunotherapy. However, tumor-associated macrophages (TAMs), mainly M2 macrophages, tend to undermine the efficacy of immunotherapy and promote the progression of RCC. Here, macrophage-derived nanosponges are fabricated by M2 macrophage membrane-coated poly(lactic-co-glycolic acid)(PLGA), which could chemotaxis to the CXC and CC chemokine subfamily-enriched RCC microenvironment via corresponding membrane chemokine receptors. Subsequently, the nanosponges act like cytokine decoys to adsorb and neutralize broad-spectrum immunosuppressive cytokines such as colony stimulating factor-1(CSF-1), transforming growth factor-β(TGF-β), and Lnterleukin-10(IL-10), thereby reversing the polarization of M2-TAMs toward the pro-inflammatory M1 phenotype, and enhancing the anti-tumor effect of CD8+ T cells. To further enhance the polarization reprogramming efficiency of TAMs, DSPE-PEG-M2pep is conjugated on the surface of macrophage-derived nanosponges for specific recognition of M2-TAMs, and the toll like receptors 7/8(TLR7/8) agonist, R848, is encapsulated in these nanosponges to induce M1 polarization, which result in significant efficacy against RCC. In addition, these nanosponges exhibit undetectable biotoxicity, making them suitable for clinical applications. In summary, a promising and facile strategy is provided for immunomodulatory therapies, which are expected to be used in the treatment of tumors, autoimmune diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Urology, Air Force 986 Hospital, Xi'an, 710054, China
| | - Disen Nie
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhihao Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingdi Chang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengxuan Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sikai Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Qu Y, Chu B, Li J, Deng H, Niu T, Qian Z. Macrophage-Biomimetic Nanoplatform-Based Therapy for Inflammation-Associated Diseases. SMALL METHODS 2024; 8:e2301178. [PMID: 38037521 DOI: 10.1002/smtd.202301178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Inflammation-associated diseases are very common clinically with a high incidence; however, there is still a lack of effective treatments. Cell-biomimetic nanoplatforms have led to many breakthroughs in the field of biomedicine, significantly improving the efficiency of drug delivery and its therapeutic implications especially for inflammation-associated diseases. Macrophages are an important component of immune cells and play a critical role in the occurrence and progression of inflammation-associated diseases while simultaneously maintaining homeostasis and modulating immune responses. Therefore, macrophage-biomimetic nanoplatforms not only inherit the functions of macrophages including the inflammation tropism effect for targeted delivery of drugs and the neutralization effect of pro-inflammatory cytokines and toxins via membrane surface receptors or proteins, but also maintain the functions of the inner nanoparticles. Macrophage-biomimetic nanoplatforms are shown to have remarkable therapeutic efficacy and excellent application potential in inflammation-associated diseases. In this review, inflammation-associated diseases, the physiological functions of macrophages, and the classification and construction of macrophage-biomimetic nanoplatforms are first introduced. Next, the latest applications of different macrophage-biomimetic nanoplatforms for the treatment of inflammation-associated diseases are summarized. Finally, challenges and opportunities for future biomedical applications are discussed. It is hoped that the review will provide new ideas for the further development of macrophage-biomimetic nanoplatforms.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Li
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Luo R, Liu J, Cheng Q, Shionoya M, Gao C, Wang R. Oral microsphere formulation of M2 macrophage-mimetic Janus nanomotor for targeted therapy of ulcerative colitis. SCIENCE ADVANCES 2024; 10:eado6798. [PMID: 38941458 PMCID: PMC11212727 DOI: 10.1126/sciadv.ado6798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Oral medication for ulcerative colitis (UC) is often hindered by challenges such as inadequate accumulation, limited penetration of mucus barriers, and the intricate task of mitigating excessive ROS and inflammatory cytokines. Here, we present a strategy involving sodium alginate microspheres (SAMs) incorporating M2 macrophage membrane (M2M)-coated Janus nanomotors (denominated as Motor@M2M) for targeted treatment of UC. SAM provides a protective barrier, ensuring that Motor@M2M withstands the harsh gastric milieu and exhibits controlled release. M2M enhances the targeting precision of nanomotors to inflammatory tissues and acts as a decoy for the neutralization of inflammatory cytokines. Catalytic decomposition of H2O2 by MnO2 in the oxidative microenvironment generates O2 bubbles, propelling Motor@M2M across the mucus barrier into inflamed colon tissues. Upon oral administration, Motor@M2M@SAM notably ameliorated UC severity, including inflammation mitigation, ROS scavenging, macrophage reprogramming, and restoration of the intestinal barrier and microbiota. Consequently, our investigation introduces a promising oral microsphere formulation of macrophage-biomimetic nanorobots, providing a promising approach for UC treatment.
Collapse
Affiliation(s)
- Ruifeng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
12
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
13
|
Kai M, Shen WT, Yu Y, Wang D, Zhang JA, Wang S, Fang RH, Gao W, Zhang L. Dual-Modal Cellular Nanoparticles for Continuous Neurotoxin Detoxification. NANO LETTERS 2024. [PMID: 38855905 DOI: 10.1021/acs.nanolett.4c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Neurotoxins are known for their extreme lethality. However, due to their enormous diversity, effective and broad-spectrum countermeasures are lacking. This study presents a dual-modal cellular nanoparticle (CNP) formulation engineered for continuous neurotoxin neutralization. The formulation involves encapsulating the metabolic enzyme N-sulfotransferase (SxtN) into metal-organic framework (MOF) nanoparticle cores and coating them with a natural neuronal membrane, termed "Neuron-MOF/SxtN-NPs". The resulting nanoparticles combine membrane-enabled broad-spectrum neurotoxin neutralization with enzyme payload-enabled continuous neurotoxin neutralization. The studies confirm the protection of the enzyme payload by the MOF core and validate the continuous neutralization of saxitoxin (STX). In vivo studies conducted using a mouse model of STX intoxication reveal markedly improved survival rates compared with control groups. Furthermore, acute toxicity assessments show no adverse effects associated with the administration of Neuron-MOF/SxtN-NPs in healthy mice. Overall, Neuron-MOF/SxtN-NPs represent a unique biomimetic nanomedicine platform poised to effectively neutralize neurotoxins, marking an important advancement in the field of countermeasure nanomedicine.
Collapse
Affiliation(s)
- Mingxuan Kai
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Shuyan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
15
|
Lu B, Wei L, Shi G, Du J. Nanotherapeutics for Alleviating Anesthesia-Associated Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308241. [PMID: 38342603 PMCID: PMC11022745 DOI: 10.1002/advs.202308241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
Current management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity. Initially, general, regional, and local anesthesia along with the commonly used anesthetics and related prevalent side effects are introduced. Furthermore, employing nanotechnology to prevent and alleviate the complications of anesthetics is systematically demonstrated from three aspects, that is, developing 1) safe nano-formulization for anesthetics; 2) nano-antidotes to sequester overdosed anesthetics and alter their pharmacokinetics; 3) nanomedicines with pharmacodynamic activities to treat anesthetics toxicity. Finally, the prospects and challenges facing the clinical translation of nanotherapeutics for anesthesia-related complications are discussed. This work provides a comprehensive roadmap for developing effective nanotherapeutics to prevent and mitigate anesthesia-associated toxicity, which can potentially revolutionize the management of anesthesia complications.
Collapse
Affiliation(s)
- Bin Lu
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
| | - Ling Wei
- Shanxi Bethune Hospital Center Surgery DepartmentShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Gaoxiang Shi
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
| | - Jiangfeng Du
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxi Province030001China
| |
Collapse
|
16
|
Wang X, Zhang W, Hou L, Geng W, Wang J, Kong Y, Liu C, Zeng X, Kong D. A Biomimetic Upconversion Nanobait-Based Near Infrared Light Guided Photodynamic Therapy Alleviates Alzheimer's Disease by Inhibiting β-Amyloid Aggregation. Adv Healthc Mater 2024; 13:e2303278. [PMID: 38112336 DOI: 10.1002/adhm.202303278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Aberrant β-amyloid (Aβ) fibrillation is the key event in Alzheimer's disease (AD), the inhibition and degradation of which are recognized as a promising therapeutic strategy to alleviate the nerve damage of AD. Photodynamic therapy (PDT) holds great potential for modulation of Aβ self-assembly, which is nevertheless limited by the inefficient utilization of reactive oxygen species (ROS). Herein, an erythrocyte membrane (EM)-modified core-shell upconversion nanoparticle (UCNP/Cur@EM) is designed and fabricated as a biomimetic nanobait to improve the PDT efficiency in AD. The UCNP with the outlayer of mesoporous silica is synthesized to load a high amount of the photosensitizer (curcumin), the unique optical feature of which can trigger curcumin to generate ROS upon near-infrared light (NIR) irradiation. Integration of EM enables the biomimetic nanobait to attract Aβ peptides trapped in the phospholipid bilayer, restraining the growth of Aβ monomers to form aggregates and improving the utilization rate of ROS to degrade the preformed Aβ aggregates. In vivo studies demonstrate that UCNP/Cur@EM irradiated by NIR enables to decrease Aβ deposits, ameliorates memory deficits, and rescues cognitive functions in the APP/PS1 transgenic mouse model. A biocompatible and controllable way is provided here to inhibit the amyloid protein-associated pathological process of AD.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Wenjing Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Lili Hou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Wei Geng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jingwen Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Kong
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
17
|
Zeng R, Lv B, Lin Z, Chu X, Xiong Y, Knoedler S, Cao F, Lin C, Chen L, Yu C, Liao J, Zhou W, Dai G, Shahbazi MA, Mi B, Liu G. Neddylation suppression by a macrophage membrane-coated nanoparticle promotes dual immunomodulatory repair of diabetic wounds. Bioact Mater 2024; 34:366-380. [PMID: 38269308 PMCID: PMC10806270 DOI: 10.1016/j.bioactmat.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
Oxidative stress, infection, and vasculopathy caused by hyperglycemia are the main barriers for the rapid repair of foot ulcers in patients with diabetes mellitus (DM). In recent times, the discovery of neddylation, a new type of post-translational modification, has been found to regulate various crucial biological processes including cell metabolism and the cell cycle. Nevertheless, its capacity to control the healing of wounds in diabetic patients remains unknown. This study shows that MLN49224, a compound that inhibits neddylation at low concentrations, enhances the healing of diabetic wounds by inhibiting the polarization of M1 macrophages and reducing the secretion of inflammatory factors. Moreover, it concurrently stimulates the growth, movement, and formation of blood vessel endothelial cells, leading to expedited healing of wounds in individuals with diabetes. The drug is loaded into biomimetic macrophage-membrane-coated PLGA nanoparticles (M-NPs/MLN4924). The membrane of macrophages shields nanoparticles from being eliminated in the reticuloendothelial system and counteracts the proinflammatory cytokines to alleviate inflammation in the surrounding area. The extended discharge of MLN4924 from M-NPs/MLN4924 stimulates the growth of endothelial cells and the formation of tubes, along with the polarization of macrophages towards the anti-inflammatory M2 phenotype. By loading M-NPs/MLN4924 into a hydrogel, the final formulation is able to meaningfully repair a diabetic wound, suggesting that M-NPs/MLN4924 is a promising engineered nanoplatform for tissue engineering.
Collapse
Affiliation(s)
- Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
18
|
Du Y, Deng T, Cheng Y, Zhao Q, Xia H, Ji Y, Zhang Y, He Q. Enhancing Bone Regeneration through CDC20-Loaded ZIF-8 Nanoparticles Wrapped in Erythrocyte Membranes with Targeting Aptamer. Adv Healthc Mater 2024; 13:e2302725. [PMID: 38030141 DOI: 10.1002/adhm.202302725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
In the context of bone regeneration, nanoparticles harboring osteogenic factors have emerged as pivotal agents for modulating the differentiation fate of stem cells. However, persistent challenges surrounding biocompatibility, loading efficiency, and precise targeting ability warrant innovative solution. In this study, a novel nanoparticle platform founded upon the zeolitic imidazolate framework-8 (ZIF-8) is introduced. This new design, CDC20@ZIF-8@eM-Apt, involves the envelopment of ZIF-8 within an erythrocyte membrane (eM) cloak, and is coupled with a targeting aptamer. ZIF-8, distinguished by its porosity, biocompatibility, and robust cargo transport capabilities, constitutes the core framework. Cell division cycle protein 20 homolog (CDC20) is illuminated as a new target in bone regeneration. The eM plays a dual role in maintaining nanoparticle stability and facilitating fusion with target cell membranes, while the aptamer orchestrates the specific recruitment of bone marrow mesenchymal stem cells (BMSCs) within bone defect sites. Significantly, CDC20@ZIF-8@eM-Apt amplifies osteogenic differentiation of BMSCs via the inhibition of NF-κB p65, and concurrently catalyzes bone regeneration in two bone defect models. Consequently, CDC20@ZIF-8@eM-Apt introduces a pioneering strategy for tackling bone defects and associated maladies, opening novel avenues in therapeutic intervention.
Collapse
Affiliation(s)
- Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yihong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qing He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
19
|
Gao C, Wang Q, Ding Y, Kwong CHT, Liu J, Xie B, Wei J, Lee SMY, Mok GSP, Wang R. Targeted therapies of inflammatory diseases with intracellularly gelated macrophages in mice and rats. Nat Commun 2024; 15:328. [PMID: 38184609 PMCID: PMC10771422 DOI: 10.1038/s41467-023-44662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
Membrane-camouflaged nanomedicines often suffer from reduced efficacy caused by membrane protein disintegration and spatial disorder caused by separation and reassembly of membrane fragments during the coating process. Here we show that intracellularly gelated macrophages (GMs) preserve cell membrane structures, including protein content, integration and fluidity, as well as the membrane lipid order. Consequently, in our testing GMs act as cellular sponges to efficiently neutralize various inflammatory cytokines via receptor-ligand interactions, and serve as immune cell-like carriers to selectively bind inflammatory cells in culture medium, even under a flow condition. In a rat model of collagen-induced arthritis, GMs alleviate the joint injury, and suppress the overall arthritis severity. Upon intravenous injection, GMs efficiently accumulate in the inflammatory lungs of acute pneumonia mice for anti-inflammatory therapy. Conveniently, GMs are amenable to lyophilization and can be stored at ambient temperatures for at least 1 month without loss of integrity and bio-activity. This intracellular gelation technology provides a universal platform for targeted inflammation neutralization treatment.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao, 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China
| | - Greta S P Mok
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China.
| |
Collapse
|
20
|
Wang X, Li Y, Pu X, Liu G, Qin H, Wan W, Wang Y, Zhu Y, Yang J. Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacol Res 2024; 199:107022. [PMID: 38043691 DOI: 10.1016/j.phrs.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Macrophages, as highly phenotypic plastic immune cells, play diverse roles in different pathological conditions. Changing and controlling the phenotypes of macrophages is considered a novel potential therapeutic intervention. Meanwhile, specific transmembrane proteins anchoring on the surface of the macrophage membrane are relatively conserved, supporting its functional properties, such as inflammatory chemotaxis and tumor targeting. Thus, a series of drug delivery systems related to specific macrophage membrane proteins are commonly used to treat chronic inflammatory diseases. This review summarizes macrophages-based strategies for chronic diseases, discusses the regulation of macrophage phenotypes and their polarization processes, and presents how to design and apply the site-specific targeted drug delivery systems in vivo based on the macrophages and their derived membrane receptors. It aims to provide a better understanding of macrophages in immunoregulation and proposes macrophages-based targeted therapeutic approaches for chronic diseases.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yixuan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
21
|
Duan Y, Zhou J, Zhou Z, Zhang E, Yu Y, Krishnan N, Silva-Ayala D, Fang RH, Griffiths A, Gao W, Zhang L. Extending the In Vivo Residence Time of Macrophage Membrane-Coated Nanoparticles through Genetic Modification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305551. [PMID: 37635117 DOI: 10.1002/smll.202305551] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Nanoparticles coated with natural cell membranes have emerged as a promising class of biomimetic nanomedicine with significant clinical potential. Among them, macrophage membrane-coated nanoparticles hold particular appeal due to their versatility in drug delivery and biological neutralization applications. This study employs a genetic engineering approach to enhance their in vivo residence times, aiming to further improve their performance. Specifically, macrophages are engineered to express proline-alanine-serine (PAS) peptide chains, which provide additional protection against opsonization and phagocytosis. The resulting modified nanoparticles demonstrate prolonged residence times when administered intravenously or introduced intratracheally, surpassing those coated with the wild-type membrane. The longer residence times also contribute to enhanced nanoparticle efficacy in inhibiting inflammatory cytokines in mouse models of lipopolysaccharide-induced lung injury and sublethal endotoxemia, respectively. This study underscores the effectiveness of genetic modification in extending the in vivo residence times of macrophage membrane-coated nanoparticles. This approach can be readily extended to modify other cell membrane-coated nanoparticles toward more favorable biomedical applications.
Collapse
Affiliation(s)
- Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Edward Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Daniela Silva-Ayala
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| |
Collapse
|
22
|
Zhang J, Lv M, Wang X, Wu F, Yao C, Shen J, Zhou N, Sun B. An Immunomodulatory Biomimetic Single-Atomic Nanozyme for Biofilm Wound Healing Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302587. [PMID: 37454336 DOI: 10.1002/smll.202302587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Nanozyme-driven catalytic antibacterial therapy has become a promising modality for bacterial biofilm infections. However, current catalytic therapy of biofilm wounds is severely limited by insufficient catalytic efficiency, excessive inflammation, and deep tissue infection. Drawing from the homing mechanism of natural macrophages, herein, a hollow mesoporous biomimetic single-atomic nanozyme (SAN) is fabricated to actively target inflamed parts, suppress inflammatory factors, and eliminate deeply organized bacteria for enhance biofilm eradication. In the formulation, this biomimetic nanozyme (Co@SAHSs@IL-4@RCM) consists of IL-4-loaded cobalt SANs-embedded hollow sphere encapsulate by RAW 264.7 cell membrane (RCM). Upon accumulation at the infected sites through the specific receptors of RCM, Co@SAHS catalyze the conversion of hydrogen peroxide into hydroxyl radicals and are further amplify by NIR-II photothermal effect and glutathione depletion to permeate and destroy biofilm structure. This behavior subsequently causes the dissociation of RCM shell and the ensuing release of IL-4 that can reprogram macrophages, enabling suppression of oxidative injury and tissue inflammation. The work paves the way to engineer alternative "all-in-one" SANs with an immunomodulatory ability and offers novel insights into the design of bioinspired materials.
Collapse
Affiliation(s)
- Juyang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fan Wu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Baohong Sun
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
23
|
Ai X, Wang D, Noh I, Duan Y, Zhou Z, Mukundan N, Fang RH, Gao W, Zhang L. Glycan-modified cellular nanosponges for enhanced neutralization of botulinum toxin. Biomaterials 2023; 302:122330. [PMID: 37742508 DOI: 10.1016/j.biomaterials.2023.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Botulinum toxin (BoNT) is a potent neurotoxin that poses a significant threat as a biowarfare weapon and a potential bioterrorist tool. Currently, there is a lack of effective countermeasures to combat BoNT intoxication in the event of a biological attack. Here, we report on a novel solution by combining cell metabolic engineering with cell membrane coating nanotechnology, resulting in the development of glycan-modified cellular nanosponges that serve as a biomimetic and broad-spectrum BoNT detoxification strategy. Specifically, we increase the expression levels of gangliosides on THP-1 cells through metabolic engineering, and then collect the modified THP-1 cell membrane and coat it onto synthetic polymeric cores, creating cellular nanosponges that closely mimic host cells. Our findings demonstrate that higher levels of gangliosides on the cellular nanosponges result in greater binding capacities with BoNT. The glycan-modified cellular nanosponges exhibit superior efficacy in neutralizing BoNT cytotoxicity in vitro when compared to their unmodified counterparts. In a mouse model of BoNT intoxication, the glycan-modified cellular nanosponges show more pronounced survival benefits when administered both as a treatment and a preventative regimen. These results highlight the potential of cellular nanosponges, especially when modified with glycans, as a promising countermeasure platform against BoNT and related clostridial toxins.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nilesh Mukundan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Wang J, Liu T, Gu S, Yang HH, Xie W, Gao C, Gu D. Cytoplasm Hydrogelation-Mediated Cardiomyocyte Sponge Alleviated Coxsackievirus B3 Infection. NANO LETTERS 2023; 23:8881-8890. [PMID: 37751402 PMCID: PMC10573321 DOI: 10.1021/acs.nanolett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Indexed: 09/28/2023]
Abstract
Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.
Collapse
Affiliation(s)
- Jingzhe Wang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tonggong Liu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Siyao Gu
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-hui Yang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Weidong Xie
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Gao
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Dayong Gu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| |
Collapse
|
25
|
Duan Y, Zhang E, Fang RH, Gao W, Zhang L. Capsulated Cellular Nanosponges for the Treatment of Experimental Inflammatory Bowel Disease. ACS NANO 2023; 17:15893-15904. [PMID: 37565604 DOI: 10.1021/acsnano.3c03959] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal tract disorder characterized by uncontrolled inflammatory responses to the disrupted intestinal epithelial barrier and gut microbiome dysbiosis. Currently available small-molecule immunosuppressive agents and anticytokine biologics show limited potency, mainly due to the complexity of the inflammatory network involved in IBD. Here, we develop an oral formulation of macrophage membrane-coated nanoparticles capsulated in enteric polymer-coated gelatin capsules (denoted "cp-MΦ-NPs") for IBD treatment. The capsules protect the nanoparticles from gastric degradation and allow for targeted delivery to the colon. At the inflamed colon, cp-MΦ-NPs act as macrophage decoys that bind and neutralize pro-inflammatory cytokines. The in vivo treatment efficacy of cp-MΦ-NPs is tested in a mouse model of dextran sulfate sodium-induced colitis. In both prophylactic and delayed treatment regimens, the oral delivery of cp-MΦ-NPs significantly alleviates IBD severity, reflected by reduced intestinal inflammation and intestinal barrier restoration. Overall, cp-MΦ-NPs provide a biomimetic nanomedicine strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Yaou Duan
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Edward Zhang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
26
|
Lin J, Lv J, Yu X, Xue X, Yu S, Wang H, Chen J. Single-Cell Heterogeneity Restorative Chimeric Engineering Nanoparticles for Alleviating Antibody-Mediated Allograft Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34588-34606. [PMID: 37459593 DOI: 10.1021/acsami.3c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Disturbance of single-cell transcriptional heterogeneity is an inevitable consequence of persistent donor-specific antibody (DSA) production and allosensitization. However, identifying and efficiently clearing allospecific antibody repertoires to restore single-cell transcriptional profiles remain challenging. Here, inspired by the high affinity of natural bacterial proteins for antibodies, a genetic engineered membrane-coated nanoparticle termed as DSA trapper by the engineering chimeric gene of protein A/G with phosphatidylserine ligands for macrophage phagocytosis was reported. It has been shown that DSA trappers adsorbed alloreactive antibodies with high saturation and activated the heterophagic clearance of antibody complexes, alleviating IgG deposition and complement activation. Remarkably, DSA trappers increased the endothelial protective lineages by 8.39-fold, reversed the highly biased cytotoxicity, and promoted the proliferative profiles of Treg cells, directly providing an obligate immune tolerant niche for single-cell heterogeneity restoration. In the mice of allogeneic transplantation, the DSA trapper spared endothelial from inflammatory degenerative rosette, improved the glomerular filtration rate, and prolonged the survival of allogeneic mice from 23.6 to 78.3 days. In general, by identifying the lineage characteristics of rejection-related antibodies, the chimeric engineered DSA trapper realized immunoadsorption and further phagocytosis of alloantibody complexes to restore the single-cell genetic architecture of the allograft, offering a promising prospect for the treatment of alloantibody-mediated immune injury.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Xianping Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Shiping Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| |
Collapse
|
27
|
Astley RA, Mursalin MH, Coburn PS, Livingston ET, Nightengale JW, Bagaruka E, Hunt JJ, Callegan MC. Ocular Bacterial Infections: A Ten-Year Survey and Review of Causative Organisms Based on the Oklahoma Experience. Microorganisms 2023; 11:1802. [PMID: 37512974 PMCID: PMC10386592 DOI: 10.3390/microorganisms11071802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular infections can be medical emergencies that result in permanent visual impairment or blindness and loss of quality of life. Bacteria are a major cause of ocular infections. Effective treatment of ocular infections requires knowledge of which bacteria are the likely cause of the infection. This survey of ocular bacterial isolates and review of ocular pathogens is based on a survey of a collection of isolates banked over a ten-year span at the Dean McGee Eye Institute in Oklahoma. These findings illustrate the diversity of bacteria isolated from the eye, ranging from common species to rare and unique species. At all sampled sites, staphylococci were the predominant bacteria isolated. Pseudomonads were the most common Gram-negative bacterial isolate, except in vitreous, where Serratia was the most common Gram-negative bacterial isolate. Here, we discuss the range of ocular infections that these species have been documented to cause and treatment options for these infections. Although a highly diverse spectrum of species has been isolated from the eye, the majority of infections are caused by Gram-positive species, and in most infections, empiric treatments are effective.
Collapse
Affiliation(s)
- Roger A Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Erin T Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - James W Nightengale
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eddy Bagaruka
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Jonathan J Hunt
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Michelle C Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
28
|
Li C, Wang C, Xie HY, Huang L. Cell-Based Biomaterials for Coronavirus Disease 2019 Prevention and Therapy. Adv Healthc Mater 2023; 12:e2300404. [PMID: 36977465 DOI: 10.1002/adhm.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to threaten human health, economic development, and national security. Although many vaccines and drugs have been explored to fight against the major pandemic, their efficacy and safety still need to be improved. Cell-based biomaterials, especially living cells, extracellular vesicles, and cell membranes, offer great potential in preventing and treating COVID-19 owing to their versatility and unique biological functions. In this review, the characteristics and functions of cell-based biomaterials and their biological applications in COVID-19 prevention and therapy are described. First the pathological features of COVID-19 are summarized, providing enlightenment on how to fight against COVID-19. Next, the classification, organization structure, characteristics, and functions of cell-based biomaterials are focused on. Finally, the progress of cell-based biomaterials in overcoming COVID-19 in different aspects, including the prevention of viral infection, inhibition of viral proliferation, anti-inflammation, tissue repair, and alleviation of lymphopenia are comprehensively described. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
29
|
Wang S, Wang D, Kai M, Shen WT, Sun L, Gao W, Zhang L. Design Strategies for Cellular Nanosponges as Medical Countermeasures. BME FRONTIERS 2023; 4:0018. [PMID: 37849681 PMCID: PMC10521708 DOI: 10.34133/bmef.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 10/19/2023] Open
Abstract
The interest in using therapeutic nanoparticles to bind with harmful molecules or pathogens and subsequently neutralize their bioactivity has grown tremendously. Among various nanomedicine platforms, cell membrane-coated nanoparticles, namely, "cellular nanosponges," stand out for their broad-spectrum neutralization capability challenging to achieve in traditional countermeasure technologies. Such ability is attributable to their cellular function-based rather than target structure-based working principle. Integrating cellular nanosponges with various synthetic substrates further makes their applications exceptionally versatile and adaptive. This review discusses the latest cellular nanosponge technology focusing on how the structure-function relationship in different designs has led to versatile and potent medical countermeasures. Four design strategies are discussed, including harnessing native cell membrane functions for biological neutralization, functionalizing cell membrane coatings to enhance neutralization capabilities, combining cell membranes and functional cores for multimodal neutralization, and integrating cellular nanosponges with hydrogels for localized applications. Examples in each design strategy are selected, and the discussion is to highlight their structure-function relationships in complex disease settings. The review may inspire additional design strategies for cellular nanosponges and fulfill even broader medical applications.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Mingxuan Kai
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Zhao C, Pan Y, Yu G, Zhao XZ, Chen X, Rao L. Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207875. [PMID: 36721058 DOI: 10.1002/adma.202207875] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Indexed: 06/18/2023]
Abstract
The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.
Collapse
Affiliation(s)
- Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xing-Zhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Centre for Translational Medicine, Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
31
|
Sun L, Wang D, Noh I, Fang RH, Gao W, Zhang L. Synthesis of Erythrocyte Nanodiscs for Bacterial Toxin Neutralization. Angew Chem Int Ed Engl 2023; 62:e202301566. [PMID: 36853913 DOI: 10.1002/anie.202301566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Nanodiscs are a compelling nanomedicine platform due to their ultrasmall size and distinct disc shape. Current nanodisc formulations are made primarily with synthetic lipid bilayers and proteins. Here, we report a cellular nanodisc made with human red blood cell (RBC) membrane (denoted "RBC-ND") and show its effective neutralization against bacterial toxins. In vitro, RBC-ND neutralizes the hemolytic activity and cytotoxicity caused by purified α-toxin or complex whole secreted proteins (wSP) from methicillin-resistant Staphylococcus aureus bacteria. In vivo, RBC-ND confers significant survival benefits for mice intoxicated with α-toxin or wSP in both therapeutic and prevention regimens. Moreover, RBC-ND shows good biocompatibility and biosafety in vivo. Overall, RBC-ND distinguishes itself by inheriting the biological functions of the source cell membrane for bioactivity. The design strategy of RBC-ND can be generalized to other types of cell membranes for broad applications.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| |
Collapse
|
32
|
Zhou Z, Kai M, Wang S, Wang D, Peng Y, Yu Y, Gao W, Zhang L. Emerging nanoparticle designs against bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1881. [PMID: 36828801 DOI: 10.1002/wnan.1881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/26/2023]
Abstract
The rise of antibiotic resistance has caused the prevention and treatment of bacterial infections to be less effective. Therefore, researchers turn to nanomedicine for novel and effective antibacterial therapeutics. The effort resulted in the first-generation antibacterial nanoparticles featuring the ability to improve drug tolerability, circulation half-life, and efficacy. Toward developing the next-generation antibacterial nanoparticles, researchers have integrated design elements that emphasize physical, broad-spectrum, biomimetic, and antivirulence mechanisms. This review highlights four emerging antibacterial nanoparticle designs: inorganic antibacterial nanoparticles, responsive antibacterial nanocarriers, virulence nanoscavengers, and antivirulence nanovaccines. Examples in each design category are selected and reviewed, and their structure-function relationships are discussed. These emerging designs open the door to nontraditional antibacterial nanomedicines that rely on mechano-bactericidal, function-driven, nature-inspired, or virulence-targeting mechanisms to overcome antibiotic resistance for more effective antibacterial therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Mingxuan Kai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Shuyan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yifei Peng
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Xiao Y, Zhu T, Zeng Q, Tan Q, Jiang G, Huang X. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Acta Biomater 2023; 157:451-466. [PMID: 36442821 DOI: 10.1016/j.actbio.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Immune checkpoint blockade therapy targeting programmed death-1 (PD-1) or its major ligand programmed death-ligand 1 (PD-L1) has achieved remarkable success in the treatment of several tumors, including colorectal cancer. However, the efficacy of PD-1/PD-L1 inhibitors is limited in some colorectal cancers within the immunosuppressive tumor microenvironment (such as when there is a lack of immune cell infiltration). Herein, anti-PD-L1 functionalized biomimetic polydopamine-modified gold nanostar nanoparticles (PDA/GNS@aPD-L1 NPs) were developed for synergistic anti-tumor treatment by combining PD-1/PD-L1 blockade with photothermal ablation. PDA/GNS@aPD-L1 NPs were prepared by encapsulating photothermal nanoparticles (polydopamine-modified gold nanostar, PDA-GNS) with cell membrane isolated from anti-PD-L1 single-chain variable fragment (scFv) over-expressing cells. In addition to disrupting PD-1/PD-L1 immunosuppressive signals, the anti-PD-L1 scFv on the membrane of PDA/GNS@aPD-L1 NPs was conducive to the accumulation of PDA-GNS at tumor sites. Importantly, the tumor photothermal ablation induced by PDA-GNS could reverse the immunosuppressive tumor microenvironment, thereby further improving the efficiency of PD-1/PD-L1 blockade therapy. In this study, the synthetized PDA/GNS@aPD-L1 NPs exhibited good biocompatibility, efficient photothermal conversion ability, and enhanced tumor-targeting ability. In vivo studies revealed that a PDA/GNS@aPD-L1 NP-based therapeutic strategy significantly inhibited tumor growth, and prolonged overall survival by further promoting the maturation of dendritic cells (DCs), increasing the infiltration of CD8+T cells, and decreasing the number of immunosuppressive cells (such as regulatory T cells and myeloid-derived suppressive cells). Collectively, the developed PDA/GNS@aPD-L1 NP-based therapeutic strategy combines PD-1/PD-L1 blockade with photothermal ablation, which could remodel the tumor microenvironment for effective clinical colorectal cancer therapy. STATEMENT OF SIGNIFICANCE: Immunosuppressive tumor microenvironment is the main challenge facing programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) blockade therapy. By encapsulating photothermal nanoparticles (polydopamine-modified gold nanostar, PDA-GNS) with cell membrane over-expressing anti-PD-L1 single-chain variable fragment, we constructed anti-PD-L1 functionalized biomimetic nanoparticles (PDA/GNS@aPD-L1 NPs). By specific binding to the PD-L1 present on tumor cells, PDA/GNS@aPD-L1 NPs could disrupt PD-1/PD-L1 immunosuppression signaling, and effectively deliver PDA-GNS targeting to tumor sites. Additionally, PDA-GNS-mediated local photothermal ablation of tumors promoted the release of tumor-associated antigens and thus activated anti-tumor immune responses. Meanwhile, hyperthermia facilitates immune cell infiltration by increasing tumor vascular permeability. Therefore, PDA/GNS@aPD-L1 NPs could sensitize tumors to PD-1/PD-L1 blockade therapy by remodeling the immunosuppressive tumor microenvironment, which provides a new strategy for tumor treatment.
Collapse
Affiliation(s)
- Yuchen Xiao
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519000, China
| | - Tianchuan Zhu
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Qi Zeng
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Qingqin Tan
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
34
|
Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS APPLIED BIO MATERIALS 2023; 6:246-256. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current biomedical applications of nanocarriers are focused on drug delivery, where encapsulated cargo is released in the target tissues under the control of external stimuli. Here, we propose a very different approach, where the active toxic molecules are removed from biological tissues by the nanocarrier. It is based on the drug-sponge concept, where specific molecules are captured by the lipid nanoemulsion (NE) droplets due to dynamic covalent chemistry inside their oil core. To this end, we designed a highly lipophilic amine (LipoAmine) capable of reacting with a free cargo-aldehyde (fluorescent dye and 4-hydroxynonenal toxin) directly inside lipid NEs, yielding a lipophilic imine conjugate well encapsulated in the oil core. The formation of imine bonds was first validated using a push-pull pyrene aldehyde dye, which changes its emission color during the reaction. The conjugate formation was independently confirmed by mass spectrometry. As a result, LipoAmine-loaded NEs spontaneously loaded cargo-aldehydes, yielding formulations stable against leakage at pH 7.4, which can further release the cargo in a low pH range (4-6) in solutions and living cells. Using fluorescence microscopy, we showed that LipoAmine NEs can extract pyrene aldehyde dye from cells as well as from an epithelial tissue (chicken skin). Moreover, successful extraction from cells was also achieved for a highly toxic aliphatic aldehyde 4-hydroxynonenal, which allowed obtaining the proof of concept for detoxification of living cells. Taken together, these results show that the dynamic imine chemistry inside NEs can be used to develop detoxification platforms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France.,INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France
| |
Collapse
|
35
|
Pashirova TN, Shaihutdinova ZM, Mironov VF, Masson P. Biomedical Nanosystems for In Vivo Detoxification: From Passive Delivery Systems to Functional Nanodevices and Nanorobots. Acta Naturae 2023; 15:4-12. [PMID: 37153510 PMCID: PMC10154777 DOI: 10.32607/actanaturae.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
The problem of low efficiency of nanotherapeutic drugs challenges the creation of new alternative biomedical nanosystems known as robotic nanodevices. In addition to encapsulating properties, nanodevices can perform different biomedical functions, such as precision surgery, in vivo detection and imaging, biosensing, targeted delivery, and, more recently, detoxification of endogenous and xenobiotic compounds. Nanodevices for detoxification are aimed at removing toxic molecules from biological tissues, using a chemical- and/or enzyme-containing nanocarrier for the toxicant to diffuse inside the nanobody. This strategy is opposite to drug delivery systems that focus on encapsulating drugs and releasing them under the influence of external factors. The review describes various kinds of nanodevices intended for detoxification that differ by the type of poisoning treatment they provide, as well as the type of materials and toxicants. The final part of the review is devoted to enzyme nanosystems, an emerging area of research that provides fast and effective neutralization of toxins in vivo.
Collapse
Affiliation(s)
- T. N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - Z. M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| | - V. F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - P. Masson
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| |
Collapse
|
36
|
Song Y, Zheng X, Hu J, Ma S, Li K, Chen J, Xu X, Lu X, Wang X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front Microbiol 2023; 14:1083007. [PMID: 36876074 PMCID: PMC9981803 DOI: 10.3389/fmicb.2023.1083007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
The rapid evolution of antibiotic resistance and the complicated bacterial infection microenvironments are serious obstacles to traditional antibiotic therapy. Developing novel antibacterial agents or strategy to prevent the occurrence of antibiotic resistance and enhance antibacterial efficiency is of the utmost importance. Cell membrane-coated nanoparticles (CM-NPs) combine the characteristics of the naturally occurring membranes with those of the synthetic core materials. CM-NPs have shown considerable promise in neutralizing toxins, evading clearance by the immune system, targeting specific bacteria, delivering antibiotics, achieving responsive antibiotic released to the microenvironments, and eradicating biofilms. Additionally, CM-NPs can be utilized in conjunction with photodynamic, sonodynamic, and photothermal therapies. In this review, the process for preparing CM-NPs is briefly described. We focus on the functions and the recent advances in applications of several types of CM-NPs in bacterial infection, including CM-NPs derived from red blood cells, white blood cells, platelet, bacteria. CM-NPs derived from other cells, such as dendritic cells, genetically engineered cells, gastric epithelial cells and plant-derived extracellular vesicles are introduced as well. Finally, we place a novel perspective on CM-NPs' applications in bacterial infection, and list the challenges encountered in this field from the preparation and application standpoint. We believe that advances in this technology will reduce threats posed by bacteria resistance and save lives from infectious diseases in the future.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xia Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subo Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyao Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyang Lu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Holay M, Krishnan N, Zhou J, Duan Y, Guo Z, Gao W, Fang RH, Zhang L. Single Low-Dose Nanovaccine for Long-Term Protection against Anthrax Toxins. NANO LETTERS 2022; 22:9672-9678. [PMID: 36448694 PMCID: PMC9970955 DOI: 10.1021/acs.nanolett.2c03881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthrax infections caused by Bacillus anthracis are an ongoing bioterrorism and livestock threat worldwide. Current approaches for management, including extended passive antibody transfusion, antibiotics, and prophylactic vaccination, are often cumbersome and associated with low patient compliance. Here, we report on the development of an adjuvanted nanotoxoid vaccine based on macrophage membrane-coated nanoparticles bound with anthrax toxins. This design leverages the natural binding interaction of protective antigen, a key anthrax toxin, with macrophages. In a murine model, a single low-dose vaccination with the nanotoxoids generates long-lasting immunity that protects against subsequent challenge with anthrax toxins. Overall, this work provides a new approach to address the ongoing threat of anthrax outbreaks and bioterrorism by taking advantage of an emerging biomimetic nanotechnology.
Collapse
|
38
|
Wang D, Ai X, Duan Y, Xian N, Fang RH, Gao W, Zhang L. Neuronal Cellular Nanosponges for Effective Detoxification of Neurotoxins. ACS NANO 2022; 16:19145-19154. [PMID: 36354967 DOI: 10.1021/acsnano.2c08319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurotoxins attack and destruct the nervous system, which can cause serious health problems and security threats. Existing detoxification approaches, such as antibodies and small molecule antidotes, rely on neurotoxin's molecular structure as design cues and require toxin-specific development for each type of toxins. However, the enormous diversity of neurotoxins makes such structure-based development of antitoxin particularly challenging and inefficient. Here, we report on the development and use of neuronal membrane-coated nanosponges (denoted "Neuron-NS") as an effective approach to detoxifying neurotoxins. Specifically, Neuron-NS act as neuron decoys to lure neurotoxins, bind with and neutralize the toxins, and thus block them from attacking the host neuron cells. These nanosponges detoxify neurotoxins regardless of their molecular structures and therefore can overcome the challenge posed by toxin structural diversity. In the study, we fabricate Neuron-NS by coating the membrane of Neuro-2a cells onto polymeric cores. Meanwhile, we select tetrodotoxin (TTX) as a model neurotoxin and demonstrate the detoxification efficacy of the Neuron-NS in a cytotoxicity assay, a calcium flux assay, and a cell osmotic swelling assay in vitro. Additionally, in mouse models of TTX intoxication, the Neuron-NS significantly enhance mouse survival in therapeutic and prophylactic regimens without showing acute toxicity. Overall, the Neuron-NS contribute to the current detoxification arsenal with the potential to treat various injuries and diseases caused by neurotoxins.
Collapse
Affiliation(s)
- Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Xiangzhao Ai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Nianfei Xian
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
39
|
Mostafavi E, Iravani S, Varma RS. Nanosponges: An overlooked promising strategy to combat SARS-CoV-2. Drug Discov Today 2022; 27:103330. [PMID: 35908684 PMCID: PMC9330373 DOI: 10.1016/j.drudis.2022.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Among explored nanomaterials, nanosponge-based systems have exhibited inhibitory effects for the biological neutralization of, and antiviral delivery against, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More studies could pave the path for clarification of their biological neutralization mechanisms as well as the assessment of their long-term biocompatibility and biosafety issues before clinical translational studies. In this review, we discuss recent advances pertaining to antiviral delivery and inhibitory effects of nanosponges against SARS-CoV-2, focusing on important challenges and opportunities. Finally, as promising approaches for recapitulating the complex structure of different organs/tissues of the body, we discuss the use of 3D in vitro models to investigate the mechanism of SARS-CoV-2 infection and to find therapeutic targets to better manage and eradicate coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
40
|
Wang S, Wang Y, Jin K, Zhang B, Peng S, Nayak AK, Pang Z. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opin Drug Deliv 2022; 19:965-984. [PMID: 35917435 DOI: 10.1080/17425247.2022.2108786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Red blood cell (or erythrocyte) membrane-camouflaged nanoparticles (RBC-NPs) not only have a superior circulation life and do not induce accelerated blood clearance, but also possess special functions, which offers great potential in cancer therapy. AREAS COVERED This review focuses on the recent advances of RBC-NPs for delivering various agents to treat cancers in light of their vital role in improving drug delivery. Meanwhile, the construction and in vivo behavior of RBC-NPs are discussed to provide an in-depth understanding of the basis of RBC-NPs for improved cancer drug delivery. EXPERT OPINION Although RBC-NPs are quite prospective in delivering anti-cancer therapeutics, they are still in their infancy stage and many challenges need to be overcome for successful translation into the clinic. The preparation and modification of RBC membranes, the optimization of coating methods, the scale-up production and the quality control of RBC-NPs, and the drug loading and release should be carefully considered in the clinical translation of RBC-NPs for cancer therapy.
Collapse
Affiliation(s)
- Siyu Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Kai Jin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, China
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Odisha, India
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
41
|
Tian C, Zheng S, Liu X, Kamei KI. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J Nanobiotechnology 2022; 20:338. [PMID: 35858898 PMCID: PMC9301849 DOI: 10.1186/s12951-022-01552-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
Despite explosive growth in the development of nano-drug delivery systems (NDDS) targeting tumors in the last few decades, clinical translation rates are low owing to the lack of efficient models for evaluating and predicting responses. Microfluidics-based tumor-on-a-chip (TOC) systems provide a promising approach to address these challenges. The integrated engineered platforms can recapitulate complex in vivo tumor features at a microscale level, such as the tumor microenvironment, three-dimensional tissue structure, and dynamic culture conditions, thus improving the correlation between results derived from preclinical and clinical trials in evaluating anticancer nanomedicines. The specific focus of this review is to describe recent advances in TOCs for the evaluation of nanomedicine, categorized into six sections based on the drug delivery process: circulation behavior after infusion, endothelial and matrix barriers, tumor uptake, therapeutic efficacy, safety, and resistance. We also discuss current issues and future directions for an end-use perspective of TOCs.
Collapse
Affiliation(s)
- Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.,Chinese People's Liberation Army 210 Hospital, 116021, Dalian, People's Republic of China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China. .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, 606-8501, Kyoto, Japan.
| |
Collapse
|
42
|
Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022; 19:883-898. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune systemic disease in which inflammatory and immune cells accumulate in inflamed joints. Researchers aimed at the characteristics of RA to achieve the effect of treating RA through different therapeutic strategies, and have used various endogenous materials to design drug-loaded nanoparticles that can target RA by binding to cell adhesion molecules or chemokines. In some cases, the nanoparticles can respond to the characteristics of the microenvironment. AREAS COVERED This article reviews the recent advances in the treatment of RA from two aspects of therapeutic strategies and delivery strategies. Therapeutic strategies mainly include neutralization of inflammatory factors, promotion of inflammatory cell apoptosis, ROS scavenger, immunosuppression, and bone tissue repair. The drug delivery strategy is mainly described from two aspects: chemically functionalized biomimetic nanoparticles and endogenous nanoparticles. EXPERT OPINION Biomimetic NPs may be effective drug carriers for targeted RA treatment. NPs can reduce the clearance of mononuclear phagocytes, prolong the blood circulation time, and improve the targeting ability. With the deepening of research, more and more biomimetic NPs have entered the clinical trial stage. However, safe and scalable preparation methods are needed to improve their clinical applicability.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mei Hu
- Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
43
|
Versatile Applications of Nanosponges in Biomedical Field: A Glimpse on SARS-CoV-2 Management. BIONANOSCIENCE 2022; 12:1018-1031. [PMID: 35755139 PMCID: PMC9207166 DOI: 10.1007/s12668-022-01000-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 10/27/2022]
Abstract
Nanotechnology has a versatile use in the field of disease therapy, targeted drug delivery, biosensing, and environmental protection. The cross-linked nanosponges are one of the types of nanostructures that provide huge application in the biomedical field. They are available up to the fourth generation and can act as a payload for both kinds of hydrophilic and hydrophobic drugs. There are different methods available for the synthesis of these nanosponges as well as loading the drugs inside them. A variety of approved drugs based on nanosponges are already in the market including drugs for cancer. Other applications include the uses of nanosponges as topical agent, in improving solubility, as protein carrier, in chemical sensors, in wastewater remediation, and in agriculture. The present review discusses in detail about different applications of nanosponges and also mentions about the recent SARS-CoV-2 management using nanosponges.
Collapse
|
44
|
Wang Z, Xiang L, Lin F, Tang Y, Deng L, Cui W. A Biomaterial-Based Hedging Immune Strategy for Scarless Tendon Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200789. [PMID: 35267215 DOI: 10.1002/adma.202200789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Scarring rather than regeneration, is an inevitable outcome of unbalanced amplifications of inflammation-destructive signals and atresia of the regenerative niche. However, identifying and effectively hedging against the risk of scarring and realizing the conversion of regenerative cues remain difficult. In this work, a hedging immune strategy based microfibrous membrane (Him-MFM), by tethering distearoyl phosphoethanolamine layer-supported copoly(lactic/glycolic acid) electrospun fibers with identified CD11b+ /CD68+ scarring subpopulation membranes in the immune landscape after tendon injury to counterweigh tissue damage, is reported. Him-MFM, carrying relevant risk receptors is shown to shift high type I biased polarization, alleviate apoptosis and metabolic stress, and mitigate inflammatory tenocyte response. Remarkably, the hedging immune strategy reverses the damaged tendon sheath barrier to the innate IL-33 secretory phenotype by 4.36 times and initiates the mucous-IL-33-Th2 axis, directly supplying a transient but obligate regenerative niche for sheath stem cell proliferation. In murine flexor tendon injury, the wrapping of Him-MFM alleviates pathological responses, protects tenocytes in situ, and restores hierarchically arranged collagen fibers covered with basement membrane, and is structurally and functionally comparable to mature tendons, demonstrating that the hedging immunity is a promising strategy to yield regenerative responses not scarring.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
45
|
Wang Z, Zhao S, Lin X, Chen G, Kang J, Ma Z, Wang Y, Li Z, Xiao X, He A, Xiang D. Application of Organoids in Carcinogenesis Modeling and Tumor Vaccination. Front Oncol 2022; 12:855996. [PMID: 35371988 PMCID: PMC8968694 DOI: 10.3389/fonc.2022.855996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids well recapitulate organ-specific functions from their tissue of origin and remain fundamental aspects of organogenesis. Organoids are widely applied in biomedical research, drug discovery, and regenerative medicine. There are various cultivated organoid systems induced by adult stem cells and pluripotent stem cells, or directly derived from primary tissues. Researchers have drawn inspiration by combination of organoid technology and tissue engineering to produce organoids with more physiological relevance and suitable for translational medicine. This review describes the value of applying organoids for tumorigenesis modeling and tumor vaccination. We summarize the application of organoids in tumor precision medicine. Extant challenges that need to be conquered to make this technology be more feasible and precise are discussed.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhao
- State Key Laboratory of Oncogenes and Related Genes, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglong Chen
- Department of General Surgery, Zhengzhou University, Affiliated Cancer Hospital (Henan Cancer Hospital), Zhengzhou, China
| | - Jiawei Kang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | | | - Yiming Wang
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Zhi Li
- Department of General Surgery, Zhengzhou University, Affiliated Cancer Hospital (Henan Cancer Hospital), Zhengzhou, China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aina He
- Department of Oncology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, The Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|