1
|
Sun X, Zhang X, Cao T, Huang S, Dai Y, Xia F. Outer-surface covering of nanochannels with hydrogel for anti-protein-interference on the ion current. Talanta 2025; 285:127367. [PMID: 39673985 DOI: 10.1016/j.talanta.2024.127367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Nanopore/nanochannel sensing is a promising analytical method in the fields of chemistry and biology. However, due to the interference of non-analytes in complex samples, directly analyzing un-pretreated samples through nanopores/nanochannels remains a great challenge. Here, we report a type of heterogeneous membrane by covering anodic aluminum oxide (AAO) cylindrical nanochannel porous membrane with graphene oxide/calcium alginate (GCA) hybrid hydrogel to reduce the interference of protein on the current detection signal. The hydrogel layer blocks the protein through steric hindrance, so that it will not block and affect the channel. The results show that when the GCA hydrogel is covered on the outer surface of AAO membrane, the interference of protein on the ion current decreases from 52 % to 5 %. Our work provides a strategy for reducing the interference of non-analytes in complex samples, and demonstrates the anti-interference function of hydrogels on nanopore/nanochannel sensing.
Collapse
Affiliation(s)
- Xueting Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Suqing Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Luo S, Wu Q, Wang L, Qu H, Zheng L. Direct detection of doxorubicin in whole blood using a hydrogel-protected electrochemical aptamer-based biosensor. Talanta 2025; 285:127289. [PMID: 39613489 DOI: 10.1016/j.talanta.2024.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Electrochemical aptamer-based biosensors (EABs) have been developed for multiple important biomarkers for their convenient and real-time features. However, the application of EABs in complex biological fluids has been limited by the rapid loss of sensitivity and selectivity due to inactivation and biofouling of aptamer probes and electrodes. To address this issue, we report the preparation of a simple hydrogel-protected aptamer-based biosensor (HP-EAB) for direct detection of Doxorubicin (DOX) in whole blood. The aptamer provides excellent selectivity for the electrochemical sensor, allowing the prepared sensor to accurately detect DOX in a 50-fold diluted whole blood sample. The agarose hydrogel coating on the electrode surface allows the passage of small molecules while hindering the adsorption of biomolecules from the whole blood matrix to the electrode surface. The experimental results show that the prepared HP-EAB has high stability compared with the unprotected EAB, and the HP-EAB maintains excellent detection performance after 7 days of storage. The hydrogel coating can effectively reduce the non-specific response to the whole blood matrix and prolong the life-time of the sensor. When used to detect DOX in rabbit whole blood, the HP-EAB exhibited excellent detection performance with a detection limit of 25.9 nM (S/N = 3) and a detection range of 0.1 μM-50 μM. The developed HP-EAB provides an excellent platform for the rapid and accurate determination of important analytes in complex biological fluids.
Collapse
Affiliation(s)
- Songjia Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Zhou Y, He Z, Wei Q, Sun A, Wu Z, Huang D, Zhang S, Yu WW. A Chain Entanglement Gelled SnO₂ Electron Transport Layer for Enhanced Perovskite Solar Cell Performance and Effective Lead Capture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416932. [PMID: 39780547 DOI: 10.1002/adma.202416932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Indexed: 01/11/2025]
Abstract
SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO2 (G-SnO2) structure is successfully constructed with a wide range of functions. The PDEAS-PVP chain entanglement gel achieves passivation and Pb2⁺ capture through chemical chelation mechanisms is explored. The results demonstrated that the all-in-air prepared PSC based on G-SnO2 exhibited an excellent power conversion efficiency (PCE) of 24.77% and retained 83.3% of their initial efficiency after 2100 h of air exposure. Additionally, the PDEAS-PVP exposes more C═O and S═O active sites, significantly enhanced the lead absorption capability of the PSCs.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| | - Zhengyan He
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| | - Anni Sun
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| | - Zilong Wu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| | - Dan Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shufang Zhang
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| |
Collapse
|
4
|
Chen D, Wang Y, Wei Y, Lu Z, Ju H, Yan F, Liu Y. Size-Coded Hydrogel Microbeads for Extraction-Free Serum Multi-miRNAs Quantifications with Machine-Learning-Aided Lung Cancer Subtypes Classification. NANO LETTERS 2025; 25:453-460. [PMID: 39680719 DOI: 10.1021/acs.nanolett.4c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Classifying lung cancer subtypes, which are characterized by multi-microRNAs (miRNAs) upregulation, is important for therapy and prognosis evaluation. Liquid biopsy is a promising approach, but the pretreatment of RNA extraction is labor-intensive and impairs accuracy. Here we develop size-coded hydrogel microbeads for extraction-free quantification of miR-21, miR-205, and miR-375 directly from serum. The hydrogel microbead is immobilized with an miRNA capture probe, which well retains target miRNA and provides good nonfouling capability for nonspecific biomolecules in serum. The porous structure of microbeads allows efficient DNA cascade amplification reaction and generates a fluorescence signal. The microbeads are clustered into three groups according to size via flow cytometry sorting, and the group fluorescence is integrated for the corresponding miRNA quantification. With machine-learning-assisted data analysis, it achieves good lung cancer diagnosis accuracy and 80% accuracy for subtype classification for 108 serum samples, including lung cancer patients and healthy controls.
Collapse
Affiliation(s)
- Dayu Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu cancer hospital, Jiangsu Institute of cancer research, Nanjing 210009, China
| | - Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Wei
- College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yan
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu cancer hospital, Jiangsu Institute of cancer research, Nanjing 210009, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Qian Y, Ding J, Zhao R, Song Y, Yoo J, Moon H, Koo S, Kim JS, Shen J. Intrinsic immunomodulatory hydrogels for chronic inflammation. Chem Soc Rev 2025; 54:33-61. [PMID: 39499495 DOI: 10.1039/d4cs00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Collapse
Affiliation(s)
- Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Institute of Imaging Diagnosis and Minimally Invasive Intervention, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yang Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seyoung Koo
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jong Seung Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
6
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
7
|
Wang L, Xue Y, Li S, Zhang X, Miao Z, Zeng Z, Ruan D, Shen Y, Yuan H, Zhao Y, Li D, Luo Z, Wong TW, Li T, Li L, Yang X, Yang W. Tough and Functional Hydrogel Coating by Electrostatic Spraying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408780. [PMID: 39707674 DOI: 10.1002/smll.202408780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/03/2024] [Indexed: 12/23/2024]
Abstract
Hydrogel coatings impart superior surface properties to materials, but their application on large and complicated substrates is hindered by two challenges: limited wetting conditions and intricate curing processes. To overcome the challenges, lyophilized adhesive hydrogel powders (LAHPs) are developed, which consist of poly(acrylic acid-co-3-(trimethoxysilyl)propyl methacrylate) crosslinked with chitosan. These powders are electrostatic sprayed onto substrates to address wetting issues and rehydrated to form bulk hydrogel coatings to circumvent curing challenges. This approach enables the application of hydrogel coatings with a smooth surface and adjustable thickness on various materials, irrespective of category, geometry, or size. The coatings exhibit remarkable mechanical properties (strength of 2.62 MPa, elastic modulus of 6.84 MPa, and stretchability exceeding 3 folds) and robust adhesion (adhesion energy ≈900 J m-2) through a three-step bonding process involving electrostatic attraction, hydrogen bonding, and covalent bonding. Notably, these coatings confer multiple functional attributes to the substrate, including lubricity, hydrophilicity, nucleation inhibition, and pH-responsive actuation. Moreover, incorporating LAHPs with functional agents or rehydrating with functional solutions opens possibilities for diverse functional hydrogel coatings, such as thermal responsiveness and NH3 indication. Leveraging the virtues of simplicity, flexibility, convenience, and broad applicability, this strategy presents an enticing pathway for the widespread applications of hydrogel coatings.
Collapse
Affiliation(s)
- Lei Wang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Siyang Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaochen Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhikun Miao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zehao Zeng
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dongrui Ruan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yifeng Shen
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Hui Yuan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yukai Zhao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dong Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Advanced Membrane Technology Research Centre, University Teknologi Malaysia, Skudai, 81310, Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Huang L, Zhou Y, Hu X, Yang Z. Emerging Combination of Hydrogel and Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409711. [PMID: 39679847 DOI: 10.1002/smll.202409711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Electrochemical sensors are among the most promising technologies for biomarker research, with outstanding sensitivity, selectivity, and rapid response capabilities that make them important in medical diagnostics and prognosis. Recently, hydrogels have gained attention in the domain of electrochemical biosensors because of their superior biocompatibility, excellent adhesion, and ability to form conformal contact with diverse surfaces. These features provide distinct advantages, particularly in the advancement of wearable biosensors. This review examines the contemporary utilization of hydrogels in electrochemical sensing, explores strategies for optimization and prospective development trajectories, and highlights their distinctive advantages. The objective is to provide an exhaustive overview of the foundational principles of electrochemical sensing systems, analyze the compatibility of hydrogel properties with electrochemical methodologies, and propose potential healthcare applications to further illustrate their applicability. Despite significant advances in the development of hydrogel-based electrochemical biosensors, challenges persist, such as improving material fatigue resistance, interfacial adhesion, and maintaining balanced water content across various environments. Overall, hydrogels have immense potential in flexible biosensors and provide exciting opportunities. However, resolving the current obstacles will necessitate additional research and development efforts.
Collapse
Affiliation(s)
- Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
9
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Zhao X, Lu Y, Wu J, Yang Y, Li B, Li H, Sun Y, Yan X, Liu X, Lu G. Construction of portable hydrogel kits with self-ratio optical bimodal detection and smartphone imaging for on-site nitrite screening. Biosens Bioelectron 2024; 263:116622. [PMID: 39096762 DOI: 10.1016/j.bios.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Accurate on-site detection of nitrite in complex matrices remains a significant challenge. Herin, we construct a self-ratio optical bimodal portable kit via co-assembling NaErF4:0.5%Tm@NaYF4@NaYbF4:0.5%Tm@NaYF4 (Er:Tm@Yb:Tm) and nitrogen-doped carbon platinum nanomaterials (Pt/CN) in sodium alginate (SA) hydrogel. Pt/CN nanomaterials are synthesized by high-temperature sintering using a zinc-based zeolite imidazolium framework as a sacrificial template. The Pt/CN nanozyme possesses excellent oxidase-like activity to produce the oxidation state 3,3',5,5'-tetramethylbenzidine (oxTMB). Nitrite mediates diazotization of oxTMB to trigger the change of absorption signals, accompanying the ratio fluorescence response of the Er:Tm@Yb:Tm. Crucially, Er:Tm@Yb:Tm and Pt/CN are embedded in SA hydrogel to fabricate a portable kit with efficient and sensitive performance. An image processing algorithm is used to analyze the nitrite-induced signal change of the portable hydrogel kit, resulting in detection limits of 0.63 μM. This method has great potential for point-of-care applications due to its reliability, long-term stability, accuracy, sensitivity, and portability.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China
| | - Yang Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China
| | - Jiahang Wu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China
| | - Yuhan Yang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China
| | - Bai Li
- Colorectal & Anal Surgery Department, General Surgery Center, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin Province, 130021, PR China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yanfeng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China.
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
11
|
Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y, Han L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. NANO-MICRO LETTERS 2024; 17:34. [PMID: 39373823 PMCID: PMC11458861 DOI: 10.1007/s40820-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Mintz Hemed N, Hwang FJ, Zhao ET, Ding JB, Melosh NA. Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm 2 area. Biosens Bioelectron 2024; 261:116474. [PMID: 38870827 DOI: 10.1016/j.bios.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4792. [PMID: 39410363 PMCID: PMC11477805 DOI: 10.3390/ma17194792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. Initially, the chemical composition and intrinsic properties of both natural and synthetic hydrogels are discussed, highlighting their biocompatibility and biodegradability. The manuscript then probes into innovative scaffold designs and fabrication techniques such as 3D printing, electrospinning, and self-assembly methods, emphasizing their applications in regenerating bone, cartilage, skin, and neural tissues. In the realm of biosensing, hydrogels' responsive nature is explored through their integration into optical, electrochemical, and piezoelectric sensors. These sensors are instrumental in medical diagnostics for glucose monitoring, pathogen detection, and biomarker identification, as well as in environmental and industrial applications like pollution and food quality monitoring. Furthermore, the review explores cross-disciplinary innovations, including the use of hydrogels in wearable devices, and hybrid systems, and their potential in personalized medicine. By addressing current challenges and future directions, this review aims to underscore the transformative impact of hydrogel technologies in advancing healthcare and industrial practices, thereby providing a vital resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
14
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
15
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Bakhshandeh F, Zheng H, Barra NG, Sadeghzadeh S, Ausri I, Sen P, Keyvani F, Rahman F, Quadrilatero J, Liu J, Schertzer JD, Soleymani L, Poudineh M. Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313743. [PMID: 38752744 DOI: 10.1002/adma.202313743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Indexed: 06/19/2024]
Abstract
Continuous monitoring of clinically relevant biomarkers within the interstitial fluid (ISF) using microneedle (MN)-based assays, has the potential to transform healthcare. This study introduces the Wearable Aptalyzer, an integrated system fabricated by combining biocompatible hydrogel MN arrays for ISF extraction with an electrochemical aptamer-based biosensor for in situ monitoring of blood analytes. The use of aptamers enables continuous monitoring of a wide range of analytes, beyond what is possible with enzymatic monitoring. The Wearable Aptalyzer is used for real-time and multiplexed monitoring of glucose and lactate in ISF. Validation experiments using live mice and rat models of type 1 diabetes demonstrate strong correlation between the measurements collected from the Wearable Aptalyzer in ISF and those obtained from gold-standard techniques for blood glucose and lactate, for each analyte alone and in combination. The Wearable Aptalyzer effectively addresses the limitations inherent in enzymatic detection methods as well as solid MN biosensors and the need for reliable and multiplexed bioanalytical monitoring in vivo.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Irfani Ausri
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Payel Sen
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Fasih Rahman
- Department of Kinesiology and Health Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L 3W4, ON, Canada
| |
Collapse
|
17
|
Zhang S, Jia E, Zhang W, Wang Z, Deng D, Zhang Y, Huang X, Tian Q, Tan Y, Wang B, Lin F. Injectable alginate-based zwitterionic hydrogels promoting endometrial repair and restoring fertility. Int J Biol Macromol 2024; 275:133458. [PMID: 38945326 DOI: 10.1016/j.ijbiomac.2024.133458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The development of novel therapeutic approaches to facilitate endometrial repair and regeneration while preventing adhesion recurrence is a crucial research objective aimed at enhancing clinical outcomes for women with intrauterine adhesions (IUA). In this study, we introduced an injectable Alg-GMA/PTSB zwitterionic hydrogel, characterized by excellent biocompatibility, anti-protein adsorption properties, and biodegradability. In a rat model, the hydrogel significantly promoted the regeneration and angiogenesis of damaged endometrial tissue, leading to improved recovery of epithelial cells, glands, proliferation, and vascularization. Furthermore, it exhibited the ability to suppress cellular apoptosis and collagen deposition, thereby mitigating fibrosis. Additionally, the hydrogel restored the expression of estrogen/progesterone receptors and endometrial receptivity markers, contributing to enhanced embryo implantation and fertility. These findings underscore the potential of the hydrogel as a promising therapeutic strategy for addressing endometrial injury, reducing fibrosis, restoring fertility, and ultimately improving outcomes for women with IUA.
Collapse
Affiliation(s)
- Sisi Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Erna Jia
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Weiqi Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiying Wang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | - Da Deng
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | - Yixin Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuefeng Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qingquan Tian
- Hangzhou Kewan New Materials Technology Co., Ltd, Hangzhou 311305, China
| | - Ying Tan
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Bujun Wang
- Department of Obstetrics, Pingyang People's Hospital of Wenzhou Medical University, Wenzhou 325499, China.
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
18
|
Ahmed MS, Islam M, Hasan MK, Nam KW. A Comprehensive Review of Radiation-Induced Hydrogels: Synthesis, Properties, and Multidimensional Applications. Gels 2024; 10:381. [PMID: 38920928 PMCID: PMC11203285 DOI: 10.3390/gels10060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Md. Kamrul Hasan
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| |
Collapse
|
19
|
Bharti AM, Rakesh Kumar RK, Chuang CH, Shaikh MO. Universal nanocomposite coating with antifouling and redox capabilities for electrochemical affinity biosensing in complex biological fluids. NANOSCALE HORIZONS 2024; 9:843-852. [PMID: 38482914 DOI: 10.1039/d3nh00541k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Electrochemical affinity biosensors have the potential to facilitate the development of multiplexed point-of-care diagnostics in complex biological fluids. However, their commercial viability has been hindered by challenges such as electrode biofouling and the lack of inherent redox properties. To address this unmet need, we have developed a universal nanocomposite coating which is unique in its ability to not only allow oriented conjugation of the biorecognition element but also specific detection directly in complex biological fluids like serum and urine owing to its built-in antifouling and redox capabilities, thus improving suitability for point of care testing. This multifunctional coating comprises a 3D porous crosslinked bovine serum albumin matrix for oriented conjugation and antifouling properties with embedded graphene nanosheets modified with amino-ferrocene for enhanced conductivity and mediator-free biosensing. The coating showed minimal signal degradation despite prolonged exposure to 1% bovine serum albumin, artificial urine and untreated human serum for up to 30 days. To demonstrate its utility, we fabricated and tested proof-of-concept electrochemical immunosensors for bladder cancer protein biomarkers, specifically interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF). The practical feasibility was highlighted by the excellent sensitivity and specificity observed for IL-8 and VEGF with a limit of detection of 41 pg mL-1 and 67 pg mL-1, respectively. Consequently, this universal nanocomposite-based electrochemical biosensing platform can be extended to the point of care testing of a broad spectrum of biomarkers present in complex biological fluids, thus enabling reliable and early diagnostics.
Collapse
Affiliation(s)
- Aditya Manu Bharti
- International PhD Program for Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - R K Rakesh Kumar
- Department of Chemical Engineering, National Taiwan University, Taipei City, 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Healthcare Research Institutes, Miaoli County 350, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Centre of Excellence for Metabolic Associated Fatty Liver Disease (CEMAFLD), National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management Program, Tunghai University, Taichung 407224, Taiwan.
| |
Collapse
|
20
|
Wang C, Wu Y, Xue Y, Zou L, Huang Y, Zhang P, Ji J. Combinatorial discovery of antibacterials via a feature-fusion based machine learning workflow. Chem Sci 2024; 15:6044-6052. [PMID: 38665528 PMCID: PMC11041243 DOI: 10.1039/d3sc06441g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
The discovery of new antibacterials within the vast chemical space is crucial in combating drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). However, the traditional approach of screening the entire chemical library in an ergodic manner can be laborious and time-consuming. Machine learning-assisted screening of antibacterials alleviates the exploration effort but suffers from the lack of reliable and related datasets. To address these challenges, we devised a combinatorial library comprising over 110 000 candidates based on the Ugi reaction. A focused library was subsequently generated through uniform sampling of the entire library to narrow down the preliminary screening scale. A novel feature-fusion architecture called the latent space constraint neural network was developed which incorporated both fingerprint and physicochemical molecular descriptors to predict the antibacterial properties. This integration allowed the model to leverage the complementary information provided by these descriptors and improve the accuracy of predictions. Three lead compounds that demonstrated excellent efficacy against MRSA while alleviating drug resistance were identified. This workflow highlights the integration of machine learning with the combinatorial chemical library to expedite high-quality data collection and extensive data mining for antibacterial screening.
Collapse
Affiliation(s)
- Cong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
- International Research Center for X Polymers, International Campus, Zhejiang University Haining Zhejiang 314400 PR China
| | - Yuhui Wu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
- International Research Center for X Polymers, International Campus, Zhejiang University Haining Zhejiang 314400 PR China
| | - Yunfan Xue
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
- International Research Center for X Polymers, International Campus, Zhejiang University Haining Zhejiang 314400 PR China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University Hangzhou Zhejiang 311202 P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 PR China
- International Research Center for X Polymers, International Campus, Zhejiang University Haining Zhejiang 314400 PR China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University Hangzhou Zhejiang 311202 P. R. China
| |
Collapse
|
21
|
Ling W, Shang X, Yu C, Li C, Xu K, Feng L, Wei Y, Tang T, Huang X. Miniaturized Implantable Fluorescence Probes Integrated with Metal-Organic Frameworks for Deep Brain Dopamine Sensing. ACS NANO 2024; 18:10596-10608. [PMID: 38557034 DOI: 10.1021/acsnano.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 μm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.
Collapse
Affiliation(s)
- Wei Ling
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xue Shang
- Research Center for Intelligent Sensing Systems, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Chaonan Yu
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Kedi Xu
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Yina Wei
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Tao Tang
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Xian Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing 314006, China
| |
Collapse
|
22
|
Lyu N, Deng D, Xiang Y, Du Z, Mou X, Ma Q, Huang N, Lu J, Li X, Yang Z, Zhang W. An insect sclerotization-inspired antifouling armor on biomedical devices combats thrombosis and embedding. Bioact Mater 2024; 33:562-571. [PMID: 38162514 PMCID: PMC10755681 DOI: 10.1016/j.bioactmat.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Thrombus formation and tissue embedding significantly impair the clinical efficacy and retrievability of temporary interventional medical devices. Herein, we report an insect sclerotization-inspired antifouling armor for tailoring temporary interventional devices with durable resistance to protein adsorption and the following protein-mediated complications. By mimicking the phenol-polyamine chemistry assisted by phenol oxidases during sclerotization, we develop a facile one-step method to crosslink bovine serum albumin (BSA) with oxidized hydrocaffeic acid (HCA), resulting in a stable and universal BSA@HCA armor. Furthermore, the surface of the BSA@HCA armor, enriched with carboxyl groups, supports the secondary grafting of polyethylene glycol (PEG), further enhancing both its antifouling performance and durability. The synergy of robustly immobilized BSA and covalently grafted PEG provide potent resistance to the adhesion of proteins, platelets, and vascular cells in vitro. In ex vivo blood circulation experiment, the armored surface reduces thrombus formation by 95 %. Moreover, the antifouling armor retained over 60 % of its fouling resistance after 28 days of immersion in PBS. Overall, our armor engineering strategy presents a promising solution for enhancing the antifouling properties and clinical performance of temporary interventional medical devices.
Collapse
Affiliation(s)
- Nan Lyu
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Daihua Deng
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Yuting Xiang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Zeyu Du
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Xiaohui Mou
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Qing Ma
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
- GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou, Guangdong, 510670, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan, 610072, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan, 610072, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| |
Collapse
|
23
|
Duan H, Tang SY, Goda K, Li M. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosens Bioelectron 2024; 246:115918. [PMID: 38086309 DOI: 10.1016/j.bios.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.
Collapse
Affiliation(s)
- Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO16 1BJ, UK
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
24
|
Jiang X, Zhang X, Guo C, Ou L. Antifouling modification for high-performance isolation of circulating tumor cells. Talanta 2024; 266:125048. [PMID: 37579675 DOI: 10.1016/j.talanta.2023.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Circulating tumor cells (CTCs), which shed from solid tumor tissue into blood circulatory system, have attracted wide attention as a biomarker in the early diagnosis and prognosis of cancer. Given their potential significance in clinics, many platforms have been developed to separate CTCs. However, the high-performance isolation of CTCs remains significant challenges including achieving the sensitivity and specificity necessary due to their extreme rarity and severe biofouling in blood, such as billions of background cells and various proteins. With the advancement of CTCs detection technologies in recent years, the highly efficient and highly specific detection platforms for CTCs have gradually been developed, resulting in improving CTC capture efficiency, purity and sensitivity. In this review, we systematically describe the current strategies with surface modifications by utilizing the antifouling property of polymer, peptide, protein and cell membrane for high-performance enrichment of CTCs. To wrap up, we discuss the substantial challenges facing by current technologies and the potential directions for future research and development.
Collapse
Affiliation(s)
- Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
Park CH, Thompson IAP, Newman SS, Hein LA, Lian X, Fu KX, Pan J, Eisenstein M, Soh HT. Real-Time Spatiotemporal Measurement of Extracellular Signaling Molecules Using an Aptamer Switch-Conjugated Hydrogel Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306704. [PMID: 37947789 DOI: 10.1002/adma.202306704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Cells rely on secreted signaling molecules to coordinate essential biological functions including development, metabolism, and immunity. Unfortunately, such signaling processes remain difficult to measure with sufficient chemical specificity and temporal resolution. To address this need, an aptamer-conjugated hydrogel matrix that enables continuous fluorescent measurement of specific secreted analytes - in two dimensions, in real-time is developed. As a proof of concept, real-time imaging of inter-cellular cyclic adenosine 3',5'-monophosphate (cAMP) signals in Dictyostelium discoideum amoeba cells is performed. A set of aptamer switches that generate a rapid and reversible change in fluorescence in response to cAMP signals is engineered. By combining multiple switches with different dynamic ranges, measure cAMP concentrations spanning three orders of magnitude in a single experiment can be measured. These sensors are embedded within a biocompatible hydrogel on which cells are cultured and their cAMP secretions can be imaged using fluorescent microscopy. Using this aptamer-hydrogel material system, the first direct measurements of oscillatory cAMP signaling that correlate closely with previous indirect measurements are achieved. Using different aptamer switches, this approach can be generalized for measuring other secreted molecules to directly visualize diverse extracellular signaling processes and the biological effects that they trigger in recipient cells.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sharon S Newman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Linus A Hein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xizhen Lian
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jing Pan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
26
|
Zhang Y, Man J, Wang J, Liu J, Song X, Yu X, Li J, Li R, Qiu Y, Li J, Chen Y. Surface modification of polyvinyl chloride with sodium alginate/carboxymethyl chitosan and heparin for realizing the anticoagulation. Int J Biol Macromol 2024; 254:127653. [PMID: 37918597 DOI: 10.1016/j.ijbiomac.2023.127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Thrombosis of extracorporeal circuits causes significant morbidity and mortality worldwide. In this study, plasma treatment technology and chemical grafting method were used to construct heparinized surfaces on the PVC substrate, which could not only reduce thrombosis but also decrease the side effects of the direct injection of anticoagulants. The PVC substrate was modified by plasma treatment technology firstly to obtain the active surface with the hydroxyl groups used for grafting. Then, heparin was grafted onto the modified PVC surface using different grafting strategies to prepare different heparinized surfaces. The experimental results indicated that the sodium alginate (SA) and carboxymethyl chitosan (CCS) used as interlayers could significantly increase the graft density of heparin to improve the anticoagulant effects and hemocompatibility of heparinized surfaces. In addition, the modification of heparin can further improve the anticoagulant effects. The CCS/low-molecular-weight heparin (LWMH) surface has the best anticoagulant properties, which can prolong the activated partial thromboplastin time (APTT) values of human plasma for about 35 s, reduce the hemolysis rates to <0.3 %, and perform well in the in-vitro blood circulation test. The heparinized surfaces prepared in this work have great application potential in anticoagulant treatment for medical devices.
Collapse
Affiliation(s)
- Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Xiaohan Yu
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
27
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
28
|
Zhou J, Zhou S, Fan P, Li X, Ying Y, Ping J, Pan Y. Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information. NANO-MICRO LETTERS 2023; 16:49. [PMID: 38087121 PMCID: PMC10716106 DOI: 10.1007/s40820-023-01274-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 10/11/2024]
Abstract
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases. Currently, implantable electrochemical microsensors have emerged as a prominent area of research. These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration. They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner, characterized by their bloodless, painless features, and exceptional performance. The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts. This review commenced with a comprehensive discussion of the construction of microsensors, including the materials utilized and the methods employed for fabrication. Following this, we proceeded to explore the various implantation technologies employed for electrochemical microsensors. In addition, a comprehensive overview was provided of the various applications of implantable electrochemical microsensors, specifically in the monitoring of diseases and the investigation of disease mechanisms. Lastly, a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Peidi Fan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunjia Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Yuxiang Pan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| |
Collapse
|
29
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
30
|
He E, Ren J, Wang L, Li F, Li L, Ye T, Jiao Y, Li D, Wang J, Wang Y, Gao R, Zhang Y. A Mitochondrion-Inspired Magnesium-Oxygen Biobattery with High Energy Density In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304141. [PMID: 37478834 DOI: 10.1002/adma.202304141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.
Collapse
Affiliation(s)
- Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Junye Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
31
|
Wu G, Zhang ET, Qiang Y, Esmonde C, Chen X, Wei Z, Song Y, Zhang X, Schneider MJ, Li H, Sun H, Weng Z, Santaniello S, He J, Lai RY, Li Y, Bruchas MR, Zhang Y. Long-Term In Vivo Molecular Monitoring Using Aptamer-Graphene Microtransistors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562080. [PMID: 37905115 PMCID: PMC10614860 DOI: 10.1101/2023.10.18.562080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Long-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors in vivo is limited to a few hours. Here, we report a first-generation long-term in vivo molecular monitoring platform, named aptamer-graphene microtransistors (AGMs). The AGM incorporates a layer of pyrene-(polyethylene glycol)5-alcohol and DNase inhibitor-doped polyacrylamide hydrogel coating to reduce biofouling and aptamer degradation. As a demonstration of function and generalizability, the AGM achieves the detection of biomolecules such as dopamine and serotonin in undiluted whole blood at 37 °C for 11 days. Furthermore, the AGM successfully captures optically evoked dopamine release in vivo in mice for over one week and demonstrates the capability to monitor behaviorally-induced endogenous dopamine release even after eight days of implantation in freely moving mice. The results reported in this work establish the potential for chronic aptamer-based molecular monitoring platforms, and thus serve as a new benchmark for molecular monitoring using aptamer-based technology.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Eric T. Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Yingqi Qiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Michael J. Schneider
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sabato Santaniello
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Y. Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
32
|
Qiao C, Fu L, Lv X, Wang S, Ling Y, Xu C, Lin B, Wei Y. Hybrid cross-linked sodium carboxymethyl starch/polyacrylamide flexible sensing hydrogels with adhesion, antimicrobial properties and multiple responses. Int J Biol Macromol 2023; 249:126020. [PMID: 37516221 DOI: 10.1016/j.ijbiomac.2023.126020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Ionic hydrogels used as ideal and flexible strain sensor materials should have excellent mechanical, adhesive and antimicrobial properties. However, it is challenging to achieve these multifunctional requirements simultaneously. Herein, we designed and prepared a multifunctional ionic hydrogel with a multi-length tentacle bentonite backbone to initiate the free radical polymerization of acrylic acid bentonite (AABT) and acrylamide (AAm). The interactions of covalent cross-linking, hydrogen bonding cross-linking, charge interactions and physical entanglement between hybrid polyacrylamide-AABT (PAAm-AABT), sodium carboxymethyl starch (SCMS) and PAAm form an multi-in-one hybrid supramolecular network hydrogel (CABZ). This CABZ ion-conductive hydrogel is capable of detecting weak deformation with a detection limit of 1 % strain, high tensile properties of 995 %, excellent strength of 254.5 kPa, fast response (≈0.21 s), high sensitivity of 0.86 and high conductivity of 0.37 S/m. In addition, this CABZ ion-conductive hydrogel has impressive adhesion properties with shear adhesion strength up to 50.78 kPa and broad-spectrum antibacterial properties achieved by AABT-loaded ZnO nanoparticles. Through special AABT hybrid cross-linking, the CABZ ion-conductive hydrogel achieves stable mechanical properties, highly sensitive signal response and antimicrobial properties, which will make it a good choice for flexible wearable sensor materials.
Collapse
Affiliation(s)
- Changyu Qiao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Xiaohua Lv
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuxiao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yufei Ling
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Li S, Dai J, Zhu M, Arroyo-Currás N, Li H, Wang Y, Wang Q, Lou X, Kippin TE, Wang S, Plaxco KW, Li H, Xia F. Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. ACS NANO 2023; 17:18525-18538. [PMID: 37703911 DOI: 10.1021/acsnano.3c06520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations, would improve our understanding of health and our ability to diagnose, treat, and monitor disease. To this end, we are developing electrochemical aptamer-based (EAB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the use of an agarose hydrogel protective layer for EAB sensors significantly improves their signaling stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability and precision when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, our implantable gel-protective EAB sensors achieved good biocompatibility when deployed in vivo in the living rats without causing any severe inflammation.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Man Zhu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongxing Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yuanyuan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Tod E Kippin
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
- The Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Kevin W Plaxco
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
34
|
Weiss AM, Lopez MA, Rawe BW, Manna S, Chen Q, Mulder EJ, Rowan SJ, Esser-Kahn AP. Understanding How Cationic Polymers' Properties Inform Toxic or Immunogenic Responses via Parametric Analysis. Macromolecules 2023; 56:7286-7299. [PMID: 37781211 PMCID: PMC10537447 DOI: 10.1021/acs.macromol.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Cationic polymers are widely used materials in diverse biotechnologies. Subtle variations in these polymers' properties can change them from exceptional delivery agents to toxic inflammatory hazards. Conventional screening strategies optimize for function in a specific application rather than observing how underlying polymer-cell interactions emerge from polymers' properties. An alternative approach is to map basic underlying responses, such as immunogenicity or toxicity, as a function of basic physicochemical parameters to inform the design of materials for a breadth of applications. To demonstrate the potential of this approach, we synthesized 107 polymers varied in charge, hydrophobicity, and molecular weight. We then screened this library for cytotoxic behavior and immunogenic responses to map how these physicochemical properties inform polymer-cell interactions. We identify three compositional regions of interest and use confocal microscopy to uncover the mechanisms behind the observed responses. Finally, immunogenic activity is confirmed in vivo. Highly cationic polymers disrupted the cellular plasma membrane to induce a toxic phenotype, while high molecular weight, hydrophobic polymers were uptaken by active transport to induce NLRP3 inflammasome activation, an immunogenic phenotype. Tertiary amine- and triethylene glycol-containing polymers did not invoke immunogenic or toxic responses. The framework described herein allows for the systematic characterization of new cationic materials with different physicochemical properties for applications ranging from drug and gene delivery to antimicrobial coatings and tissue scaffolds.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Marcos A. Lopez
- Department
of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Benjamin W. Rawe
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Saikat Manna
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Elizabeth J. Mulder
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Thompson IA, Saunders J, Zheng L, Hariri AA, Maganzini N, Cartwright AP, Pan J, Yee S, Dory C, Eisenstein M, Vuckovic J, Soh HT. An antibody-based molecular switch for continuous small-molecule biosensing. SCIENCE ADVANCES 2023; 9:eadh4978. [PMID: 37738337 PMCID: PMC10516488 DOI: 10.1126/sciadv.adh4978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
We present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations. As a demonstration, we designed antibody-switches that achieve rapid, sample preparation-free sensing of digoxigenin and cortisol in undiluted plasma. We showed that, by substituting the molecular competitor, we can further modulate the sensitivity of our cortisol switch to achieve detection at concentrations spanning 3.3 nanomolar to 3.3 millimolar. Last, we integrated this switch with a fiber optic sensor to achieve continuous sensing of cortisol in a buffer and blood with <5-min time resolution. We believe that this modular sensor design can enable continuous biosensor development for many biomarkers.
Collapse
Affiliation(s)
- Ian A.P. Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jason Saunders
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Amani A. Hariri
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alyssa P. Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jing Pan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Tsai YC, Weng WY, Yeh YT, Chien JC. Dual-Aptamer Drift Canceling Techniques to Improve Long-Term Stability of Real-Time Structure-Switching Aptasensors. ACS Sens 2023; 8:3380-3388. [PMID: 37671977 DOI: 10.1021/acssensors.3c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This paper presents a dual-aptamer scheme to mitigate signal drifts caused by structure-switching aptamers during long-term monitoring. Electrochemical aptamer-based (E-AB) biosensors have recently shown great potential for continuous in vivo monitoring. However, the accuracy of detection is often limited by signaling drifts. Traditional approaches rely on kinetic differential measurements (KDM) coupled with square-wave voltammetry to eliminate these drifts. Yet, we have discovered that KDM does not apply universally to all aptamers, as their responses at different SWV frequencies heavily rely on their structure-switching characteristics and the electron transfer (ET) kinetics of the redox reporters. In light of this, we propose a "dual-aptamer" scheme that utilizes two aptamers, each responding differently to the same target molecule to cancel out drift. These paired aptamers are identified through (1) screening from an existing pool of aptamers and (2) engineering the signaling behavior of the redox reporters. We demonstrate the differential signaling of the aptamer pair in the presence of ampicillin and ATP molecules and show that the pair exhibits similar drifts in undiluted goat serum. By implementing drift cancelation, sensor drift is reduced by a factor of 370. Additionally, the differential signaling enables an increased recording throughput by leveraging differential readout electronics. The authors believe that the proposed technique holds significant benefits for long-term in vivo monitoring.
Collapse
Affiliation(s)
- Ya-Chen Tsai
- Department of Electrical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City 10617, Taiwan
| | - Wei-Yang Weng
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City 10617, Taiwan
| | - Yu-Tung Yeh
- Department of Electrical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City 10617, Taiwan
| | - Jun-Chau Chien
- Department of Electrical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City 10617, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City 10617, Taiwan
| |
Collapse
|
37
|
Li H, Yuan J, Fennell G, Abdulla V, Nistala R, Dandachi D, Ho DKC, Zhang Y. Recent advances in wearable sensors and data analytics for continuous monitoring and analysis of biomarkers and symptoms related to COVID-19. BIOPHYSICS REVIEWS 2023; 4:031302. [PMID: 38510705 PMCID: PMC10903389 DOI: 10.1063/5.0140900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/19/2023] [Indexed: 03/22/2024]
Abstract
The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substantial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient conditions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission. In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symptoms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data analytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and medical interventions.
Collapse
Affiliation(s)
- Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Jianhe Yuan
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Gavin Fennell
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Vagif Abdulla
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | - Dima Dandachi
- Division of Infectious Diseases, Department of Medicine, University of Missouri-Columbia, 1 Hospital Drive, Columbia, Missouri 65212, USA
| | - Dominic K. C. Ho
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
38
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
39
|
Qiao X, Cai Y, Kong Z, Xu Z, Luo X. A Wearable Electrochemical Sensor Based on Anti-Fouling and Self-Healing Polypeptide Complex Hydrogels for Sweat Monitoring. ACS Sens 2023; 8:2834-2842. [PMID: 37470172 DOI: 10.1021/acssensors.3c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Although continuous monitoring of constituents in complex sweat is crucial for noninvasive physiological evaluation, biofouling on the sweat sensor surface and inadequate flexible self-healing materials restrict its applications. Herein, a fully self-healing and strong anti-biofouling polypeptide complex hydrogel (AuNPs/MoS2/Pep hydrogel) with excellent electrochemical performances was created. The anti-fouling electrochemical sweat sensor was fabricated based on the AuNPs/MoS2/Pep hydrogel to address these issues. It was found that the polypeptide hydrogel was designed to form a network structure and carried abundant hydrophilic groups, resulting in a AuNPs/MoS2/Pep hydrogel with superior anti-biofouling properties in sweat for 30 min and even long-term stability in undiluted human sweat. In addition, SEM, TEM, UV, XPS, and infrared spectrogram demonstrated that the binding force of π-π stacking force between MoS2 and naphthalene groups in the designed peptide endowed the polypeptide complex hydrogel with an excellent self-healing property. Furthermore, the polypeptide complex hydrogel preserved wearable device function of continuously monitoring uric acid (UA) and ascorbic acid (AA) in sweat in situ. This novel fabricated sweat sensor with high anti-biofouling ability, excellent self-healing property, and sensitive and selective analytical capability describes a new opportunity for health monitoring in situ.
Collapse
Affiliation(s)
- Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuchen Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhaoyang Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhenying Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
40
|
Chan D, Maikawa CL, d’Aquino AI, Raghavan SS, Troxell ML, Appel EA. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices. J Biomed Mater Res A 2023; 111:910-920. [PMID: 36861657 PMCID: PMC10161736 DOI: 10.1002/jbm.a.37521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
The introduction of transcutaneous and subcutaneous implants and devices into the human body instigates fouling and foreign body responses (FBRs) that limit their functional lifetimes. Polymer coatings are a promising solution to improve the biocompatibility of such implants, with potential to enhance in vivo device performance and prolong device lifetime. Here we sought to develop novel materials for use as coatings on subcutaneously implanted devices to reduce the FBR and local tissue inflammation in comparison to gold standard materials such as poly(ethylene glycol) and polyzwitterions. We prepared a library of polyacrylamide-based copolymer hydrogels, which were selected from materials previously shown to exhibit remarkable antifouling properties with blood and plasma, and implanted them into the subcutaneous space of mice to evaluate their biocompatibility over the course of 1 month. The top performing polyacrylamide-based copolymer hydrogel material, comprising a 50:50 mixture of N-(2-hydroxyethyl)acrylamide (HEAm) and N-(3-methoxypropyl)acrylamide (MPAm), exhibited significantly better biocompatibility and lower tissue inflammation than gold standard materials. Moreover, when applied to polydimethylsiloxane disks or silicon catheters as a thin coating (45 ± 1 μm), this leading copolymer hydrogel coating significantly improved implant biocompatibility. Using a rat model of insulin-deficient diabetes, we showed that insulin pumps fitted with HEAm-co-MPAm hydrogel-coated insulin infusion catheters exhibited improved biocompatibility and extended functional lifetime over pumps fitted with industry standard catheters. These polyacrylamide-based copolymer hydrogel coatings have the potential to improve device function and lifetime, thereby reducing the burden of disease management for people regularly using implanted devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
| | - Caitlin L. Maikawa
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Andrea I. d’Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
| | - Shyam S. Raghavan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Megan L. Troxell
- Department of Pathology, University of Virginia, Charlottesville, VA, 22902
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Pediatrics (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
- ChEM-H Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
41
|
Hua J, Su M, Sun X, Li J, Sun Y, Qiu H, Shi Y, Pan L. Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring. BIOSENSORS 2023; 13:696. [PMID: 37504095 PMCID: PMC10377104 DOI: 10.3390/bios13070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Flexible bioelectronics exhibit promising potential for health monitoring, owing to their soft and stretchable nature. However, the simultaneous improvement of mechanical properties, biocompatibility, and signal-to-noise ratio of these devices for health monitoring poses a significant challenge. Hydrogels, with their loose three-dimensional network structure that encapsulates massive amounts of water, are a potential solution. Through the incorporation of polymers or conductive fillers into the hydrogel and special preparation methods, hydrogels can achieve a unification of excellent properties such as mechanical properties, self-healing, adhesion, and biocompatibility, making them a hot material for health monitoring bioelectronics. Currently, hydrogel-based bioelectronics can be used to fabricate flexible bioelectronics for motion, bioelectric, and biomolecular acquisition for human health monitoring and further clinical applications. This review focuses on materials, devices, and applications for hydrogel-based bioelectronics. The main material properties and research advances of hydrogels for health monitoring bioelectronics are summarized firstly. Then, we provide a focused discussion on hydrogel-based bioelectronics for health monitoring, which are classified as skin-attachable, implantable, or semi-implantable depending on the depth of penetration and the location of the device. Finally, future challenges and opportunities of hydrogel-based bioelectronics for health monitoring are envisioned.
Collapse
Affiliation(s)
- Jiangbo Hua
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Mengrui Su
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Park NH, Manica M, Born J, Hedrick JL, Erdmann T, Zubarev DY, Adell-Mill N, Arrechea PL. Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language. Nat Commun 2023; 14:3686. [PMID: 37344485 PMCID: PMC10284867 DOI: 10.1038/s41467-023-39396-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Advances in machine learning (ML) and automated experimentation are poised to vastly accelerate research in polymer science. Data representation is a critical aspect for enabling ML integration in research workflows, yet many data models impose significant rigidity making it difficult to accommodate a broad array of experiment and data types found in polymer science. This inflexibility presents a significant barrier for researchers to leverage their historical data in ML development. Here we show that a domain specific language, termed Chemical Markdown Language (CMDL), provides flexible, extensible, and consistent representation of disparate experiment types and polymer structures. CMDL enables seamless use of historical experimental data to fine-tune regression transformer (RT) models for generative molecular design tasks. We demonstrate the utility of this approach through the generation and the experimental validation of catalysts and polymers in the context of ring-opening polymerization-although we provide examples of how CMDL can be more broadly applied to other polymer classes. Critically, we show how the CMDL tuned model preserves key functional groups within the polymer structure, allowing for experimental validation. These results reveal the versatility of CMDL and how it facilitates translation of historical data into meaningful predictive and generative models to produce experimentally actionable output.
Collapse
Affiliation(s)
| | - Matteo Manica
- IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
| | - Jannis Born
- IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - James L Hedrick
- IBM Research-Almaden, 650 Harry Rd., San Jose, CA, 95120, USA
| | - Tim Erdmann
- IBM Research-Almaden, 650 Harry Rd., San Jose, CA, 95120, USA
| | | | - Nil Adell-Mill
- IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- Arctoris, 120E Olympic Avenue, Abingdon, OX14 4SA, Oxfordshire, UK
| | | |
Collapse
|
43
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
44
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
45
|
Chen J, Wang Z, Sun J, Zhou R, Guo L, Zhang H, Liu D, Rong M, Ostrikov KK. Plasma-Activated Hydrogels for Microbial Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207407. [PMID: 36929325 DOI: 10.1002/advs.202207407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Indexed: 05/18/2023]
Abstract
A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , ∙OH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.
Collapse
Affiliation(s)
- Jinkun Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiachen Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
46
|
Li Y, Zhao S, Xu Z, Qiao X, Li M, Li Y, Luo X. Peptide nucleic acid and antifouling peptide based biosensor for the non-fouling detection of COVID-19 nucleic acid in saliva. Biosens Bioelectron 2023; 225:115101. [PMID: 36708624 DOI: 10.1016/j.bios.2023.115101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The electrochemical biosensor with outstanding sensitivity and low cost is regarded as a viable alternative to current clinical diagnostic techniques for various disease biomarkers. However, their actual analytical use in complex biological samples is severely hampered due to the biofouling, as they are also highly sensitive to nonspecific adsorption on the sensing interfaces. Herein, we have constructed a non-fouling electrochemical biosensor based on antifouling peptides and the electroneutral peptide nucleic acid (PNA), which was used as the recognizing probe for the specific binding of the viral RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Different from the negatively charged DNA probes that will normally weaken the biosensors' antifouling capabilities owing to the charge attraction of positively charged biomolecules, the neutral PNA probe will generate no side-effects on the biosensor. The biosensor demonstrated remarkable sensitivity in detecting SARS-CoV-2 viral RNA, possessing a broad linear range (1.0 fM - 1.0 nM) and a detection limit down to 0.38 fM. Furthermore, the sensing performance of the constructed electrochemical biosensor in human saliva was nearly similar to that in pure buffer, indicating satisfying antifouling capability. The combination of PNA probes with antifouling peptides offered a new strategy for the development of non-fouling sensing systems capable of assaying trace disease biomarkers in complicated biological media.
Collapse
Affiliation(s)
- Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Shuju Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhenying Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Mingxuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Youke Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
47
|
Li X, He X, Ling Y, Bai Z, Liu C, Liu X, Jia K. In-situ growth of silver nanoparticles on sulfonated polyarylene ether nitrile nanofibers as super-wetting antibacterial oil/water separation membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
48
|
Zezza P, Lucío MI, Fernández E, Maquieira Á, Bañuls MJ. Surface Micro-Patterned Biofunctionalized Hydrogel for Direct Nucleic Acid Hybridization Detection. BIOSENSORS 2023; 13:312. [PMID: 36979524 PMCID: PMC10046352 DOI: 10.3390/bios13030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The present research is focused on the development of a biofunctionalized hydrogel with a surface diffractive micropattern as a label-free biosensing platform. The biosensors described in this paper were fabricated with a holographic recording of polyethylene terephthalate (PET) surface micro-structures, which were then transferred into a hydrogel material. Acrylamide-based hydrogels were obtained with free radical polymerization, and propargyl acrylate was added as a comonomer, which allowed for covalent immobilization of thiolated oligonucleotide probes into the hydrogel network, via thiol-yne photoclick chemistry. The comonomer was shown to significantly contribute to the immobilization of the probes based on fluorescence imaging. Two different immobilization approaches were demonstrated: during or after hydrogel synthesis. The second approach showed better loading capacity of the bioreceptor groups. Diffraction efficiency measurements of hydrogel gratings at 532 nm showed a selective response reaching a limit of detection in the complementary DNA strand of 2.47 µM. The label-free biosensor as designed could significantly contribute to direct and accurate analysis in medical diagnosis as it is cheap, easy to fabricate, and works without the need for further reagents.
Collapse
Affiliation(s)
- Paola Zezza
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Isabel Lucío
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Química, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| | - María-José Bañuls
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Química, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
49
|
Yin Y, Zeng H, Zhang S, Gao N, Liu R, Cheng S, Zhang M. Hydrogel-Coated Microelectrode Resists Protein Passivation of In Vivo Amperometric Sensors. Anal Chem 2023; 95:3390-3397. [PMID: 36725686 DOI: 10.1021/acs.analchem.2c04806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Passivation of electrodes caused by nonspecific adsorption of protein can dramatically reduce sensing sensitivity and accuracy, which is a great challenge for in vivo neurochemical monitoring. However, most antipassivation strategies are not suitable to carbon fiber microelectrodes (CFMEs) for in vivo measurement, and these methods also do not work on electrochemical biosensors that fix biometric elements. In this study, we demonstrate that chitosan hydrogel-coated microelectrodes can avoid the current passivation caused by protein adsorption on the surface of carbon fiber because the chitosan hydrogel prepared by local pH gradient caused by hydrogen evolution reaction has three-dimensional networks containing large amounts of water. The highly hydrophilic three-dimensional structure of hydrogel not only forms a biocompatible interface to confine enzymes but also keeps the fast mass transfer of analytes, such as dopamine, ascorbic acid, and glucose. The consistency of the precalibration and postcalibration of the prepared sensor enables in vivo amperometric detection of both electroactive species based on their redox property and electroinactive species based on the enzyme. This study provides a simple and versatile strategy to constitute an amperometric sensor interface to resist passivation of protein adsorption in a complex biological environment such as the brain.
Collapse
Affiliation(s)
- Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Nan Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rantong Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
50
|
Cao Y, Chen X, Matarasso A, Wang Z, Song Y, Wu G, Zhang X, Sun H, Wang X, Bruchas MR, Li Y, Zhang Y. Covalently Attached Slippery Surface Coatings to Reduce Protein Adsorptions on Poly(dimethylsiloxane) Planar Surfaces and 3D Microfluidic Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10.1021/acsami.2c20834. [PMID: 36763047 PMCID: PMC10412728 DOI: 10.1021/acsami.2c20834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Silicone elastomers, such as poly(dimethylsiloxane) (PDMS), have a broad range of applications in basic biomedical research and clinical medicine, ranging from the preparation of microfluidic devices for organs-on-chips and ventriculoperitoneal shunts for the treatment of hydrocephalus to implantable neural probes for neuropharmacology. Despite the importance, the protein adsorptions on silicone elastomers in these application environments represent a significant challenge. Surface coatings with slippery lubricants, inspired by the Nepenthes pitcher plants, have recently received much attention for reducing protein adsorptions. Nevertheless, the depletion of the physically infused lubricants limits their broad applications. In this study, we report a covalently attached slippery surface coating to reduce protein adsorptions on PDMS surfaces. As demonstrations, we show that the adsorption of serum proteins, human fibrinogen and albumin, can be significantly reduced by the slippery surface coating in both planar PDMS surfaces and 3D microfluidic channels. The preparation of slippery surface coatings relies on the acid-catalyzed polycondensation reaction of dimethyldimethoxysilane, which utilizes a low-cost and scalable dip-coating method. Furthermore, cell metabolic activity and viability studies demonstrate the biocompatibility of the surface coating. These results suggest the potential applications of slippery surface coatings to reduce protein adsorptions for implantable medical devices, organs-on-chips, and many others.
Collapse
Affiliation(s)
- Yue Cao
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Avi Matarasso
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zizheng Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Song
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xueju Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|