1
|
Pathan J, Balan H, Commins P, Ravi A, Al-Handawi MB, Hou ICY, Naumov P, Sureshan KM. A Self-Healing Crystal That Repairs Multiple Cracks. J Am Chem Soc 2024; 146:27100-27108. [PMID: 39292954 PMCID: PMC11457417 DOI: 10.1021/jacs.4c09334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024]
Abstract
We report both cracking and self-healing in crystals occurring during a thermal phase transition, followed by a topochemical polymerization. A squaramide-based monomer was designed where the azide and alkyne units of adjacent molecules are positioned favorably for a topochemical click reaction. The monomer undergoes spontaneous single-crystal-to-single-crystal (SCSC) polymerization at room temperature via regiospecific 1,3-dipolar cycloaddition, yielding the corresponding triazole-linked polymer in a few days. When heated at 60 °C, the polymerization completes in a SCSC manner in 24 h. Upon continuous heating from room temperature to 110 °C, the monomer crystals develop multiple cracks, and they self-heal immediately. The cracking occurs due to a thermal phase transition, as evidenced by differential scanning calorimetry (DSC). The cracks heal either upon further heating or upon cooling of the crystals due to the topochemical polymerization or reversal of the phase transition, respectively. Increasing the heating rate leads to the formation of longer and wider cracks, which also heal instantaneously. The self-healed crystals retained their integrity and the crystal structure of the self-healed crystals was analyzed by single-crystal X-ray diffraction. The quality of the self-healed crystals and their diffraction ability conform to those of the completely reacted crystals at room temperature or at 60 °C without developing cracks. This work demonstrates a novel mechanism for self-healing of molecular crystals that could expand the horizon of these materials for a plethora of applications.
Collapse
Affiliation(s)
- Javed
R. Pathan
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura 695551, India
| | - Haripriya Balan
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura 695551, India
| | - Patrick Commins
- Smart
Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi 129188, United
Arab Emirates
| | - Arthi Ravi
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura 695551, India
| | - Marieh B. Al-Handawi
- Smart
Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi 129188, United
Arab Emirates
| | - Ian Cheng-Yi Hou
- Smart
Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi 129188, United
Arab Emirates
| | - Panče Naumov
- Smart
Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi 129188, United
Arab Emirates
- Center
for Smart Engineering Materials, New York
University Abu Dhabi, PO Box 129188, Abu Dhabi 129188, United Arab Emirates
- Research
Center for Environment and Materials, Macedonian
Academy of Sciences and Arts, Bul. Krste Misirkov 2, Skopje MK−1000, Macedonia
- Molecular
Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Kana M. Sureshan
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura 695551, India
| |
Collapse
|
2
|
Lan L, Zhang H. Maneuverability and Processability of Molecular Crystals. Angew Chem Int Ed Engl 2024; 63:e202411405. [PMID: 38988192 DOI: 10.1002/anie.202411405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Crystal adaptronics, a burgeoning field at the intersection of materials science and engineering, focuses on harnessing the unique properties of organic molecular crystals to achieve unprecedented levels of maneuverability and processability in various applications. Increasingly, ordered stacks of crystalline materials are being endowed with fascinating mechanical compliance changes in response to external environments. Understanding how these crystals can be manipulated and tailored for specific functions has become paramount in the pursuit of advanced materials with customizable properties. Simultaneously, the processability of organic molecular crystals plays a pivotal role in shaping their utility in real-world applications. From growth methodologies to fabrication techniques, the ability to precisely machine these crystals opens new avenues for engineering materials with enhanced functionality. These processing methods enhance the versatility of organic crystals, allowing their integration into various devices and technologies, and further expanding the potential applications. This review aims to provide a concise overview of the current landscape in the study of dynamic organic molecular crystals, with an emphasis on the interconnected themes of operability and processability.
Collapse
Affiliation(s)
- Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Al-Handawi MB, Commins P, Dalaq AS, Santos-Florez PA, Polavaram S, Didier P, Karothu DP, Zhu Q, Daqaq M, Li L, Naumov P. Ferroelastic ionic organic crystals that self-heal to 95. Nat Commun 2024; 15:8095. [PMID: 39285159 PMCID: PMC11405411 DOI: 10.1038/s41467-024-51625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
The realm of self-healing materials integrates chemical and physical mechanisms that prevent wear and fracturing and extend the operational lifetime. Unlike the favorable rheology of amorphous soft materials that facilitates efficient contact between fragments, the efficiency of recovery of atomistically ordered materials is restricted by slower interfacial mass transport and the need for ideal physical alignment, which limits their real-world application. We report drastic enhancements in efficiency and recovery time in the self-healing of anilinium bromide, challenging these limitations. Crystals of this material recovered up to 49% within seconds and up to 95% after 100 min via ferroelastic detwinning. The spatial evolution of strain during cracking and healing was measured in real time using digital image correlation. Favorable alignment and strong ionic bonding across the interface of partially fractured crystals facilitate self-healing. This study elevates organic crystals close to the best-in-class self-healing polymers and sets an approach for durable crystal-based optoelectronics.
Collapse
Affiliation(s)
- Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Patrick Commins
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Ahmed S Dalaq
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Pedro A Santos-Florez
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Srujana Polavaram
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Illkirch, France
| | - Durga Prasad Karothu
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Qiang Zhu
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mohammed Daqaq
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, NY, USA
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Skopje, Macedonia.
| |
Collapse
|
4
|
Li R, Sun Z, Yao L, Liu J, Zhang S, Jin D, Peng Z, Tian Y, Sun J, Shi P, Zhang K, Wang S, Xu J, Xu M, Yang D, Wang R, Xue J. Unraveling the Degradation Mechanisms of Perovskite Solar Cells under Mechanical Tensile Loads. ACS NANO 2024; 18:24495-24504. [PMID: 39169869 DOI: 10.1021/acsnano.4c08378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The short longevity of perovskite solar cells (PSCs) is the major hurdle toward their commercialization. In recent years, mechanical stability has emerged as a pivotal aspect in enhancing the overall durability of PSCs, prompting a myriad of strategies devoted to this issue. However, the mechanical degradation mechanisms of PSCs remain largely unexplored, with corresponding studies mainly limited to perovskite single crystals, neglecting the complexity and nuances present in PSC devices based on polycrystalline perovskite thin films. Herein, we reveal the underlying mechanisms of the mechanical degradation of formamidinium-based PSCs, which are the most prevalent high-performance PSC candidates. Under uniaxial tensile loads, we found that the degradation is mainly attributed to the sequential increase in the density of micropores and halide defects within the perovskite films. This phenomenon is consistent across various perovskite compositions and environmental conditions. Our findings elucidate mechanistic insights for more targeted mitigation strategies aimed at addressing the mechanical degradation of PSC devices.
Collapse
Affiliation(s)
- Runda Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zengyi Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Libing Yao
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jiwei Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaochen Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Donger Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zixuan Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Tian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jingyi Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengju Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kai Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sisi Wang
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jiazhe Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mingsheng Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, College of Integrated Circuits, Zhejiang University, Hangzhou 310027, China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Wang
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jingjing Xue
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Lin J, Zhou J, Li L, Tahir I, Wu S, Naumov P, Gong J. Highly efficient in crystallo energy transduction of light to work. Nat Commun 2024; 15:3633. [PMID: 38684679 PMCID: PMC11059232 DOI: 10.1038/s41467-024-47881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Various mechanical effects have been reported with molecular materials, yet organic crystals capable of multiple dynamic effects are rare, and at present, their performance is worse than some of the common actuators. Here, we report a confluence of different mechanical effects across three polymorphs of an organic crystal that can efficiently convert light into work. Upon photodimerization, acicular crystals of polymorph I display output work densities of about 0.06-3.94 kJ m-3, comparable to ceramic piezoelectric actuators. Prismatic crystals of the same form exhibit very high work densities of about 1.5-28.5 kJ m-3, values that are comparable to thermal actuators. Moreover, while crystals of polymorph II roll under the same conditions, crystals of polymorph III are not photochemically reactive; however, they are mechanically flexible. The results demonstrate that multiple and possibly combined mechanical effects can be anticipated even for a simple organic crystal.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jianmin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box, 38044, Abu Dhabi, UAE
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
6
|
Wei C, Li L, Zheng Y, Wang L, Ma J, Xu M, Lin J, Xie L, Naumov P, Ding X, Feng Q, Huang W. Flexible molecular crystals for optoelectronic applications. Chem Soc Rev 2024; 53:3687-3713. [PMID: 38411997 DOI: 10.1039/d3cs00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The cornerstones of the advancement of flexible optoelectronics are the design, preparation, and utilization of novel materials with favorable mechanical and advanced optoelectronic properties. Molecular crystalline materials have emerged as a class of underexplored yet promising materials due to the reduced grain boundaries and defects anticipated to provide enhanced photoelectric characteristics. An inherent drawback that has precluded wider implementation of molecular crystals thus far, however, has been their brittleness, which renders them incapable of ensuring mechanical compliance required for even simple elastic or plastic deformation of the device. It is perplexing that despite a plethora of reports that have in the meantime become available underpinning the flexibility of molecular crystals, the "discovery" of elastically or plastically deformable crystals remains limited to cases of serendipitous and laborious trial-and-error approaches, a situation that calls for a systematic and thorough assessment of these properties and their correlation with the structure. This review provides a comprehensive and concise overview of the current understanding of the origins of crystal flexibility, the working mechanisms of deformations such as plastic and elastic bending behaviors, and insights into the examples of flexible molecular crystals, specifically concerning photoelectronic changes that occur in deformed crystals. We hope this summary will provide a reference for future experimental and computational efforts with flexible molecular crystals aimed towards improving their mechanical behavior and optoelectronic properties, ultimately intending to advance the flexible optoelectronic technology.
Collapse
Affiliation(s)
- Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingyao Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, Skopje MK-1000, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Xuehua Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
7
|
Mondal S, Tanari P, Roy S, Bhunia S, Chowdhury R, Pal AK, Datta A, Pal B, Reddy CM. Autonomous self-healing organic crystals for nonlinear optics. Nat Commun 2023; 14:6589. [PMID: 37852998 PMCID: PMC10584936 DOI: 10.1038/s41467-023-42131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Non-centrosymmetric molecular crystals have a plethora of applications, such as piezoelectric transducers, energy storage and nonlinear optical materials owing to their unique structural order which is absent in other synthetic materials. As most crystals are brittle, their efficiency declines upon prolonged usage due to fatigue or catastrophic failure, limiting their utilities. Some natural substances, like bone, enamel, leaf and skin, function efficiently, last a life-time, thanks to their inherent self-healing nature. Therefore, incorporating self-healing ability in crystalline materials will greatly broaden their scope. Here, we report single crystals of a dibenzoate derivative, capable of self-healing within milliseconds via autonomous actuation. Systematic quantitative experiments reveal the limit of mechanical forces that the self-healing crystals can withstand. As a proof-of-concept, we also demonstrate that our self-healed crystals can retain their second harmonic generation (SHG) with high efficiency. Kinematic analysis of the actuation in our system also revealed its impressive performance parameters, and shows actuation response times in the millisecond range.
Collapse
Affiliation(s)
- Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India
| | - Pratap Tanari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India
| | - Samrat Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India
| | - Rituparno Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, West Bengal, India
| | - Bipul Pal
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India.
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246, West Bengal, India.
| |
Collapse
|
8
|
Singh P, Soffer Y, Ceratti DR, Elbaum M, Oron D, Hodes G, Cahen D. A-Site Cation Dependence of Self-Healing in Polycrystalline APbI 3 Perovskite Films. ACS ENERGY LETTERS 2023; 8:2447-2455. [PMID: 37206954 PMCID: PMC10189583 DOI: 10.1021/acsenergylett.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
In terms of sustainable use, halide perovskite (HaP) semiconductors have a strong advantage over most other classes of materials for (opto)electronics, as they can self-heal (SH) from photodamage. While there is considerable literature on SH in devices, where it may not be clear exactly where damage and SH occur, there is much less on the HaP material itself. Here we perform "fluorescence recovery after photobleaching" (FRAP) measurements to study SH on polycrystalline thin films for which encapsulation is critical to achieving complete and fast self-healing. We compare SH in three photoactive APbI3 perovskite films by varying the A-site cation ranging from (relatively) small inorganic Cs through medium-sized MA to large FA (the last two are organic cations). While the A cation is often considered electronically relatively inactive, it significantly affects both SH kinetics and the threshold for photodamage. The SH kinetics are markedly faster for γ-CsPbI3 and α-FAPbI3 than for MAPbI3. Furthermore, γ-CsPbI3 exhibits an intricate interplay between photoinduced darkening and brightening. We suggest possible explanations for the observed differences in SH behavior. This study's results are essential for identifying absorber materials that can regain intrinsic, insolation-induced photodamage-linked efficiency loss during its rest cycles, thus enabling applications such as autonomously sustainable electronics.
Collapse
Affiliation(s)
- Pallavi Singh
- Dept.
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yahel Soffer
- Dept.
of Physics of Complex Systems, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Davide Raffaele Ceratti
- CNRS
UMR 9006-IPVF Institut Photovoltaïque d’Ile-de-France, 18 Boulevard Thomas Gobert, Palaiseau 91120, France
| | - Michael Elbaum
- Dept.
of Chemical & Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Dan Oron
- Dept.
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
- Email
for D.O.:
| | - Gary Hodes
- Dept.
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
- Email for G.H.:
| | - David Cahen
- Dept.
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
- Email for D.C.:
| |
Collapse
|
9
|
Kumar S, Damle VH, Bendikov T, Itzhak A, Elbaum M, Rechav K, Houben L, Tischler Y, Cahen D. Topotactic, Vapor-Phase, In Situ Monitored Formation of Ultrathin, Phase-Pure 2D-on-3D Halide Perovskite Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23908-23921. [PMID: 37133217 DOI: 10.1021/acsami.3c01881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (<10 nm) R2PbI4 layers on 3D perovskites is challenging with spin coating; even more so is its upscaling for larger-area devices. We report on vapor-phase cation exchange of the 3D surface with the R2PbI4 molecules and real-time in situ growth monitoring by photoluminescence (PL) to determine limits for forming ultrathin 2D layers. We characterize the 2D growth stages, following the changing PL intensity-time profiles, by combining structural, optical, morphological, and compositional characterizations. Moreover, from quantitative X-ray photoelectron spectroscopy (XPS) analysis on 2D/3D bilayer films, we estimate the smallest width of a 2D cover that we can grow to be <5 nm, roughly the limit for efficient tunneling through a (semi)conjugated organic barrier. We also find that, besides protecting the 3D against ambient humidity-induced degradation, the ultrathin 2D-on-3D film also aids self-repair following photodamage.
Collapse
Affiliation(s)
- Sujit Kumar
- Dept. of Mol. Chem. & Mater. Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
- Bar-Ilan Inst. for Adv. Mater. & Nanotech. & Dept. of Chem., Bar-Ilan Univ., Ramat Gan 5290002, Israel
| | - Vinayaka H Damle
- Bar-Ilan Inst. for Adv. Mater. & Nanotech. & Dept. of Chem., Bar-Ilan Univ., Ramat Gan 5290002, Israel
| | - Tatyana Bendikov
- Dept. of Chem. Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Itzhak
- Bar-Ilan Inst. for Adv. Mater. & Nanotech. & Dept. of Chem., Bar-Ilan Univ., Ramat Gan 5290002, Israel
| | - Michael Elbaum
- Dept. of Chem. Biol. Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katya Rechav
- Dept. of Chem. Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lothar Houben
- Dept. of Chem. Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Tischler
- Bar-Ilan Inst. for Adv. Mater. & Nanotech. & Dept. of Chem., Bar-Ilan Univ., Ramat Gan 5290002, Israel
| | - David Cahen
- Dept. of Mol. Chem. & Mater. Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
- Bar-Ilan Inst. for Adv. Mater. & Nanotech. & Dept. of Chem., Bar-Ilan Univ., Ramat Gan 5290002, Israel
| |
Collapse
|
10
|
Galle MHJJ, Li J, Frantsuzov PA, Basché T, Scheblykin IG. Self-Healing Ability of Perovskites Observed via Photoluminescence Response on Nanoscale Local Forces and Mechanical Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204393. [PMID: 36453591 PMCID: PMC9811431 DOI: 10.1002/advs.202204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The photoluminescence (PL) of metal halide perovskites can recover after light or current-induced degradation. This self-healing ability is tested by acting mechanically on MAPbI3 polycrystalline microcrystals by an atomic force microscope tip (applying force, scratching, and cutting) while monitoring the PL. Although strain and crystal damage induce strong PL quenching, the initial balance between radiative and nonradiative processes in the microcrystals is restored within a few minutes. The stepwise quenching-recovery cycles induced by the mechanical action is interpreted as a modulation of the PL blinking behavior. This study proposes that the dynamic equilibrium between active and inactive states of the metastable nonradiative recombination centers causing blinking is perturbed by strain. Reversible stochastic transformation of several nonradiative centers per microcrystal under application/release of the local stress can lead to the observed PL quenching and recovery. Fitting the experimental PL trajectories by a phenomenological model based on viscoelasticity provides a characteristic time of strain relaxation in MAPbI3 on the order of 10-100 s. The key role of metastable defect states in nonradiative losses and in the self-healing properties of perovskites is suggested.
Collapse
Affiliation(s)
- Marco H. J. J. Galle
- Department of ChemistryJohannes Gutenberg‐UniversityDuesbergweg 10‐1455128MainzGermany
| | - Jun Li
- Chemical Physics and NanoLundLund UniversityBox 124Lund22100Sweden
| | - Pavel A. Frantsuzov
- Voevodsky Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of ScienceInstitutskaya 3Novosibirsk630090Russia
| | - Thomas Basché
- Department of ChemistryJohannes Gutenberg‐UniversityDuesbergweg 10‐1455128MainzGermany
| | | |
Collapse
|